Experiences from Introducing UML and OO
in an Organization

Anders Wall
Department of Computer
Engineering
Méalardalen University
P.O. Box 883
S-721 23 Vasteras, Sweden

anders.wall@mdh.se

ABSTRACT

In this paper we present experiences from an ongoing inves-
tigation of whether Bombardier Transportation, a company
within the railbound vehicle domain, can benifit from in-
troducing object-oriented modeling and design, into the de-
velopment of train applications, or not. Bombardier Trans-
portation administrates a broad set of safety-critical prod-
ucts today including, for instance, autonomous trains and
high-speed trains. The investigation was carried out as a
pilot project focusing on tool support for the modeling lan-
guage UML, taking also emergent safety requirements and
software reuse into consideration. However, not only tech-
nical issues are dealt with, the paper also discusses how to
receive acceptance from the organization, and how an orga-
nization may be affected by introducing software reuse and
safety requirements. The results are presented as a set of
findings we have made when using UML and the modeling
tool Rhapsody throughout the software development pro-
cess. In particular, we report the results in the perspective
of safety-related software and how such a methodology facil-
itates and harmonizes with existing safety standards. The
results from the investigating has, so far, been well received
from the organization.

1. INTRODUCTION

Moving from the imperative programming paradigm to the
object-oriented paradigm and to implement a reuse-oriented
development may be hard, especially when this change in-
volves many people and resources at a company. The in-
ternational company Bombardier Transportation [1] with
40000 employees world-wide and the largest manufacturer
of rail-bound vehicles is today performing this investiga-

*Markus is working at RealFast Software Consulting AB as
a consultant for Bombardier Transportation.

ICSE 2002 Buenos Aires, Argentina

*
Markus Lindgren
Bombardier Transportation
_ Sweden AB
Ostra Ringvagen 2
S-721 73 Vasteras, Sweden

markus.lindgren@realfast.se

Tage Tarkpea
Bombardier Transportation
_ Sweden AB
Ostra Ringvagen 2
S-721 73 Vasteras, Sweden

tage.tarkpea@se.
transport.oombardier.com

tion. Bombardier Transportation’s products include inter-
city trains, regional trains, metro trains, light rail vehicles
(trams), locomotives and driver-less people movers. The
work described in this paper is focused on control applica-
tion development.

A train control system is a distributed safety related real-
time system, where the real-time requirements on individual
sub-systems varies from soft systems, e.g. air conditioning
and door control, to critical like for instance, propulsion and
brakes. The nature of train applications are quite diverse in
many senses, having different characteristics and require-
ments.

A train consists of one or more motorized vehicles or loco-
motives, and possible additional non motorized train cars.
For passenger trains with motorized vehicles is the small-
est usable train configuration a train-set, which normally
consists of two or more assembled train cars with many
driven wheel axles. Within a train-set are several comput-
ing nodes that each control different sub-systems developed
within Bombardier Transportation or by sub suppliers. To
fulfill safety and availability requirements these nodes are
often connected in a redundant fashion. Train-sets can be
connected during service to form longer trains, and still be
controlled by one driver. There is a second bus system,
which also supports redundancy, that is used to enable co-
operation between the different train-sets of a train. To
summarize, train applications are distributed in their na-
ture, and have safety and availability requirements that in
most cases require redundancy.

Reuse, in some sence, is achivied today through the devl-
opment of standardized vehicles. A standardized vehicle is
treated as a mould for the development of new products
within similar market segments. A new product is devel-
oped based upon a copy of the standard vehicle in which
the behavior of existing features are modified, and to which
new features are added, in order to fulfil new requirements.
This class of reuse is referred to as code scavenging [2]. Thus,
software reuse in its strict meaning is not utilized since, for
example, multiple copies of the same code exist across the
product-line that all must be maintained separately.



Train applications are mainly developed using an in-house
graphical function-block programming language similar to
IEC 1131 [8] or an IEC 1131 tool. The current methods and
tools do not support reuse to the expected future required
extent. Furthermore, Bombardier transportation is a large
organization consisting of several merged and geographically
distributed company sites. As a consequence, there exists
an abundance of tools and methods within the organization
that varies between different company sites. This variety
also inhibits reuse between the sites.

In order to truely reuse software across products as well
as across company sites, should the implementation of a
product-line architecture be considered [3][2]. The product-
line architecture approach will, if succesfully implemented,
increase reuse, standardize basic components, methods and
tools, and hence, decrease development costs in the long
run. Reuse typically decreases development costs and in-
creases quality of the product. However, in this particular
application, reuse must be implemented in such a manner
that also safety is encompassed.

The company is now at a decision point, where it needs
to decide whether to continue develop the in-house tools
to support reuse better, or if commercial tools should be
used instead. A major benefit with using commercial tools
is that the need for maintaining the in-house tools will be
eliminated, which reduces the overall cost.

1.1 Safety

Safety is a property of a system that it will not endanger
human life or environment, cause human injury or great
economical loss. Software in itself can never be unsafe, only
when software is part of a system that interacts, electrically,
chemically or mechanically, with its environment it becomes
safety-related. A system is refered to as safety-related if it
controls or supervises a safety-critical application. Proper-
ties that are somewhat related to safety are reliability and
availability. Reliability is the probability of a component,
or system, functioning correctly over a given period of time
under a given set of operating conditions. Availability is the
probability that the system will be functioning correctly at
any given time [13].

There exist several standards that describe the develop-
ment of safety-related systems. In the work we performed
we used the standard IEC 61508 [9], which is an interna-
tional generic standard regarding safety in systems imple-
mented using electrical-, electronic- and programmable elec-
tronic systems (E/E/PES). The standard addresses relevant
safety life-cycle phases, i.e. from initial concept, through
design, implementation, verification, operation and main-
tenance to de-commissioning, when E/E/PESs are used to
perform safety functions.

In order to give a concrete form to customer’s safety require-
ments and their implications on the development of software,
it is becoming increasingly popular to internally transform
the safety requirements into the form of a Safety Integrity
Level (SIL). SIL is a discrete scale reaching from one to four
depending on the risk associated with the application. This
is defined in IEC 61508 which also suggests how to fulfill
the requirement in terms of tools, methods, documents and

processes. Furthermore, different train applications face dif-
ferent requirements as some are associated with higher risks
than other. This is not just a technical problem as such a
safety requirement also affects the development process, the
organization and the way in which one have to do business
with customers and sub-contractors.

Customers and authorities already require safety classified
train systems. Thus, tools, methods, and process chosen for
future development must harmonize with the safety stan-
dards. If they do, and if the development phase is adequately
documented, evidence can be provided in the safety assess-
ment instead of performing a costly revision of the project.
Consequently, this is also a source for reducing development
costs.

1.2 Product Lifetime

In addition to trains having real-time and safety require-
ments, trains also have quite a long lifetime. Typically,
a train system must be maintained for a period of 20-30
years. This is also an important parameter to take into
consideration when choosing future tools and programming
languages, since we must be confident (as much as one can
be) that the chosen tools stay around until maintenance is
terminated, i.e. 30 years from now, or we should be confi-
dent that maintenance can be performed even though the
tools are not available.

This paper presents some of the experiences we have made
in the ongoing investigation of whether to introduce UML,
object-orientation, and reuse or not at Bombardier Trans-
portation. The first phase was performed as a technical in-
vestigation where different languages, tools and approaches
were evaluated. The investigation generated a set of re-
quirements, e.g. safety, and open questions constituting the
input to a pilot project at Bombardier Transportation. The
reason for running the pilot project was twofolded; 1) get-
ting acceptance from the organization, and 2) get practical,
hands on experiences. The results from the pilot are pre-
sented in this paper as a set of findings, both technical and
non-technical, that we made during this work. Particular
focus is on safety and how well the tools and methods acco-
modate to the work of producing software that harmonizes
with the safety standard IEC 61508.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses the background and motivations for this
work. In Section 3 is the ongoing work of getting acceptance
for the proposed changes outlined. Section 4 presents our
experiences with respect to both hard, technological issues
regarding tools, etc., and soft issues related to the organi-
zation. Finally, Section 5 concludes the paper.

2. MOTIVATION AND PROBLEM STATE-
MENT

The motivation for introducing new technologies and meth-
ods in industry are always driven by commercial interests,
so also in this case.

A major and increasing cost of producing trains lies in ap-
plication software development development. This cost is



therefore on the head of the list when it comes to cutting
costs. However, there is also a second objective to take into
consideration, the emerging requirement on safety. Even
though safety in itself does not decrease the development
cost, it is in the long term an argument for being competi-
tative on the market. It is worth pointing out that the safety
requirements will make the development more expensive due
to, e.g. requirements on a more strict and rigid development
process, as well as tougher requirements on test coverage.

Moreover, software in train applications constantly increases
in terms of size and complexity. Being a company with
a strong mechanical and electro-technical tradition, the in-
creased complexity in software poses new challanges. The
reason for increased size and complexity in the software is
the ever growing demand for new features. The features
themselves are also becoming more complex in terms of their
behavior.

The overall business vision for Bombardier Transportation
is to devlop products that attract customers with respect to
functionality, quality and prize. Software reuse constitutes
one way, among other, for the company to attain that vision.
If successfully implemented will a software reuse program
decrease cost while it will increase quality. The long term
goal of this work is to develop a generic software platform,
i.e. a product-line architecture, for train applications, taking
also the safety strategy into consideration. The development
of a product-line architecture is not within the scope of this
work. Nevertheless, the investigation must take also such a
future scenario into consideration.

In order to meet the safety requirement, manage the in-
creased size and complexity in software, and to successfully
implement a reuse program, the tool support is of extreme
importance. Aiming for software reuse and product-line ar-
chitectures, it is very important that components and the
architecture are well documented and that the documenta-
tion provides a consistent view of the actual software. Thus,
we need a tool that not only support a large portion of the
development process, but also encourage engineers to actu-
ally treat the models made in tools as the source.

Today, applications are developed using an in-house devel-
oped software tool. Thus, there is an additional develop-
ment cost associated with maintenance of that tool. Buying
a commercially available software tool will, to some extent,
decrease this cost.

On the other hand, buying and depending on third-party de-
veloped tools has its associated risks. The lifetime of train
applications are typically in the range of 20-30 years and it
is impossible to predict the status of tool vendors in such
a long time frame. Consequently, a lot of legacy systems,
which must be maintained, will hang around for quite a long
time. Compared to using in-house developed tools, an or-
ganization will have little or no control and influence on the
development of such a tool. Consequently, one must have
an emergency plan in case the worst scenario occurs, e.g.,
the tool vendor the company relies on goes out of business.

However, a strong argument for using well known, widely
spread technologies and tools is that the possibility of hir-

ing engineers that already have knowledge about, and ex-
periences from, similar technologies increases. As a conse-
quence, the burden of internal education on languages and
tools will be relaxed. However, the need for internal ed-
ucation will not be completely removed. We will further
discuss the need for education and engineering competences
in Section 3.

Finally, working with modern software technologies does at-
tract people, both externally and internally. This will hope-
fully increase hiring opportunities as well as keep staff for
longer periods of time.

Taking all the matters discussed above into account, we
have been investigating, and as first candidates selected the
well known object-oriented language C++, the UML mod-
eling language and the design tool Rhapsody from I-Logix,
which supports UML. Rhapsody was selected as it is a tool
in the front line, but the choice is not strategical, there
exists other similar tools on the market today. We think
that these choices has the potential of accommodating the
vision. Note that this might not be the only way to ac-
complish a software product-line architecture and software
reuse. The object-oriented paradigm was selected based on
the results from an earlier investigation made within Bom-
bardier Transportation. The choice was also based on the
fact that UML is a modeling language that have abstrac-
tions for classes, objects, etc. Since we selected Rhapsody
the variety of implementation languages was narrowed down
to C++4, Java or C. Clearly, C++ is the obvious choice over
Java when to be used in safety related real-time software due
to, e.g. the non-deterministic garbage collector in Java. Yet
another possible object-oriented language which has been
used when developing safety-related systems is ADA95 [12].
There exists several UML design tools that have support for
ADA95 but they have not been fully investigated within the
scope of this pilot project. Moreover, we think that C++
is more widely spread. It is, however, clear that whatever
language is finally selected, it must have good support with
respect to development tools.

It is worth noting that C++ is quite a tricky language that,
if used in a bad way, on its own will increase the devel-
opment costs and maintenance cost. Using C++ will in-
crease the number of possible design decisions compared to
the function block way of working. Consequently, it is easy
to construct complex and poor systems if not crafted with
care. The solution to this problem is education and an archi-
tecture that restricts and guides developers in their design
work. Since the language itself is such a crucial matter, the
actual choice must be more thoroughly investigated until a
decision can be made.

In conclusion, the purpose of this work was to examine how
well object-orientation and UML accommodate the devel-
opment of reusable software for safety-critical train applica-
tions. The main reasons for considering these changes are to
manage the increased complexity in the software, decrease
development costs while increasing the quality of their sys-
tems. This, mainly through an increased level of software
reuse and utilization of state-of-the-art software develop-
ment tools.



3. ACCEPTANCE FROM ORGANIZATION

Considering the vast impact that the paradigm shift will
have on the company, it is clear that this change will not be
done without strong arguments that it outperforms today’s
situation. Moreover, such a big change will not come for free.
Management must realize that it takes both time and money
before software reuse pays off. Typically is the time to return
on investment dependent on the product cycle. The product
cycle defines how long time it takes to develop a product, or
in other words, the frequency with which new products are
developed. Another important factor is the similarity among
the products, the more equalities, the more components can
be reused, and the faster will the required investment pay
off.

Studies have shown that producing a reusable component
ranges from approximately 120 to 480 percent of the cost of
creating a non-reusable version, and integration cost ranges
from approximately 10 to 65 percent of the cost of creating
a non-reusable version. The actual cost is dependent on
the complexity of the implementation and the complexity of
reusing it in an application [5][11].

In this case, the need for changes has been perceived in parts
of the organization. Even though management has not yet
accepted the change, they are interested in investigating the
possibilities. As a consequence, a series of pilot projects
have been financed and initiated. The decision whether to
go in the direction of UML and object-orientation will be
judged based upon the results from the pilots. Thus, one of
the primary goals for the pilot project is to get acceptance.

However, receiving acceptance from an organization is much
more than getting acceptance from management. The soft-
ware engineers are the ones that will be affected the most.
After all, they are the ones that will be working with the
new techniques, methods, and tools. In general, people tend
to be more tolerant to changes if they have taken part in the
actual changing process. Thus, the key to get acceptance is
openness. Consequently, the pilots must be carried out in
such manner that engineers can be involved and have the
possibility to provide their domain knowledge, experiences,
and opinions. In our case, we involved, not only a reference
group mainly consisting of people representing management,
but also several observers. Typically, the observers were
train application engineers having a lot of experiences work-
ing with current methods, but no or little knowledge about
object-orientation and UML. They were involved at an early
stage of the pilot so that they could influence the goals, i.e.
the interesting results and measurements. Observers were
present at all project meetings and took part of all docu-
ments, such as specifications and UML-diagrams.

The advantages of involving observers from the projects
point are obvious. They informally spread the word around
colleagues in the organization and as a consequence of that
they also picked up their colleagues opinions and brought
them back to the pilot project. Secondly, as they had no or
little knowledge in object-orientation and UML, the project
could estimate the understandability of the produced UML
diagrams.

The results from the pilot has been presented in a workshop

were all interested employees were invited to listen to pre-
sentations, discuss results and ask questions. The results
from the first pilot have been well received, and clearance
has been given to start developing an object-oriented ar-
chitecture for trains. The architecture task will start late
autumn 2001.

3.1 Thefirst pilot project

As discussed in Section 3, a pilot project has been run whose
main purpose was to investigate how suitable UML and
object-orientation are for train application development. In
this section we present the problems we were to solve in
the pilot project Pilot 1. The experiences we have made
concerning UML and Rhapsody for train application devel-
opment are discussed in Section 4.

Even though there are results from several other industrial
companies that indicate that the UML is beneficial from
several points of view [6], Bombardier Transportation still
wanted to perform its own investigation, focusing on UML
for train applications.

The main purpose of Pilot 1 was to investigate whether UML
and object-orientation is suitable for train application de-
velopment taking also safety, and its implications on the
development process, into consideration. In performing this
investigation, a prototype for door control on a train was to
be developed using UML and the supporting tool Rhapsody
from i-Logix [7]. However, focus is not on the tool itself,
rather it is on UML which Rhapsody, to some degree, sup-
ports. Reuse was also considered in this pilot project since
the door control application developed should be reused in
a succeeding pilot project.

Last but not least is the pilot project an instrument for re-
ceiving acceptance from the organization regarding the new
methods. The work itself may raise interest among the en-
gineers and, if the results are satisfactory, convincing the or-
ganization that this way of developing software indeed can
be used for train applications. Openness is, as discussed
in Section 3, one key issue when working with acceptance.
Thus, it is important that the pilot project highlights all
aspects of the method, i.e. both pros and cons.

The application we were to design and implement in Pilot 1
was a simplified version of door control on a single train car.
The developed software was also supposed to be scalable,
meaning that it should be able to be instantiated to control
any number of train cars, with any number of doors per
train car (among other things). A second pilot, Pilot 2, will
be run during autumn of 2001, which will check if Pilot 1
succeeded in creating scalable software. Pilot 2 will also
be collecting metrics on reuse. Note that the reusable door
control framework is only designed to be reusable in Pilot 2.

A sketch of the Pilot 1 hardware is presented in Figure 1.
The system consists of three main parts. First, there is a
rack-based PowerPC system with Ethernet and fieldbus ac-
cess for I/O. Second, there is a physical model of a train car
with four doors that can be moved by electrical engines. Dig-
ital and analog I/O units are connected to the train model
and to the fieldbus, enabling the PowerPC to access sensors
and actuators in the train model. Part of the train model



PC

PowerPC 250MHz, 64Mb RAM
Train application program

- e

Shows train status

Field—bus
Train car model goooo
oo °

Driver’s desk

Figure 1: The system hardware setup

is also a simplified version of a driver’s desk. Third, there
is a standard PC with a display program that shows sta-
tus information from the PowerPC system. All application
logic is executed on the PowerPC system and all other de-
vices only follows the commands from the PowerPC. On the
train model there are push buttons at each door that pas-
sengers can use to open and close the doors (if allowed by
the driver). The driver’s desk contains push buttons and
switches for controlling the doors on the train model, e.g.
the driver can decide when passenger are allowed to open
the doors. On the driver’s desk there is also a driving stick
for controlling the propulsion system of the train (a very sim-
plified simulation of the propulsion system is implemented).

The application requirements and parts of the hardware re-
quirements have been developed together with people from
the division on Inter City Trains and the division for Metro
Trains, which has resulted in requirements relevant for trains,
but also an increase in acceptance within the organization.

The application was successfully developed within time and
budget constraints, which is considered to be quite unique
for software development in general, considering that both
the tool and parts of the hardware was entirely new. We
have performed several demonstrations of the prototype, as
well as held seminars on the methods and techniques we
have used for the employees. This has raised quite a bit of
interest among the employees.

As a conclusion in Pilot 1 we identified the development
of a stable architecture for entire trains as the next step.
In a way, parts of the vision contains the results from Pi-
lot 1. Also, this architecture is an investment that must be
placed before any trains are developed using UML, object-
orientation, and the concept of a product-line architecture.

4. EXPERIENCESFROM PILOT 1

In this section we will present the results from the first pilot
project. The results in this case is a set of experiences gained
when working with the tool and the languages C++ and
UML. However, the project also delivered considerations re-
garding non-technical matters. These are non-technical is-
sues regarding the development organization and the edu-

cational efforts required due to the paradigm shift and the
safety requirements.

4.1 UML and Rhapsody

The UML-tool Rhapsody in C++ (version 3.0) from I-Logix
has been used for application development during Pilot 1.
In this section we present our experiences from using UML
and Rhapsody for train application development.

Our general impression of Rhapsody/UML is positive, but
there are also aspects that we do not find that good. The
main things we find positive about Rhapsody and UML are
class diagrams, statecharts, automatic code-generation, and
the possibility to automatically generate parts of the system
documentation.

e Class diagrams play an important role when construct-
ing the domain object model and also when design-
ing the system. Developers can easily and rapidly ex-
press different solutions using UML. Even though peo-
ple at the company mainly use a language similar to
IEC 1131, they did not need that much training to
understand class diagrams.

e Statecharts provide a powerful, yet easy to understand,
way to express behavior of objects. Statecharts also
enable behavior to be specified at a reasonable abstrac-
tion level. Compared to IEC 1131-based languages
UML is a higher-level language. Another benefit is
that state-machines are known by many, and the specifics
of statecharts can easily be learned.

o If statecharts are used to specify the behavior of the
system then Rhapsody can automatically generate the
implementation, which considerably shortens imple-
mentation time. This also enables the design model
and the implementation to be kept consistent; a strong
benefit when it comes to maintenance.

o If the systems documentation can be automatically
generated from the models, it is more likely that the
documentation will stay consistant with the actual im-
plementation. This is very important, not least with
respect to the work of harmonizing the development
process to the safety standard.

For the Pilot 1 application we used statecharts for the ma-
jor part of the classes in the system, and we where therefore
able to use automatic code-generation. Unfortunately, the
application we developed in Pilot 1 did not have any strict
time critical requirements and was focused on door control
alone, we are therefore unable to judge how well Rhapsody
could be used for entire trains. However, there are still a
number of issues with Rhapsody that we consider need im-
provement, namely:

e State naming
e Code size

e Overhead

We explain these issues in detail below in Section 4.1.1
through Section 4.1.3.



411 Sate Names
When Rhapsody generates code for statecharts it uses the

state names we have provided to name operations and classes.

This enable us to perform code reviews quite efficiently.
However, and-states are not required to be labeled. Should
a developer forget to label an and-state then Rhapsody will
automatically generate a label for it, such as state_8, which
prohibits efficient reviews. (And-states, in contrast to Or-
states, allows developers to express parallel activities in the
UML. In an Or-state there can be only one active state, and
And-states can have several active states.)

When considering the 20-30 years life-cycle of trains, it may
at some point in time be the case that a bug should be fixed
and that the Rhapsody tool is no longer available on the
market. In such cases, it might be necessary to make the
changes directly to the generated source code, and not the
UML model in Rhapsody. Hence, the quality, in terms of
maintainability, code size and performance, of the generated
code is essential for success in the train application area.

412 CodeSze

The first generated version of the application code required
899KB of memory, and still it only contained door control
functionality. This is too large. Would it even possible to
develop an entire train’s functionality using Rhapsody and
fit it within the 64Mb of memory available in the target
system? Fortunately, the code size can be reduced by paying
attention to Rhapsody’s settings.

By changing some of Rhapsody’s settings and changing the
application to use triggered operations instead of events, we
were able to reduce the code size to 315KB. The code size
can be reduced even further by configuring Rhapsody’s code
generator. It is quite remarkable that each event costs about
2KB in code size. An equivalent application implement-
ing similar functionality using current tools requires about
100KB also including extended fault handling.

Even though tools, in this case Rhapsody, allow developers
to work at a reasonable high abstraction level, developers
will be reluctant to use these tools if they cannot produce
code that match the target systems constraints. In this case
we are not certain that the “price” we pay in terms of in-
creased code size is worth the benefits.

41.3 Overhead

A framework that supports execution of statecharts is de-
livered with Rhapsody. This framework takes care of, for
example, event passing between state-machines.

For the Pilot 1 application we wanted to make as much use
of Rhapsody’s code generation features as possible, therefore
we implemented most of the classes using statecharts. We
even used statecharts for periodic activities, such as polling
some sensors every 40 ms. During design we experienced the
benefits of using this approach, e.g. reasonably high-level
description of behavior using statecharts. As far as we have
experienced, the overhead introduced by the framework is
acceptable. However, we can not estimate how this scales
to full train functionality.

When investigating the overhead further, we discovered that,

in several cases, sending a single event is computationally
equally expensive as the reaction to on an event in the ap-
plication. The application might use events more than ad-
visable, but anyhow, Rhapsody’s framework should be im-
proved in terms of overhead with using events.

In our opinion events should only be used for objects that
execute infrequently and do not have strict performance re-
quirements. Triggered operations, which is an alternative
way of communicating between statecharts, require less com-
putation time. A very rough estimate indicates that events
require about 30 times the execution time of invoking a trig-
gered operation.

The source code for the framework is delivered with Rhap-
sody, so anyone that want to improve it can do so. However,
this is not desirable, since it will create a need to main-
tain the framework within the organization. This is not an
attractive solution when considering that one of the main
reasons for Bombardier Transportation for looking at third
party tools is to avoid tool maintenance within the organi-
zation.

A way to reduce the overhead is to use ordinary C++ meth-
ods instead of events/triggered operations. However, this
would make it impossible to use statecharts and the code
generation feature of Rhapsody, which we see as the major
benefits of the tool. However, we find the extra overhead
introduced by invoking triggered operations acceptable.

4.2 Safety

When it comes to safety and software, most of the efforts
required in IEC 61508 affects the development process. Not
that much is mentioned about actual programming paradigms
and software constructions. For instance, only by using a
modeling language and a, as homogeneous tool suit as pos-
sible, a step toward SIL classification is taken. The use of
semi-formal methods is promoted for the SIL targeted in
this case, which is provided by the UML statecharts. The
statecharts were proven to be helpful when reasoning about
the design. Quite a few errors where found and removed,
which would have been much harder to find in pure C++
source code.

However, it is important that the code generated from the
statecharts is efficient enough, else they will not be used. As
a semi-formal language they provide a good base for infor-
mal reasoning. Also, in the favor of this technique is the fact
that the implementation will indeed perform the modeled
behavior since the models, in a way, also is the implementa-
tion. Thus, the semantical gap between implementation and
model is over-bridged leading to an increased confidence in
that the implementation is executional-wise equivalent with
the models.

The use of a code generator may seem a little bit provoca-
tive in the safety community. Nevertheless, we argue that
it is fully possible to make use of such methods. The very
same concerns were raised when moving from assembly lan-
guages to ”high-level” compiled languages such as C. We
may think of UML and code generators as yet another level
of abstraction.



Working on the level of abstraction provided by UML and
its statecharts helped us keep some of the complexity im-
posed by a programming language such as C++, away. This
is not least important when performing reviews of the im-
plementation. In our case, we used the UML statecharts
for design reviews and the actual source code produced by
the generator were used when reviewing the implementation.
The code reviews were performed on this level of abstraction
mainly for the reason of evaluating the quality of generated
code. We found the code to be quite good as it was in-
deed readable and, as far as we could see, implemented the
modeled behavior correctly. We think that if these tools be-
come ”proven-in-use”, which is somewhat recommended in
IEC 61508, the review will mainly concern the models.

On the other hand, the code generated by Rhapsody heavily
depends on the provided framework. We may very well treat
the framework as an reusable component but it must be fully
verified according to the requirements in the safety standard
before being used in a safety related application.

A very important issue when it comes to safety is the han-
dling of requirements. Requirement must be traceble all
the way through the models and down to the implementa-
tion. UML is rather limited when it comes to requirements.
The concept of use-cases is not very useful for specifying
non-functional requirements as they focus on the function-
ality as perceived from a user’s point of view. Consequently,
the need for additional tools that manage requirements, and
smoothly integrates with the modeling tool, was identified
by the pilot project.

4.3 General technical findings

The pilot project was not confronted with any bigger chal-
lenges regarding configuration management (CM). We used
Visual Source Safe (VSS), from Microsoft which could be
integrated in the Rhapsody tool. We are aware of the short-
comings in VSS and its possibilities was not investigated as
such, it was only used for keeping the pilot’s artifacts con-
sistent in a rather uncomplicated fashion.

Moving towards reuse oriented development based on product-
line architectures will, however, dramatically increase the
complexity regarding CM. Especially if the reuse program
is implemented across the geographically distributed sites
within the company, the demands on CM gets even higher.
This issue was not at all considered in the first pilot project.
Nevertheless, it is an ever so important subject that must
be carefully dealt with by the company.

4.4 Non-technical results

So far we have discussed experiences regarding technological
changes. However, the project also identified and brought
up changes needed in the organization itself. These changes
arise mainly from two sources, SIL classification and soft-
ware reuse. Moreover, the way in which the company is
doing business will be affected

4.4.1 Organization

When it comes to safety, processes and project organizations
are restricted by the standard. Developing SIL-classified
software is mainly a matter of producing the software ac-
cording to the standard. For instance, the roles needed in

a project, the competence of project members, the required
documents, etc., is regulated in those standards. In our
opinion is the assumption indirectly postulated in IEC 61508
true, that a solid organization and development process de-
livers solid software.

The introduction of software product-lines and software reuse
is also most likely to affect a company’s organization [10][4].
Typically should the owner and the developer of the reusable
assets, i.e. components and architecture, be somehow sepa-
rated organizational from the reusers. Exactly how such a
company should be organized in order to achieve successful
and profitable reuse is dependent on the current structure.
Parameters that influence the reuse-organization are typi-
cally, the size of the company, the number of products and
the geographical distribution of working sites.

The reusers are engineers developing applications based on
reusable software and project specific functionality. More-
over, a third organizational unit may be required taking care
of maintenance of legacy systems. Unfortunally, such an or-
ganization may give engineers the impression that they are
divided into an A-team and a B-team where A-team mem-
bers are working with new, exciting technology and the B-
team mainly takes care of correcting bugs and maintaining
old system using old technology. In Bombardier Transporta-
tion’s business, where the lifetime of products are in the
range of 20-30 years, this is an extremely important mat-
ter. Most engineers get motivated from new technology and
new challenges and there may be a possible risk of employ-
ees leaving the company if they feel stuck in such a B-team
situation. Moreover, recruiting new staff to the maintenance
organization may be difficult. The solution to this problem
is not obvious. Nevertheless, the problem must be dealt
with.

4.4.2 Education

Shifting technology paradigm also implies an investment in
education for software engineers. This may not be so contro-
versial since in the current situation, newly employed engi-
neers must be trained before they can use the in-house devel-
oped tools. In the long term, this need will be reduced even
further since today universities usually teach both UML and
object-orientation in their basic courses in computer engi-
neering.

However, the competence profile in the company may change
due to the introduction of object-orientation. Currently en-
gineers at the company are slightly oriented towards elec-
trical engineering, working with ”signal-oriented” function-
blocks that are quite close to electrical schemas. The signal-
oriented view also harmonizes well with the traditional elec-
trical view of train implementations. Object-orientation
may potentially deteriorate that intuitive system knowledge.
Consequently, in the long run there may be a need for chang-
ing the internal training from software related to system-
and electrical related in order to preserve the feeling for the
system among software engineers.

5. CONCLUSION

In this paper we have reported our experiences from an on-
going investigation of whether Bombardier Transportation
should switch from a function-block oriented development to



an object-, and reuse-oriented approach. As part of this in-
vestigation we also considered emerging safety requirements
on train applications and their implications on the support-
ing tools. Currently are train applications constructed using
an in-house developed tool that is similar to IEC 1131. As
the current tool is not likely to meet future requirements on
support for reuse, we have also investigated commercially
available software tools.

The investigation has, up until now, been performed as
a pilot project. The purpose of the pilot was not only
to determine the technical feasibility of using UML and
object-orientation for train application development, but
also to get acceptance from the organization. By involv-
ing observers, a reference group, and by conducting work-
shops that all employees interested in the work could attend,
we have established acceptance for the new technologies.
The observers were applications engineers with no or lit-
tle knowledge about object-orientation and UML. The ref-
erence group mainly consisted of managers from different
development departments. However, it is not sufficient to
run only a single and short pilot to decide whether to per-
form a paradigm shift that is initially very expensive. The
issue has to be further investigated in order to make sure
that the methodology can indeed be adopted by the com-
plete organization. In our opinion are pilots an appropriate
line of actions when working with acceptance, but it requires
lengthy and resolute work.

For application development we have evaluated the UML-
supporting tool Rhapsody and found both pros and cons.
Our impression is that the real strengths of the tool lies in
the design phase. Also, by using automatic code generation
from models made using state-machines, which is supported
by Rhapsody, the implementation phase can be significantly
shortened. The semi-formalism provided by state-machines
is also beneficial and endorsed by safety standards. How-
ever, if the code generated from state-machines is not effi-
cient enough they will not be used. Thus, the efficency of the
generated code is not only important with respect to perfor-
mace of the application, it will also be of vital importance
for the safety aspects.

The generated code exhibited some performance overhead
due to the framework supporting the execution of state-
machines. However, the generated performance overhead
is acceptable as long as complexity in the software systems
is managed, and the cost of developing it is decreased, due
to the new method. Worth mentioning on the counter-side
is that the resulting executable consumes too much memory
in respect to the complexity of the implemented application.
This must be further investigated.

If the proposed changes are implemented, it will also have
great impact on the organization, mainly due to issues re-
garding reuse based development and safety. However, if
successfully implemented, reuse will return in form of re-
duced development costs and increased software quality.

One of the core findings from the first pilot is that the design
of a solid architecture is crucial. As a consequence there is a
plan to run an investigation focusing on the generic system
architecture for future train applications.

Acknowledgement

We would like to thank Bombardier Transportation for giv-
ing us the opportunity to take part in the investigation and
for granting the publication of these results.

6. REFERENCES

[1] Bombardier Transportation web-page.

http://www.transportation.bombardier.com.

J. Bosch. Design and Use of Software Architectures.

Addison-Wesley, 2000.

[3] D. Dikel, D. Kane, S. Ornburn, W. Loftus, and J. Wilson.
Applying Software Product-Line Architecture. IEEE
Software, 30(8):49-55, August 1996.

[4] D. Fafchamps. Organizational Factors and Reuse. IEEE
Software, 11(5):31-41, September 1994.

[5] J. Favaro. What Price Reusability?: A Case Study. In
Proc. ACM First Symposium on Environments and tools
for Ada, pages 115-124, 1990.

[6] J. J. Fernandes, R. J. Machado, and H. D. Santos.
Modeling Industrial Embedded Systems with UML. In
Proc. Eighth International workshop on
Hardware/software codesign, pages 18-22, 2000.

[7] I-Logix web-page. http://wuw.ilogix.com.

[8] Application and Implementation of IEC 1131-3, May 1995.
Standard provided by the International Electrotechnical
Commision.

[9] IEC 61508 - Functional Safety of
electrical /electronic/programmable safety related systems.
Standard provided by the International Electrotechnical
Commision.

[10] I. Jacobson, M. Griss, and P. Jonsson. Software Reuse -
Architecture, Process and Organization for Business
Sucess. Addison-Wesley, 1997.

[11] M. Mrva. Reuse Factors in Embedded Systems Design.
Technical report, High-Level Design Techniques Dept. at
Siemens AG, Munich, Germany, 1997.

[12] E. H. Shokri and K. S. Tso. Ada95 Object-Oriented and
Real-Time Support for Development of Software Fault
Tolerance Resusable Components. In Proc. Second
International Workshop on Object-oriented Real-time
Dependeble Systems, pages 93—-100, 1996.

[13] N. Storey. Safety-Critical Computer Systems.
Addison-Wesley, 1996.

[2



