
Introducing Temporal Analyzability Late in the

Lifecycle of Complex Real�Time Systems

Anders Wall�� Johan Andersson�� Jonas Neander�� Christer Norstr�om�� and
Martin Lembke�

� Department of Computer Engineering� M�alardalen University�
Box ���� V�aster�as� Sweden�

fanders�wall�jan������jonas�neanderg�mdh�se
� ABB Robotics� V�aster�as� Sweden

fchrister�e�norstrom�martin�lembkeg�se�abb�com

Abstract� Many industrial real�time systems have evolved over a long
period of time and were initially so simple that it was possible to predict
consequences of adding new functionality by common sense� However� as
the system evolves the possibility to predict the consequences of changes
become more and more di�cult unless models and analysis method can
be used�
In this paper we describe our approach to re�introducing analyzability
into a complex real�time control system at ABB Robotics� The system
consists of about 	 
�� ��� lines of code� Traditional real�time models and
analyses� e�g� �xed priority analysis� were not applicable on this large and
complex real�time system since the models are too simple for describing
the system
s behavior accurately� and the analyses are too pessimistic�
The proposed method is based on analytical models and discrete�event
based simulation of the system behavior based on these models� The
models describe execution times as statistical distributions which are
measured and calculated in the existing system� Simulation will not
only enable models with statistical execution times� but also correctness
criterion other than meeting deadlines� e�g� non�empty communication
queues� Having accurate system models enable analysis of the impact
on the temporal behavior of� e�g� customizing or maintaining the soft�
ware� The case study presented in the paper shows the feasibility of the
method� The method presented is applicable to a large class of complex
real�time systems�

� Introduction

Large and complex real�time computer systems usually evolve during a long
period of time� The evolution includes maintenance and increasing the system�s
functionality by adding new features� Eventually� if ever existed� the temporal
model of the system will become inconsistent with the current implementation�
Thus� the possibilities to analyze the e�ect of adding new features with respect
to the temporal behavior will be lost� For small systems this may not be that a
big problem� but for large and complex systems the consequences of altering the



implementation cannot be foreseen� Introduce� or re�introduce� analyzability is
the task of re�engineer the system and construct an analytical temporal model
of it�

The work presented in this paper is the result from an activity where we
tried to re�introduce temporal analyzability in a robot control system at ABB
Robotics which consist of approximately � �		 			 LOC� Initially� we tried to ap�
ply traditional real�time analyses� However� applying classical real�time models
and analyses on large and complex system� e�g� as 
xed priority analysis �FPA�

�� 
�� 
��� often results in a too pessimistic picture of the system due to large
variations in execution times and semantic dependencies among tasks� FPA is
based on the fact that if a set of tasks� possible periodical with worst case exe�
cution times �wcet� and deadlines less or equal to their periods� is schedulable
under worst�case conditions� it will always be schedulable� The result from such
an analysis is of a binary nature� i�e� it does not give any numbers on probability
of failure� it just tell if the system is guaranteed to work or not� In this work� the
result from an FPA would be negative� i�e� assuming worst�case scenarios� the
system will not be temporal correct in terms of meeting all its deadlines� FPA
assumes a task model where deadlines are assigned to every task� In the robot
controller we have investigated is the temporal correctness de
ned in terms of
other criteria� Some of the tasks can have their deadlines derived from these cri�
teria� but not all tasks can easily be assigned a deadline� An example of another
correctness criterion is a message queue that must never be empty�

Further� a task may execute sporadically and with great variations in execu�
tion times� To be safe in an FPA� the periodicity of sporadic tasks is modeled as
having a frequency equal to the minimum inter�arrival time� Using the worst�case
scenario in terms of both execution time �maximum� and periodicity �minimum��
is not su�cient as the result would be to pessimistic�

Since traditional temporal models and analysis do not apply to the class of
systems we have studied� we have used a simulation�based approach� In this
paper we describe our approach to analysis of complex real�time system�s tem�
poral behavior� The simulations are based on analytical models of the system
made in our modeling language ART�ML �Architecture and Real Time behav�
ior Modeling Language�� By using simulations� we can de
ne other correctness
criterion than satisfying deadlines as mentioned before� Instead of always assum�
ing worst�case scenarios� we can use execution time distributions� ART�ML also
permits the behavior of tasks to be modeled� i�e� on a lower level than the soft�
ware architecture� This permits a more precise model to be created as semantic
relations among tasks can be introduced� Moreover� we propose how to utilize
our methodology by putting it into the scope of a development process� The
tool suit� in which the simulator is a part� also includes tools for measuring an
existing system implementation� as well as tools for processing measurements�
For instance� we have developed a tool which given a set of di�erent execution
times of a task calculates the corresponding execution time distribution�

We have studied other simulators such as STRESS and DRTSS� The STRESS
environment is a collection of CASE tools for analyzing and simulating behavior



of hard real�time safety�critical applications 
��� STRESS is primarily intended
as a tool for testing various scheduling and resource management algorithms�
It can also be used to study the general behavior of applications� since it is a
language�based simulator� STRESS has no support for modeling distributions of
execution times or memory allocation�

Another simulation framework is DRTSS 
��� which allows its users to con�
struct discrete�event simulators of complex� multi�paradigm� distributed real�
time systems� The DRTSS framework is quite di�erent from STRESS� although
they are closely related� DRTSS has no language where the behavior can be
speci
ed� A language that describes the behavior of components is necessary for
achieving the goals of our work and excludes DRTSS as a possible solution�

In 
��� an analytical method for temporal analysis of task models with stochas�
tic execution times is presented� However� sporadic tasks cannot be handled� A
solution for this could not easily be found� Without 
xed inter�arrival times� i�e�
in presence of sporadic tasks� a least common divider of the tasks inter�arrival
times can not be found�

The outline of this paper is as follows� In Section �� we put our method into
the context of a developing process� Section � describes our approach to measure
the existing system� build analytical models based on those measurements� and
using the analytical models for simulating the system�s temporal behavior� We
also introduce the modeling language developed� In Section � we discuss the
validation of our method which was done as a case study on a large and complex
industrial real�time system� Finally Section � concludes the paper and gives
indications of future work�

� The process

The introduction of a analyzable model of a system brings a continuous ac�
tivity of maintaining the model� The model should always be consistent with
the current implementation of the system� i�e� the implementation should be a
true re
nement of the model� Consequently� our method must be an integrated
part of a company�s development process� In this section we will brie�y describe
the activities associated with the analytical model� Figure � depicts the general
activities required in our method� Note that the process described here only
concerns the method we are proposing� Important activities such as veri
cation
and validation of the implementation are omitted�

The 
rst activity in making an existing system analyzable with respect to its
temporal behavior is re�engineering of the system� Typically� the re�engineering
activity includes identifying the structure of the system� measuring the system�
and populating the model� By comparing the result from analyzing the system
using the analytical model with the temporal behavior of the real system con
�
dence in the model can be established�This is exact the same procedure as used
in developing models for any kind of systems�

As the system evolves� each new feature should be modeled and the impact of
adding it to the existing system should be analyzed� This enables early analysis�



Is the change
feasible?

no

yes

Create initial
model by re-
engineer the

existing system

Validate the
model

Model the new
feature

Feedback
measurements of
the new feature to

the model

Implement the
new feature

Fig� �� The process of constructing and maintaining an analyzable system�

i�e� before actually integrating the new feature into the system� Detecting �aws at
an early stage is often more cost e�ective than discovering the problem late in the
testing phase of the development process� Note� that such an approach requires a
modeling language that support models on di�erent level of abstractions� ART�
ML has this property which will be further described in Section �� Modeling of
new features should be part of the company�s design phase�

Finally� when the new feature has been implemented and integrated into the
system the model of that feature can be re
ned by feeding back information from
the implementation into the model� Hence� a more prcised model is implemented�
This activity is typically performed in conjunction with the veri
cation phase of
a company�s development process�

� The method

To create a model of the system data measured from the target system is needed�
The accuracy of the model is dependent on the quality of the measured data�
The measuring of the data should a�ect the system as little as possible� Too big
probe e�ect on the system will result in an erroneous model and might cause
wrong decisions regarding future developments�

A suitable notation is necessary for creating a system model� The language
has to support both the architecture �i�e� nodes� tasks� semaphores� message
queue� and the behavior of the tasks in di�erent levels of abstractions� It should
be possible to compare the beahvior of the created model with the target system
in an easy way in order to iteratively improve the model to satisfactory level�
illustrated in 
gure ��

Our approach to analysis of the temporal behavior is simulation since our
notation not only describes the architecture of the target system� but also the
behavior of the included tasks� Simulation allows execution times expressed as
distributions� We analyzing the output from the simulator by de
ning properties



Probe and
measure the

system

Process
measurements

Build a model
and simulate

Process
simulation

results

Fig� �� The work �ow of making an analytical model

of interest� An example of such a property is the probability of missing a deadline
requirement on a task� Moreover� the simulation approach allow us to de
ne non�
temporal related properties� e�g� non�empty message queues�

��� Measuring and processing data

Measuring data in a software system requires the introduction of software probes
if no hardware probes are used 
��� The data of interest is resource utilization�
e�g� task execution times� memory usage or sizes of messages queues� We used
software probes in order to log task switches and message queues� The measured
data is stored in static allocated memory at runtime� in binary format� All for�
matting of the output is done o�ine� writing to a 
le at runtime is too time
consuming� This minimizes the probe e�ect� i�e� the part of the execution time
that is caused by the probe�

The output from the system is a text�
le containing task switches� time
stamps� and the number of messages in di�erent queues� The size of the output
can be very big� several hundred kilobytes per monitored second of execution� To
manually analyze that data for developing a model would be too time�consuming�
We have therefore developed a tool that extracts data from a log and compute
the statistical distribution of each task�s execution time� In table � is the result
of processing data from a task shown�

In order to calculate the statistical distribution for a set of execution times
for a task� we divide all execution times into instance equivalence classes �IEC��
Formally we de
ne an IEC as�

De�nition � An instance equivalence class IEC is a subset of execution time

instances of a task E� IEC � E� de�ned by its upper bound max�IEC� � E

and its lower bound min�IEC� � E and a threshold that speci�es the interval

between max�IEC� and min�IEC�� ut

A task instance�s execution time is a member of the IEC In i� it is larger or
equal to min�In� but less or equal than max�In�� In the model are all instances
in a IEC represented as the average execution time of the IEC which have the
probability of occurrence equal to the number of instances in the IEC divided
by the total number of measured instances for a task� For example� consider the

rst entry in table � which express that� with the probability of ���� �� is the
execution time for the task ��	�	�� time units� Consequently� the execution time
of tasks in our method is represented as a set of pairs consisting of the average
execution time of an IEC and its probability of occurrence�



De�nition � The execution time for task t� t�exe� is a set of pairs� hiec� pi where
iec is the average execution time of an IEC and p is its probability of occurance�

ut

An algorithm was developed to automatically identify the boundaries min�I�
and max�I� for all IEC�s given a set of execution times for a task and a threshold�
The algorithm is recursive� Initially all instances are sorted by their execution
time using the quicksort algorithm� The sorted list constitutes the initial IEC� I�
for the task� Next� the largest di�erence in execution time between two adjacent
instances in the sorted list is located� If the largest di�erence is larger than a
speci
ed threshold� the list I� is split into two new IEC�s and recursive calls are
conducted with each of the two new IEC�s� Consequently� the threshold speci
es
mathematically how big variations there can be in execution times belonging to
the same IEC� From the system modeling point of view the threshold has two
purposes� First� it can be used to 
lter small variations in execution times due
to cache memories or branch prediction units� i�e� independent from the control�
�ow� Moreover� threshold can also specify the level of abstraction with which the
temporal behavior is modeled� A large threshold results in a more coarse�grained
distribution� i�e� less number of IEC�s for a task� Below the equation for 
nding
distinct IEC�s� given a set of sorted execution times� is displayed�

�hxi� xi��i�hxj � xj��i � I� �

abs�xj � xj��� � abs�xi � xi��� �

abs�xj � xj��� � threshold � i �� j

As a result from applying the equation above on a sorted set of execution
time instances we may get two new potential IEC� Ik and Ik�� where min�Ik� �
min�Ik���� max�Ik� � xj � and min�Ii��� � xj���max�Ik��� � max�Ix���� If no
gap is found greater than the threshold� the 
nal IEC is already found and the
recursion is stopped� When the recursion is stopped� the largest and the smallest
execution time in the list is considered to de
ne the boundaries of an IEC�

The measured data can also be graphically visualized in a chronological order�
see Figure �� Studying such a graph may reveal executional dependencies among
tasks� Introducing those dependencies will make the model more accurate with
respect to the implemented system as they reduce pessimism�

��� The ART�ML language

The notation developed� ART�ML� is composed of two parts� the architecture

model� and the behavior model� The architecture model describe the tempo�
ral attributes of tasks� e�g� period times� deadlines� priorities� The architecture
model also describes what resources there are in the system�

The behavior model describes the behavior of the tasks in the architecture
model� Thus the behavior is encapsulated by the architecture model� The be�
havioral modeling language is an imperative� Turing�complete language close to
Basic and C in its syntax�



0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0 1 2 3 4 5 6 7

Time (s)

Fig� �� An example of measured execution times

mainbox TASK�C�MAILBOX ��

mainbox TASK�C�MAILBOX ��

const msgcode�ref�request �����

const msgcode�ack �����

task APERIODIC�TASK�C

trigger mailbox TASK�C�MAILBOX

priority �

behavior�

Table �� An example of statistical distribution of a task� N �
P
n� were n is the

number of instances in an IEC�

Min time Max time Average time n n�N

	���	�
 �	����� ������� ��� ����


������ �����	� 
������ 	 �����
������
� � �����
������
� 
�	���		 �������
 �	 ���
�

������� ��	����� 
�	���	� �
 ����

����	���� � ������
�	������� � ������



variable incoming�

incomming 	 ��

recv
incoming� TASK�C�MAILBOX�

timeout ����

if 
incoming 		 msgcode�ref�request��

recv
incoming� TASK�C�MAILBOX�

timeout ������

execute

���������
����
�����

send
TASK�B�MAILBOX� msgcode�ack��

�else�

chance
����

execute

��������
�
��
����

�else�

execute

�����������

�

�

�

Two constructs make ART�ML unique compared to other modeling languages
that has been studied� the execute�statement and the chance�statement�

The execute statement describe the partial execution time of the code in
the target system� i�e� the execution time for a complete task or part of a task�
The execution time for a task is represented by a statistical distribution� A
probability distribution is implemented as a list of pairs that corresponds to
the calculated IEC�s described in Section ���� Every pair has a probability of
occurrence and an execution time� When a task performs an �execute� it supplies
a probability distribution as parameter� An execution time is picked according
to the distribution and the task is put into �executing state�� When a task has
been allowed to execute for that amount of time� the next statement� if any� in
that task�s behavior description is executed� In the example below� the execute
statement will execute �	 time units with the probability of �� � and �� time
units with the probability of �� ��

execute

������� 
��� �����

The chance statement implements a stochastic selection� Stochastic selection
is a variant of an IF�statement� but instead of comparing an expression with zero�
the expression is compared with a random number in the interval 
���		�� If the
value of the expression is less than the random number� the next statement
is executed� If not� the else�statement is executed if there is one� Stochastic
selection is used for mimic tasks behavior observed as a black box� For instance�
we can observe that a task sends a message to a particular queue with a certain
probability by just logging the queue� This can be model with stochastic selection
such that we send a message with the observed probability� For instance� it is
possible to specify that there is a �� � chance of sending a message�



chance
���

send
mbox�� msg�

The language has also support for message passing through the primitives
send and recv� Both can be associated with timeouts� Moreover� binary semaphores
can be speci
ed in ART�ML through semtake and semgive� Semtake can be used
in combination with a timeout as well�

��� Modeling on di�erent level of abstraction

When creating a model of the tasks in the target system� a level of abstraction has
to be chosen� That level de
nes the accuracy of the model� The lower abstraction
level� the more detailed and accurate model� There is no point in using the lowest
possible level of abstraction� i�e� a perfect description� In that case� the actual
code could be used instead� Using an extremely high level of abstraction results
in a model that is not very accurate and is therefore of limited use� The best
result is something in between these two extremes�

In the ART�ML language� very detailed models of task can be made� theoret�
ically perfect ones� By describing blocks of code only by their execution time �i�e�
an execute�statement in the model�� the abstraction level is raised to a higher
level� The more code that is described by an execute�statement� the higher level
of abstraction� The highest abstraction�level possible is if all code of the task is
described using a single execute statement�

It is possible to use any level of abstraction when describing a task using the
ART�ML language� It is therefore possible to describe di�erent tasks at di�erent
levels of abstraction� This property of the language enables the model to be
improved �in terms of level of detail� task by task�

The execution time distributions used also has di�erent levels of abstraction�
The measured data from the target system is somewhat 
ltered when creating
the distributions� The recorded instances are grouped into equivalence classes�
This causes data to be lost� The level of abstraction is in this case the number of
intervals used to describe the execution time of the task� This level of abstraction
impacts the accuracy of the model�

If there are multiple tasks in the system that is of no interest and do not a�ect
the behavior of other tasks� they can be modeled as a single task at maximum
abstraction level� i�e� only by a single execution�time probability distribution�
This reduces the complexity of the model without a�ecting the accuracy of the
result regarding the tasks of interest� However� it is required that all tasks in a
group has the same or adjacent priorities� Moreover� tasks can only be grouped
in such a way that no other modeled task� i�e� not part of the group� has a
priority within the range of a group� For instance� consider a composed task
consisting of two task� a with high priority� and c having low priority� Moreover�
consider task b which is also part of the system and runs at mid priority� Task
a should be able to preempt task b� but task c should not� Thus� the composed
task has to run on di�erent priorities in order to re�ect the control �ow of the
implemented system� We refer to such a group of tasks as a composed task�



Formally we can express the rules of grouping tasks into composed tasks� i�e�
assigning execution time distribution� period time and priority� in a way that
preserves the utilization of the CPU which the tasks in the group contributes
with� First the set of tasks to compose� C� have to be normalized with respect
to the period times� The composed task will run with the shortest period time
among the participating tasks� Consequently� the period time of the composed
task c is�

c�T � min
t�C

�t�T �

Normilizing the tasks in such a way that the CPU utilization is preserved
requires re�calculating the exection times for all IEC�s described in Section ����
for all tasks in C�

�t � C�i � t�exe �
c�T

t�T
i�iec

The resulting execution time distribution for the composed task is obtaind by
calculating the cartesian product� V� of all t�exe where t � C� i�e� t��exe	t��exe	
��� 	 tn�exe� Every n�pair which is part of the cartesian product corresponds to
an executional scenario� For instance� hx�� x�� ���� xni corresponds to the scenario
where task � executes for x��iec time units� task � executes x��iec time units�
and so on�

c�exe � fhiec� pij�v � V � iec �
X

�j�v

j�iec � p �
Y

�j�v

j�pg

The 
nal c�exe is obtained by merging pairs in c�exe that have equal iec�s
�cmp� the generation of IEC�s described in Section ����� For the set of pairs�
fhiec� p�i� ���� hiec� pnig 
 c�exe� of all pairs having the same execution time� the
merged pair remaining in c�exe is hiec�

Pn

i�� pi� where
Pn

i�� pi is the probability
that task c� executes iec time units�

Finally� the priority of the composed task c� c�p� is assigned the maximum
priority of the tasks participating in the composition�

c�p � max
�t�C

�t�p�

As an example consider the composition of two tasks� a and b� Task a executes
with the distribution a�exe�f���	����� ���	����g� and a�T��	� Task b executes
with the distribution b�exe�f���	���� ���	���g and a�T��� Normalizing the exe�
cution of task a� i�e� a�exe�f�� �

��
�	����� �� �

��
�	����g gives the cartesian product�

V� equal to ��	���	����� ���	����� ��	���	����� ���	����� ����	����� ���	����� ����	�����
���	����g� The cartesian product V results in a execution time distribution for
the composed task� c�exe equal to f�����	������ �����	������ ���	������� ��	�����g�
c�T � ��

The assignment of temporal attributes to composed tasks described above
is a coarse approximation of the system behavior� Ideally� all tasks are modeled
individually� However� in order to limit the modeling e�ort� and to prune the



state space� such approximations can be practical� The result from the case study
presented in Section � indicates that the use of composed tasks is quite adequate�
The result of applying the proposed rules may lead to situations where execution
times are longer than the period time� This corresponds to a system overload
which are possible in the implementation�

��� Simulating the system behavior

The simulation�based approach used in this work allows correctness criterion
other than meeting deadlines� An example of other correctness criterion could
be the non�emptiness of certain message�queues� The system studied in this work
had such a criterion� If a certain message�queue got empty� it was considered a
system failure�

Simulation also allows us to specify arbitrary system cycles� FPA assumes
cycles equal to the Least Common Multiple of the period times in the task set
�LCM�� However� there exists systems such as the robot controller investigated
as part of this work� where the cycle times are determined by other criterion�
For instance� in the robot case� the system cycle is determined by the robot
application� i�e� the cycle time of the repetitive task which it is programmed to
do�

When designing the simulator� two di�erent approaches were identi
ed� The
most intuitive was to let the simulator parse the model and execute it statement
by statement� The other approach was to create a compiler that translated the
high level ART�ML model into simple instructions and construct the simulator
as a virtual machine that executes the instructions� A test was made to compare
the performance of the two approaches based on two prototypes� The virtual
machine solution performed signi
cantly better which is crucial for an analysis
tool�

The simulator engine is based on three parts� the instruction decoder� the
scheduler and the event�processing� The instruction decoder executes the in�
structions generated by the compiler� i�e� it is the virtual machine� Some of the
instructions generate events when executed� e�g� execute� send� semtake� The
simulator engine acts upon the generated event� e�g� semtake� is only possible
if the semaphore is free which only the simulator knows� An event contains a
timestamp� type of event� and an id of the source task� The timestamp speci
es
when the event is to be 
red� Consequently� new decisions about what task to
execute are taken upon an event� The scheduler decides what task to execute
according to the 
xed priority strategy�

The execute kernel�call� the consumption of time� is what drives the simu�
lation forwards� First� an execution time is selected according to the distribu�
tion that is provided as an argument to execute� The current time is increased
with that amount of time� or until an event interferes with the execution� If
an event occurs during the execution of a task� the execution is suspended� the
event is taken care of and the scheduler makes a new decision� The next time
the preempted task is allowed to execute� it will restart the execution of the
execute�instruction� remembering how much time it has left for execution�



Since an �execute� kernel call is necessary for pushing the simulation for�
wards� there must always be a task that is ready to execute and contains such
a statement� Due to this it is mandatory to have an idle�task in the simulation
that consumes time if no other task is ready�

� A robotic control system

The method described in this paper was a result from studying the possibility of
introducing analyzability in a large and complex real�time system� The system we
have investigated is a robotic control system at ABB Robotics initially designed
in the beginning of the nineties� In essence� the controller is object�oriented and
consists of approximately � �		 			 LOC divided on �		��		 classes organized
in �� subsystems� The system contains three nodes that are tightly connected�
a main node that in essence generates the path to follow� the axis node� which
controls each axis of the robot� and 
nally the I�O node� which interacts with
external sensors and actuators� In this work we have studied a critical part in
the main node with respect to control� The controller runs on the preemptive
multitasking real�time operating system VxWorks�

Maintaining such a complex system requires careful analyses to be carried
prior to adding new functions or redesigning parts of the system to not intro�
duce unnecessary complexity and thereby increasing both the development and
maintenance cost�

��� The model

We have modeled some critical tasks for the concrete robot system in the main
node �see Figure ��� The main node generates the motor references and brake
signals required by the axis computer� The axis node sends requests to the main
node every ��th millisecond and expects a reply in the form of motor references�
This depends on three tasks� A� B� and C� B and C have high priority� are
periodic� and runs frequently� A executes mostly in the beginning of each robot
movement and has lower priority� The 
nal processing of the motor references
is performed by C� C sends the references to the axis node� Moreover� C is
dependent on data produced by B� If the queue between them becomes empty�
C cannot deliver any references to the axis node� This state is considered as a
critical system state and the robot halts� A sends data to B when a movement
of the robot is requested� If the queue between A and B gets empty� the robot
movement stops� In this state� B sends default references to C� The complete
model is presented in 
��� All comments have been removed and variable names
have been changed for business secrecy reasons� The model is not complete with
respect to all components in the system� All tasks� other than A� B and C�
have been grouped into two composed tasks according to the rules described in
Section ���� One of the two composed tasks has higher priority than A� and the
other has lower priority than A� This is one way in which we can utilize di�erent
level of abstractions in our model�



Queue
Task

A
Task

B
Task

C

Queue 1 Queue 2 Queue 3
Axis

Computer

Fig� �� The task structure of the critical control part of the system

��� The results

The model we made is quite an abstraction of the existing system� There were
approximately �	 tasks in the system which was reduced to six in the model�
This level of abstraction was selected since there were three tasks of particular
interest which was modeled in details� The rest of the tasks were modeled as two
composed task� Finally� an extern subsystem was modeled as a task� The � �		
			 LOC in the existing implementation was reduced to �		 LOC in the model�

A more detailed model would not only represent a more accurate view of the
system� it will also prune the state�space which the simulator has to consider�
For instance� removing impossible system states by introducing functional de�
pendencies among tasks will reduce the states that the simulator must explore�
Thus� the simulation time is reduced�

Despite our course�grained model� the result when comparing response times
produced by the simulator and the response times measured on the system is
quite good� In Figure � and Figure � are the response times from the simulation
and the real system plotted� The resemblance is obvious� However� methods for
formally analyzing the correctness of a model should be developed as a contin�
uation of this work�

� Conclusions

System complexity can be handled informally in early phases of large software
system�s life time� However� as the system evolves due to maintenance and the
addition of new feature� the harder it gets to predict the temporal behavior� Even
though a formal model of the temporal domain was initially constructed� it may
become obsolete if it is not updated to re�ect the changes in the implementation�

The method proposed in this paper is intended for the introduction� or re�
introduction� of analyzability into complex system with respect to temporal be�
havior� A suitable modeling language� ART�ML� was developed� as well as tools
for measuring execution times and the length of message queues in the exist�
ing system� Moreover� a tool for processing the measured data was developed�
The data processing tool approximates the execution time distributions for the
investigated tasks�

A discrete�event based simulator was used when analyzing the temporal be�
havior of systems described in ART�ML� The simulation approach was chosen



0

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

0 1 2 3 4 5 6 7

Fig� �� The simulated response time distribution

since no existing analytical method for analyzing the temporal behavior of a
real�time system can express execution times as probabilistic distributions� Fur�
thermore� the simulation approach enables us to de
ne correctness criterion other
than meeting deadlines� e�g� non�empty message queues in the system�

The method has been successfully applied in a case study of a robot controller
at ABB Robotics where a model was constructed and the temporal behavior
was simulated� Even though the model was rather abstract in terms of both
functional dependencies and temporal behavior� the results were very promising�
Based on this result we claim that our method can be applied on a large class
of systems�

ART�ML is still a prototype� thus many improvements of the method and the
language are possible� Currently we are expanding ART�ML to also support the
modeling and analysis of multi�processor systems� Moreover� we are considering
constructions in ART�ML to describe complete product lines� i�e� a set of related
products that share software architecture and software components� If such con�
structions exist� the impact of altering the behavior of a software component can
be analyzed for all products that use it�

The scheduling strategy used by the simulator is 
xed in the current imple�
mentation� To make our method more general in terms of the variety of systems
on which it can be applied we will consider the ability to specify di�erent schedul�
ing strategies in simulator�

The only output from the simulator is a trace of the execution� It contains
very much information� An ability to search that information would ease the
analysis of the result� Some sort of query language could be implemented where



0

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

0 1 2 3 4 5 6 7

Fig� �� The measured response time distribution

the user could specify monitors and triggers� A monitor speci
es a property of
the model that is to be recorded and what to record �min� max� average� � � �� A
trigger speci
es a condition and an action� for example alert if a message�queue
is empty�

Finally� we need methods for evaluating the validity of a model by consider�
ing the simulation results compared to the system behavior� Models are always
abstractions of the real world� thus we must provide evidence that the imple�
mentation is indeed a re
nement of the model�

References

�� Buttazzo� G�C�� Hard Real�Time Computing Systems� PredictableScheduling Algo�
rithms and Applications� ISBN ����	��������� Kluwer Academic Publisher ������

	� Audsley� N�C�� Burns� A�� Davis� R�I�� Tindell� K�W�� � Wellings� A�J�� Fixed priority
pre�emptive scheduling� An historical perspective� Real�Time Systems Journal �
����
� �������

�� Liu� C�L�� Layland� J�W�� Scheduling Algorithms for Multiprogramming in hard�
real�time environment� Journal of the Association for Computing Machinery �	

������ �����
�� Audsley� N�� Burns� A�� Richardson� M�� Wellings� A�� STRESS� A Simulator for

Hard Real�Time Systems� Software�Practive and Experience �� ������ 
���
��

� Storch� M�� Liu� J�S�� DRTSS� a simulation framework for complex real�time sys�

tems� In� Proceedings of the 	nd IEEE Real�Time Technology and Applications
Symposium �RTAS 
���� Dept� of Comput� Sci�� Illinois Univ�� Urbana� IL� USA
������



�� Manolache� S�� Eles� P�� Peng� Z�� Memory and Time�e�cient Schedulability Analysis
of Task Sets with Stochastic Execution Time� In� Proceedings of the ��nd Euromi�
cro Conference on Real�Time Systems� Department of Computer and Information
Science� Link�oping University� Sweden �	����

�� Shobaki� M�E�� On�chip monitoring of single� and multiprocessor hardware real�
time operating systems� In� �th International Conference on Real�Time Computing
Systems and Applications� IEEE �	��	�

�� Andersson� J�� Neander� J�� Timing Analysis of a Robot Controller �	��	�


