
Efficient Logging without Compromising Testability

Technical Report MRTC87

Joel Huselius (joel.huselius@mdh.se)
Department of Computer Science and Engineering

Mälardalens University, Väster̊as, Sweden

December 12, 2002

Abstract

We present a structure for logging entries originating from a monitoring-process on
a real-time system. The main contribution to that logging structure is an algorithm for
choosing and evicting entries from a multi-queue structure. The algorithm is a garbage
collection algorithm for usage when storing data in a finite space during monitoring of real-
time systems. In order not to compromise the testability of the system, the algorithm has
therefore been designed to have a constant execution time for a given setup.

An example of application is in a monitoring/replay approach to facilitate debugging.

1 Introduction

Debugging of real-time systems requires the use of monitoring, logging of monitoring data, and
replay [2]. On-line, during the execution of the system, information is extracted (the system
is monitored) and stored (logged) to a persistent medium. Thereby, deterministic off-line re-
execution (replay) of the system is facilitated.

Monitoring is performed by inserting probes to relevant parts of the system. Probing is either
performed by inserting software probes into the code, by adding some extra hardware to snoop
the system, or by some hybrid approach. In this report, we assume the use of probes for
monitoring that are implemented in software. A comprehensive investigation of issues related
to replay, monitoring, and debugging, is presented in [2].

As real-time systems are normally very long running systems, intended to run without
interruption for days or years, monitoring these systems require very large memory resources.
However, as many real-time systems are small, and embedded into devices, memory resources
are also often limited. As a solution to this problem, older entries are evicted according to some
scheme as resources are exhausted [4].

1

1.1 Probe Effect

When performing monitoring with probes implemented in software, the probe effect [1] is a
potential problem. The effect can become visible when the composition of the set of resources
required to perform a given monitoring task is altered. Examples of such resources may be
execution time, accesses to physical or virtual devices (e.g. semaphores or disk drives), etc. The
probe effect, when significant enough, is manifested by alternations in the scheduling and the
temporal and functional operation of the system, thereby invalidating all previous verification
of the system.

Thus, for example, a probe effect can be visible if a software is modified, or if the platform of
the system is changed.

As a consequence of this, the perturbation from the probes must not change over time. Thus,
probes should be left in the system even after the end of the verification process [6] [8, s3.1;p51].

1.2 The Effect of Jitter on Testability

There is a direct relation between the amount of jitter in the system and the number of possible
execution scenarios. Many execution scenarios require larger testing efforts. Thus, the larger
the jitter is, the harder it is to test the system - the testability is reduced as the jitter increases
[7].

There are several factors that control the amount of jitter in the system [7]: Execution time jitter
depends on differences between the best-case execution time and the worst-case execution time
of a system. Start jitter describes the jitter induced in low priority tasks as they are affected by
the execution of - and the execution time jitter in - high priority tasks. Clock synchronization
algorithms alter the frequencies of local clocks in a distributed system; this gives rise to a
clock synchronization jitter. Differing communication delays in distributed systems result in a
communication latency jitter.

1.3 Data- and Control-Flow

An execution consists of two parts [3]: The data-flow describes alterations in data structures that
are under control of the taskset (e.g. local and global variables, input and output), while the
control-flow describes run-time events during the execution (e.g. calls to functions and system
calls, occurred interrupts and preemptions).

The complete data- and control-flow of an execution, together with the application code, defines
an execution of the system. Thus, for a successful replay, both data- and control-flow should be
monitored.

1.4 Outline

Section 2 present a problem formulation: Can the architecture used to store monitored events
contribute to improve replay performence? Our proposed solution, together with some evaluation
of an implementation, is presented in Section 3. Section 4 present some ideas for future work.

2

The paper is concluded in Section 5.

Enclosed in Appendix A is a C-language implementation of our proposed method.

2 Storing Monitoring Entries

Traditionally, the logging structure for storing monitoring entries has been a single circular queue
[4], which implies FIFO rules. Garbage collection in a circular queue is trivial; entries can be
stored in seemingly chronological order on the medium using a simple modulus-function, and
as space is exhausted the oldest entry is replaced with the newest entry. Thus, the on-line
performance of the garbage collection algorithm ensures that no large penalty in the form of
increased execution time is imposed on the system.

However, there are performance related drawbacks to the simplistic FIFO scheme. These issues
do not concern the on-line performance of the algorithm, but the off-line usefulness-ratio of
the stored information. That is to say how many of the stored entries that can be used in a
replay. With the circular queue logging structure, no respect is paid to the relative context of
the information that is expunged and the information that is allowed to remain. The usefulness
of the information handled is ignored. Thus, we cannot assume that the final product is optimal
with respect to the off-line usefulness of stored data.

One example is found in the monitoring of transactions to persistent storage mediums, such as
hard-disks. As an instance of a block written on a hard-disk may be read several times, it is
more efficient to perform the monitoring at the time of the write-operation. However, as a disk
is a persistent storage medium, the log-entries should be evicted in an order that reflects the
ordering of the sequence of read-actions to them.

Furthermore, out of a complexity perspective for the programmer, it is desirable to allow replay
of only a subset of the system. As only a subset of the system is replayed, it is not required
to monitor the entire system - leading to that less of the limited memory resources must be
allocated. But, as mentioned in Section 1.1, probes should not be removed from, or added to,
the system because it invalidates previous verification efforts. However, if the functionality of
the garbage collection algorithm could be altered without introducing a probe effect, memory
resources could be saved.

Therefore, a more complex logging structure should be used.

In order to allow an optimal off-line usage of the information, the logging structure should respect
at least some of the information available about the different entries that presently remain in
the monitoring log.

2.1 Orthogonal Jitter

However, the logging structure may increase the jitter in the system, which will lead to that
the testability of the system is compromised (see Section 1.2). The effect on testability will be
greater if the jitter of the logging structure is depending on factors orthogonal to the factors
that control the original jitter in the system.

We define a determinism in the temporal domain: a definition of a function is deterministic in

3

the temporal domain if any two executions of the function, provided with the same input, will
deliver the same output in the same time and require the same amount of computation.

Thus, inputs to functions must describe, not only the ordinary explicit inputs, but also temporal
side effects, interference from other executions etc. There is a definition of every function, such
that it has the smallest set of inputs possible while still being deterministic in the temporal
domain.

We assume that f(a1, a2 . . . , an) is the smallest definition of a function f , such that it is
deterministic in the temporal domain. If adding the logging structure leads to that the defintion
f(a1, a2 . . . , an) is no longer deterministic in the temporal domain, the logging structure has a
jitter that is orthogonal to the jitter of the original system. Consequently, the testability of the
function is reduced as the logging structure is added.

Thus, the jitter of the logging structure should not be allowed to have an execution time that
varies depending on the entries that reside in the log. As the execution time of our proposed
algorithm is constant, and no additional synchronization is required, the increase of jitter is
constant. Thus, the testability of the system is not compromised by the use of our algorithm.

3 Streams of Monitoring Entries

In the context of data-flow monitoring, we advocate a logging structure based on a constant
execution time eviction scheduler (CETES). In CETES, many streams can be defined. The
definition of a stream is application specific. Every stream has its own queue of monitoring
entries, and all streams share the same pool of memory. An eviction scheduler decides which
stream that should release its oldest entry in favour for a new entry to some (the same or other)
stream. Depending on the type of monitoring performed, examples of how to partition the
monitoring effort into streams could be by block on a hard-disk, by ipc-queues,1 by transactions,
or by individual tasks.

In this report, we present an eviction scheduler that can prioritize one or more streams, and
which has a constant execution time. The constant execution time enables supervisors of the
system to modify the priorities of streams either during run-time, or during setup of the system,
while keeping the testability of the system uncompromised.

3.1 FIFO Queues

As we have partitioned the monitoring data into streams, we can see that there are two ways
to implement a logging structure with FIFO rules. We will differentiate between local FIFO
(LFIFO) and global FIFO (GFIFO) logging structures.

Similar to the CETES logging structure, LFIFO will also base its logging on the concept of
streams. One circular queue is established for each stream of monitoring data. The lengths of
these queues are allowed to vary between queues and between executions, without compromising
testability, but the total memory area used for the logging structure is not.

The GFIFO logging structure has no concept of streams, and the scope of the monitoring efforts
1IPC: Inter-Process Communication

4

in not adjustable once the procedure of testing the system has been commenced. All monitoring
entries share the same memory pool, and there is no room for adjustments.

3.2 Implementation

The CETES algorithm has been implemented in the C-language, the source of the scheduler is
provided in Appendix A.

Our main philosophy when designing the logging structure, with its multi-queue-structure and
its eviction scheduler, has been to eliminate all special cases as the probability of differing
execution times between cases is believed to be large.

When removing items from a queue, it is normally a special case if the queue is empty before
the attempted removal. Thus, we settled for an architecture that trades space for the absence
of special cases; the queue of a stream must never be empty!2

Initially, during setup of the logging structure, all streams in the system are assigned at least
one entry. Extra entries are initially placed in an idle-stream.

As our logging structure would be concurrently utilized by several execution entities (tasks,
processes, etc.), and operate on a shared pool of memory, a mutual exclusion problem must
be addressed. We have chosen to handle the problem by implementing the probes as kernel
probes [5, p40;s4.3.3], which is to say to incorporate the probes into system calls and interrupt
routines of the operating system. Thus, we avoid the introduction of any additional points of
synchronization to achieve mutual exclusion; we only extend the use of those that already must
be present in the system.

3.2.1 Limitations

A limitation in the current implementation is that all streams must have equally sized entries.
Thus, it is difficult or at least not space- and time-efficient to use the same instance of the
CETES logging structure for monitoring of the entire system.

If entries with non-uniform sizes are allowed to share the same pool of memory, care must be
taken to ensure that the system will not suffer form fragmentation. This is also, as it is an
example of memory allocation, an example of the classic bin-packing problem.

Furthermore, our solution has a larger execution time due to increased complexity in the
algorithm. As the amount of consumed resources should be kept to a minimum this overhead
presents a problem, but as the overhead is constant and no additional synchronization is required
the problem is reduced; the testability of the system is uncompromised. Provided that probes
are allowed to remain resident in the system, the solution does not incur a probe effect on the
system either.

2In our implementation, we also allow a small extension to this rule; the user can specify a shortest length on
a particular stream, but that length must never be shorter then one (1).

5

3.2.2 Eviction Mechanism

The eviction mechanism presented here is intended for use in the context of monitoring of
ipc-queue-traffic. It is possible that other scenarios would require redesign of the algorithm.

Because the stream that is scheduled for eviction will never be an empty stream, the actual
eviction of an entry is a very trivial process once it has been established which stream to evict
from.

We partition every ipc-queue into one stream, so that every ipc-queue has its own stream for
monitoring entries. Constraints can be associated with each stream. The implementation in
Appendix A, allows the following constraints:

Spatial stream length. The minimum number of physical entries in the stream can be set to
a positive integer larger then zero. As a default, the minimum spatial length is set to 1
(one).

Temporal stream length. The minimum span, in the temporal domain, of entries from the
stream can be specified. As a default, the minimum temporal length is set to 1 (one).

Stream priority. Streams can be prioritized. As long as spatial- and temporal- constraints
on streams with lower priorities are still maintained, only the streams with the highest
priority will be served,

The search for an entry to evict will then browse the next-to-last entries in every available
stream. Out of the streams from which entries can be removed without violating temporal- or
spatial- constraints, the browse will find the node which has the oldest time-stamp, and that
stream to which the found entry belongs will be chosen for eviction. As it is not certain that
every stream has a next-to-last entry, a termination node is kept as the default.

By considering the age of the next-to-last entries in all streams, respect is paid to the feasible
time span of the replay with the entries that will remain after the eviction. We thereby ensure
that the usefulness-ratio will be greater then when only considering the age of the last entries
(as is done in a solution using FIFO rules).

As a feature in the implementation, we have added the concept of priorities. The browse will
primarily choose low-priority streams to evict messages from. As low prioritized streams will
soon shrink, one may use temporal- or spatial- constraints that allow these to contain more
entries then one. Thus, the presence of some entries in these streams can be ensured. Because
of the constant execution time of the algorithm, altering constraints of streams between system
executions can be performed without increasing the probe effect or compromising the testability
of the system. Thus, these features can be used to shift the focus of the monitoring activities.

3.3 Performance

In this section, we will investigate a setup of a monitoring session performed on three ipc-queues.
Both the local and the global FIFO logging structures, as well as our proposed CETES structure,
will be investigated.

6

3.3.1 Setup

A simulation of the execution of a monitored system is performed. There are three ipc-queues in
the system, ipc0, ipc1, ipc2. Each of these is monitored as read actions are committed to them.
Monitored events are logged, and each ipc-queue is matched as one stream. Reads are issued
to queues at periodicities T = 〈Tmax, Tmin〉 ordered as follows: T2 = 〈20, 10〉, T1 = 〈30, 15〉,
T0 = 〈50, 30〉. At each read operation committed to ipcn, sn = 〈snmax

, snmin
〉 entries are

consumed.

-
R1

�

LF IF O Logging Strategy, 5 Entries

-
t

ipc0 a a aipc1 a q q q q qipc2 a a a a a a a a a a a
GF IF O Logging Strategy, 15 Entries

ipc0 a q qipc1 a q q q q qipc2 a a a q q q q q q q q
CET ES Logging Strategy, 7 Entries

ipc0 a q qipc1 a a q q q qipc2 a a a a a a a a a a q

Figure 1: Coverage for Logging Structures, Section 3.3.2.

3.3.2 Example 1

According to the fault hypothesis, the stream from ipc1 must be at least R1 time units long.
There are no restrictions posed on the other streams, but monitored and logged events should
be kept at best effort. Thus, the logging structure used must ensue this as it controls which
entries that remain in the log.

In this example, we let R1 = 65, s0 = s1 = s2 = 〈1, 0〉. There are no restrictions concerning the
lengths of the logs from the monitoring of ipc-queues ipc2 and ipc0.

See Figure 1, the top graph displays the contents of our proposed CETES logging structure at
the end of the simulation. The middle graph displays the behaviour of the global FIFO (GFIFO)
logging structure, and the lower graph shows the local FIFO (LFIFO) logging structure, at the
same point in time. Circles represent occurred events, q those events that remain in the log at
the end of the simulation, a those that do not.

LGFIFO =
2∑

n=0

⌈
R1

Tnmin

⌉
∗ snmax (1)

LLFIFO =
⌈

R1

T1min

⌉
∗ s1max

(2)

7

-
R1

�

LF IF O Logging Strategy, 5 Entries

-
t

ipc0 a a a aipc1 q q q q qipc2 a a a a a a
GF IF O Logging Strategy, 15 Entries

ipc0 q q q qipc1 q q q q qipc2 q q q q q q
CET ES Logging Strategy, 7 Entries

ipc0 a a q qipc1 a a q q qipc2 a a a a q q

Figure 2: Coverage for Logging Structures, Section 3.3.3.

Note, that in order to ensure that the log contains a sufficient number of entries from the
monitoring of ipc0, the GFIFO logging structure requires that the log can accommodate LGFIFO

entries, as described by Equation 1. Thus, LGFIFO = 15. Equation 2 describes the number of
entries required for the LFIFO logging structure. Thus, LLFIFO = 5. The CETES structure
requires LCETES = 7 entries: L2 and then one for each of the other streams, as described by
equation 3.

LCETES =
⌈

R1

T1min

⌉
∗ s1max

+ 2 (3)

3.3.3 Example 2

In a following execution of the same system, we may experience another scenario. Firgure 1
displays another feasible execution scenario from the same settings. The logging structures use
the same setup as in the previous example.

3.3.4 Discussion

Comparing the three different logging structures, we can see that all of them seem able to
comply to the requirements posed on the contents of the log concerning ipc1. However, the
proposed CETES logging structure is, in both examples, performing much better with respect
to monitoring the remaining ipc-queues.

3.4 Code Auditing

The implementation of CETES (attached in Appendix A) has been successfully compiled into
assembler language for several different architectures, and the produced assembler source has
been audited. The investigated architectures, and the used compilers are accounted in Table 1.

We have established that the resulting code conforms to the structure shown in Figure 3 in all

8

surveyed cases, where the conditional branch is always executed a fixed number of times, namely
as many times as there are streams defined in the system. Thus, the complexity of the proposed
CETES logging structure is O(N), where N is an application specific constant.

Table 1: Controlled Architectures.

Architecture Compiler Compiler Flags
Intel x86 gcc 3.1 -S
Sun SPARC gcc 2.95.2 -O1 -S
Motorola 68k m68k-coff-gcc 2.7.0 -O1 -Wa,-al

Note that the examined SPARC-architecture required the use of extra special code for making
the greater-then-comparison between two integers. A normal C-syntax A > B was found to result
in a conditional branch - as our aim was to create a software which conform to the structure in
Figure 3, that branch must be eliminated. In order to resolve this problem, a construction using
binary shift, addition, and subtraction, was produced. Assuming unsigned integers, where S is
the size of the data-type to which both A and B belongs, it is true that (!(((A)-(B+1))>>(S)))
⇔ A > B.

By proving that it is possible to create this software, we can conclude that, given the right
platform implementation, it is possible to have an eviction scheduler with a constant execution
time. The constraint which we pose on that architecture is that every instance of a given
assembler instruction takes a fixed number of processor clock cycles to complete.

insert in queue() :

?

a

loop :

?

$�

b

cond. branch to loop

?

c

end

Figure 3: Program Structure of the Eviction Scheduler

3.4.1 Overhead

As previously mentioned, our implementation does require some extra overhead in memory
resources. This overhead can be divided into four sub categories, the overhead per stream, per
entry, the number of extra streams, and the number of extra entries.

The overhead for each stream equals the size of the header for a stream, which currently amounts
to: eighth (8) int’s, four (4) char’s, and one (1) long. The characters are used to name streams,

9

and their number may vary for each instance of the implementation, the integers may potentially
be replaced for smaller units, would the application allow.

For each entry, there is a time-stamp with the size of one (1) long, two int’s for indexing, and
a buffer for the data. The integers could possibly be replaced with some smaller data-type, and
the size of the buffer for the data is application specific.

We have previously mentioned that our implementation initially uses an idle stream for un-used
entries. Thus, one additional stream-header is required, and as no stream can be empty, one
additional entry accompanies the idle stream. It is possible to remove the idle stream and use
one of the other streams instead. For pedagogic reasons, we have chosen not to do so in our
implementation. As the eviction scheduler will base its calculation on the next-to-last entry in
every stream, and streams are only guaranteed to have at least one entry, an extra termination
node is required. That single termination node is used by every stream in the logging structure.

In Table 2, we present the execution overhead as figures on the number of instructions required
for implementations of both our algorithm and the traditional GFIFO-algorithm. Note that
the counts presented are closely tied to the particular implementation, and that reducing the
number of instructions in the implementation has not been a primary goal. It is however some
form of indication on the amount of computation overhead required.

Table 2: Instruction Count, see Figure 3 for a, b, c.

Architecture a b c GFIFO
SPARC 16 77 40 27
Intel x86 8 184 60 38
Motorola 68k 7 85 33 35

4 Future Work

The mechanism described in Section 3 is intended for use for storing data-flow monitoring
entries. As a replay cannot be performed correctly without valid information about both data-
and control-flow through the entire interval of the replay, correlating the storing of these entries
is potentially interesting - there is for example no gain in keeping control-flow information about
an interval for which no data-flow information is available.

We will in our future work describe how to integrate the CETES structure with a structure for
control-flow monitoring.

We will also investigate how, during replay re-produced, intermediate task-input can be used to
reduce the amount of monitored messages that need be logged during the reference execution. We
will investigate mechanisms for logging and evicting monitored intermediate data- and control-
flow events so that no more events then required for successful replay are kept in the log.

It is our intention to facilitate this by using the last event in each stream to decide how many
of the events in the log that need be kept from a circular queue of such events.

A very important problem that must be solved, in order to allow efficient monitoring for
incremental replay, is how to decide how entries in logs of transactions to ipc-queues and hard
disk blocks can be invalidated.

10

5 Conclusions

We have here presented an algorithm that allows monitoring of computer systems to shift focus
without compromising the testability of the system. Two features of the algorithm makes
this shift feasible without introducing any probe effect; the constant execution time, and the
possibility to grade monitoring effort using priorities and temporal as well as spatial constraints.

Furthermore, the presented work can contribute to that the relative usefulness of logged data
increase. When the algorithm searches for an entry to evict from the monitoring log, respect is
paid to the feasible time span of the replay with the remaining entries.

References

[1] Jason Gait. A Probe Effect in Concurrent Programs. Software-Practise and Experience, 16(3):225
– 233, March 1986.

[2] Joel Huselius. Debugging Parallel Systems: A State of the Art Report. Technical Report 63,
Mälardalen University, Department of Computer Science and Engineering, September 2002.

[3] Bernhard Plattner. Real-Time Execution Monitoring. IEEE Transactions on Software Engineering,
SE-10(6):756 – 764, November 1984.

[4] Darlene Stewart and Morven Gentleman. Non-Stop Monitoring and Debugging on Shared-Memory
Multiprocessors. In Proceedings of the 2nd International Workshop on Software Engineering for
Parallel and Distributed Systems, pages 263 – 269. IEEE Computer Society, May 1997.

[5] Henrik Thane. Monitoring, Testing and Debugging of Distributed Real-Time Systems. PhD thesis,
Kungliga Tekniska Högskolan, Sweden, May 2000.

[6] Henrik Thane and Hans Hansson. Using Deterministic Replay for Debugging of Distributed Real-
Time Systems. In the 12th Euromicro Conference on Real-Time Systems, pages 265 – 272. IEEE
Computer Society, June 2000.

[7] Henrik Thane and Hans Hansson. Testing Distributed Real-Time Systems. Elsevier Microprocessors
and Microsystems, 24(9):463 – 478, February 2001.

[8] Jeffrey Tsai et al. Distributed Real-Time Systems: Monitoring Visualization and Debugging and
Analysis. Wiley-Interscience, 1996.

11

A C Source for the Constant Execution Time Eviction
Scheduler

/* FILE ev_sched.h
Written 2002-11-12 by Joel Huselius jhi@mdh.se
M\"{a}lardalen University at the
Department of Computer Science and Engineering

A Constant Execution Time Eviction Scheduler

*/

//#define EV_SCH_DEBUG /* UN-COMMENT LINE FOR AUX-OUTPUTS */
#ifdef EV_SCH_DEBUG
#include <stdio.h>
#define EV_SCH_DEBUG_PRINT printf
#else
#define EV_SCH_DEBUG_PRINT //
#endif

#ifndef EV_SCHED_H
#define EV_SCHED_H

#include <stdlib.h>

/* MACRO DEFINITIONS FOR GENERAL USE */

#define TRUE 1
#define FALSE 0

/*
MACRO DEFINITIONS FOR BIT-OPERATIONS:
*/
#define AGTBL(A,B,S) (!(((long)(A)-(B+1))>>(S)))
#define AGTEQBL(A,B,S) (!(((long)(A)-(B))>>(S)))
#define AEQBL(A,B,S) (A==B)

#define AGTBI(A,B,S) (A>=(B+1))
#define AGTEQBI(A,B,S) (A>=B)
#define AEQBI(A,B,S) (A==B)

/* MACRO DEFINITIONS FOR QUEUES */

#define MON_ENTRIES 8
#define PRIO_LEVELS 5
#define Q_NAME_LEN 4

12

#define NO_IPC_Q 80
#define ENTRY_SIZE sizeof(int)

#define NO_Q 4
#define Q_FREE 0

/* DATA STRUCTURES */

typedef struct mon_entry_s{
int next;
char contence[ENTRY_SIZE];
int prev;
unsigned long time;

}mon_entry_t;

typedef struct queue_s{
int id;
int ipc_id;
int strt;
int stop;
int length;
int minimum_length;
int priority;
int occupied;
char name[Q_NAME_LEN];
unsigned long minimum_age;

}queue_t;

typedef struct map_s{
int ipc_queue;
int mon_queue;

}map_t;

/* FUNCTON DECLARATIONS */

void init_q(void);
int insert_in_q(queue_t* q_ptr, void* val_p, unsigned long time);
int delete_in_q(queue_t* q_ptr);
void exit_q(void);

void set_priority(queue_t* q_ptr, int prio);
void set_minimum_length(queue_t* q_ptr, int min_len);
void set_minimum_age(queue_t* q_ptr, long min_age);
void print_queues(void);

/* GLOBAL VARIABLES */

extern mon_entry_t monit_area[MON_ENTRIES+1];

13

extern mon_entry_t* monit;
extern queue_t queues[NO_Q];
extern char mon_bit_mask[NO_Q];
extern map_t map[NO_IPC_Q];

#endif

/* FILE ev_sched.c
Written 2002-11-12 by Joel Huselius jhi@mdh.se
M\"{a}lardalen University at the
Department of Computer Science and Engineering

A Constant Execution Time Eviction Scheduler

*/

#include "ev_sched.h"

mon_entry_t monit_area[MON_ENTRIES+1];
mon_entry_t* monit=&(monit_area[1]); /* Make index (-1) the

termination entry */
queue_t queues[NO_Q];
char mon_bit_mask[NO_Q];
map_t map[NO_IPC_Q];

/* CODE */

void init_q(void){
int i;

monit[-1].prev =-1;
monit[-1].next =-1;
monit[-1].time =0;
memset((void*)&(monit[-1].contence),0,sizeof(ENTRY_SIZE));

for(i=0;(i-NO_Q)>>((sizeof(int)*8)-1);i++){
queues[i].occupied =((-(i==0)) &(TRUE))

|((-(i!=0)) &(FALSE));
queues[i].id =i;
queues[i].strt =i;
queues[i].stop =((-(i==0)) &(MON_ENTRIES-1))

|((-(i!=0)) &(i));
queues[i].length =((-(i==0)) &(MON_ENTRIES-NO_Q+1))

|((-(i!=0)) &(1));
queues[i].minimum_length =1;

14

queues[i].minimum_age =1;
queues[i].priority =((-(i==0)) &(0))

|((-(i!=0)) &(1));
queues[i].name[0] = ’\0’;

monit[i].prev =-1;
monit[i].next =((-(i==0)) &NO_Q)

|((-(i!=0)) &(-1));
monit[i].time =i;

memset((void*)&(monit[i].contence),0,sizeof(ENTRY_SIZE));
}
for(i=NO_Q;(i-MON_ENTRIES)>>((sizeof(int)*8)-1);i++){
monit[i].prev =((-(i==NO_Q)) &(0))

|((-(i!=NO_Q)) &(i-1));
monit[i].next =((-(i==MON_ENTRIES-1)) &(-1))

|((-(i!=MON_ENTRIES-1)) &(i+1));
monit[i].time =i;

memset((void*)&(monit[i].contence),0,sizeof(ENTRY_SIZE));
}
return;

}

void exit_q(void){
}

int insert_in_q(queue_t* q_ptr, void* val_p,
unsigned long time){

queue_t* q_evict;
int free_idx;
/***** Start of the Eviction Scheduler *****/
int j;
int part_a, part_b;
int q_id, q_prio=0;
int j_older, j_too_long, j_lower_prio;
int j_equal_prio, j_too_old, j_safe;
int q_not_too_long,q_not_too_old;
long j_prev,q_id_prev;
static int latest_stream=Q_FREE;

q_id=latest_stream;

j=0;
do{

q_prio=queues[q_id].priority;
q_id_prev=monit[queues[q_id].stop].prev;
j_prev=monit[queues[j].stop].prev;

15

j_older =AGTEQBL(monit[q_id_prev].time,
monit[j_prev].time,
(sizeof(long)*8)-1);

q_not_too_old =AGTBL(queues[q_id].minimum_age,
time-(monit[q_id_prev].time),
(sizeof(long)*8)-1);

q_not_too_long=AGTEQBL(queues[q_id].minimum_length,
queues[q_id].length,
(sizeof(long)*8)-1);

j_lower_prio =AGTBL(q_prio,
queues[j].priority,
(sizeof(int)*8)-1);

j_equal_prio =AEQBL(queues[j].priority,
q_prio,
(sizeof(int)*8)-1);

part_a=((q_not_too_old)
|(q_not_too_long)
|(j_lower_prio)
|(j_equal_prio&j_older)
);

j_too_old =AGTEQBL(time-(monit[j_prev].time),
queues[j].minimum_age,
(sizeof(long)*8)-1);

j_too_long =AGTBL(queues[j].length,
queues[j].minimum_length,
(sizeof(long)*8)-1);

j_safe=AGTBL(queues[j].length,1,(sizeof(int)*8)-1);

part_a=-(part_a
&j_safe&j_too_long&j_too_old
);

part_b=(~part_a);
q_id=(part_a&(j))^(part_b&(q_id));

j++;
}while((j-NO_Q)>>((sizeof(int)*8)-1));

16

EV_SCH_DEBUG_PRINT("%3lld Evicted from %x, Inserted to %x\n",
time,q_id,q_ptr->id);

latest_stream=q_ptr->id;
q_evict=&(queues[q_id]);

/***** End of the Eviction Scheduler *****/

free_idx=delete_in_q(q_evict);

memcpy(monit[free_idx].contence,val_p,ENTRY_SIZE);
monit[free_idx].time =time;
monit[free_idx].prev =-1;
monit[free_idx].next =q_ptr->strt;

monit[q_ptr->strt].prev =free_idx;
q_ptr->strt=free_idx;
q_ptr->length++;

return free_idx;
}

int delete_in_q(queue_t* q_ptr){
int free_idx;

free_idx=q_ptr->stop;
q_ptr->stop=monit[q_ptr->stop].prev;
monit[q_ptr->stop].next=-1;
q_ptr->length--;
return free_idx;

}

void set_priority(queue_t* q_ptr, int prio){
q_ptr->priority=prio;

}

void set_minimum_length(queue_t* q_ptr, int min_len){
q_ptr->minimum_length=min_len;

}

void set_minimum_age(queue_t* q_ptr, long min_age){
q_ptr->minimum_age=min_age;

}

void print_queues(void){
int i,j,n;

17

for(i=0;i<NO_Q;i++){
printf("q_%d\t",i);
n=queues[i].strt;
for(j=0;j<queues[i].length;j++){

printf("<%3d>",monit[n].time);
n=monit[n].next;

}
printf("\n");

}
}

18

