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Abstract—Component-based software systems with real-time
requirements are often scheduled using processor reservation
techniques. Such techniques have mainly evolved around hard
real-time systems in which worst-case resource demands are
considered for the reservations. In soft real-time systems, reserv-
ing the processors based on the worst-case demands results in
unnecessary over-allocations.

In this paper, targeting soft real-time systems running on
multiprocessor platforms, we focus on components for which
processor demand varies during run-time. We propose a feedback
scheduling framework where processor reservations are used for
scheduling components. The reservation bandwidths as well as the
reservation periods are adapted using MIMO LQR controllers.
We provide an allocation mechanism for distributing components
over processors. The proposed framework is implemented in the
TrueTime simulation tool for system identification. We use a case
study to investigate the performance of our framework in the
simulation tool. Finally, the framework is implemented in the
Linux kernel for practical evaluations. The evaluation results
suggest that the framework can efficiently adapt the reservation
parameters during run-time by imposing negligible overhead.

I. INTRODUCTION

Multiprocessors are becoming increasingly more
widespread computing platforms. Thanks to the computational
capacity of the multiprocessors, previously segregated software
systems can now be integrated on a shared hardware platform.
Component-Based Software Engineering (CBSE) provides
a modular approach for designing and developing complex
software systems. CBSE provides means and techniques for
integration of independently developed software components.

When it comes to real-time systems, timing constraints of
software components have to be considered at the integra-
tion phase. We consider component models in which a real-
time software component corresponds to a set of real-time
tasks. A component also has an intra-component scheduler
which coordinates task executions. Processor reservation and
hierarchical scheduling techniques are often used to provide
timing guarantees to the components in component-based sys-
tems (e.g., [1], [2]). Therefore, from the real-time scheduling
perspective, the problem of component integration is reduced
to creating adequate processor reservations for hosting the
components.

Real-time tasks can either have hard deadlines where
deadline misses are absolutely unacceptable or soft deadlines
where occasional deadline misses can be tolerated. A hard
real-time component is a component with hard real-time tasks.
The size of processor reservations assigned to the hard real-
time components is derived from the Worst-Case Execution
Time (WCET) of the component’s inner tasks. For instance
in [3] and [4], targeting multiprocessor platforms, the authors

provided analysis frameworks in which the reservation prop-
erties are extracted from intra-component schedulers and task
parameters. Such analyses result in pessimistic allocations.
The over-allocation is due to two reasons. Firstly, WCET
is unlikely to happen in reality. Secondly, the analysis that
derives the processor reservation sizes based on the WCET
of tasks is pessimistic. Soft real-time components are soft-
ware components consisting of soft real-time tasks. When
integrating soft real-time components, pessimistic allocations
are not justifiable. This is because pessimistic allocations do
not permit an efficient processor utilization. In addition, in a
group of soft real-time tasks the processor demand is subjected
to large variations during run-time. For instance, the execution
time of video decoder tasks can significantly vary depending
on the content of the video frames. As a result, the processor
demand of a real-time component consisting of such dynamic
tasks may change significantly during run-time. Therefore,
assigning a fixed-size processor reservation (for instance based
on the average processor demands) results in an unacceptable
number of timing violations.

Adaptive reservation techniques are widely used in single-
processor platforms for scheduling soft real-time tasks with
dynamic execution times (e.g., [5], [6]). In this paper, how-
ever, we focus on soft real-time components integrated on
multiprocessor platforms. In our model, the components may
be spread over multiple processors. As a result, the com-
ponent’s inner tasks are scheduled using a multiprocessor
global scheduling algorithm. We propose a feedback schedul-
ing framework which is built upon adaptive reservations. In
our framework, the component demand is monitored during
run-time. The processors reservations hosting the component
are, then, adjusted according to the current demand. The
processor allocations are also reconfigured to cope with the
current state of the components. More specifically, in this
paper, we present the following contributions: (i) a feedback
scheduling scheme that uses Multiple Input Multiple Output
(MIMO) controllers to regulate both period and budget of the
periodic servers simultaneously (ii) an approximate model of
the reservation dynamics through system identification (iii) a
component allocation heuristic that maps software components
to the processors and evaluating it against the optimal solution
(iv) optimal compression algorithms that provide compressed
bandwidths in overload situations (v) simulation-based evalua-
tion of our MIMO controllers in TrueTime (vi) implementation
and evaluation of our framework in the Linux kernel.

II. PRELIMINARIES

System model. We assume a multiprocessor platform consist-
ing of M identical processors. n components are running on
the multiprocessor platform. We consider an open system in
which components are allowed to join and/or leave the plat-
form. As a result, n varies in run-time. The set of components



which are active in the system at any given time t is denoted
using Γ(t).

We target a component-based software development model
in which the following two roles are defined: (i) component
developer (ii) system integrator. The component developer is
responsible for developing real-time tasks and selecting an
appropriate scheduling policy for them. Then, the component
requirements are abstracted using a number of interface pa-
rameters. When it comes to components with hard real-time
requirements, a component interface represents the minimum
amount of resource needed for guaranteeing the schedulability
of the component. Such an interface is calculated using the
WCET of the component’s inner tasks. In our framework,
however, we are targeting soft real-time components with dy-
namic workloads. Therefore, a component interface expresses
an interval in which the processor demand of the component
may vary during run-time. Basically, instead of the worst-
case resource demands, the aggregate behavior of all tasks
with respect to the processor requirement is expressed in the
component interface. The system integrator, on the other hand,
receives a number of components and he/she is responsible for
integrating the components such that the requirements speci-
fied in the interface parameters are respected. The integrators’
responsibility involves (i) identifying an approximate model
of the component’s resource requirements within its operating
region (ii) designing controllers that adapt the resource pro-
visions to the components during run-time. In this paper, we
focus on the component integration.

Component model. Component Cj consists of a number of
real-time tasks, where j ∈ [1, n] is the index of the particular
component. The components also have an intra-component
scheduler which is responsible for scheduling component’s
inner task. The relative importance of components with re-
spect to the other components that are composed together on
one platform is represented by ζj . The importance value is
used when the system is overloaded. In such a situation, the
components that can better contribute to the overall value of
the system are preferred to the ones that have less impact on
the total system value. Components can be assigned to one or
more processors. We use period and bandwidth for specifying
processor requirements of components. The bandwidth indi-
cates the processor portion that a component requires, while
the period indicates the granularity of the CPU provisioning.
The component developers specify the operating range of their
components, that is, a processor demand interval that the
component will operate at run-time. The bandwidth require-
ment is denoted using ᾱj and σαj

, where ᾱj is the operating
bandwidth and σαj

indicates the amount of deviation from
the operating bandwidth. Similarly, the period requirement
is specified using an operating period T̄j and its deviation
σTj

. The component interface < ᾱj , T̄j , σαj
, σTj

, ζj >
denotes that the component will require a bandwidth between
ᾱj − σαj

/2 and ᾱj + σαj
/2. Similarly, the period may be

changed from T̄j−σTj
/2 to T̄j+σTj

/2. The system integrator
develops a model in the operating range of the component
that is used for adaptation purposes. Note that ᾱj and T̄j do
not need to be exact values, rather they are estimations of
the component’s processor requirements. We will adapt the
resource provisioning to the components during run-time to
compensate for the resource requirement estimation errors.

Task model. Our scheme supports periodic/sporadic task mod-
els τi<pi, ci(l), Di>, where i is the index of the particular

task, pi is the task period or the minimum inter-arrival time,
ci(l) is the execution cost of the lth instance of the task and Di

is the task deadline. Each instance of task execution is called
a job. Note that the execution cost of tasks is time-varying and
may be different from job to job. Throughout the paper and
for simplicity we use an implicit deadline periodic task model,
i.e. pi = Di. We do not assume any predefined execution cost
ci(l) for tasks, however, we assume a task is not allowed to run
in parallel, hence ∀t ci(l) ≤ pi. The jobs of a task are executed
sequentially, i.e., each job of a task is only allowed to run if
all of the previous jobs of the same task have finished their
executions. When tasks miss their deadlines, they continue
their execution until the end. The goal of our framework is
to provide a predictable Quality of Service (QoS) to the tasks,
while efficiently utilizing the processor capacity. We use the
number of deadline violations as a metric for measuring the
QoS.

Virtual clusters and virtual processors. The computation
capacity of the multiprocessor platform becomes available to
the components through Virtual Clusters (VC). A particular
VC i, denoted by Πi, is a set of Virtual Processors (VP)
Πi = {πi,1, πi,2, · · · }, where πi,j is the jth VP of Πi. A
VP is created by partitioning a single physical processor in
time. We use idling periodic servers compatible with the
periodic resource model [7] for partitioning a single physical
processor. When the server is active while there is no ready
task to run, the idling servers idle their budget. The deadline
of servers implementing the VPs is assumed to be equal to
their corresponding periods. πi,j receives qi,j units of the
physical processor time every Ti time units, where qi,j ≤ Ti.
The periods of all VPs belonging to Πi is equal to Ti.
The bandwidth of a VP is defined as ρi,j = qi,j/Ti. We
assume Πi can have at most one VP on any given physical
processor. Πi receives Bi time units every Ti units, where
Bi =

∑

j∈[1...M ] qi,j . In this summation, we assume qi,j = 0
for the case where the VC has less than M VPs and πi,j does
not exist. The bandwidth of Πi is defined as the following:
αi = Bi/Ti. We have n VCs hosting n components at each
point in time, i.e., the number of VCs in the system is equal
to the number of components n.

Multiple VPs that belong to distinct VCs may share a
physical processor. We use the partitioned EDF scheduling
algorithm for scheduling the VPs. For scheduling the tasks
within the components, however, we use a global multipro-
cessor scheduler. In other words, when a VC is spread over
multiple processors, tasks within the VC may migrate from
a processor to another processor. The intra-cluster scheduler
(task scheduler) can be either global fixed-priority or global
EDF. Considering the two levels of scheduling, our scheme
can be seen as a two-level hierarchical scheduling framework.

Operational modes. We consider the following two mutually
exclusive operating modes for the system: normal mode and
overload mode. In the normal mode the components can
receive their desired processor bandwidths because the total
required processor is less than the available processor time,
i.e.,

∑

i∈Γ αi ≤ M . In the normal mode we use a number of
independent MIMO controllers to regulate the bandwidths and
the periods of the VCs. In the overload mode, however, the
total required bandwidth is larger than the available processor
capacity. In this mode the system will suffer, i.e., real-time
tasks will inevitably miss their deadlines. Our goal, in the
overload mode, is to distribute the total bandwidth among
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Fig. 1: The architecture of our adaptive component-based scheduling frame-
work.

components in such a way that the overall value of the system
is maximized. Therefore, utilizing the importance value of the
components (ζi for each component Ci), we use a centralized
controller to distribute the total bandwidth among components.
If a system operates in the overload mode most of the time,
then the system is poorly designed and the integrator should
remove some of the components to reduce the load. We assume
that the overload mode happens transiently, and the system
mostly operates in the normal mode.

Overview of the framework. Figure 1 depicts the architecture
of our adaptive framework. The framework is comprised of two
types of elements: (1) cluster controllers (2) a resource man-
ager. The cluster controllers monitor the state of the VCs and
adapt their bandwidths and periods to deal with components’
dynamic resource requirements. The cluster controllers are
designed using control theory. Section III describes the cluster
controllers in detail. The resource manager, on the other hand,
is responsible for allocating components on the processors. The
resource manager receives n VCs and it allocates each VC on
a number of VPc. The resource manager adds, removes and
adjusts VPs dynamically to respond to the needs of the VCs.
Section IV addresses the design of the resource manager.

III. MODELING AND DESIGN OF CLUSTER CONTROLLERS

In this section we focus on adapting the parameters of a
single VC serving a component. Therefore, for simplicity, we
drop index i when referring to parameters associated with Πi.
Throughout this section we assume that the system is in the
normal mode. The cluster dynamics are sampled and adapted
periodically. The sampling time is denoted using k. The time
distance of two consecutive samples is referred as a sampling
interval and its length is denoted using Ψ.
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Fig. 2: Alignment problem: VP’s period is not aligned with the task period.
Task is released at time t2 while the VP is inactive. The task has to wait until
the next VP release which is after task’s deadline. Therefore, the task misses
its deadline while the VP budget is idled.

In control theory, control inputs are variables that are used
for manipulating the plant. We consider the VCs as our plant.
Our objective is to make sure that the VCs provide sufficient
processor capacities to the components at each point in time.
Therefore, we choose T and α as our control inputs. We use
the parameters expressed in the component’s interface as the
operating points and we take the distance from the operating
points as our control inputs. Therefore we have:

u(k) =

[

α(k)− ᾱ

T (k)− T̄

]

,

where u(k) is the control input at sampling time k. We
construct our model around the operating points of the system.
The reason behind using the operating points is that, the plant’s
behavior can be approximated in the vicinity of these points
using a linear model.

A. Why should the cluster periods be adapted?

At first glance it might appear that changing the VC
bandwidths through adapting their budgets might be sufficient.
However, there are a number of good reasons for adapting
the VC periods as well. Let’s first discuss the problems
associated with two extremes of period assignment, i.e., ex-
tremely short periods and extremely large periods. As the
VC period decreases, the number of preemptions in a given
time interval increases. Therefore, considering the overhead
penalty associated with preemptions, it is desirable to assign
periods as large as possible. Extremely large periods, on the
other hand, impose insignificant overhead. However, when
tasks are faster than their VPs, the VP bandwidths have to
be significantly larger than the task set’s processor utilization,
because the budget provisioning may not be aligned with the
task executions. We refer to this problem as the alignment
problem which is illustrated in Figure 2. The importance of
the granularity of a resource partition is also studied in [8].
In addition, in case of sporadic task models, the tasks may
occasionally use their minimum inter-arrival times. Hence,
assigning the VC period based on the minimum inter-arrival
times will impose unnecessary overhead to the system.

Measurable variables. For controlling the VC parameters, we
need a number of variables that can describe the dynamics
of the VCs. We should choose parameters that (i) can be
easily measured (ii) be an indication of the workload and task
frequencies. In fact, we consider the changes in workload as a
disturbance and our control objective is to compensate for it.

The cluster Π is assigned B(k) time units every T (k) time
units. It idles β(k) time units of its budget due to unavailability
of workload and utilizes the rest of its budget (B(k)− β(k)).
Tasks inside the VC either finish their executions before their
deadlines or after them. The part of task’s execution time
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(b) Late execution (µ).

Fig. 3: Visualization of the measurable variables.

executed after task’s deadline is called a late execution. The
part of the VC budget consumed by the late executions is
denoted by µ(k). At any sampling time k, the cluster controller
can measure β(k) and µ(k). Note that β(k) and µ(k) are
respectively the aggregate values of the idled budget and
the late executions happened in a sampling interval. These
parameters are illustrated in Figure 3a and Figure 3b. The
number of jobs that have missed their deadlines is another
variable that can be monitored by the cluster controller. The
number of deadline misses happened between sampling times
k − 1 and k is denoted by γ(k).

State variables. We intend to use a linear model for modeling
the dynamics between the inputs and the state variables. Thus,
we are interested in variables that their changes, with respect
to the changes of the inputs, are as close as possible to linear.
Since both β(k) and µ(k) are saturated at zero we use the
following linear combination of them as our first state variable:
x1(k) = (β(k) − µ(k))/Ψ. Note that this state variable is
normalized by the sampling length Ψ. The processor resource
over-allocation (x1(k) > 0) and under-allocation (x1(k) < 0)
to the components is revealed by x1(k). However, when the
idle time is equal to the late execution time (β(k) = µ(k)),
or when the late execution time is significantly smaller than
the idle time (µ(k) ≪ β(k)), components may suffer from
deadline misses while x1(k) is not revealing the state of the
VCs. To address this problem, we choose to further monitor the
number of deadline misses happened in a sampling interval.
Thus, the second state variable is: x2(k) = γ(k). This variable
can further express the state of VCs when x1(k) is not
expressive. In summary, we use the following state variables:

x(k) =

[

x1(k)

x2(k)

]

=

[

β(k)−µ(k)
Ψ

γ(k)

]

.

Suppose that α∗(k) and T ∗(k) are a bandwidth and a period
in which x1(k) = r1 and x2(k) = r2, where r1 and r2 are
desired values of x1(k) and x2(k) respectively. Assuming that
T (k) = T ∗(k) if α(k) > α∗(k) the VC will waste some of
its budget, hence x1(k) > 0. If α(k) < α∗(k) the VC will
suffer from a budget deficiency and x1(k) < 0, x2(k) > 0.
Assuming that α(k) = α∗(k), if T (k) > T ∗(k) the VC will
suffer from the alignment problem, therefore x1(k), x2(k) > 0.
If T (k) < T ∗(k), the VC will impose some overhead due to
short periods and x2(k) < 0. Note that in order to detect
this case, i.e., T (k) < T ∗(k) we have to set r2 to a small
number greater than zero. As discussed above, the designed
state variables reveal the internal states of the VCs.

B. Modeling the cluster dynamics

We are interested in deriving a model which captures the
relation between the control inputs and the state variables.
Throughout our experiments we observed that this relation is
not linear due to (i) queuing effects of u on x (ii) saturation of
x. The queuing effect is due to task scheduling. For instance,
increasing the VC bandwidth does not necessarily reduce the
number of deadline misses. This is because some tasks may
have backlogs from the previous sampling interval. Therefore,
increasing the bandwidth will allow them to execute in the
next sampling interval. Saturation of x happens due to the
nature of our system. For example, at most all of jobs of all
tasks within the VC can miss their deadlines. Therefore, in
such a condition that all jobs miss their deadlines, decreasing
the bandwidth will not have any influence in the number of
deadline misses. Despite the non-linearity nature of our system,
linear models often work well for nonlinear systems specially
when the purpose is to regulate the system output based on
a number of control inputs [9]. We use the so called “black
box” approach for modeling the relation between u and x. We
employ the Auto-Regressive with eXogenous variables (ARX)
model to describe the relation between the state variables
and the inputs. Therefore, the state space system model is as
follows:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k),
(1)

where A, B and C are 2×2 matrices, u(k) is the control input,
y(k) is the system output, and for simplicity we assume C = I
(I is the identity matrix). Matrix A indicates the dependency
between the next value of outputs to their previous values. Ma-
trix B, however, expresses the functional dependency between
the control inputs and the system outputs.

C. System identification

We use system identification for identifying matrices A
and B of the model presented in Eq. 1. System identification
uses statistical tools to estimate the model parameters. The
identification processor is as follows. First the components are
executed on the target hardware platform. The control inputs
(u) are modified throughout the execution of the components
and the system outputs (y) are noted. Finally, parameter esti-
mation is performed given u and y. Similar to WCET analysis
which is hardware dependent, the identified parameters may
depend on the characteristics of the target hardware platform.

The system outputs y(k) can be highly variable due to
stochastics of workload needed to be processed during a
sampling interval. This effect can make it difficult to model
the relation between the control inputs u(k) and the outputs
y(k). The amount of workload submitted during each sampling
interval depends on (i) number of job releases (ii) execution
time of each job (iii) amount of backlog, i.e., job executions
that are released in the previous sampling interval but not
completed in the same sampling interval. The effect of the
number of job releases can be counteracted by choosing an
appropriate sampling length. For instance, if a component
consists of periodic tasks, we can use the least common
multiple of tasks to counteracted for the problem of number
of releases. The sampling length should be large enough
to accommodate multiple job releases. However, sampling
infrequently may result in slow responses to changes. On the
other hand, sampling too frequently may impose considerable



overhead to the system. Therefore, choosing an appropriate
sampling length is of paramount importance that requires
careful study and investigations.

We use the Root Mean Square Error (RMSE) for evaluating
our identified model parameters1. RMSE is scale dependent,
therefore we use it for comparing different models representing
same data. When comparing two models, the one that has
smaller RMSE is better. We also evaluate the variability
explained by the model using R2. In general, models that
their R2 > 0.8 are considered to be an acceptable fit to the
system [9]. Models that their R2 is closer to one better explain
the identified system. We use sine functions for changing
inputs to excite the system and observe the outputs. First we
excite the system by only altering α. Then we alter T while
keeping α unchanged. Finally, we use all samples for system
identification. The model parameters (A and B) are estimated
using least squares. Note that since the periodic servers provide
timing isolation, system identification for each component can
be done independently. The identified system model will still
be applicable after integration with other components because
the processor provision to the component will not be affected
by other components in the normal mode. Recall that in this
section we assume that the system is in the normal mode.

D. Controller design

Linear-Quadratic Regulators (LQR) let us to trade-off be-
tween control speed and over reaction. In contrast to the well-
know PID controllers in which the gain values are directly
quantified by designers, the LQR controllers allow designers
to focus on the cost of control actions as well as control
errors. In general, we prefer unaggressive control actions
which provides slow reactions to sudden changes to avoid
overreacting to transient stochastics. We define error e(k) as:
e(k) = r−y(k) = r−x(k), where r is the reference value for
the output (r = [r1r2]

T ). The dynamics of the control system
based on e(k) is as follows:

e(k + 1) = r − Ax(k)− Bu(k)

= Ae(k)− Bu(k) + (I − A)r.

Instead of directly using the model presented in Eq. 1, we
use the system model based on error for the controller design.
In addition to e(k), we also use integral states: eI(k + 1) =
eI(k) + e(k), where ∀k ≤ 0 we have eI(k) = 0. Hence, the
augmented state space model is:
[

e(k + 1)

eI(k + 1)

]

=

[

A 0

I I

] [

e(k)

eI(k)

]

+

[

−B

0

]

u(k) +

[

I − A

0

]

r.

We use dynamic feedback, that is:

u(k) = −K

[

e(k)

eI(k)

]

= − [KP KI ]

[

e(k)

eI(k)

]

,

where KP and KI are 2 × 2 matrices. By substituting the
control law in the state space model we obtain the following
closed-loop system model:

[

e(k + 1)

eI(k + 1)

]

=

( [

A 0

I I

]

−

[

−B

0

]

[KP KI ]

)

[

e(k)

eI(k)

]

+

[

I − A

0

]

r.

1The model evaluation metrics used in this paper (i.e., RMSE and R2) are
explained in Chapter 2.4.4 of [9].

In LQR control design we are looking for gain values (KP

and KI ) that minimize the following quadratic cost function:

J =
∞
∑

k=1

[e(k)eI(k)]
T

Q

[

e(k)

eI(k)

]

+ u(k)T Ru(k),

where Q specifies the cost of error and R quantifies the cost
of control action. The responsibility of the system integrator
is to choose suitable error and control cost matrices.

IV. RESOURCE MANAGER

Thus far, we have considered adapting the parameters of
a single VC. In this section we consider the whole system.
The resource manager has the following responsibilities. (1)
Admission control based on the minimum resource require-
ments; (2) cluster compression, when the average resource
requirements can not be met; (3) allocation of the VCs to
processors, i.e., mapping the VCs to the VPs; (4) adjusting
the parameters of VPs and dealing with overloads. In the rest
of this section the above responsibilities are explained in detail.
At each sampling point k, the resource manager allocates the
suggested parameters by the cluster controllers to the VCs. In
this section we focus on a single sampling point. Therefore,
for simplicity, we drop sampling time k when referring to the
output of the cluster controllers.

Admission. The resource manager creates {Π1, · · · , Πn} for
hosting {C1, · · · , Cn}. The system integrator is allowed to
admit components such that the sum of components’ minimum
bandwidth, specified in the component interfaces, is less the
available multiprocessor bandwidth:

∑

i∈[1...n] ᾱi − σαi
/2 ≤

M . In doing so, we can guarantee minimum ᾱi − σαi
/2

resource provisioning for Ci.

Cluster compression. The resource manager performs an
allocation based on the operating bandwidths ᾱi specified
in the component interfaces. Since the admission is done
based on the minimum required bandwidths, it is possible
to have

∑

i∈[1...n] ᾱi > M . In such a case, the resource
manager first performs a cluster bandwidth compression, that
is, compressing the cluster bandwidths such that the total
required bandwidth is less than or equal to M . The VCs will
receive partial bandwidths after the compression. α′

i and λi

denote the compressed bandwidth and the compression factor
of Πi respectively, where λiαi = α′

i. Our objective is to
maximize

∑n
i=1 λiζi when performing the compressions. In

doing so, components which have less impact on the total
value of the system will be subjected to more compressions.
Let ᾱi − σαi

/2 = φi and ζi
αi

= ∆i. The compression problem
is formulated as the following:

Maximize:
∑n

i=1
α′
i∆i, (2a)

Subject to: αi ≥ α′
i ≥ φi ∀i ∈ [1 . . . n], (2b)

∑n

i=1
α′
i ≤ M. (2c)

We use Algorithm 1, which has polynomial time complexity
(O(n2)), for solving the cluster compression problem. The
algorithm treats VCs in the order of ∆i. Each VC receives at
least φi. In addition, it receives αj − φj bandwidth if the re-
maining multiprocessor capacity (M) is sufficient. Otherwise,
the remaining capacity is added to the VC’s bandwidth.



Theorem 1. Algorithm 1 is optimal, i.e., the compression
factors produced by this algorithm maximizes the total system
value.

The formal proof of the above theorem is presented in the
appendix.

Algorithm 1: Cluster compression algorithm.

Input: {∆1, . . . ,∆n} and {φ1, . . . , φn}.
Output: {α′

1, . . . , α
′
n}.

1: G = {∆1, . . . ,∆n};
2: ∀i, α′

i = φi;
3: M = M −

∑

i φi;
4: while G 6= ∅ AND M > 0 do
5: ∆j = max(G);
6: α′

j = φj +min(M, αj − φj);
7: G = G−∆j ;
8: M = M− α′

j + φj ;
9: end while

Allocation. The resource manager performs allocations assum-
ing that the overall required bandwidth is less than or equal to
the multiprocessor bandwidth. The allocation algorithm creates
at most M VPs for each VC such that all VPs collectively
provide Bi units of the processor time to Πi. We use the
partitioned EDF algorithm for scheduling the VPs. The alloca-
tion algorithm has three objectives. First of all, the number of
VPs should be minimized. This is because when components
are split, their inner tasks will migrate between the proces-
sors. Hence, the components will require extra bandwidth to
compensate for the migration overhead. In addition, we favor
balanced allocations that is, fairly distribution of the slack time
over all processors. The reason behind preferring balanced
distributions is to give the cluster controllers more freedom
to adapt the VC bandwidths. When a processor is overloaded,
more important components can steal bandwidth from the less
important ones that coexist with them on the same processor.
Hence, we favor an allocation approach that co-allocates more
important components with less important ones. This approach
gives more freedom to the more important components to
adapt their bandwidth in the overload situations. Hence, the
third objective of the allocation algorithm is to achieve a
balanced importance distribution. Thus, the allocation problem
formulation is as follows:

Maximize: w1

(

nM −
∑n

i=1

∑M

j=1
fi,j

)

+ w2z2 + w3z3,

(3a)

Subject to: z2 ≤
∑n

i=1
ρi,j ∀j ∈ [1 . . .M ], (3b)

z3 ≤
∑n

i=1

ρi,j
αi

ζi ∀j ∈ [1 . . .M ], (3c)

∑n

i=1
ρi,j ≤ 1 ∀j ∈ [1 . . .M ], (3d)

∑M

j=1
ρi,j = αi ∀i ∈ [1 . . . n], (3e)

ρi,j
αi

≤ fi,j ∀i ∈ [1 . . . n], ∀j ∈ [1 . . .M ],

(3f)

fi,j ∈ {0, 1}, ρi,j ∈ Z≥0, (3g)

where z2 and z3 correspond to load balancing, and importance
balancing objectives respectively. z2 represents the maximum

load assigned to one processor. While, z3 represents the
maximum importance available on one processor. w1, w2 and
w3 are the weights of the three aforementioned objectives. fi,j
is equal to one when πi,j exists, i.e. ρi,j > 0. Note that the
allocation algorithm assumes that

∑n
i=1 αi ≤ M .

The optimization problem formulation presented in Eq. 3 is
a mixed integer linear programming problem. The complexity
of solving this problem is exponential in the number of
processors and the number of components. Hence, solving it
for large n×M may become intractable. Therefore, we present
an allocation heuristic to partition components in polynomial
time. The allocation heuristic is presented in Algorithm 2. Let
vi = ζiαi denote the value of Ci. In the algorithm {α}, {v}
and {ρ} represent the set of VC bandwidths, values and VP
bandwidths respectively. First we sort the VCs based on their
values. The result bandwidth set is descending in value, i.e.,
vi ≥ vi+1. Then we try to allocate each VC to a processor
without splitting it. We use the worst fit allocation, i.e., among
all candidate processors that can accommodate the current VC,
we choose the one that after allocation it will leave the largest
slack time. If the allocation fails, then we split the VC, i.e.,
we create a number of VPs for the VC. For splitting, we start
with a processor that has the largest slack time. We allocate all
of the slack time to Πi and move to a processor with the next
largest slack. This process continues until all of the bandwidth
of the VC is assigned.

Algorithm 2: Heuristic algorithm for allocating the VCs
on processors.

Input: set of cluster bandwidths {α} and component values
{v}.

Output: matrix of virtual processor bandwidths {ρ}.
1: sort the active components (Γ) based on their values {v}
2: for i ∈ Γ do
3: if WorstFit(αi, {ρ}) = false then
4: Split(αi, {ρ})
5: end if
6: end for

Adjusting VCs. When a cluster controller suggests a new
bandwidth and a new period for a VC, the resource manager
is responsible to adjust the parameters of the VPs associated
with that VC. First of all, the resource manager checks if
the suggested values are within the operating range of the
component. If the values are beyond the operating region,
the resource manager overwrites the suggested values with
the boundary of the operating region that is closer to the
suggested values. The suggested period is assigned to all of
the corresponding VPs. However, the suggested bandwidth
is distributed among them. Our goal in distributing the total
bandwidth among the VPs is to minimize the number of VPs
that are assigned to the VC. This is because in the system
identification step the components are identified independently
using a minimum number of processors. Hence, we start from
the largest slack processor and we allocate its slack bandwidth
to the VC. If the VC still needs more bandwidth we move to
the second largest slack processor. This process continues until
the suggested bandwidth is assigned to the VC.

Dealing with overloads. Assume that the cluster controller of
Πi wants to adapt its bandwidth to αnew

i . If the slack time
on all processors is not enough to accommodate Πi with its
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Fig. 4: The maximum flow formulation of the VP compression algorithm.
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new bandwidth we have to perform a bandwidth compression.
We prefer performing the compression without conducting
cluster reallocations. This is because reallocation may force VP
migrations which in turn incur overhead costs. In this situation,
each VP affected by the compression will receive a portion
of its original bandwidth: ρ′i,j = λi,jρi,j , where λi,j is the
compression factor of πi,j and ρ′i,j is the overload bandwidth

of πi,j . Our objective is to maximize
∑M

j=1

∑n
i=1 λi,jζi. Let

ζi
ρi,j

= ∆i,j . The VP bandwidth compression is formulated as

the following optimization problem:

Maximize:
∑M

j=1

∑n

i=1
ρ′i,j∆i,j , (4a)

Subject to: αi ≥
∑M

j=1
ρ′i,j ≥ φi ∀i ∈ [1 . . . n],

(4b)
∑n

i=1
ρ′i,j ≤ 1 ∀j ∈ [1 . . .M ]. (4c)

This problem can be mapped to the “maximum flow minimum
cost with edge demands” problem. Let H = (V,E) be a
directed graph with cost κi,j , demand di,j and capacity ui,j

associated with every edge (i, j) ∈ E. Figure 4 illustrates
our model. The edges connecting the source to the n nodes
corresponding to the components have a capacity equal to
the component bandwidth, a demand equal to the minimum
bandwidth of the component and a cost equal to zero. These
edges apply the constraint expressed in Eq. 4b. The edges
connecting the n component nodes to the M processor nodes
have a capacity equal to one (maximum bandwidth of a
processor), a demand equal to zero and a cost equal to −∆i,j .
The edges connecting the M processor nodes to the sink have
a capacity equal to one (to apply the constraint of Eq. 4c), a
demand and a cost equal to zero. We use the cycle canceling
algorithm for solving this problem in polynomial time [11].
Once the problem is solved, the flows of the edges that connect
the n component nodes to the M processors will be selected
as the compressed VP bandwidths (ρ′i,j).

Since the component’s bandwidth requirements may
change during run-time and new virtual processors may be
created, the initial allocation might become inefficient after
some time. Hence, once in a while, the components need to
be reallocated. However, in this paper we do not address this
problem and we leave it for the future work. We provide some
guidelines for selecting the sampling length, operating regions
and importance values in the appendix.

Mode change. In our scheme, the cluster parameters are
adapted during run-time. This phenomena is referred as mode
change in the multi-mode real-time system literature. A po-
tential problem that can happen in mode changes is that, even
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Fig. 5: Execution time of the allocation algorithms. Note that y-axis is in
logarithmic scale.

if the schedulability condition is satisfied before and after
the mode change, the system is not necessarily schedulable
during the transient mode. Since in this paper we focus only
on soft real-time components in which occasional deadline
misses can be tolerated, we intentionally neglect this problem.
However, if hard real-time components coexist with soft real-
time components, the transient overloads can be avoided by
introducing a mode change delay similar to [10], and the rest
of our method can be directly applied.

V. EVALUATIONS

In this section we first evaluate the allocation heuristic.
We, then, present a case study consisting of two compo-
nents. The components are identified using our simulation
tool. Thereafter, the performance of the closed-loop system is
evaluated both in the simulation tool as well as in our Linux
implementation.

A. Allocation heuristic

We have evaluated the allocation heuristic against the
optimal solution. In our evaluations we assumed M = 4. We
set the total system utilization to two. We changed the number
of components from four to 14. For each n we generated 100
random systems. The total utilization was divided among n
components using the UUnifast algorithm [12]. Finally, the
average achieved objective for each n is reported in Figure 6.
We have compared five algorithms in the evaluation: (i) opti-
mal load balancing algorithm (ii) optimal importance balancing
algorithm (iii) optimal split algorithm (iv) optimal combined
objective algorithm (v) our heuristic. We used the CVX solver
for solving the optimal algorithms. Each graph in Figure 6
illustrates a certain objective achieved by the five algorithms.
In all of our evaluations we assumed w1 = 1/4(n − 1),
w2 = 4/

∑n
i=1 αi and w3 = 4/

∑n
i=1 αiζi. The figures show

that (1) except the optimal combined objective, all other algo-
rithms have poor performance with respect to some objective,
(2) our heuristic outperforms the combined optimal algorithm
in the split objective, while the combined optimal algorithm
outperforms the heuristic in the rest of the algorithms, (3) our
heuristic outperforms all optimal algorithms that consider only
one of the three objectives. Figure 5 illustrates the execution
time of our heuristic allocation against the optimal solution.
Each point in the figure is the average of 100 random systems.
As shown in the figure, the execution time of the optimal
algorithm increases exponentially when increasing the number
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Fig. 6: Four different objectives achieved by the five allocation algorithms.
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Fig. 7: Distribution of e1, workload variation and parameter adaptations.

of components, while the heuristic has approximately constant
execution time.

B. Case study

We have modified the TrueTime [13] simulation tool such
that two level hierarchical scheduling is implemented2. For
system identification and controller design we used our modi-
fied TrueTime simulator. We first present two example compo-
nents. Thereafter, using the examples we explain our modeling
approach. Note that a simulation based system identification
is only valid if the task execution times are gathered from
running tasks on the target hardware platform.

Component 1 (Static component). Consider a component
consisting of three periodic tasks with the following periods
{p1 = 40, p2 = 50, p3 = 100} and the following execution
times {c1 = 12, c2 = 10, c3 = 5}.

Component 2 (Dynamic component). Assume a component
consisting of three periodic tasks with the following periods
{p1 = 40, p2 = 50, p3 = 100}. τ1 and τ2 are video decoder

2The source code of our modified version is available at: https://github.com/
nimazad/TrueTime-HSF.

tasks that decode their input video stream. Therefore, their
execution time is highly variable. τ3 is a static task, i.e. its
execution time is fixed (c3 = 5). Average bandwidth consumed
by the video decoder tasks τ1 and τ2 are 0.29 and 0.25
respectively. This component could, for instance, represent a
robotic vision system consisting of two cameras where one
real-time task is assigned for decoding video streams captured
from each camera. The third task, however, is performing
analysis over the decoded streams by executing a predefined
number of instructions. The execution time distribution of τ1
and τ2, and the workload distribution of this component is
illustrated in Figure 8a.

Let us consider the parameter identification for Compo-
nent 1, we assumed the task parameters were not available.
Instead of the task parameters, the component designer had
provided the following interface: <ᾱ=0.65, T̄=90, σα=0.15,
σT =100>. Therefore, we changed the bandwidth of the VC in
the following region [ᾱ−σα/2, ᾱ+σα/2] while ∀k T (k)=40.
In another experiment we changed T (k) in the following
region [T̄ − σT /2, T̄ + σT /2] while keeping α(k)=58. The
simulation duration was 10 minutes of the tasks’ executions.
The sampling length was assumed to be 400. We performed



parameter estimations over the observed data. The value of
matrices A and B are reported in Table II. Evaluating the result
model on the training data (i.e., same data which was used
for parameter estimation), we found the following properties:
R2=0.91 RMSE=4.63. In another experiment we altered both
α(k) and T (k) at the same time to assess how much our
model can explain the new dataset. As a result we had R2=0.92
and RMSE=5.37. The identified model parameters were used
to design a MIMO LQR controller for adapting the VC
parameters.

For the dynamic component we used the following inter-
face: <ᾱ=0.72, T̄=90, σα=0.26, σT =50>. We followed the
same steps (with the same sampling length) as the static
component case. The value of matrices A and B are reported in
Table II. Evaluating the result model on the training data we
had R2=0.95, RMSE=4.53. Evaluating the model on a test
dataset in which both bandwidth and period were changed
simultaneously we had: R2=0.98, RMSE=1.23. In summary,
we conclude that the identified model parameters, for both
static and dynamic component, can explain the training dataset
as well as the test dataset to an acceptable extend (see
Section III-C for more details on R2 and RMSE).

Afterwards, we considered Component 1 which its pa-
rameters were already identified. We set R=diag(10, 10) and
Q=diag(1, 1, 0.1, 0.1). The value of the result gain matrix is
reported in Table II. We ran the closed-loop system using the
obtained gain matrix. The reference values were r=[0.02, 1]T .
Figure 7a illustrates the probability distribution of e1 as well
as the bandwidth and period adaptation for the cluster that
is serving the static component. Since the task parameters
were not changed, the controller stabilized α(k) and T (k)
in almost constant values. The average number of deadline
misses in this experiment was 1.25 which is very close to
the set reference value. The standard deviation of e2 was
1.66. In another experiment we designed a LQR controller for
Component 2 which was identified previously. We set the same
R and Q matrices as the static component example. The value
of the result gain matrix is reported in Table II. The reference
values were r=[0.06, 1]T . The VC parameter adaptations are
illustrated in Figure 7b. The depicted workload variation in the
figure is collected independently running the component with
the full processor capacity. Since the task execution times were
changed, the cluster parameters were also adapted based on the
current demand at each time point.

Linux experiments. We have implemented our adaptive
framework in the Linux kernel. Inspired by [14], we used
kernel loadable modules to implement our scheme3. In the rest
of this section, we present the results of our Linux evaluations.
We used Intel Core i5-3550 processor clocked at 3.3 GHz. Our
loadable module can utilize all four cores on this processor.
However, for imposing overload situations, we limited the
number of available processors to two. The cluster controllers
and the resource manager are developed as user space tasks.
The controller tasks were attached to a different VC than the
component VCs. We considered the two components that we
have designed cluster controllers for them using our simula-
tions. The resource manager created two clusters Π1 and Π2

for hosting the static component and the dynamic component
respectively. Cluster Π3 was also created for hosting the cluster
controller tasks. The bandwidth of Π3 was equal to 0.05 and

3The source code is available at: http://nimazad.github.io/FS-CBRTS.

it was constant throughout the experiment. All task parameters
described in the definition of the components were assigned in
milliseconds. We ran the experiment for 10 minutes. Figure 8c
illustrates the adaptations for this experiment. The observed
distribution of e2 is slightly different than the simulations.
The difference is due to the fact that the simulation does not
take into account the overhead of scheduling, adaptation and
operating system related interferences. The average observed
e2 was −0.12 for Π1 and −0.07 for Π2.

Adaptation overhead. We created a periodic task associated
with each cluster which was ran within Π3. The period of
these tasks was equal to 400 (sampling length). The LQR
controller as well as the resource manager functionalities
are implemented in these tasks. In the above experiment the
maximum observed execution time for the controller task of Π1

and Π2 were 0.101ms and 0.081ms respectively. Given that
we had two processors available, each adaptive cluster cost
approximately 0.01 % of the multiprocessor time. The total
adaptation overhead is proportional to the number of adaptive
components.

In another set of experiments, to impose overload sit-
uations, we created a dummy cluster (Π4) and assign the
following bandwidth to this cluster: α4 = 0.42. With the
existence of Π4, it was not possible to perform reservations
based on the worst-case demands anymore. The importance
of the clusters were set as follows: ζ1 = 200, ζ2 = 300,
ζ3 = 2000 and ζ4 = 3000. Therefore, the resource manager
created two VPs for Π1 in the beginning of the experiment.
Splitting this VC imposes migration overhead to Π1. We
considered three different setups: (1) adaptation was turned
off for the both VCs while we assigned ᾱ and T̄ to the
VCs; (2) both VCs were adapted; (3) we used the average
assigned bandwidth and period observed in the second setup
and repeated the experiment with those values. We ran the
experiment for 10 minutes. The average observed e1, e2 and
their standard deviations are reported in Table I. Note that
e1 < 0 means that the cluster was idling its bandwidth more
than the reference value (r1) and e2 < 0 means that the
number of deadline misses observed at each sampling time
was more than one. The results presented in Table I show
that fixed allocation based on the operating points specified
in the component interface was inefficient. Note that the
operating points are based on the average workloads. When
both VCs were adapted, the VP compression was performed 32
times, whereas cluster adaptation was performed 1500 times.
Therefore, the additional overhead due to the compressions
was insignificant. Since Π1 has the lowest importance, the
compression did not provide extra bandwidth to it. In the
adaptive case, the average bandwidth and period assigned for
Π1 and Π2 were 0.61, 50.65, 0.76 and 74.41 respectively.
Hence, in average, there was 0.16 slack bandwidth in the
system which permits the admission control to admit new
components if required. In the third setup, we used the average
bandwidths and periods assigned by the cluster controller in
setup 2, and we assigned them as fixed values to the VCs. The
average number of deadline misses as well as the standard
deviation of the deadline misses for Π2 in comparison to
the second setup were increased. In addition, in the second
setup 3 % of the VC bandwidth was wasted, whereas in the
third setup 8 % of the VC bandwidth was idled. The results
suggest that adaptation helps when the workload is subjected
to unpredictable disturbances such as migration overhead and



execution time variations.

Π1 Π2

Exp. ē1 σe1
ē2 σe2

ē1 σe1
ē2 σe2

1 0.16 0.04 -3.19 1.64 1.00 0.36 -12.94 9.87

2 0.17 0.04 0.31 1.96 0.54 0.07 -0.17 2.17

3 0.62 0.008 0.18 0.91 0.53 0.13 -0.30 3.85

TABLE I: Mean and standard deviation of e1 and e2 for the three setups.

Step response experiment. Figure 8b illustrates the response
of the static component to a step workload change. The
experiment was performed using the same setup as described
above. For this experiment the execution time of τ1 was set
to 10 before time 2× 105ms. Afterwards, it was increased to
14. This execution time change caused a 10 % change in the
workload. Note that the reference value for x1(k) was 0.02.
Therefore, the cluster controller provided more bandwidth
than the workload. In addition, the cluster controller had to
compensate for the workload disturbances such as context
switches and scheduling overheads.

VI. RELATED WORK

Feedback control has found its way in computing systems
for helping system designers to deal with uncertainties and
dynamicity. For instance, in high-performance computing load
is unpredictable and dynamic. A MIMO controller is used
to control CPU and memory utilizations in an Apache web
server [15]. In [16] a MIMO LQR controller is used to solve
a load balancing problem. The controller equalizes the load
among different resources to improve response times as well
as the throughput.

In the context of real-time scheduling, Lu et al. proposed
a feedback scheduling scheme to cope with unpredictable
workloads [17]. In their framework the deadline miss ratio and
the system utilization is used as sensors, while the admission
control is used as an actuator. The problem of task reweighting
under multiprocessor scheduling algorithms is studied in [18]
and [19]. In these papers it is assumed that, tasks ask for a new
processor utilization during run-time. A number of reweighting
rules for partitioned and global scheduling algorithms are
presented. In [20] task reweighting is combined with feedback
loops that estimate the weight of the next job. In distributed
real-time systems, utilization control is performed through rate
adaptation to provide quality of service guarantees [21]. In [22]
service levels are adapted based on monitoring the number
of deadline misses and the processor utilizations. Utilization
control is coupled with processor frequency adjustment in [23]
and [24]. Targeting end-to-end task models, DEUCON [25]
employs a decentralized approach in which task rates (periods)
are adapted using MIMO model predictive controllers. The
control objective is to minimize the difference between the
utilization set points and current utilizations. The main differ-
ence of our paper with the aforementioned works is the fol-
lowing. Since we consider component-based systems in which
a component is comprised of a set of tasks, a reservation-based
scheduling policy is needed to isolate the timing behavior of
the components in run-time. While this separation of run-
time behavior for components is not supported by the above
frameworks.

Adaptive reservation schemes, first introduced in [5], are
powerful approaches for controlling the amount of proces-
sor allocated to individual tasks that demonstrate dynamic

processor requirement. The mathematical model of a such
scheme using Constant Bandwidth Servers (CBS) is derived
in [26]. PI controllers are used for controlling the bandwidth
of CBS. In [27] stochastic controllers are used for the same
purpose. Regarding adaptive reservations in which multiple
parameters are adapted, in [28] both periods and budgets of
the CBS are adapted. This framework targets legacy tasks
which do not communicate with the scheduler. Two different
components are used (i) period detector (ii) budget estimator.
One centralized controller is used for adapting the periods and
the budgets. In the context of the ACTORS project [29], a
cascade controller is used on top of CPU reservations for
adapting their bandwidths. Our work is different from the
above reservation-based approaches in the following main
aspects. (i) Except ACTORS, all aforementioned frameworks
target single processors. While we target multiprocessors. In
contrast to ACTORS, our framework allows spreading VCs
(components) over multiple physical processors. This feature
allows running components which their utilization is more than
one, i.e., component that can not be executed using only one
processor. (ii) In the above schemes (including ACTORS) the
distance between the task finishing time and its corresponding
CBS deadline is used as the sensor. However, we consider a
more general component model in which multiple tasks may
be in a single component. In our model, the intra-component
scheduler coordinates the execution sequence of the tasks
inside a component. Hence, the control input used by the above
frameworks is not applicable to our model. (iii) Except [28],
the other frameworks only adapt reservation budgets, while
we adapt the period and budget simultaneity. Our framework
is different from [28] in aspect (i) and (ii). In addition, in
contrast to [28], we consider software components that are
developed using API functions that inform the scheduler when
the tasks start executing, finish execution and wait until their
next period.

Finally, we proposed adaptive reservation schemes for
hierarchical real-time systems in [30], [31]. In our previous
works we have addressed single processors while in this paper
we consider multiprocessor platforms. Considering multipro-
cessors resulted in introducing a mechanism for distributing
components over the processors. Moreover, we adapt both
period and budget of the reservations using MIMO controllers,
whereas we only investigated adapting the budgets in the
aforementioned publications. In addition, in this paper, we
solved the problem of bandwidth distribution in overload
situations optimally.

VII. CONCLUSIONS

We proposed a feedback scheduling framework for
component-based soft real-time systems. We targeted soft-
ware components consisting of multiple real-time tasks which
exhibit significant processor demand variation during run-
time. Our framework uses processor reservations for providing
processor time to the components. A component may be
distributed over several processors. Hence, the intra-component
tasks are scheduled using a global multiprocessor scheduler.
First we showed that it is important to adapt both period and
bandwidth of the reservations. We, then, used a case study
and evaluated our MIMO LQR controllers in the TrueTime
simulation tool. Finally, we implemented our framework in
the Linux kernel and evaluated the case study in practice. The
evaluations show that our framework can efficiently adapt the
reservations to deal with the workload disturbances.
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Fig. 9: Evaluation results (a) running the two sample component (b) for the step workload change.

Static component Dynamic component

A

[

0.3711 −0.5503

0.1798 1.106

] [

0.7035 −0.4138

0.0582 1.033

]

B

[

0.8887 −0.0413

−0.2952 0.0160

] [

0.8443 −0.0336

−0.2421 0.0138

]

K

[

−0.0390 0.6150 −0.0832 0.0260

−0.3985 −1.2376 −0.0311 −0.0949

] [

−0.3506 1.1139 −0.0871 0.0090

−0.0850 −0.7983 −0.0117 −0.0992

]

TABLE II: The value of different matrices corresponding to the case study.

In the future, we will investigate the problem of reallocat-
ing components systematically by introducing a new metric
to understand when it is necessary to perform reallocations.
We are also contemplating the elimination of the system
identification step by utilizing an adaptive control scheme that
can develop the plant model during run-time.
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APPENDIX

Guidelines for parameter selections. Our adaptive frame-
work spares engineers from conducting the WCET analysis.
However, the component developers and the system integrator
have to carefully design some parameters for maximizing
the performance of the framework. Here we provide some
guidelines for some of the parameters.

The system integrators have to study the dynamics of the
components using different sampling lengths. The choice of the
sampling length affects the accuracy of the identified models.
This is because, the observed system dynamics are different
for different sampling lengths. The larger the sampling length,
the smoother the output. However, a too large samplings length
results in slow reactions to the changes.

The operating regions of the components are provided
by the component developers. These parameters have to be
selected based on the task parameters as well as experimental
studies. For instance, the operating point of the component
period depends on the period of the tasks within the compo-
nent. While, the bandwidth can be extracted by running the
component and profiling its processor usage. Throughout the
system identification step, the observed state space values have
to be stored. In doing so, the system integrators can plot the
feasible combinations of the state space values. The desired set
points are, then, selected from the feasible set. For instance,
the system integrator may choose a very small r2. However,
the price for having a too small r2 often is to select a large r1

which essentially means that we have to waste some bandwidth
in order to achieve a very small number of deadline misses.

Our model of the component importance is quiet flexible.
Here we consider two type of systems. (1) Systems in which
the contribution of each component to the overall value of the
system is clear for the integrator; (2) systems in which the
relative importance is relevant, e.g., Ci is always prioritized
over Cj in all overload conditions. For type (1), it is easy
to assign the importance values. For instance if C1 contributes
10 % to the total system value, we can assign ζ1 = 10 provided
that

∑n
i=1 ζi = 100. For type (2), the system integrator should

first sort the components based on their desired priority at
run-time. Assume that components are sorted based on their
desired run-time overload priority, i.e., for i ∈ [1, . . . , n],
Ci has to be prioritized to Ci+1. The process of importance
assignment starts from Cn. The designer assigns a small
number to this component. Cn−1, then, we will have the
following condition:

ζn−1 > ζn
ᾱn−1 + σαn−1

ᾱn − σαn

.

This condition is because the compression algorithm takes the
size of the components into account when compressing the
components. In this approach, Ci will have n − i conditions
for its importance. To summarize we have:

ζi > max
i+1<j<n

(

ζj
ᾱi + σαi

ᾱj − σαj

)

.

Proof of Theorem 1:

Proof: We prove using the Lagrangian duality [32]. The
Lagrangian is

L =
∑

i
δi∆i−θ(

∑

i
δi−M)−

∑

i
χi(δi − αi)+

∑

i
χ
i
(δi − φi)

where θ, χi, χi
are Lagrange multipliers. The Karush-Kuhn-

Tucker (KKT) conditions are:

∆i − θ − χi + χ
i
= 0, (5)

χi(δi − αi) = 0, χi ≥ 0, (6)

χ
i
(δi − φi) = 0, χ

i
≥ 0, (7)

∑

i
δi = M, θ ≥ 0. (8)

In the following, we prove that the solution by Algorithm 1
satisfies the KKT conditions. After Algorithm 1, the set G
is partitioned into three subsets as follows: S1 = {i|δi∈S1

=
φi}, S2 = {i|δi∈S2

∈ (φi, αi)}, S3 = {i|δi∈S3
= αi}. Set

∆left = max{∆i∈S1
},∆right = min{∆i∈S3

}. From the
searching process by the while loop in Algorithm 1, we know
that: (i)∆left < ∆right, (ii)∆i∈S1

≤ ∆left, (iii)∆left <
∆i∈S2

< ∆right, (iv)∆i∈S3
≥ ∆right. For i ∈ S2, χi = χ

i
=

0; so, by Eq. (5), we have: θ = ∆i, ∆left < θ < ∆right. For
i ∈ S1, χi = 0; so, by Eq. (5), we have:

χ
i
= θ −∆i > θ −∆left ≥ 0.

For i ∈ S3, χ
i
= 0; so, by Eq. (5), we have:

χi = ∆i − θ > ∆right − θ ≥ 0.

Therefore, all KKT conditions are satisfied and the solution is
optimal.


