
Mälardalen University Press Dissertations
No. 170

SOFTWARE AND HARDWARE MODELS IN COMPONENT-
BASED DEVELOPMENT OF EMBEDDED SYSTEMS

Luka Lednicki

2015

School of Innovation, Design and Engineering

Mälardalen University Press Dissertations
No. 170

SOFTWARE AND HARDWARE MODELS IN COMPONENT-
BASED DEVELOPMENT OF EMBEDDED SYSTEMS

Luka Lednicki

2015

School of Innovation, Design and Engineering

University of Zagreb
Faculty of Electrical Engineering and Computing

Copyright © Luka Lednicki, 2015
ISBN 978-91-7485-180-9
ISSN 1651-4238
Printed by Arkitektkopia, Västerås, Sweden

Mälardalen University Press Dissertations
No. 170

SOFTWARE AND HARDWARE MODELS IN COMPONENT-
BASED DEVELOPMENT OF EMBEDDED SYSTEMS

Luka Lednicki

2015

School of Innovation, Design and Engineering

Mälardalen University Press Dissertations
No. 170

SOFTWARE AND HARDWARE MODELS IN COMPONENT-
BASED DEVELOPMENT OF EMBEDDED SYSTEMS

Luka Lednicki

Akademisk avhandling

som för avläggande av teknologie doktorsexamen i datavetenskap vid
Akademin för innovation, design och teknik kommer att offentligen försvaras

tisdagen den 27 januari 2015, 13.00 i Gamma, Högskoleplan 1, Västerås.

Fakultetsopponent: Professor Martin Törngren, KTH Royal Institute of Technology

Akademin för innovation, design och teknik

Mälardalen University Press Dissertations
No. 170

SOFTWARE AND HARDWARE MODELS IN COMPONENT-
BASED DEVELOPMENT OF EMBEDDED SYSTEMS

Luka Lednicki

2015

School of Innovation, Design and Engineering

University of Zagreb
Faculty of Electrical Engineering and Computing

Abstract
As modern embedded systems grow in complexity component-based development is an increasingly
attractive approach to make the development of such systems simpler and less error prone. In this
approach software systems are built by composing them out of prefabricated software components. One
of the challenges for applying component-based development to embedded systems is the tight coupling
between the software and the hardware platform. To take full advantage of the component-based
approach in the embedded domain, the development process has to provide support for describing and
handling this coupling.

The goal of this thesis is to provide advancements in development of embedded component-based
systems by using a combination of software and hardware models. To achieve the overall research
goal, three different aspects are investigated: (i) how to provide support for integration of sensors and
actuators in component-based development, (ii) how to utilize a combination of software and hardware
models in development of distributed systems, and (iii) how to analyze extra-functional system
properties using models of both software and hardware. The thesis goal is addressed by following
contributions: (i) a component-based model which allows describing sensors and actuators, and how
they are connected to the processing nodes and software components, (ii) a method for automatic
synthesis of code for communication with sensors and actuators, (iii) a framework for automatic
generation of distributed communication in component-based models and (iv) a compositional model-
level analysis of timing and processing node utilization for component-based applications. These
contributions are evaluated in separation, by applying prototype tools to either example systems, case-
studies, or test scenarios.

ISBN 978-91-7485-180-9
ISSN 1651-4238

This thesis is presented in partial fulfillment of international dual doctoral
degree at Faculty of Electrical Engineering and Computing, University of Za-
greb, Croatia, and School of Innovation, Design and Engineering, Mälardalen
University, Sweden.

Main advisors
Prof. Ivica Crnković, Mälardalen University, Sweden
Prof. Mario Žagar, University of Zagreb, Croatia

Co-advisor
Associate Prof. Jan Carlson, Mälardalen University, Sweden

Faculty examiner
Prof. Martin Törngren, KTH Royal Institute of Technology, Sweden

Examining committee

Associate Prof. Tomáš Bureš, Charles University in Prague, Czech Republic

Associate Prof. Željka Car, University of Zagreb, Croatia

Dr. Roland Weiss, ABB Corporate Research, Germany

This thesis is presented in partial fulfillment of international dual doctoral
degree at Faculty of Electrical Engineering and Computing, University of Za-
greb, Croatia, and School of Innovation, Design and Engineering, Mälardalen
University, Sweden.

Main advisors
Prof. Ivica Crnković, Mälardalen University, Sweden
Prof. Mario Žagar, University of Zagreb, Croatia

Co-advisor
Associate Prof. Jan Carlson, Mälardalen University, Sweden

Faculty examiner
Prof. Martin Törngren, KTH Royal Institute of Technology, Sweden

Examining committee

Associate Prof. Tomáš Bureš, Charles University in Prague, Czech Republic

Associate Prof. Željka Car, University of Zagreb, Croatia

Dr. Roland Weiss, ABB Corporate Research, Germany

To my family

To my family

Abstract

As modern embedded systems grow in complexity component-based de-
velopment is an increasingly attractive approach to make the develop-
ment of such systems simpler and less error prone. In this approach soft-
ware systems are built by composing them out of prefabricated software
components. One of the challenges for applying component-based deve-
lopment to embedded systems is the tight coupling between the software
and the hardware platform. To take full advantage of the component-
based approach in the embedded domain, the development process has
to provide support for describing and handling this coupling.

The goal of this thesis is to provide advancements in development of
embedded component-based systems by using a combination of software
and hardware models. To achieve the overall research goal, three differ-
ent aspects are investigated: (i) how to provide support for integration
of sensors and actuators in component-based development, (ii) how to
utilize a combination of software and hardware models in development
of distributed systems, and (iii) how to analyze extra-functional system
properties using models of both software and hardware. The thesis goal
is addressed by following contributions: (i) a component-based model
which allows describing sensors and actuators, and how they are con-
nected to the processing nodes and software components, (ii) a method
for automatic synthesis of code for communication with sensors and actu-
ators, (iii) a framework for automatic generation of distributed communi-
cation in component-based models and (iv) a compositional model-level
analysis of timing and processing node utilization for component-based
applications. These contributions are evaluated in separation, by ap-
plying prototype tools to either example systems, case-studies, or test
scenarios.

i

Abstract

As modern embedded systems grow in complexity component-based de-
velopment is an increasingly attractive approach to make the develop-
ment of such systems simpler and less error prone. In this approach soft-
ware systems are built by composing them out of prefabricated software
components. One of the challenges for applying component-based deve-
lopment to embedded systems is the tight coupling between the software
and the hardware platform. To take full advantage of the component-
based approach in the embedded domain, the development process has
to provide support for describing and handling this coupling.

The goal of this thesis is to provide advancements in development of
embedded component-based systems by using a combination of software
and hardware models. To achieve the overall research goal, three differ-
ent aspects are investigated: (i) how to provide support for integration
of sensors and actuators in component-based development, (ii) how to
utilize a combination of software and hardware models in development
of distributed systems, and (iii) how to analyze extra-functional system
properties using models of both software and hardware. The thesis goal
is addressed by following contributions: (i) a component-based model
which allows describing sensors and actuators, and how they are con-
nected to the processing nodes and software components, (ii) a method
for automatic synthesis of code for communication with sensors and actu-
ators, (iii) a framework for automatic generation of distributed communi-
cation in component-based models and (iv) a compositional model-level
analysis of timing and processing node utilization for component-based
applications. These contributions are evaluated in separation, by ap-
plying prototype tools to either example systems, case-studies, or test
scenarios.

i

Prošireni sažetak

Programski i sklopovski modeli u razvoju ugradbenih sustava
utemeljenih na programskim komponentama

Povećanjem složenost modernih ugradbenih sustava u njihovom razvoju
se sve češće pokušava primijeniti pristup temeljen na programskim kom-
ponentama. Koristeći ovaj pristup sustavi se izraduju sastavljanjem pro-
gramskih komponenata – već postojećih elemenata namijenjenih vǐse-
strukom korǐstenju. Ovakav način razvoja može, izmedu ostalog, znatno
skratiti vrijeme izrade sustava, smanjiti količinu grešaka u sustavu te
učiniti sustave predvidljivijima. Jedan od aspekata ključnih u razvoju
ugradbenih sustava je visok stupanj povezanosti programske podrške i
sklopovlja. Iako postoje mnoge metode koje omogućuju modeliranje
sklopovlja i olakšavaju razvoj programske podrške specifične za sklopovlje,
one su rijetko integrirane s metodama razvoja temeljenim na komponen-
tama.

Cilj ovog rada je unaprijediti proces razvoja ugradbenih sustava te-
meljen na programskim komponentama koristeći kombinaciju program-
skih i sklopovskih modela. U okviru rada istražena su tri aspekta razvoja:
(i) kako pružiti podršku za integraciju senzora i aktuatora u razvoju
temeljenom na programskim komponentama, (ii) kako unaprijediti razvoj
raspodjeljenih sustava koristeći modele programske podrške i modele
sklopovlja te (iii) kako analizirati svojstva sustava upotrebom spomenu-
tih modela. Cilj rada ostvaren je sljedećim doprinosima:

• Doprinos 1 – Model ugradbenog sustava temeljen na program-
skim komponentama koji uključuje senzore i aktuatore,

• Doprinos 2 – Metoda sinteze programskog koda iz predloženog
komponentnog modela,

iii

Prošireni sažetak

Programski i sklopovski modeli u razvoju ugradbenih sustava
utemeljenih na programskim komponentama

Povećanjem složenost modernih ugradbenih sustava u njihovom razvoju
se sve češće pokušava primijeniti pristup temeljen na programskim kom-
ponentama. Koristeći ovaj pristup sustavi se izraduju sastavljanjem pro-
gramskih komponenata – već postojećih elemenata namijenjenih vǐse-
strukom korǐstenju. Ovakav način razvoja može, izmedu ostalog, znatno
skratiti vrijeme izrade sustava, smanjiti količinu grešaka u sustavu te
učiniti sustave predvidljivijima. Jedan od aspekata ključnih u razvoju
ugradbenih sustava je visok stupanj povezanosti programske podrške i
sklopovlja. Iako postoje mnoge metode koje omogućuju modeliranje
sklopovlja i olakšavaju razvoj programske podrške specifične za sklopovlje,
one su rijetko integrirane s metodama razvoja temeljenim na komponen-
tama.

Cilj ovog rada je unaprijediti proces razvoja ugradbenih sustava te-
meljen na programskim komponentama koristeći kombinaciju program-
skih i sklopovskih modela. U okviru rada istražena su tri aspekta razvoja:
(i) kako pružiti podršku za integraciju senzora i aktuatora u razvoju
temeljenom na programskim komponentama, (ii) kako unaprijediti razvoj
raspodjeljenih sustava koristeći modele programske podrške i modele
sklopovlja te (iii) kako analizirati svojstva sustava upotrebom spomenu-
tih modela. Cilj rada ostvaren je sljedećim doprinosima:

• Doprinos 1 – Model ugradbenog sustava temeljen na program-
skim komponentama koji uključuje senzore i aktuatore,

• Doprinos 2 – Metoda sinteze programskog koda iz predloženog
komponentnog modela,

iii

iv

• Doprinos 3 – Metoda automatskog generiranja komunikacijskih
komponenata u modelima raspodjeljenih ugradbenih sustava,

• Doprinos 4 – Metoda kompozicijske analize vremenskih karakte-
ristika i opterećenja procesnih čvorova u sustavima temeljenim na
programskim komponentama.

Doprinos 1 proširuje postojeći komponentni model ProCom mogu-
ćnošću opisivanja senzora i aktuatora. Osim samog opisa senzora i
aktuatora, novi model omogućuje i specificiranje načina na koji su ovi
uredaji spojeni na procesne čvorove sustava. Postojeće programske kom-
ponente modela ProCom proširene su opisom ovisnosti o senzorima i
aktuatorima. Veze izmedu programske podrške i sklopovlja opisuju se
pridruživanjem elemenata modela sklopovlja ovisnostima programskih
komponenata. Predloženi model promiče ponovno korǐstenje jednom
razvijenih elemenata jasnim razdvajanjem onih elemenata koji su neo-
visni o kontekstu od elemenata koji su specifični za pojedini sustav. U
svrhu evaluacije model je implementiran u okviru prototipnog alata i
primjenjen na realistični primjer, čime je pokazano da je pristup prikla-
dan za modeliranje stvarnih sustava.

U okviru doprinosa 2 razvijena je metoda koja na temelju modela
predloženog u doprinosu 1 automatski stvara programski kôd za komu-
nikaciju programskih komponenata sa senzorima i aktuatorima. Metoda
definira dvije grupe elemenata programskog koda: ulazne elemente i
izlazne elemente. Ulazni elementi podobni su za vǐsestruko korǐstenje te
se pridružuju elementima modela koji su neovisni o kontekstu. Izlazni
elementi koda stvaraju se automatski, na temelju elemenata modela
specifičnih za sustav. Dobivena kombinacija ulaznih i izlaznih eleme-
nata pruža potpunu komunikaciju izmedu programskih komponenata i
sklopovlja. Doprinos je evaluiran primjenom prototipnog alata na rea-
listični primjer. Rezultati evaluacije pokazali su da generirani kôd pruža
točnu implementaciju komunikacije. Evaluacija je takoder obuhvatila
mjerenje povećanja vremena izvodenja i zauzeća memorije dobivenog
kôda.

Doprinos 3 čini razvojni okvir koji omogućuje automatsko stvaranje
komunikacije izmedu čvorova raspodijeljenih aplikacija temeljenih na
programskim komponentama. Komunikacija se implementira dodava-
njem programskih komponenata u modele aplikacije specifične za poje-
dine čvorove sustava. Ove komponente stvaraju se na temelju modela
aplikacije neovisnog o sklopovlju sustava i modela koji opisuje sklopovlje.

v

Razvojni okvir podijeljen je u module, medusobno povezane samo una-
prijed definiranim sučeljima, čime se olakšavaju prilagodavanje metode
različitim komponentnim modelima i nadogradnja okvira novim mo-
gućnostima. Razvojni okvir je primijenjen na normu IEC 61499 te je
implementiran prototipni alat. Evaluacija doprinosa izvršena je primje-
nom razvojnog okvira na prošireni primjer i na dvije studije slučaja.
Modeli dobiveni automatskim stvaranjem bili su u skladu s očekivanim
rezultatima, dok je dobivena komunikacija ispravno implementirala funk-
cionalnost sustava.

Doprinos 4 ovoga rada je metoda analize svojstava sustava izradenih
normom IEC 61499. Predložena metoda analize podjeljena je na dva
dijela: analizu najdužeg vremena izvodenja i analizu opterećenja pro-
cesnih čvorova. Izračun najdužeg vremena izvodenja dijelova aplikacije
temelji se na konceptu kompozicije komponenata. Analiza opterećenja
procesnih čvorova omogućena je proširenjem analize najdužeg vremena
izvodenja, u isto vrijeme uzimajući u obzir i modele sklopovlja. Za obje
metode analize implementirani su prototipni alati. Isti alati su upo-
trijebljeni u svrhu evaluacije, primjenjujući ih na primjere preuzete iz
dva postojeća alata za razvoj sustava pomoću norme IEC 61499. Dije-
lovi analize takoder su evaluirani primjenom prototipnog alata na skup
testova. Evaluacija je pokazala da je predložena analiza primijenjiva na
stvarne sustave te da algoritmi analize imaju visoku učinkovitost. Rezul-
tati testova pokazali su ispravnost pojedinih dijelova analize.

iv

• Doprinos 3 – Metoda automatskog generiranja komunikacijskih
komponenata u modelima raspodjeljenih ugradbenih sustava,

• Doprinos 4 – Metoda kompozicijske analize vremenskih karakte-
ristika i opterećenja procesnih čvorova u sustavima temeljenim na
programskim komponentama.

Doprinos 1 proširuje postojeći komponentni model ProCom mogu-
ćnošću opisivanja senzora i aktuatora. Osim samog opisa senzora i
aktuatora, novi model omogućuje i specificiranje načina na koji su ovi
uredaji spojeni na procesne čvorove sustava. Postojeće programske kom-
ponente modela ProCom proširene su opisom ovisnosti o senzorima i
aktuatorima. Veze izmedu programske podrške i sklopovlja opisuju se
pridruživanjem elemenata modela sklopovlja ovisnostima programskih
komponenata. Predloženi model promiče ponovno korǐstenje jednom
razvijenih elemenata jasnim razdvajanjem onih elemenata koji su neo-
visni o kontekstu od elemenata koji su specifični za pojedini sustav. U
svrhu evaluacije model je implementiran u okviru prototipnog alata i
primjenjen na realistični primjer, čime je pokazano da je pristup prikla-
dan za modeliranje stvarnih sustava.

U okviru doprinosa 2 razvijena je metoda koja na temelju modela
predloženog u doprinosu 1 automatski stvara programski kôd za komu-
nikaciju programskih komponenata sa senzorima i aktuatorima. Metoda
definira dvije grupe elemenata programskog koda: ulazne elemente i
izlazne elemente. Ulazni elementi podobni su za vǐsestruko korǐstenje te
se pridružuju elementima modela koji su neovisni o kontekstu. Izlazni
elementi koda stvaraju se automatski, na temelju elemenata modela
specifičnih za sustav. Dobivena kombinacija ulaznih i izlaznih eleme-
nata pruža potpunu komunikaciju izmedu programskih komponenata i
sklopovlja. Doprinos je evaluiran primjenom prototipnog alata na rea-
listični primjer. Rezultati evaluacije pokazali su da generirani kôd pruža
točnu implementaciju komunikacije. Evaluacija je takoder obuhvatila
mjerenje povećanja vremena izvodenja i zauzeća memorije dobivenog
kôda.

Doprinos 3 čini razvojni okvir koji omogućuje automatsko stvaranje
komunikacije izmedu čvorova raspodijeljenih aplikacija temeljenih na
programskim komponentama. Komunikacija se implementira dodava-
njem programskih komponenata u modele aplikacije specifične za poje-
dine čvorove sustava. Ove komponente stvaraju se na temelju modela
aplikacije neovisnog o sklopovlju sustava i modela koji opisuje sklopovlje.

v

Razvojni okvir podijeljen je u module, medusobno povezane samo una-
prijed definiranim sučeljima, čime se olakšavaju prilagodavanje metode
različitim komponentnim modelima i nadogradnja okvira novim mo-
gućnostima. Razvojni okvir je primijenjen na normu IEC 61499 te je
implementiran prototipni alat. Evaluacija doprinosa izvršena je primje-
nom razvojnog okvira na prošireni primjer i na dvije studije slučaja.
Modeli dobiveni automatskim stvaranjem bili su u skladu s očekivanim
rezultatima, dok je dobivena komunikacija ispravno implementirala funk-
cionalnost sustava.

Doprinos 4 ovoga rada je metoda analize svojstava sustava izradenih
normom IEC 61499. Predložena metoda analize podjeljena je na dva
dijela: analizu najdužeg vremena izvodenja i analizu opterećenja pro-
cesnih čvorova. Izračun najdužeg vremena izvodenja dijelova aplikacije
temelji se na konceptu kompozicije komponenata. Analiza opterećenja
procesnih čvorova omogućena je proširenjem analize najdužeg vremena
izvodenja, u isto vrijeme uzimajući u obzir i modele sklopovlja. Za obje
metode analize implementirani su prototipni alati. Isti alati su upo-
trijebljeni u svrhu evaluacije, primjenjujući ih na primjere preuzete iz
dva postojeća alata za razvoj sustava pomoću norme IEC 61499. Dije-
lovi analize takoder su evaluirani primjenom prototipnog alata na skup
testova. Evaluacija je pokazala da je predložena analiza primijenjiva na
stvarne sustave te da algoritmi analize imaju visoku učinkovitost. Rezul-
tati testova pokazali su ispravnost pojedinih dijelova analize.

Acknowledgements

I would like to start the acknowledgements with two persons who gave
me the opportunity to be a PhD student, my advisors Mario Žagar and
Ivica Crnković. Thank you for guiding me, pushing me forward, and
providing both professional and personal support whenever I needed it.
An equal amount of thanks also goes to my co-advisor Jan Carlson. All
discussions, advice and detailed comments have certainly made this a
better thesis, and made me a better researcher.

During these years of doctoral studies I have worked with many peo-
ple from both Croatian and Swedish universities. With your willingness
to help, friendship, and remarkable coffee-drinking skills you have made
the university more than just a work place. Thank you for that! I will
not try to list you all here, you know who you are!

To my parents Blanka and Damir, and sister Iva, thank you for pro-
viding endless support and encouraging me to achieve more through all
my life. Without you I surely wouldn’t be here, writing acknowledgments
for a doctoral dissertation.

Lastly, Anna, you were by my side through all these years, you sup-
ported me when I needed it, and you made my life more interesting and
fun than I could have imagined! Thank you!

Luka Lednicki
Väster̊as, December 2014

This work was partly supported by the Unity Through Knowledge Found
through project project DICES, Swedish Foundation for Strategic Research
via research centre Progress and through project Ralf3, and ABB Software
Research Grant Program through project Assist.

vii

Acknowledgements

I would like to start the acknowledgements with two persons who gave
me the opportunity to be a PhD student, my advisors Mario Žagar and
Ivica Crnković. Thank you for guiding me, pushing me forward, and
providing both professional and personal support whenever I needed it.
An equal amount of thanks also goes to my co-advisor Jan Carlson. All
discussions, advice and detailed comments have certainly made this a
better thesis, and made me a better researcher.

During these years of doctoral studies I have worked with many peo-
ple from both Croatian and Swedish universities. With your willingness
to help, friendship, and remarkable coffee-drinking skills you have made
the university more than just a work place. Thank you for that! I will
not try to list you all here, you know who you are!

To my parents Blanka and Damir, and sister Iva, thank you for pro-
viding endless support and encouraging me to achieve more through all
my life. Without you I surely wouldn’t be here, writing acknowledgments
for a doctoral dissertation.

Lastly, Anna, you were by my side through all these years, you sup-
ported me when I needed it, and you made my life more interesting and
fun than I could have imagined! Thank you!

Luka Lednicki
Väster̊as, December 2014

This work was partly supported by the Unity Through Knowledge Found
through project project DICES, Swedish Foundation for Strategic Research
via research centre Progress and through project Ralf3, and ABB Software
Research Grant Program through project Assist.

vii

Contents

1 Introduction 1

1.1 Research questions . 3

1.2 Contributions . 5

1.3 Research methodology . 7

1.4 Publications . 8

1.4.1 Main contributing publications 8

1.4.2 Other related publications 10

1.5 Thesis outline . 12

2 Background 15

2.1 ProCom . 15

2.1.1 Components . 15

2.1.2 Component types 17

2.1.3 Semantics . 17

2.1.4 Platform modeling and deployment 17

2.1.5 Analysis . 18

2.2 IEC 61499 . 18

2.2.1 Components . 18

2.2.2 Component types 19

2.2.3 Semantics . 21

2.2.4 Platform modeling and deployment 22

2.2.5 Analysis . 23

3 Sensors and actuators in component-based development 25

3.1 Effects of sensors and actuators on component-based de-
velopment . 26

ix

Contents

1 Introduction 1

1.1 Research questions . 3

1.2 Contributions . 5

1.3 Research methodology . 7

1.4 Publications . 8

1.4.1 Main contributing publications 8

1.4.2 Other related publications 10

1.5 Thesis outline . 12

2 Background 15

2.1 ProCom . 15

2.1.1 Components . 15

2.1.2 Component types 17

2.1.3 Semantics . 17

2.1.4 Platform modeling and deployment 17

2.1.5 Analysis . 18

2.2 IEC 61499 . 18

2.2.1 Components . 18

2.2.2 Component types 19

2.2.3 Semantics . 21

2.2.4 Platform modeling and deployment 22

2.2.5 Analysis . 23

3 Sensors and actuators in component-based development 25

3.1 Effects of sensors and actuators on component-based de-
velopment . 26

ix

x Contents

3.2 Modeling sensors and actuators in component-based ap-
proaches . 27
3.2.1 Software layer . 28
3.2.2 Hardware layer . 30
3.2.3 Mapping layer . 31
3.2.4 Example . 32

3.3 Automatic synthesis of executable code 34
3.3.1 Input code definition 36
3.3.2 Output code generation 41

3.4 Implementation and evaluation 44
3.4.1 Implementation . 44
3.4.2 Evaluation . 44

3.5 Summary . 46

4 Automatic generation of inter-node communication 49
4.1 The communication model 51
4.2 Generation process . 53

4.2.1 Communication model extraction 54
4.2.2 Communication media detection 55
4.2.3 Protocol selection 55
4.2.4 Communication component creation 56

4.3 IEC 61499 implementation of the framework 57
4.4 Example and case-study 60

4.4.1 Example . 60
4.4.2 Case-study evaluation 62

4.5 Summary . 63

5 Model-level timing and utilization analysis 65
5.1 Formal definition of IEC 61499 67
5.2 WCET analysis of function blocks 69

5.2.1 WCET data definition 70
5.2.2 Data normalization 74
5.2.3 Basic Function Block Analysis 75
5.2.4 Composite Function Block Analysis 79

5.3 Handling cyclic execution paths 85
5.3.1 Cycle bound definition 85
5.3.2 Cycle analysis . 88
5.3.3 Hierarchical propagation of cycle bounds 95

5.4 Analysis using hardware-specific models 100

Contents xi

5.4.1 Device-specific WCET analysis 100
5.4.2 Application Analysis 101
5.4.3 Utilization analysis 107

5.5 Implementation and evaluation 109
5.5.1 Analysis tool . 109
5.5.2 Evaluation of the WCET analysis 109
5.5.3 Validation of cyclic path analysis 113

5.6 Summary . 115

6 Related work 117
6.1 Design and synthesis of hardware-

specific code . 117
6.2 Communication in distributed embedded systems 119
6.3 Analysis of extra-functional properties 121

7 Conclusion 125
7.1 Summary and discussion 125
7.2 Future work . 128

7.2.1 Support for sensors and actuators 128
7.2.2 Automatic generation of distributed communication128
7.2.3 Analysis of extra-functional properties 129

Bibliography 131

x Contents

3.2 Modeling sensors and actuators in component-based ap-
proaches . 27
3.2.1 Software layer . 28
3.2.2 Hardware layer . 30
3.2.3 Mapping layer . 31
3.2.4 Example . 32

3.3 Automatic synthesis of executable code 34
3.3.1 Input code definition 36
3.3.2 Output code generation 41

3.4 Implementation and evaluation 44
3.4.1 Implementation . 44
3.4.2 Evaluation . 44

3.5 Summary . 46

4 Automatic generation of inter-node communication 49
4.1 The communication model 51
4.2 Generation process . 53

4.2.1 Communication model extraction 54
4.2.2 Communication media detection 55
4.2.3 Protocol selection 55
4.2.4 Communication component creation 56

4.3 IEC 61499 implementation of the framework 57
4.4 Example and case-study 60

4.4.1 Example . 60
4.4.2 Case-study evaluation 62

4.5 Summary . 63

5 Model-level timing and utilization analysis 65
5.1 Formal definition of IEC 61499 67
5.2 WCET analysis of function blocks 69

5.2.1 WCET data definition 70
5.2.2 Data normalization 74
5.2.3 Basic Function Block Analysis 75
5.2.4 Composite Function Block Analysis 79

5.3 Handling cyclic execution paths 85
5.3.1 Cycle bound definition 85
5.3.2 Cycle analysis . 88
5.3.3 Hierarchical propagation of cycle bounds 95

5.4 Analysis using hardware-specific models 100

Contents xi

5.4.1 Device-specific WCET analysis 100
5.4.2 Application Analysis 101
5.4.3 Utilization analysis 107

5.5 Implementation and evaluation 109
5.5.1 Analysis tool . 109
5.5.2 Evaluation of the WCET analysis 109
5.5.3 Validation of cyclic path analysis 113

5.6 Summary . 115

6 Related work 117
6.1 Design and synthesis of hardware-

specific code . 117
6.2 Communication in distributed embedded systems 119
6.3 Analysis of extra-functional properties 121

7 Conclusion 125
7.1 Summary and discussion 125
7.2 Future work . 128

7.2.1 Support for sensors and actuators 128
7.2.2 Automatic generation of distributed communication128
7.2.3 Analysis of extra-functional properties 129

Bibliography 131

Chapter 1

Introduction

Almost all modern technology, from factories and vehicles, to consumer
electronics and household appliances, is in some level supported by em-
bedded computer systems. The increased usage of embedded systems has
resulted in rapid growth of their complexity. An example of this can be
seen in the automotive industry. Premium vehicles often have a hard-
ware platform consisting of more than 100 processing units connected
with multiple communication networks, running several thousands of
software functions, and interact with the environment using numerous
sensors and actuators [64]. Development of embedded systems is also
complicated by the specifics of the embedded domain. The context they
are used in often requires them to not only provide correct functionality,
but to also deliver the functionality in a specific time. These systems also
usually execute on platforms with limited resources, e.g. low processing
power and memory capacity. As a result of these factors, it is getting
harder to develop embedded software and ensure that the implemen-
tation satisfies its requirements. One of the possibilities for alleviating
development of such complex systems is by applying model driven [7]
and component-based [1, 17, 60] approaches for their development.

Model driven development advocates building systems by modeling
them, and providing implementation by transforming models to exe-
cutable code. This approach provides multiple benefits. The models
provide a view of a system which is more abstract compared to exe-
cutable code. Thus, much of the complexity of implementation can be
hidden, and systems can be easier to develop and understand.

1

Chapter 1

Introduction

Almost all modern technology, from factories and vehicles, to consumer
electronics and household appliances, is in some level supported by em-
bedded computer systems. The increased usage of embedded systems has
resulted in rapid growth of their complexity. An example of this can be
seen in the automotive industry. Premium vehicles often have a hard-
ware platform consisting of more than 100 processing units connected
with multiple communication networks, running several thousands of
software functions, and interact with the environment using numerous
sensors and actuators [64]. Development of embedded systems is also
complicated by the specifics of the embedded domain. The context they
are used in often requires them to not only provide correct functionality,
but to also deliver the functionality in a specific time. These systems also
usually execute on platforms with limited resources, e.g. low processing
power and memory capacity. As a result of these factors, it is getting
harder to develop embedded software and ensure that the implemen-
tation satisfies its requirements. One of the possibilities for alleviating
development of such complex systems is by applying model driven [7]
and component-based [1, 17, 60] approaches for their development.

Model driven development advocates building systems by modeling
them, and providing implementation by transforming models to exe-
cutable code. This approach provides multiple benefits. The models
provide a view of a system which is more abstract compared to exe-
cutable code. Thus, much of the complexity of implementation can be
hidden, and systems can be easier to develop and understand.

1

2 Chapter 1. Introduction

The models used to create a system can also be used to analyze its
various properties. Because it is applied to an abstract view of a system,
model-level analysis can provide high efficiency, and is applicable in early
stages of development, when the full implementation is not yet available.
The ability to detect potential problems early can reduce the risk of
costly redesign late in the development. A negative side of analysis on
such abstract level is a possible decrease in the accuracy of results.

A system can often be described by more than one model. As an
example, it is common to describe system functionality in a platform-
independent manner, and provide the platform-specific details in a sep-
arate model. This allows each model to more clearly represent a specific
aspect of the overall system. Also, besides just modeling software, some
approaches include the ability to use models for describing the hardware
platform that the software can be deployed to. However, having multi-
ple coexisting models introduces the need of keeping them synchronized,
and utilizing a combination of multiple models is not always trivial.

Model driven development is often combined with aforementioned
component-based software engineering. In component-based software
engineering systems are built by composing them out of software com-
ponents – units of software which conform in their syntax and semantics
to a component model.

The main characteristic of software components is that they are de-
veloped with reuse in mind. Component should implement a functional-
ity which is independent to the context of a specific system, encapsulate
that functionality, and provided it to the rest of the system only through
a well-defined interface. The interface should also explicitly express all
dependencies of a component, i.e. what functionality the component re-
quires from the rest of the system. The benefit of component communi-
cating only through a well defined interface is twofold. First, by having
all components implement an interface conforming to same syntax and
semantics it can be assured that different components can be composed
together and exchange information. Second, the system developer can
use components in a black-box manner, meaning that during component
composition only components interfaces are used, while the complexity
of the implementation stays hidden.

One problem which arises when applying component-based develop-
ment in the embedded system domain is the tight coupling of software
and hardware. The limited processing and memory resources often pre-
vent use of extensive hardware abstraction layers usually present in the

1.1 Research questions 3

desktop domain. Because of this, the code implementing software com-
ponents can become highly dependent on the hardware it communicates
with. If not addressed properly, such dependencies can limit the poten-
tial of component reuse.

Besides promoting reuse, the previously mentioned encapsulation of
component functionality also facilitates prediction of system properties.
As the implementation of a component is isolated from the rest of the
system, and ideally all components dependencies are explicitly expressed
by the component interface, it becomes easier to predict properties of
a single component. Then, in the same way that system functionality
is built by composing functionality of components, the properties of a
system can potentially be composed from properties of individual com-
ponents. The increased predictability is one of the main benefits the
component based approach can introduce to the development of embed-
ded systems. It is, however, not trivial to define context-independent
description of component properties and provide methods for composi-
tion of such properties, especially when considering the aforementioned
tight coupling of software and hardware.

In this thesis we investigate how current state-of-the-art of component-
based development process can be advanced by leveraging software and
hardware models of component-based systems. In the rest of this sec-
tion we describe the research questions that have guided the research,
present the main contributions of the thesis, list the publications which
have been used as the basis for the thesis, describe the methodology used
during research and in the end give an outline for the rest of the thesis.

1.1 Research questions

The overall goal of this research is to provide advancements in develop-
ment of embedded component-based software systems by leveraging a
combination of software and hardware models. To achieve this goal, we
have investigated three aspects of component-based development for em-
bedded systems consisting of software and hardware: (i) support for inte-
grating sensors and actuators while modeling and deploying component-
based systems, (ii) development of distributed systems and (iii) analysis
of extra-functional system properties. The conducted research has been
guided by three research questions, which are presented below.

Interaction with the environment using IO devices such as sensors

2 Chapter 1. Introduction

The models used to create a system can also be used to analyze its
various properties. Because it is applied to an abstract view of a system,
model-level analysis can provide high efficiency, and is applicable in early
stages of development, when the full implementation is not yet available.
The ability to detect potential problems early can reduce the risk of
costly redesign late in the development. A negative side of analysis on
such abstract level is a possible decrease in the accuracy of results.

A system can often be described by more than one model. As an
example, it is common to describe system functionality in a platform-
independent manner, and provide the platform-specific details in a sep-
arate model. This allows each model to more clearly represent a specific
aspect of the overall system. Also, besides just modeling software, some
approaches include the ability to use models for describing the hardware
platform that the software can be deployed to. However, having multi-
ple coexisting models introduces the need of keeping them synchronized,
and utilizing a combination of multiple models is not always trivial.

Model driven development is often combined with aforementioned
component-based software engineering. In component-based software
engineering systems are built by composing them out of software com-
ponents – units of software which conform in their syntax and semantics
to a component model.

The main characteristic of software components is that they are de-
veloped with reuse in mind. Component should implement a functional-
ity which is independent to the context of a specific system, encapsulate
that functionality, and provided it to the rest of the system only through
a well-defined interface. The interface should also explicitly express all
dependencies of a component, i.e. what functionality the component re-
quires from the rest of the system. The benefit of component communi-
cating only through a well defined interface is twofold. First, by having
all components implement an interface conforming to same syntax and
semantics it can be assured that different components can be composed
together and exchange information. Second, the system developer can
use components in a black-box manner, meaning that during component
composition only components interfaces are used, while the complexity
of the implementation stays hidden.

One problem which arises when applying component-based develop-
ment in the embedded system domain is the tight coupling of software
and hardware. The limited processing and memory resources often pre-
vent use of extensive hardware abstraction layers usually present in the

1.1 Research questions 3

desktop domain. Because of this, the code implementing software com-
ponents can become highly dependent on the hardware it communicates
with. If not addressed properly, such dependencies can limit the poten-
tial of component reuse.

Besides promoting reuse, the previously mentioned encapsulation of
component functionality also facilitates prediction of system properties.
As the implementation of a component is isolated from the rest of the
system, and ideally all components dependencies are explicitly expressed
by the component interface, it becomes easier to predict properties of
a single component. Then, in the same way that system functionality
is built by composing functionality of components, the properties of a
system can potentially be composed from properties of individual com-
ponents. The increased predictability is one of the main benefits the
component based approach can introduce to the development of embed-
ded systems. It is, however, not trivial to define context-independent
description of component properties and provide methods for composi-
tion of such properties, especially when considering the aforementioned
tight coupling of software and hardware.

In this thesis we investigate how current state-of-the-art of component-
based development process can be advanced by leveraging software and
hardware models of component-based systems. In the rest of this sec-
tion we describe the research questions that have guided the research,
present the main contributions of the thesis, list the publications which
have been used as the basis for the thesis, describe the methodology used
during research and in the end give an outline for the rest of the thesis.

1.1 Research questions

The overall goal of this research is to provide advancements in develop-
ment of embedded component-based software systems by leveraging a
combination of software and hardware models. To achieve this goal, we
have investigated three aspects of component-based development for em-
bedded systems consisting of software and hardware: (i) support for inte-
grating sensors and actuators while modeling and deploying component-
based systems, (ii) development of distributed systems and (iii) analysis
of extra-functional system properties. The conducted research has been
guided by three research questions, which are presented below.

Interaction with the environment using IO devices such as sensors

4 Chapter 1. Introduction

and actuators is one of the key characteristics of embedded systems.
The two most common ways for handling this interaction in component-
based development are to either make it a part of software component
code, or let it be handled outside of the component model. Having the
communication with IO devices encapsulated in software components
hides the dependencies of components on the devices, and makes such
components highly dependent on a specific hardware configuration. This
breaks the principle of components having all dependencies expressed
on the interface level and reduces the potential of component reuse.
On the other hand, completely removing sensors and actuators from
component models prevents the component-based design to cover the
whole system and hides the effects of IO devices during system analysis.
Such approach can thus reduce applicability of the component-based
approach and predictability of systems. Therefore, we have defined the
following research question:

Research Question 1: How can we improve the support for in-
tegration of sensors and actuators in component-based development for
embedded systems, so that dependencies to these devices are more easily
manageable?

Some component models provide support for modeling distributed
applications by providing two complementary sets of models: platform-
independent models which abstract away from the details of communica-
tion between platform nodes, and platform-specific models which contain
components that implement the distributed communication. Although
the ability to model applications on these two levels can help coping with
the complexity of distributed systems, manually keeping the two mod-
els synchronized is a time consuming and error-prone activity. Lack of
established methods for keeping these models up-to-date in when using
a component based approach led us to the second research question:

Research Question 2: How can we enhance development of dis-
tributed component-based systems in order to reduce the effort of syn-
chronizing platform-independent and platform-specific models?

Embedded systems often have to satisfy domain-specific requirements
such as real-time constraints. A common way of verifying if these re-
quirements are met is through analysis. The fact that component-based
systems are often built using abstract models provides a possibility for
analysis to also be performed using these models. However, exploiting

1.2 Contributions 5

the full potential of model-level analysis in component-based systems is
not trivial. This led us to define the following final research question:

Research Question 3: How can we utilize software and platform
models to efficiently analyze extra-functional properties of component-
based systems in early stages of development?

1.2 Contributions

We have addressed the research questions presented in the previous sec-
tion by the following four contributions.

Research contribution 1 (RC1): Component-based embedded sys-
tem model with integrated sensors and actuators.

We have extended the ProCom component model [53] with an abil-
ity to describe IO devices (i.e. sensors and actuators) that are part of
the hardware platform, and means to specify how these devices are con-
nected to the processing nodes of the platform. The new model lets
software components state their dependencies on specific types of IO de-
vices on the level of component interface, and allows these dependencies
to be propagated through component hierarchy. During the deployment
phase, the dependencies of software components can be mapped to the
available IO devices. The proposed approach promotes reuse by having
context-independent model elements loosely bound and clearly separated
from the system-specific ones. A part of the contribution is also a pro-
totype modeling tool implementing the approach. The contribution was
evaluated by applying it to a realistic example, proving that the models
adequately describe the system.

Research contribution 2 (RC2): Code synthesis method based on
the proposed component model.

We have developed a method that provides automatic generation of
platform specific code for transfer of data between software components
and IO devices (i.e. sensors and actuators). The generation leverages the
platform model which describes IO devices, processing nodes, how the
two are connected, and how the software components communicate with
IO devices. The method defines how to specify reusable code segments
for context-independent model elements, and generates glue-code con-
necting these segments into a system-specific solution. The generation
method is implemented for the ProCom component model and supported

4 Chapter 1. Introduction

and actuators is one of the key characteristics of embedded systems.
The two most common ways for handling this interaction in component-
based development are to either make it a part of software component
code, or let it be handled outside of the component model. Having the
communication with IO devices encapsulated in software components
hides the dependencies of components on the devices, and makes such
components highly dependent on a specific hardware configuration. This
breaks the principle of components having all dependencies expressed
on the interface level and reduces the potential of component reuse.
On the other hand, completely removing sensors and actuators from
component models prevents the component-based design to cover the
whole system and hides the effects of IO devices during system analysis.
Such approach can thus reduce applicability of the component-based
approach and predictability of systems. Therefore, we have defined the
following research question:

Research Question 1: How can we improve the support for in-
tegration of sensors and actuators in component-based development for
embedded systems, so that dependencies to these devices are more easily
manageable?

Some component models provide support for modeling distributed
applications by providing two complementary sets of models: platform-
independent models which abstract away from the details of communica-
tion between platform nodes, and platform-specific models which contain
components that implement the distributed communication. Although
the ability to model applications on these two levels can help coping with
the complexity of distributed systems, manually keeping the two mod-
els synchronized is a time consuming and error-prone activity. Lack of
established methods for keeping these models up-to-date in when using
a component based approach led us to the second research question:

Research Question 2: How can we enhance development of dis-
tributed component-based systems in order to reduce the effort of syn-
chronizing platform-independent and platform-specific models?

Embedded systems often have to satisfy domain-specific requirements
such as real-time constraints. A common way of verifying if these re-
quirements are met is through analysis. The fact that component-based
systems are often built using abstract models provides a possibility for
analysis to also be performed using these models. However, exploiting

1.2 Contributions 5

the full potential of model-level analysis in component-based systems is
not trivial. This led us to define the following final research question:

Research Question 3: How can we utilize software and platform
models to efficiently analyze extra-functional properties of component-
based systems in early stages of development?

1.2 Contributions

We have addressed the research questions presented in the previous sec-
tion by the following four contributions.

Research contribution 1 (RC1): Component-based embedded sys-
tem model with integrated sensors and actuators.

We have extended the ProCom component model [53] with an abil-
ity to describe IO devices (i.e. sensors and actuators) that are part of
the hardware platform, and means to specify how these devices are con-
nected to the processing nodes of the platform. The new model lets
software components state their dependencies on specific types of IO de-
vices on the level of component interface, and allows these dependencies
to be propagated through component hierarchy. During the deployment
phase, the dependencies of software components can be mapped to the
available IO devices. The proposed approach promotes reuse by having
context-independent model elements loosely bound and clearly separated
from the system-specific ones. A part of the contribution is also a pro-
totype modeling tool implementing the approach. The contribution was
evaluated by applying it to a realistic example, proving that the models
adequately describe the system.

Research contribution 2 (RC2): Code synthesis method based on
the proposed component model.

We have developed a method that provides automatic generation of
platform specific code for transfer of data between software components
and IO devices (i.e. sensors and actuators). The generation leverages the
platform model which describes IO devices, processing nodes, how the
two are connected, and how the software components communicate with
IO devices. The method defines how to specify reusable code segments
for context-independent model elements, and generates glue-code con-
necting these segments into a system-specific solution. The generation
method is implemented for the ProCom component model and supported

6 Chapter 1. Introduction

by a prototype tool. The synthesis method has been evaluated in combi-
nation with RC1 by applying the prototype tool to a realistic example.
The results of the evaluation proved that the synthesized code correctly
implements system functionality. A part of the evaluation was also mea-
suring the overhead of the generated code in terms of execution time and
memory footprint.

Research contribution 3 (RC3): Method for automatic genera-
tion of communication components in distributed embedded systems mod-
els.

We have defined a framework which supports automatic generation
of communication between nodes of distributed component-based appli-
cations. The generation uses platform-independent software models and
models of the platform to insert and configure components which imple-
ment the required communication. The framework introduces adaptabil-
ity and extensibility by separating generation into different loosely bound
modules connected only through well-defined interfaces. The method has
been applied to the IEC 61499 standard and implemented in a prototype
tool. The contribution has been evaluated by applying it to an extended
example, and two case-study systems. The evaluation showed that the
generated models were in line with the expected results, and that the
generated communication correctly implements the functionality of the
case-study systems.

Research contribution 4 (RC4): Method for compositional timing
and utilization analysis of component-based systems.

We have developed a novel method for timing analysis of component-
based embedded software systems built using the IEC 61499 standard.
The analysis method relies on the concepts of component composition
and hierarchy to provide efficient calculation of worst-case execution time
for composite components and applications. By extending the timing
analysis to use a combination of software and platform models, we have
enabled analysis of processing resource utilization. Both timing and
utilization analysis have been implemented in a prototype tool. The
prototype tool was used to evaluate the analysis using a set of example
models taken from two IEC 61499 development tools, and a set of test
scenarios. The evaluation using example models proved that the analysis
is applicable to realistic systems, and that the performance of the analy-
sis algorithms is high. Applying the analysis on the set of test scenarios

1.3 Research methodology 7

has validated the correct behavior of parts of the analysis method.

1.3 Research methodology

The research method applied to the work presented in this thesis gen-
erally aligns to the engineering version of the scientific method given by
Basili [5]: ”observe existing solutions, propose better solutions, build/de-
velop, measure and analyze, and repeat the process until no more im-
provements”. The overall research has been conducted according to fol-
lowing steps:

1. Investigation of state-of-the-art and state-of-the-practice in the
field of component-based software engineering for embedded sys-
tems.

2. Definition of a concrete research problem, followed by an in-depth
literature review and definition of a research goal.

3. An iterative process of: (i) development of a theoretical research
result, (ii) implementation of a prototype tool, (iii) evaluation of
the method using the prototype tool.

4. Validation of the method using a case-study or a set of tests.

As we have addressed multiple concrete problems, all the steps have
been performed for each problem separately.

The research started with a survey of component-based models de-
veloped for use in the embedded system domain [19]. As a part of the
survey, we have identified a lack of support for expressing the interac-
tion with the hardware platform in such development approaches, with
the automatic generation of hardware-specific code as a possibility of
improvement. The research continued with a more thorough analysis of
existing approaches for modeling hardware. Based on this, we have de-
fined a method to model sensors and actuators in component models for
embedded systems. The modeling method was then used to provide the
method of automatic generation of sensor- and actuator-specific code.

The part of the research that addresses system analysis started with
a project which included transfer of research applied conducted in scope
of the ProCom component-model to the more industrial setting of the

6 Chapter 1. Introduction

by a prototype tool. The synthesis method has been evaluated in combi-
nation with RC1 by applying the prototype tool to a realistic example.
The results of the evaluation proved that the synthesized code correctly
implements system functionality. A part of the evaluation was also mea-
suring the overhead of the generated code in terms of execution time and
memory footprint.

Research contribution 3 (RC3): Method for automatic genera-
tion of communication components in distributed embedded systems mod-
els.

We have defined a framework which supports automatic generation
of communication between nodes of distributed component-based appli-
cations. The generation uses platform-independent software models and
models of the platform to insert and configure components which imple-
ment the required communication. The framework introduces adaptabil-
ity and extensibility by separating generation into different loosely bound
modules connected only through well-defined interfaces. The method has
been applied to the IEC 61499 standard and implemented in a prototype
tool. The contribution has been evaluated by applying it to an extended
example, and two case-study systems. The evaluation showed that the
generated models were in line with the expected results, and that the
generated communication correctly implements the functionality of the
case-study systems.

Research contribution 4 (RC4): Method for compositional timing
and utilization analysis of component-based systems.

We have developed a novel method for timing analysis of component-
based embedded software systems built using the IEC 61499 standard.
The analysis method relies on the concepts of component composition
and hierarchy to provide efficient calculation of worst-case execution time
for composite components and applications. By extending the timing
analysis to use a combination of software and platform models, we have
enabled analysis of processing resource utilization. Both timing and
utilization analysis have been implemented in a prototype tool. The
prototype tool was used to evaluate the analysis using a set of example
models taken from two IEC 61499 development tools, and a set of test
scenarios. The evaluation using example models proved that the analysis
is applicable to realistic systems, and that the performance of the analy-
sis algorithms is high. Applying the analysis on the set of test scenarios

1.3 Research methodology 7

has validated the correct behavior of parts of the analysis method.

1.3 Research methodology

The research method applied to the work presented in this thesis gen-
erally aligns to the engineering version of the scientific method given by
Basili [5]: ”observe existing solutions, propose better solutions, build/de-
velop, measure and analyze, and repeat the process until no more im-
provements”. The overall research has been conducted according to fol-
lowing steps:

1. Investigation of state-of-the-art and state-of-the-practice in the
field of component-based software engineering for embedded sys-
tems.

2. Definition of a concrete research problem, followed by an in-depth
literature review and definition of a research goal.

3. An iterative process of: (i) development of a theoretical research
result, (ii) implementation of a prototype tool, (iii) evaluation of
the method using the prototype tool.

4. Validation of the method using a case-study or a set of tests.

As we have addressed multiple concrete problems, all the steps have
been performed for each problem separately.

The research started with a survey of component-based models de-
veloped for use in the embedded system domain [19]. As a part of the
survey, we have identified a lack of support for expressing the interac-
tion with the hardware platform in such development approaches, with
the automatic generation of hardware-specific code as a possibility of
improvement. The research continued with a more thorough analysis of
existing approaches for modeling hardware. Based on this, we have de-
fined a method to model sensors and actuators in component models for
embedded systems. The modeling method was then used to provide the
method of automatic generation of sensor- and actuator-specific code.

The part of the research that addresses system analysis started with
a project which included transfer of research applied conducted in scope
of the ProCom component-model to the more industrial setting of the

8 Chapter 1. Introduction

IEC 61499 standard [15]. Based on the existing model-level analysis for
ProCom [13] and an investigation of other existing methods for both
model- and code-level timing analysis we proposed a novel method for
timing analysis which could take advantage of the specifics of component-
based development approach. The results of this research were then
combined with the results of the research on hardware modeling, and
the new analysis method was extended to take into account models of
both software and hardware. As we have identified the lack of support
analysis of cyclic execution paths to be a problem in current model-level
analysis methods, we have also extended the timing analysis with an
ability to analyze such constructs.

During the research on model-level analysis, we also identified a pos-
sibility of enhancing the analysis method by performing the analysis on
platform-specific models which include inter-node communication com-
ponents. As we did not find a component-based development framework
which would allow generating such model from platform-independent
models and model of the platform, we extended our research to provide
such a method.

For each new method we defined, we developed the theoretical contri-
butions in parallel with a prototype tool. The tools were used to evaluate
the applicability of the methods, and iteratively updating the methods
using the insights gained by the evaluation.

The presented work is validated through persuasion, examples and
evaluation, as defined by Shaw [54]. When possible, a slice of life exam-
ple is used, rather than a toy example. To some extent, the developed
tools are been applied to the examples to provide a more detailed in-
formation about the performance of proposed methods, rather than just
test their applicability.

1.4 Publications

This section first presents the main publications contributing to this
thesis, and then lists the rest of the related publications.

1.4.1 Main contributing publications

The publications presented in this section constitute the basis for this
doctoral thesis. For all these publications I am the main author of both

1.4 Publications 9

contributions and text, while other coauthors contributed with smaller
amounts of text, and valuable discussions and reviews.

• Paper A: Adding Support for Hardware Devices to Component
Models for Embedded Systems, Luka Lednicki, Juraj Feljan, Jan
Carlson, Mario Žagar, The Sixth International Conference on Soft-
ware Engineering Advances (ICSEA), 2011.

This paper introduces a possibility of modeling sensors and actu-
ators, describing how they are connected with processing nodes of
the platform, and specifying their interaction with software com-
ponents, providing contribution RC1. The work presented in this
paper is the basis for a part of Chapter 3 where the approach for
modeling sensors and actuators is described.

• Paper B: Automatic Synthesis of Hardware-specific Code in Com-
ponent-based Embedded Systems, Luka Lednicki, Ivica Crnković,
Mario Žagar, The Seventh International Conference on Software
Engineering Advances, 2012.

In this paper the results of Paper A have been used to define a
method for synthesis of code that connects software components to
sensors and actuators. The method specifies how to define reusable
code elements and allows automatic generation of glue-code be-
tween these elements, resulting in contribution RC2. The part of
Chapter 3 that concerns code synthesis is based on this paper.

• Paper C: A Framework for Generation of Inter-node Communi-
cation in Component-based Distributed Embedded Systems, Luka
Lednicki, Jan Carlson, IEEE International Conference on Emerg-
ing Technology and Factory Automation, 2014.

This paper presents an extensible framework which allows auto-
matic generation of communication between nodes of distributed
systems by adding communication components to platform-specific
system models, providing contribution RC3. Paper C is used as
the basis for Chapter 4.

8 Chapter 1. Introduction

IEC 61499 standard [15]. Based on the existing model-level analysis for
ProCom [13] and an investigation of other existing methods for both
model- and code-level timing analysis we proposed a novel method for
timing analysis which could take advantage of the specifics of component-
based development approach. The results of this research were then
combined with the results of the research on hardware modeling, and
the new analysis method was extended to take into account models of
both software and hardware. As we have identified the lack of support
analysis of cyclic execution paths to be a problem in current model-level
analysis methods, we have also extended the timing analysis with an
ability to analyze such constructs.

During the research on model-level analysis, we also identified a pos-
sibility of enhancing the analysis method by performing the analysis on
platform-specific models which include inter-node communication com-
ponents. As we did not find a component-based development framework
which would allow generating such model from platform-independent
models and model of the platform, we extended our research to provide
such a method.

For each new method we defined, we developed the theoretical contri-
butions in parallel with a prototype tool. The tools were used to evaluate
the applicability of the methods, and iteratively updating the methods
using the insights gained by the evaluation.

The presented work is validated through persuasion, examples and
evaluation, as defined by Shaw [54]. When possible, a slice of life exam-
ple is used, rather than a toy example. To some extent, the developed
tools are been applied to the examples to provide a more detailed in-
formation about the performance of proposed methods, rather than just
test their applicability.

1.4 Publications

This section first presents the main publications contributing to this
thesis, and then lists the rest of the related publications.

1.4.1 Main contributing publications

The publications presented in this section constitute the basis for this
doctoral thesis. For all these publications I am the main author of both

1.4 Publications 9

contributions and text, while other coauthors contributed with smaller
amounts of text, and valuable discussions and reviews.

• Paper A: Adding Support for Hardware Devices to Component
Models for Embedded Systems, Luka Lednicki, Juraj Feljan, Jan
Carlson, Mario Žagar, The Sixth International Conference on Soft-
ware Engineering Advances (ICSEA), 2011.

This paper introduces a possibility of modeling sensors and actu-
ators, describing how they are connected with processing nodes of
the platform, and specifying their interaction with software com-
ponents, providing contribution RC1. The work presented in this
paper is the basis for a part of Chapter 3 where the approach for
modeling sensors and actuators is described.

• Paper B: Automatic Synthesis of Hardware-specific Code in Com-
ponent-based Embedded Systems, Luka Lednicki, Ivica Crnković,
Mario Žagar, The Seventh International Conference on Software
Engineering Advances, 2012.

In this paper the results of Paper A have been used to define a
method for synthesis of code that connects software components to
sensors and actuators. The method specifies how to define reusable
code elements and allows automatic generation of glue-code be-
tween these elements, resulting in contribution RC2. The part of
Chapter 3 that concerns code synthesis is based on this paper.

• Paper C: A Framework for Generation of Inter-node Communi-
cation in Component-based Distributed Embedded Systems, Luka
Lednicki, Jan Carlson, IEEE International Conference on Emerg-
ing Technology and Factory Automation, 2014.

This paper presents an extensible framework which allows auto-
matic generation of communication between nodes of distributed
systems by adding communication components to platform-specific
system models, providing contribution RC3. Paper C is used as
the basis for Chapter 4.

10 Chapter 1. Introduction

• Paper D: Model Level Worst-case Execution Time Analysis for
IEC 61499, Luka Lednicki, Jan Carlson, Kristian Sandström, The
16th International ACM Sigsoft Symposium on Component-based
Software Engineering, 2013.

The contribution of this paper is a novel method for compositional
worst-case execution time analysis of component-based software,
giving the foundation for the thesis contribution RC4. This paper
is used as the basis for a part of Chapter 5, where the model level
timing analysis for IEC 61499 is introduced.

• Paper E: Device Utilization Analysis for IEC 61499 Systems in
Early Stages of Development, Luka Lednicki, Jan Carlson, Kristian
Sandström, IEEE International Conference on Emerging Technol-
ogy and Factory Automation, 2013.

In this paper we extend the analysis method described in Paper C
to utilize models of hardware platform to provide a novel method
for analyzing device utilization, adding to contribution RC4. The
paper is used as the basis for the part of Chapter 5 describing
processing node utilization analysis.

• Paper F: Handling Cyclic Execution Paths in Timing Analysis
of Component-based Software, Luka Lednicki, Jan Carlson, The
40th Euromicro Conference on Software Engineering and Advanced
Applications, 2014. (short paper)

This paper further extends the analysis method presented in Paper
C with the ability to analyze software models of component-based
applications which contain cyclic execution paths, further extend-
ing contribution RC4. Paper F is the basis for the analysis of cyclic
paths in IEC 61499 given in Chapter 5.

All of the main contributing papers are used as a partly basis for the
background presented in Chapter 2 and the related work described in
Chapter 6.

1.4.2 Other related publications

Peer reviewed publications

• 15 Years of CBSE Symposium: Impact on the Research Commu-
nity, Josip Maras, Luka Lednicki, Ivica Crnković, Proceedings of

1.4 Publications 11

the 15th ACM SIGSOFT Symposium on Component-based Soft-
ware Engineering, 2012.

• Towards Automatic Synthesis of Hardware-specific Code in
Component-based Embedded Systems, Luka Lednicki, Ivica Crnković,
Mario Žagar, Proceedings of the 38th Euromicro Conference on
Software Engineering and Advanced Applications, 2012. (short
paper)

• PRIDE – an Environment for Component-based Development of
Distributed Real-time Embedded Systems, Etienne Borde, Jan Carl-
son, Juraj Feljan, Luka Lednicki, Thomas Leveque, Josip Maras,
Ana Petričić, Séverine Sentilles, 9th Working IEEE/IFIP Confer-
ence on Software Architecture, 2011.

• Support for Hardware Devices in Component Models for Embed-
ded Systems, Luka Lednicki, International Doctoral Symposium
on Software Engineering and Advanced Applications, 2011.

• DICES: Distributed Component-based Embedded Software Systems,
Mario Žagar, Ivica Crnković, Darko Stipaničev, Maja Štula, Juraj
Feljan, Luka Lednicki, Josip Maras, Ana Petričić, Annual of the
Croatian Academy of Engineering, 2010/2011.

• A Component-Based Technology for Hardware and Software Com-
ponents, Luka Lednicki, Ana Petričić, Mario Žagar, 35th Euromi-
cro Conference on Software Engineering and Advanced Applica-
tions, 2009. (short paper)

• Using UML for Domain-specific Component Models, Ana Petričić,
Luka Lednicki, Ivica Crnković, Fourteenth International Workshop
on Component-oriented Programming, 2009.

• Uniform Treatment of Hardware and Software Components, Luka
Lednicki, Jan Carlson, Mario Žagar, 8th Conference on Software
Engineering Research and Practice in Sweden, 2008.

Technical reports

• Feasibility of Migrating Analysis and Synthesis Mechanisms from
ProCom to IEC 61499, Jan Carlson, Luka Lednicki, MRTC report,
2012.

10 Chapter 1. Introduction

• Paper D: Model Level Worst-case Execution Time Analysis for
IEC 61499, Luka Lednicki, Jan Carlson, Kristian Sandström, The
16th International ACM Sigsoft Symposium on Component-based
Software Engineering, 2013.

The contribution of this paper is a novel method for compositional
worst-case execution time analysis of component-based software,
giving the foundation for the thesis contribution RC4. This paper
is used as the basis for a part of Chapter 5, where the model level
timing analysis for IEC 61499 is introduced.

• Paper E: Device Utilization Analysis for IEC 61499 Systems in
Early Stages of Development, Luka Lednicki, Jan Carlson, Kristian
Sandström, IEEE International Conference on Emerging Technol-
ogy and Factory Automation, 2013.

In this paper we extend the analysis method described in Paper C
to utilize models of hardware platform to provide a novel method
for analyzing device utilization, adding to contribution RC4. The
paper is used as the basis for the part of Chapter 5 describing
processing node utilization analysis.

• Paper F: Handling Cyclic Execution Paths in Timing Analysis
of Component-based Software, Luka Lednicki, Jan Carlson, The
40th Euromicro Conference on Software Engineering and Advanced
Applications, 2014. (short paper)

This paper further extends the analysis method presented in Paper
C with the ability to analyze software models of component-based
applications which contain cyclic execution paths, further extend-
ing contribution RC4. Paper F is the basis for the analysis of cyclic
paths in IEC 61499 given in Chapter 5.

All of the main contributing papers are used as a partly basis for the
background presented in Chapter 2 and the related work described in
Chapter 6.

1.4.2 Other related publications

Peer reviewed publications

• 15 Years of CBSE Symposium: Impact on the Research Commu-
nity, Josip Maras, Luka Lednicki, Ivica Crnković, Proceedings of

1.4 Publications 11

the 15th ACM SIGSOFT Symposium on Component-based Soft-
ware Engineering, 2012.

• Towards Automatic Synthesis of Hardware-specific Code in
Component-based Embedded Systems, Luka Lednicki, Ivica Crnković,
Mario Žagar, Proceedings of the 38th Euromicro Conference on
Software Engineering and Advanced Applications, 2012. (short
paper)

• PRIDE – an Environment for Component-based Development of
Distributed Real-time Embedded Systems, Etienne Borde, Jan Carl-
son, Juraj Feljan, Luka Lednicki, Thomas Leveque, Josip Maras,
Ana Petričić, Séverine Sentilles, 9th Working IEEE/IFIP Confer-
ence on Software Architecture, 2011.

• Support for Hardware Devices in Component Models for Embed-
ded Systems, Luka Lednicki, International Doctoral Symposium
on Software Engineering and Advanced Applications, 2011.

• DICES: Distributed Component-based Embedded Software Systems,
Mario Žagar, Ivica Crnković, Darko Stipaničev, Maja Štula, Juraj
Feljan, Luka Lednicki, Josip Maras, Ana Petričić, Annual of the
Croatian Academy of Engineering, 2010/2011.

• A Component-Based Technology for Hardware and Software Com-
ponents, Luka Lednicki, Ana Petričić, Mario Žagar, 35th Euromi-
cro Conference on Software Engineering and Advanced Applica-
tions, 2009. (short paper)

• Using UML for Domain-specific Component Models, Ana Petričić,
Luka Lednicki, Ivica Crnković, Fourteenth International Workshop
on Component-oriented Programming, 2009.

• Uniform Treatment of Hardware and Software Components, Luka
Lednicki, Jan Carlson, Mario Žagar, 8th Conference on Software
Engineering Research and Practice in Sweden, 2008.

Technical reports

• Feasibility of Migrating Analysis and Synthesis Mechanisms from
ProCom to IEC 61499, Jan Carlson, Luka Lednicki, MRTC report,
2012.

12 Chapter 1. Introduction

• Classification and Survey of Component Models, Juraj Feljan, Luka
Lednicki, Josip Maras, Ana Petričić, Ivica Crnković, MRTC report,
2009.

1.5 Thesis outline

In this section we give an outline to the rest of the thesis chapters.

Chapter 2 – Background
The chapter gives an overview of the existing concepts and research

needed to understand the contributions presented in the thesis. The
overview consists of descriptions of the ProCom component model and
the IEC 61499 standard.

Chapter 3 – Sensors and actuators in component-based deve-
lopment

This chapter first discusses effects that sensors and actuators have on
component-based development process, and then introduces an extension
to the ProCom component model which allows modeling of sensors and
actuators, and in the end describes the method for synthesis of sensor-
and actuator-specific code. The work presented in this chapter is based
on Paper A [43] and Paper B [41] of the main contributing publications
of the thesis, and [42]. This chapter updates the modeling approach
described in the publications, introduces a common example model for
the modeling and synthesis contribution, and extends the evaluation of
the approach.

Chapter 4 – Automatic generation of inter-node communication
We describe a framework for automatic generation of communica-

tion in distributed component-based applications. In the chapter we
first introduce a model which captures communication requirements of
applications. After that we describe the process of automatic generation
of distributed communication. In the end we exemplify the generation
on a simple model. The contributions of this chapter are based on Pa-
per C [36] of the main contributing publications. Apart from improved
descriptions, this chapter does not add to the work presented in the
Paper C.

Chapter 5 – Model-level timing and utilization analysis
In this chapter we present a novel model-level analysis method for

analysis of component-based systems. First, we introduce a method for

1.5 Thesis outline 13

compositional analysis of worst-case execution time of component-based
software applications. We then describe how the compositional analysis
can be applied to applications which contain cyclic execution paths. We
complete the chapter with a method for analysis of processing node uti-
lization which is based on the compositional worst-case execution time
analysis. This chapter is based on the main contributing publications
Paper D [40], Paper E [39] and Paper F [37]. The descriptions and formal
definitions presented in the publications are improved, and new formal
definitions are added to the previous work.

Chapter 6 – Related work
We provide an overview if existing research that is related to the

work presented in this thesis.

Chapter 7 – Conclusion
This chapter concludes the thesis.

12 Chapter 1. Introduction

• Classification and Survey of Component Models, Juraj Feljan, Luka
Lednicki, Josip Maras, Ana Petričić, Ivica Crnković, MRTC report,
2009.

1.5 Thesis outline

In this section we give an outline to the rest of the thesis chapters.

Chapter 2 – Background
The chapter gives an overview of the existing concepts and research

needed to understand the contributions presented in the thesis. The
overview consists of descriptions of the ProCom component model and
the IEC 61499 standard.

Chapter 3 – Sensors and actuators in component-based deve-
lopment

This chapter first discusses effects that sensors and actuators have on
component-based development process, and then introduces an extension
to the ProCom component model which allows modeling of sensors and
actuators, and in the end describes the method for synthesis of sensor-
and actuator-specific code. The work presented in this chapter is based
on Paper A [43] and Paper B [41] of the main contributing publications
of the thesis, and [42]. This chapter updates the modeling approach
described in the publications, introduces a common example model for
the modeling and synthesis contribution, and extends the evaluation of
the approach.

Chapter 4 – Automatic generation of inter-node communication
We describe a framework for automatic generation of communica-

tion in distributed component-based applications. In the chapter we
first introduce a model which captures communication requirements of
applications. After that we describe the process of automatic generation
of distributed communication. In the end we exemplify the generation
on a simple model. The contributions of this chapter are based on Pa-
per C [36] of the main contributing publications. Apart from improved
descriptions, this chapter does not add to the work presented in the
Paper C.

Chapter 5 – Model-level timing and utilization analysis
In this chapter we present a novel model-level analysis method for

analysis of component-based systems. First, we introduce a method for

1.5 Thesis outline 13

compositional analysis of worst-case execution time of component-based
software applications. We then describe how the compositional analysis
can be applied to applications which contain cyclic execution paths. We
complete the chapter with a method for analysis of processing node uti-
lization which is based on the compositional worst-case execution time
analysis. This chapter is based on the main contributing publications
Paper D [40], Paper E [39] and Paper F [37]. The descriptions and formal
definitions presented in the publications are improved, and new formal
definitions are added to the previous work.

Chapter 6 – Related work
We provide an overview if existing research that is related to the

work presented in this thesis.

Chapter 7 – Conclusion
This chapter concludes the thesis.

Chapter 2

Background

This chapter describes the ProCom component model and the IEC 61499
standard. The presentation of ProCom is kept on a higher level, sufficient
to understand the work presented in Chapter 3, and mainly describes
how some of the common component-based development concepts are
implemented by this component model. The IEC 61499 standard is
described on a more detailed level, as the contributions in Chapter 4
and Chapter 5 are more closely connected to the details of the standard.

2.1 ProCom

ProCom [10, 11, 53] is a component model for development of safety-
critical distributed embedded real-time systems. One of the main aims of
ProCom is to provide component-based approach that covers the whole
development process, including design, analysis and deployment of sys-
tems. Development of ProCom systems is supported by the open-source
PRIDE tool [8]. The rest of this section gives an overview of various
parts of the ProCom approach.

2.1.1 Components

ProCom has a strong notion of components, which are rich and reusable
design-time entities. Each component implements a specific functional-
ity, encapsulates it, and provides it only through a well-defined interface.

15

Chapter 2

Background

This chapter describes the ProCom component model and the IEC 61499
standard. The presentation of ProCom is kept on a higher level, sufficient
to understand the work presented in Chapter 3, and mainly describes
how some of the common component-based development concepts are
implemented by this component model. The IEC 61499 standard is
described on a more detailed level, as the contributions in Chapter 4
and Chapter 5 are more closely connected to the details of the standard.

2.1 ProCom

ProCom [10, 11, 53] is a component model for development of safety-
critical distributed embedded real-time systems. One of the main aims of
ProCom is to provide component-based approach that covers the whole
development process, including design, analysis and deployment of sys-
tems. Development of ProCom systems is supported by the open-source
PRIDE tool [8]. The rest of this section gives an overview of various
parts of the ProCom approach.

2.1.1 Components

ProCom has a strong notion of components, which are rich and reusable
design-time entities. Each component implements a specific functional-
ity, encapsulates it, and provides it only through a well-defined interface.

15

16 Chapter 2. Background

(a) (b)

Figure 2.1: (a) ProSave component interface. The triangles and squares
represent trigger and data ports, respectively. While the input ports are
located on the left border of the components, the output ports are located
on the right side. Port groups are denoted by dashed lines encompassing
the ports. (b) An example of a composite ProSave component.

Besides their functionality, components can also store various other el-
ements, for example behavior models or property values. Syntax and
semantics of components is defined on the interface level. This allows
treatment of components in a black-box manner, promoting their reuse.
Although ProCom provides two modeling levels, ProSave and ProSys,
each with different levels of component granularity, for the purpose of
this thesis we will only concentrate on the lower, ProSave layer.

On the ProSave level, systems are modeled by connecting components
in a pipe-and-filter manner, with clear distinction between the data and
control flow. On the interface level, ProSave components1 consist of
one input port group, and zero or more output port group. Each group
contains one trigger port and an arbitrary number of data ports. The
trigger ports of a component are used to activate the execution of the
component (input trigger) or send activation signals to other components
(output trigger), while the data ports are used to send or receive data.
The graphical representation of a ProSave component on the interface
level is given in Figure 2.1 (a).

1For the purpose of this thesis, the notion of ProSave service, and the ability of
components to provide multiple input port groups, will be disregarded.

2.1 ProCom 17

2.1.2 Component types

Based on how they implement their functionality, ProSave distinguishes
two types of components: primitive components and composite compo-
nents. The implementation of primitive components is defined by code,
with each component defining an entry function in C language which will
be executed when the component is triggered. Composite components
implement their functionality using interconnected subcomponents. In
this way, functionality provided by a composition of components can be
encapsulated and presented in a black-box manner, as a component, and
reused on higher levels of hierarchy. Figure 2.1 (b) shows an example of
the interface and implementation of a ProSave composite.

2.1.3 Semantics

All types of ProSave components adhere to same semantics, defined on
the level of the component interface [59,66]. The components are passive,
meaning that they never start execution unless activated by a signal at
their input trigger port. Once triggered for execution, components follow
a read-execute-write pattern. First, the values at the input ports of the
interface are read and transferred to the component’s internal implemen-
tation. Then, the functionality of the component is executed. During
the execution, the output data ports are updated with new values, and
activation signals are sent through output trigger ports. Output of the
data and the triggering signal for each group is performed as an atomic
operation. When all output triggers of a component have been activated,
the component stops its execution and remains inactive until the next
activation of its input trigger port.

2.1.4 Platform modeling and deployment

ProCom supports modeling of execution platforms and how software sys-
tems are deployed to those platforms [14]. Models of hardware platforms
consist of physical nodes and network connections between them. Phys-
ical nodes represent concrete hardware processing units. Deployment
of software systems to the platform is done by mapping the software
components to the physical nodes2.

2In the work presented in this thesis, the ProCom concept of virtual nodes is
disregarded.

16 Chapter 2. Background

(a) (b)

Figure 2.1: (a) ProSave component interface. The triangles and squares
represent trigger and data ports, respectively. While the input ports are
located on the left border of the components, the output ports are located
on the right side. Port groups are denoted by dashed lines encompassing
the ports. (b) An example of a composite ProSave component.

Besides their functionality, components can also store various other el-
ements, for example behavior models or property values. Syntax and
semantics of components is defined on the interface level. This allows
treatment of components in a black-box manner, promoting their reuse.
Although ProCom provides two modeling levels, ProSave and ProSys,
each with different levels of component granularity, for the purpose of
this thesis we will only concentrate on the lower, ProSave layer.

On the ProSave level, systems are modeled by connecting components
in a pipe-and-filter manner, with clear distinction between the data and
control flow. On the interface level, ProSave components1 consist of
one input port group, and zero or more output port group. Each group
contains one trigger port and an arbitrary number of data ports. The
trigger ports of a component are used to activate the execution of the
component (input trigger) or send activation signals to other components
(output trigger), while the data ports are used to send or receive data.
The graphical representation of a ProSave component on the interface
level is given in Figure 2.1 (a).

1For the purpose of this thesis, the notion of ProSave service, and the ability of
components to provide multiple input port groups, will be disregarded.

2.1 ProCom 17

2.1.2 Component types

Based on how they implement their functionality, ProSave distinguishes
two types of components: primitive components and composite compo-
nents. The implementation of primitive components is defined by code,
with each component defining an entry function in C language which will
be executed when the component is triggered. Composite components
implement their functionality using interconnected subcomponents. In
this way, functionality provided by a composition of components can be
encapsulated and presented in a black-box manner, as a component, and
reused on higher levels of hierarchy. Figure 2.1 (b) shows an example of
the interface and implementation of a ProSave composite.

2.1.3 Semantics

All types of ProSave components adhere to same semantics, defined on
the level of the component interface [59,66]. The components are passive,
meaning that they never start execution unless activated by a signal at
their input trigger port. Once triggered for execution, components follow
a read-execute-write pattern. First, the values at the input ports of the
interface are read and transferred to the component’s internal implemen-
tation. Then, the functionality of the component is executed. During
the execution, the output data ports are updated with new values, and
activation signals are sent through output trigger ports. Output of the
data and the triggering signal for each group is performed as an atomic
operation. When all output triggers of a component have been activated,
the component stops its execution and remains inactive until the next
activation of its input trigger port.

2.1.4 Platform modeling and deployment

ProCom supports modeling of execution platforms and how software sys-
tems are deployed to those platforms [14]. Models of hardware platforms
consist of physical nodes and network connections between them. Phys-
ical nodes represent concrete hardware processing units. Deployment
of software systems to the platform is done by mapping the software
components to the physical nodes2.

2In the work presented in this thesis, the ProCom concept of virtual nodes is
disregarded.

18 Chapter 2. Background

2.1.5 Analysis

One of the main aspects of ProCom is aim to support analysis of system
properties. The support for attaching attributes or models, which can be
used for analysis, is given by an extensive framework for specification of
extra-functional properties [52]. Besides providing support for attaching
extra-functional properties to components, various analysis techniques
have been developed in the context of ProCom, for example analysis of
timing properties [13, 44], and resource usage analysis [51, 65].

2.2 IEC 61499

The IEC 61499 standard [28,61,67,70] is proposed as a successor of the
IEC 61131-3 standard [27], which is widely used in industry, especially
for development of industrial automation systems. The new standard
addresses some of the problems of IEC 61131-3, mainly focusing on en-
hancing reusability, configurability, interoperability, reconfiguration and
support for distributed systems. Development using IEC 61499 is sup-
ported by several tools, for example 4DIAC [56], Function Block Deve-
lopment Kit [24], nxtStudio [47] and ISaGRAF [26]. The details of the
component-based approach of IEC 61499 are described in the following
sections.

2.2.1 Components

The software components of the IEC 61499 standard are called function
blocks. As is common in component-based approaches, the functionality
of a function block is presented by the function block interface, which
hides the details of the implementation. Similarly to ProCom (described
in Section 2.1), the IEC 61499 function block interface explicitly sepa-
rates event and data inputs and outputs. Event inputs and outputs are
used to specify the execution flow, but do not provide any means for
exchanging data between function blocks. All data transfers are done by
data inputs and outputs.

Relations between event and data ports can be described by WITH
qualifiers. A WITH qualifier can be defined on either a combination
of one input event port and a set of data inputs, or one output event
port and a set of data outputs. Defining a WITH qualifier on an event
input port and a set of data input ports describes which data inputs will

2.2 IEC 61499 19

FB_1

E_i11
E_i12

D_i11
D_i12

E_o11
E_o12

D_o11
D_o12

(a)

START S1 A1 E_011

S2 A2 E_o12

E_i11

E_i12

1

1

(b)

Figure 2.2: (a) An IEC 61499 function block interface. (b) A basic
function block ECC.

be sampled together with the event port. A WITH qualifier combining
an event output port with a set of data output ports shows which data
outputs will be updated with new values together with an output at the
event output.

Example: Figure 2.2 (a) shows an example of a function block
interface, defined for function block FB 1. The figure shows a function
block with input event ports E i11 and E i12, output event ports E o11
and E o12, data inputs D i11 and D i12, and data outputs D o11 and
D o12. The WITH qualifiers are represented by connecting the ports
with vertical lines, marking each port belonging to a WITH qualifier by
a black rectangle. As an example, the WITH operator defined on the
outputs of FB implies that when an event is generated on E o11, the
values on ports D o11 and D o12 will also be updated.

2.2.2 Component types

Considering their implementation, function blocks can be of three pos-
sible types: Basic function block, Service interface function block and
Composite function block.

A basic function block (BFB) is implemented by means of an Execu-
tion Control Chart (ECC) and one or more algorithms. The ECC is an
automaton consisting of states and guarded transitions. Each state can
be associated with zero or more actions. An action can specify one or
more algorithms which will be executed once the state is reached, and
output event ports that will be activated. We differentiate between two
types of states: stable states in which execution of the ECC stops until
a new event arrives at an input port, and transitional states which do

18 Chapter 2. Background

2.1.5 Analysis

One of the main aspects of ProCom is aim to support analysis of system
properties. The support for attaching attributes or models, which can be
used for analysis, is given by an extensive framework for specification of
extra-functional properties [52]. Besides providing support for attaching
extra-functional properties to components, various analysis techniques
have been developed in the context of ProCom, for example analysis of
timing properties [13, 44], and resource usage analysis [51, 65].

2.2 IEC 61499

The IEC 61499 standard [28,61,67,70] is proposed as a successor of the
IEC 61131-3 standard [27], which is widely used in industry, especially
for development of industrial automation systems. The new standard
addresses some of the problems of IEC 61131-3, mainly focusing on en-
hancing reusability, configurability, interoperability, reconfiguration and
support for distributed systems. Development using IEC 61499 is sup-
ported by several tools, for example 4DIAC [56], Function Block Deve-
lopment Kit [24], nxtStudio [47] and ISaGRAF [26]. The details of the
component-based approach of IEC 61499 are described in the following
sections.

2.2.1 Components

The software components of the IEC 61499 standard are called function
blocks. As is common in component-based approaches, the functionality
of a function block is presented by the function block interface, which
hides the details of the implementation. Similarly to ProCom (described
in Section 2.1), the IEC 61499 function block interface explicitly sepa-
rates event and data inputs and outputs. Event inputs and outputs are
used to specify the execution flow, but do not provide any means for
exchanging data between function blocks. All data transfers are done by
data inputs and outputs.

Relations between event and data ports can be described by WITH
qualifiers. A WITH qualifier can be defined on either a combination
of one input event port and a set of data inputs, or one output event
port and a set of data outputs. Defining a WITH qualifier on an event
input port and a set of data input ports describes which data inputs will

2.2 IEC 61499 19

FB_1

E_i11
E_i12

D_i11
D_i12

E_o11
E_o12

D_o11
D_o12

(a)

START S1 A1 E_011

S2 A2 E_o12

E_i11

E_i12

1

1

(b)

Figure 2.2: (a) An IEC 61499 function block interface. (b) A basic
function block ECC.

be sampled together with the event port. A WITH qualifier combining
an event output port with a set of data output ports shows which data
outputs will be updated with new values together with an output at the
event output.

Example: Figure 2.2 (a) shows an example of a function block
interface, defined for function block FB 1. The figure shows a function
block with input event ports E i11 and E i12, output event ports E o11
and E o12, data inputs D i11 and D i12, and data outputs D o11 and
D o12. The WITH qualifiers are represented by connecting the ports
with vertical lines, marking each port belonging to a WITH qualifier by
a black rectangle. As an example, the WITH operator defined on the
outputs of FB implies that when an event is generated on E o11, the
values on ports D o11 and D o12 will also be updated.

2.2.2 Component types

Considering their implementation, function blocks can be of three pos-
sible types: Basic function block, Service interface function block and
Composite function block.

A basic function block (BFB) is implemented by means of an Execu-
tion Control Chart (ECC) and one or more algorithms. The ECC is an
automaton consisting of states and guarded transitions. Each state can
be associated with zero or more actions. An action can specify one or
more algorithms which will be executed once the state is reached, and
output event ports that will be activated. We differentiate between two
types of states: stable states in which execution of the ECC stops until
a new event arrives at an input port, and transitional states which do

20 Chapter 2. Background

not require an event for ECC to move to another state. Execution of
basic function blocks is strictly event driven – it can only start when an
event is received at one of the input ports, and once the execution stops
it will not continue until the next event arrives. One execution cycle of
a function block is called a run. A single run can traverse more than one
ECC state in case the ECC contains transitional states, and thus result
in an arbitrary number of algorithm executions and output events.

Example: An example of a basic function block ECC is given in
Figure 2.2 (b). It contains states START, S1 and S2, with START being
the initial state. The transition from START to S1 is guarded by the
input event E i11. When this state is reached, algorithm A1 is executed,
and an event is generated at output event port E o11. The transition to
state S2 is guarded by the input event E i12, and it executes algorithm
A2 and outputs an event at E i12. Both S1 and S2 are transitional
states – there are transitions back to START that are not guarded by
any event, depicted by a 1 as the transition condition.

Service interface function blocks (SIFB) are designed to be used as
interfaces to external hardware or services. The functionality of this
element is not specified by the standard, and although they can contain
a sequence diagram describing their behavior, the functionality might not
be fully documented. Unlike basic function blocks, the service interface
function blocks can start their execution without the arrival of an input
event (active execution).

A composite function block (CFB) has an implementation defined by
a function block network (defined below), with additional connections
between the ports of the enclosing interface and the ports of the function
blocks in the network. As the composite function block can contain
active service interface function blocks, composites can also be active,
i.e. start their execution without receiving an input event.

A function block network (FBN) defines the internal structure of
a composite function block or a whole application. A function block
network consists of a set of function blocks of arbitrary types (BFB, SIFB
or CFB) and connections between the ports of these function blocks. As
a result of the separation of event and data ports, the flow of control
and data are clearly distinguished.

Example: An example of a composite function block, named FB 4,
can be seen in Figure 2.3. Its internal function block network contains
three function blocks, FB 1, FB 2, and FB 3.

2.2 IEC 61499 21

FB_4

FB_1

E_i11
E_i12

D_i11
D_i12

E_o11
E_o12

D_o11
D_o12

FB_3

E_i31
E_i32

D_i31
D_i32

E_o31

D_o31

FB_2

E_i21

D_i21

E_o21

D_o21

E_oc1

D_oc1

E_ic1
E_ic2

D_ic1
D_ic2

Figure 2.3: A composite function block with an internal function block
network.

2.2.3 Semantics

Unlike the previously described ProCom component model, the seman-
tics of IEC 61499 function blocks is not unambiguously defined on the
level of component interface [57, 58]. While basic function blocks are
strictly passive, starting their execution only by receiving signals to their
input event ports, and following a read-execute-write pattern, service
interface function blocks can also start their execution by means of an
internal trigger. Both of these function block types, regardless of their
triggering, are executed as atomic units: no other function block will
interrupt their execution. As composites can contain both these types
of function blocks, they can also be either passive or active components.
The definition of composites also does not clearly define the atomicity of
their execution. The standard does not specify if it should be allowed to
interrupt execution of a composite function block by some function block
outside of the composite. As a result, different IEC 61499 implementa-
tions provide different semantics for composites, and it is harder to argue
about properties of function block compositions. Although not defined
by the standard itself, a formal definition of execution semantics [63] has
been published in the research community.

20 Chapter 2. Background

not require an event for ECC to move to another state. Execution of
basic function blocks is strictly event driven – it can only start when an
event is received at one of the input ports, and once the execution stops
it will not continue until the next event arrives. One execution cycle of
a function block is called a run. A single run can traverse more than one
ECC state in case the ECC contains transitional states, and thus result
in an arbitrary number of algorithm executions and output events.

Example: An example of a basic function block ECC is given in
Figure 2.2 (b). It contains states START, S1 and S2, with START being
the initial state. The transition from START to S1 is guarded by the
input event E i11. When this state is reached, algorithm A1 is executed,
and an event is generated at output event port E o11. The transition to
state S2 is guarded by the input event E i12, and it executes algorithm
A2 and outputs an event at E i12. Both S1 and S2 are transitional
states – there are transitions back to START that are not guarded by
any event, depicted by a 1 as the transition condition.

Service interface function blocks (SIFB) are designed to be used as
interfaces to external hardware or services. The functionality of this
element is not specified by the standard, and although they can contain
a sequence diagram describing their behavior, the functionality might not
be fully documented. Unlike basic function blocks, the service interface
function blocks can start their execution without the arrival of an input
event (active execution).

A composite function block (CFB) has an implementation defined by
a function block network (defined below), with additional connections
between the ports of the enclosing interface and the ports of the function
blocks in the network. As the composite function block can contain
active service interface function blocks, composites can also be active,
i.e. start their execution without receiving an input event.

A function block network (FBN) defines the internal structure of
a composite function block or a whole application. A function block
network consists of a set of function blocks of arbitrary types (BFB, SIFB
or CFB) and connections between the ports of these function blocks. As
a result of the separation of event and data ports, the flow of control
and data are clearly distinguished.

Example: An example of a composite function block, named FB 4,
can be seen in Figure 2.3. Its internal function block network contains
three function blocks, FB 1, FB 2, and FB 3.

2.2 IEC 61499 21

FB_4

FB_1

E_i11
E_i12

D_i11
D_i12

E_o11
E_o12

D_o11
D_o12

FB_3

E_i31
E_i32

D_i31
D_i32

E_o31

D_o31

FB_2

E_i21

D_i21

E_o21

D_o21

E_oc1

D_oc1

E_ic1
E_ic2

D_ic1
D_ic2

Figure 2.3: A composite function block with an internal function block
network.

2.2.3 Semantics

Unlike the previously described ProCom component model, the seman-
tics of IEC 61499 function blocks is not unambiguously defined on the
level of component interface [57, 58]. While basic function blocks are
strictly passive, starting their execution only by receiving signals to their
input event ports, and following a read-execute-write pattern, service
interface function blocks can also start their execution by means of an
internal trigger. Both of these function block types, regardless of their
triggering, are executed as atomic units: no other function block will
interrupt their execution. As composites can contain both these types
of function blocks, they can also be either passive or active components.
The definition of composites also does not clearly define the atomicity of
their execution. The standard does not specify if it should be allowed to
interrupt execution of a composite function block by some function block
outside of the composite. As a result, different IEC 61499 implementa-
tions provide different semantics for composites, and it is harder to argue
about properties of function block compositions. Although not defined
by the standard itself, a formal definition of execution semantics [63] has
been published in the research community.

22 Chapter 2. Background

Device 1

Resource 1

Resource 2

Device 2

Resource 1

Ethernet

Figure 2.4: Example model of the platform in IEC 61499.

2.2.4 Platform modeling and deployment

In IEC 61499 the platform is represented by devices. A device is an
independent physical entity capable of performing one or more speci-
fied functions. Each device contains one or more resources, which are
functional units with independent control of operation.

Communication networks between devices are modeled by network
segments. One device can be connected to more than one segment, and
there is no limit to the number of devices that can be connected to a
single network segment.

Example: Figure 2.4 shows an example of platform model consisting
of two devices connected via an Ethernet network segment. Device 1 has
two resources, and Device 2 with only one resource.

Applications are deployed to the platform by mapping its function
blocks to the resources contained in the devices. Since all function blocks,
including composites, are atomic units of deployment, each function
block can be mapped to only one resource.

Each resource in a distributed IEC 61499 system contains a local
model of the application, containing only the subset of the application’s
function blocks which are mapped to that particular resource. This
local model can however contain additional function blocks which are
not visible on the application level. It is a common practice to use this
option to implement functionality that is specific to the current mapping
of the application, such as adding inter-resource communication function
blocks.

2.2 IEC 61499 23

2.2.5 Analysis

Analysis was not one of the original main concerns of IEC 61499, and
analysis of IEC 61499 models has not yet been fully explored [67,70]. One
of the obstacles for performing analysis on the level of IEC 61499 models
is also the previously mentioned ambiguity of execution semantics. Some
of the analysis techniques developed for IEC 61499 are described as part
of the related work, in Section 6.3.

The IEC 61499 standard allows attaching properties to modeling el-
ements in form of attributes. The types of attributes are not defined
in advance – they can hold any information about functional or extra-
functional properties of the model elements. The standard also supports
inheritance of attributes, for example function block instances inherit
attributes from their respective function block types.

22 Chapter 2. Background

Device 1

Resource 1

Resource 2

Device 2

Resource 1

Ethernet

Figure 2.4: Example model of the platform in IEC 61499.

2.2.4 Platform modeling and deployment

In IEC 61499 the platform is represented by devices. A device is an
independent physical entity capable of performing one or more speci-
fied functions. Each device contains one or more resources, which are
functional units with independent control of operation.

Communication networks between devices are modeled by network
segments. One device can be connected to more than one segment, and
there is no limit to the number of devices that can be connected to a
single network segment.

Example: Figure 2.4 shows an example of platform model consisting
of two devices connected via an Ethernet network segment. Device 1 has
two resources, and Device 2 with only one resource.

Applications are deployed to the platform by mapping its function
blocks to the resources contained in the devices. Since all function blocks,
including composites, are atomic units of deployment, each function
block can be mapped to only one resource.

Each resource in a distributed IEC 61499 system contains a local
model of the application, containing only the subset of the application’s
function blocks which are mapped to that particular resource. This
local model can however contain additional function blocks which are
not visible on the application level. It is a common practice to use this
option to implement functionality that is specific to the current mapping
of the application, such as adding inter-resource communication function
blocks.

2.2 IEC 61499 23

2.2.5 Analysis

Analysis was not one of the original main concerns of IEC 61499, and
analysis of IEC 61499 models has not yet been fully explored [67,70]. One
of the obstacles for performing analysis on the level of IEC 61499 models
is also the previously mentioned ambiguity of execution semantics. Some
of the analysis techniques developed for IEC 61499 are described as part
of the related work, in Section 6.3.

The IEC 61499 standard allows attaching properties to modeling el-
ements in form of attributes. The types of attributes are not defined
in advance – they can hold any information about functional or extra-
functional properties of the model elements. The standard also supports
inheritance of attributes, for example function block instances inherit
attributes from their respective function block types.

Chapter 3

Sensors and actuators in
component-based
development

One of the main characteristics of embedded systems is their interaction
with the environment using sensors and actuators. The communication
between software components and such IO devices can be as simple as
writing a value to a hardware pin or a port, or as complex as invoking
a service on a remote device. In all cases, this interaction introduces
dependencies of software on the underlying hardware used to interact
with the environment. The same interaction can also affect behavior
and properties of software components, as, for example, properties like
data acquisition time can vary for different types of sensors. Failure to
adequately express this interaction can result in models that do not cap-
ture all system properties, and reduce the potential of component reuse,
thus hindering the full utilization of the component-based approach in
the embedded system domain.

In this chapter, we will first describe the effects that sensors and
actuators can have on model-driven component-based development pro-
cess, and then present our approach for modeling sensors and actuators
in component-based systems and a method which allows automatic syn-
thesis of code based on the proposed models. The chapter continues with
description of a prototype tool which implements the presented methods

25

Chapter 3

Sensors and actuators in
component-based
development

One of the main characteristics of embedded systems is their interaction
with the environment using sensors and actuators. The communication
between software components and such IO devices can be as simple as
writing a value to a hardware pin or a port, or as complex as invoking
a service on a remote device. In all cases, this interaction introduces
dependencies of software on the underlying hardware used to interact
with the environment. The same interaction can also affect behavior
and properties of software components, as, for example, properties like
data acquisition time can vary for different types of sensors. Failure to
adequately express this interaction can result in models that do not cap-
ture all system properties, and reduce the potential of component reuse,
thus hindering the full utilization of the component-based approach in
the embedded system domain.

In this chapter, we will first describe the effects that sensors and
actuators can have on model-driven component-based development pro-
cess, and then present our approach for modeling sensors and actuators
in component-based systems and a method which allows automatic syn-
thesis of code based on the proposed models. The chapter continues with
description of a prototype tool which implements the presented methods

25

26 Chapter 3. Sensors and actuators in CBD

and provides information about the evaluation, and ends with a sum-
mary. The work presented in this chapter is based on Paper A [43] and
Paper B [41] of the main contributing publications of the thesis, and [42].

3.1 Effects of sensors and actuators on com-
ponent-based development

When applying a model-driven component-based software engineering
approach to embedded systems, the dependencies of software compo-
nents on sensors and actuators, as well as communication between the
software and hardware, impacts multiple aspects of the development
process. In this section we will give an overview of some of them.

When designing a system, the developer specifies the system using
models of (i) the software layer of the system, as a composition of soft-
ware components, and (ii) the hardware platform layer, as a composition
of nodes that the system will be deployed to. The former requires means
to manage interaction with sensors and actuators in the software layer,
i.e. to specify which components communicate with IO devices, and how.
The latter calls for an ability to describe actual instances of sensors and
actuators, and how they are connected to processing nodes of the plat-
form. Additionally, if we want to accommodate to the component reuse
concept, it must be ensured that the components dependent on sensors
and actuators can be deployed to various hardware platforms.

During system deployment the components of the software layer are
allocated to the elements of the platform layer that will execute them.
In this phase, there is a need to identify the dependencies of the software
components on sensors and actuators in order to ensure that the platform
elements targeted for deployment satisfy these dependencies.

To guarantee that the system satisfies its requirements, the developer
can perform various types of analysis. Such analysis can be used to check
both functional and extra-functional properties of a system. For the
results of the analysis to be valid, the effects of interaction of software
components with sensors and actuators must be taken into account.

Finally, in the synthesis phase system models are used to generate
executable code. In this phase, it must be ensured that the generated
code reflects the specifics of the platform and correctly implements the
communication with sensors and actuators.

3.2 Modeling sensors and actuators in component-based
approaches 27

Software Layer

SW component IO component

Mapping Layer
Mapping

Hardware Layer

IO allocation

Processing node

Allocation

IO deviceIO device

Allocation

Figure 3.1: Overview of the layered model for describing IO devices in
component based development.

3.2 Modeling sensors and actuators in com-
ponent-based approaches

To address the problem of specifying the interaction of software compo-
nents with sensors and actuators we have defined a model which allows
incorporation of sensors and actuators into component models, and ap-
plied it to ProCom.

To limit the amount of coupling between software components and
IO devices we have separated the model into three layers: software layer,
hardware layer andmapping layer. With this separation the software and
the hardware of the system can be described independently, making the
descriptions suitable for reuse in different scenarios. When developing a
concrete system, the independent software and hardware layers can be
connected using the mapping layer. The same principle of loose binding
that is introduced by the mapping layer is also used in the hardware
layer, where connections between processing nodes and IO devices are
defined by IO allocations. An abstract overview of these three layers is
given in Figure 3.1.

The IO device modeling approach introduces a clear distinction be-
tween types and instances for both hardware and software entities. Types
are entity definitions that are context-independent. They can be reused

26 Chapter 3. Sensors and actuators in CBD

and provides information about the evaluation, and ends with a sum-
mary. The work presented in this chapter is based on Paper A [43] and
Paper B [41] of the main contributing publications of the thesis, and [42].

3.1 Effects of sensors and actuators on com-
ponent-based development

When applying a model-driven component-based software engineering
approach to embedded systems, the dependencies of software compo-
nents on sensors and actuators, as well as communication between the
software and hardware, impacts multiple aspects of the development
process. In this section we will give an overview of some of them.

When designing a system, the developer specifies the system using
models of (i) the software layer of the system, as a composition of soft-
ware components, and (ii) the hardware platform layer, as a composition
of nodes that the system will be deployed to. The former requires means
to manage interaction with sensors and actuators in the software layer,
i.e. to specify which components communicate with IO devices, and how.
The latter calls for an ability to describe actual instances of sensors and
actuators, and how they are connected to processing nodes of the plat-
form. Additionally, if we want to accommodate to the component reuse
concept, it must be ensured that the components dependent on sensors
and actuators can be deployed to various hardware platforms.

During system deployment the components of the software layer are
allocated to the elements of the platform layer that will execute them.
In this phase, there is a need to identify the dependencies of the software
components on sensors and actuators in order to ensure that the platform
elements targeted for deployment satisfy these dependencies.

To guarantee that the system satisfies its requirements, the developer
can perform various types of analysis. Such analysis can be used to check
both functional and extra-functional properties of a system. For the
results of the analysis to be valid, the effects of interaction of software
components with sensors and actuators must be taken into account.

Finally, in the synthesis phase system models are used to generate
executable code. In this phase, it must be ensured that the generated
code reflects the specifics of the platform and correctly implements the
communication with sensors and actuators.

3.2 Modeling sensors and actuators in component-based
approaches 27

Software Layer

SW component IO component

Mapping Layer
Mapping

Hardware Layer

IO allocation

Processing node

Allocation

IO deviceIO device

Allocation

Figure 3.1: Overview of the layered model for describing IO devices in
component based development.

3.2 Modeling sensors and actuators in com-
ponent-based approaches

To address the problem of specifying the interaction of software compo-
nents with sensors and actuators we have defined a model which allows
incorporation of sensors and actuators into component models, and ap-
plied it to ProCom.

To limit the amount of coupling between software components and
IO devices we have separated the model into three layers: software layer,
hardware layer andmapping layer. With this separation the software and
the hardware of the system can be described independently, making the
descriptions suitable for reuse in different scenarios. When developing a
concrete system, the independent software and hardware layers can be
connected using the mapping layer. The same principle of loose binding
that is introduced by the mapping layer is also used in the hardware
layer, where connections between processing nodes and IO devices are
defined by IO allocations. An abstract overview of these three layers is
given in Figure 3.1.

The IO device modeling approach introduces a clear distinction be-
tween types and instances for both hardware and software entities. Types
are entity definitions that are context-independent. They can be reused

28 Chapter 3. Sensors and actuators in CBD

in different settings or stored in repositories for future use. To use a type
in a concrete system, an instance of that type needs to be created. In
this case instances are not copies of the entity, but rather representatives
of the general entity in a specific context. For example, when describing
an IO device, the description actually defines a type. When creating a
system containing the IO device, a developer creates a new instance of
that type. In some cases, instances can also refine properties of the type
depending on the usage context.

The next three sections give a detailed description of the model lay-
ers, referencing the metamodel given in Figure 3.2. The metamodel is
defined using Ecore, a language for describing metamodels provided by
the Eclipse Modeling Framework [55].

3.2.1 Software layer

To enable describing interaction of component-based applications with
IO devices, we have introduced a new type of component – IO component.
This component type is derived from ordinary software component, pro-
viding the same interface and adhering to the same execution semantics.
The difference between normal software components and IO components
is in their internals. Device components do not provide an ability for de-
velopers to explicitly specify their realization, and do not contain any
device specific code (e.g. code for actual communication with hardware).
This is because they inherit their realization from IO devices once the
two are mapped together (described in detail in Section 3.2.3).

To be able to use device components in composites, and still treat
composites in a black-box manner, components have to specify their de-
vice dependencies on the interface level. Therefore we have also extended
the component interface with a device dependency list, containing refer-
ences to device components. In case of device components this list always
contains only one entry, referencing the device component itself. Primi-
tive components which are implemented by code always have an empty
IO dependency list. For composite components, the device dependency
list matches the combined dependencies of all of its subcomponents. It
should be noted that primitive and composite types of components are
not covered by the meta-model in Figure 3.2.

3.2 Modeling sensors and actuators in component-based
approaches 29

Figure 3.2: Ecore metamodel that defines the model for including sensors
and actuators in component models.

28 Chapter 3. Sensors and actuators in CBD

in different settings or stored in repositories for future use. To use a type
in a concrete system, an instance of that type needs to be created. In
this case instances are not copies of the entity, but rather representatives
of the general entity in a specific context. For example, when describing
an IO device, the description actually defines a type. When creating a
system containing the IO device, a developer creates a new instance of
that type. In some cases, instances can also refine properties of the type
depending on the usage context.

The next three sections give a detailed description of the model lay-
ers, referencing the metamodel given in Figure 3.2. The metamodel is
defined using Ecore, a language for describing metamodels provided by
the Eclipse Modeling Framework [55].

3.2.1 Software layer

To enable describing interaction of component-based applications with
IO devices, we have introduced a new type of component – IO component.
This component type is derived from ordinary software component, pro-
viding the same interface and adhering to the same execution semantics.
The difference between normal software components and IO components
is in their internals. Device components do not provide an ability for de-
velopers to explicitly specify their realization, and do not contain any
device specific code (e.g. code for actual communication with hardware).
This is because they inherit their realization from IO devices once the
two are mapped together (described in detail in Section 3.2.3).

To be able to use device components in composites, and still treat
composites in a black-box manner, components have to specify their de-
vice dependencies on the interface level. Therefore we have also extended
the component interface with a device dependency list, containing refer-
ences to device components. In case of device components this list always
contains only one entry, referencing the device component itself. Primi-
tive components which are implemented by code always have an empty
IO dependency list. For composite components, the device dependency
list matches the combined dependencies of all of its subcomponents. It
should be noted that primitive and composite types of components are
not covered by the meta-model in Figure 3.2.

3.2 Modeling sensors and actuators in component-based
approaches 29

Figure 3.2: Ecore metamodel that defines the model for including sensors
and actuators in component models.

30 Chapter 3. Sensors and actuators in CBD

3.2.2 Hardware layer

The hardware layer allows describing processing nodes that runnable
code can be deployed to, IO devices such as sensors and actuators, and
platforms which consist of instances of processing nodes and IO devices.
As reuse is one of the main characteristics of component-based approach,
the hardware layer model is also defined in a manner which promotes
reuse. It consists of three separate logical parts: processing node specifi-
cation, IO device specification and platform instantiation. In the follow-
ing sections we will go into the details of these three.

Processing node specification

Processing nodes describe hardware which can be a target for deployment
of executable code, for example microcontroller or ECUs. They are
reusable model entities as they only describe types of nodes, and do not
contain any information about how nodes are used or configured in a
particular system.

Processing nodes define a list of inputs and outputs they provide
using IO instances. Each IO instance references an IO type (e.g. one-bit
digital I/O, serial communication port, analog input, etc.).

Processing nodes and their inputs and outputs can also be charac-
terized by extra-functional properties such as their processing power,
available memory, behavioral models, delays for input and output func-
tions and other similar attributes.

IO device specification

IO Devices represent sensors and actuators that can be connected to
processing nodes in order to interact with the environment. Like pro-
cessing nodes, device definitions are reusable and define a type of sensor
or actuator, rather than an actual instance.

Each IO device references an IO component type for which the device
can be used as realization. It should be noted that one IO component
type can be referenced by many different devices. For example, a tem-
perature sensor device can be referenced by two different temperature
sensor implementations (i.e. IO devices). However, a device component
in the software layer does not depend on these particular implementa-
tions.

3.2 Modeling sensors and actuators in component-based
approaches 31

Similarly to the list of inputs and outputs provided by processing
nodes, devices define a list of inputs and outputs that they require for
communication.

Devices also support defining attributes that describe their extra-
functional properties.

Platform instantiation

As opposed to processing nodes and devices, platforms represent partic-
ular hardware configurations which are not aimed for reuse. They are
defined as sets of processing node and device instances, each instance
referencing its type.

Besides defining instances of processing nodes and devices, the plat-
form instantiation also describes how each device instance is connected
to a processing node instance. This is done using IO allocation model
entities. Each IO allocation references an IO instance of a processing
node and a required IO of a device, denoting to which inputs or out-
puts, and how, a sensor or actuator is connected. Once that allocation
of inputs and outputs is defined, the platform can also be checked to
determine if IO requirements of all device instances are fulfilled by the
processing nodes they are attached to.

3.2.3 Mapping layer

As already stated, the software and hardware model layers are defined
in manner which reduces their interdependency to a minimum, therefore
promoting reuse of structures defined in them. The mapping layer allows
defining a set of IO device mappings which reference an IO component in
the software layer and an IO device instance in the hardware layer. Each
mapping denotes which sensor or actuator will be used as implementation
for an IO component. By this, reusable units of the two layers are put
in the context of a system.

A mapping between an IO component and an IO device can be cre-
ated only if the type of the device instance references the type of the IO
component instance. This constraint ensures that a system is deployed
in a valid way.

The approach supports IO device mappings to be defined even in
early stages of system development, before the full implementation is

30 Chapter 3. Sensors and actuators in CBD

3.2.2 Hardware layer

The hardware layer allows describing processing nodes that runnable
code can be deployed to, IO devices such as sensors and actuators, and
platforms which consist of instances of processing nodes and IO devices.
As reuse is one of the main characteristics of component-based approach,
the hardware layer model is also defined in a manner which promotes
reuse. It consists of three separate logical parts: processing node specifi-
cation, IO device specification and platform instantiation. In the follow-
ing sections we will go into the details of these three.

Processing node specification

Processing nodes describe hardware which can be a target for deployment
of executable code, for example microcontroller or ECUs. They are
reusable model entities as they only describe types of nodes, and do not
contain any information about how nodes are used or configured in a
particular system.

Processing nodes define a list of inputs and outputs they provide
using IO instances. Each IO instance references an IO type (e.g. one-bit
digital I/O, serial communication port, analog input, etc.).

Processing nodes and their inputs and outputs can also be charac-
terized by extra-functional properties such as their processing power,
available memory, behavioral models, delays for input and output func-
tions and other similar attributes.

IO device specification

IO Devices represent sensors and actuators that can be connected to
processing nodes in order to interact with the environment. Like pro-
cessing nodes, device definitions are reusable and define a type of sensor
or actuator, rather than an actual instance.

Each IO device references an IO component type for which the device
can be used as realization. It should be noted that one IO component
type can be referenced by many different devices. For example, a tem-
perature sensor device can be referenced by two different temperature
sensor implementations (i.e. IO devices). However, a device component
in the software layer does not depend on these particular implementa-
tions.

3.2 Modeling sensors and actuators in component-based
approaches 31

Similarly to the list of inputs and outputs provided by processing
nodes, devices define a list of inputs and outputs that they require for
communication.

Devices also support defining attributes that describe their extra-
functional properties.

Platform instantiation

As opposed to processing nodes and devices, platforms represent partic-
ular hardware configurations which are not aimed for reuse. They are
defined as sets of processing node and device instances, each instance
referencing its type.

Besides defining instances of processing nodes and devices, the plat-
form instantiation also describes how each device instance is connected
to a processing node instance. This is done using IO allocation model
entities. Each IO allocation references an IO instance of a processing
node and a required IO of a device, denoting to which inputs or out-
puts, and how, a sensor or actuator is connected. Once that allocation
of inputs and outputs is defined, the platform can also be checked to
determine if IO requirements of all device instances are fulfilled by the
processing nodes they are attached to.

3.2.3 Mapping layer

As already stated, the software and hardware model layers are defined
in manner which reduces their interdependency to a minimum, therefore
promoting reuse of structures defined in them. The mapping layer allows
defining a set of IO device mappings which reference an IO component in
the software layer and an IO device instance in the hardware layer. Each
mapping denotes which sensor or actuator will be used as implementation
for an IO component. By this, reusable units of the two layers are put
in the context of a system.

A mapping between an IO component and an IO device can be cre-
ated only if the type of the device instance references the type of the IO
component instance. This constraint ensures that a system is deployed
in a valid way.

The approach supports IO device mappings to be defined even in
early stages of system development, before the full implementation is

32 Chapter 3. Sensors and actuators in CBD

complete. This, for example, allows early analysis of system properties
using the combination of software and hardware layers.

3.2.4 Example

To illustrate use of the proposed modeling approach, it will be demon-
strated on an example. The example model, shown in Figure 3.3, de-
scribes a simple system that consists of an IO component for output to
a display, a GDM2004 display device and an RCM2200 microcontroller.
It should be noted that the example does not capture all functionality
or hardware provided by the display or the microcontroller, but only the
parts needed to demonstrate the approach.

The IO device component for communication with a hardware display
provides interface for showing text messages. For this, the component
receives as input the message text, and position, in rows and columns,
where the message should appear.

The GDM2004 display provides only textual output capabilities, hav-
ing four lines with 20 character columns each. The characters are sent
to the display one at a time by writing data to a data register, with
each character printed at the position defined by the inner state of the
display, described by a cursor. The position of the cursor can be set at
any time by writing data to a control register, and is increased by one
column after each character write.

For the purpose of the example, the RCM2200 microcontroller will
provide two ports, PA and PE, which can be either used for parallel 8-bit
input or output, or as 8 separate single-bit inputs or outputs.

Processing node specification defines reusable model elements which
describe processing nodes, IO types, and IO instances provided by pro-
cessing nodes. In this example, processing node specification consist of a
single processing node type, the RCM2200 microcontroller, and two IO
types: OneBitIO which sends or receive s single bit value from a hard-
ware pin, and IO8BitPort which can be used to send or receive eight bits
in parallel through eight hardware pins. To describe the communication
capabilities of the microcontroller, RCM2200 contains four IO instances:
PE0, PE4 and PE5 of type OneBitIO, and PA of type IO8BitPort.

IO device specification provides reusable definitions of IO devices,
together with IOs that devices require for communication. IO device
specification for the example consists of an IO device GDM2004 Display.
The device defines four required IOs: registerSelect, rw and enable of

3.2 Modeling sensors and actuators in component-based
approaches 33

<IO Component>
Display Component

<Component Instance>
display

<IO Device Mapping>

<IO Device Instance>
gdm2004

<IO Device>
GDM2004 Display

<Required IO>
registerSelect

<Required IO>
rw

<Required IO>
enable

<Required IO>
data

<IO Instance>
PE0

<IO Instance>
PE4

<IO Instance>
PE5

<IO Instance>
PA

<IO Allocation>

<IO Allocation>

<IO Allocation>

<IO Allocation>

<IO>
OneBitIO

<IO>
IO8BitPort

target component

IO allocationsrequired IOs

required IO

target IOrequired IO

required IO

required IO target IO

target IO

target IO

type

type

target device

IO type

IO type

IO type

IO type

<Processing Node Instance>
rcm

<Processing Node>
RCM2200

processing node type

devices

IOs

Platform instantiation
model element

Processing node
specification model element

IO device specification
model element

Mapping model
element

Software model
element

Legend

Reference
Aggregation

<Platform><Deployment configuration>
device

mappings

processing nodes

Figure 3.3: Example system, consisting of an IO component for display
output, a GDM2004 display, and an RCM2200 microcontroller.

type OneBitIO, and data of type IO8BitPort.

Platform specification describes instances of processing nodes and IO
devices, and how the two are connected. The top-level model element of
this part of the code, a platform, consists of an instance of the RCM2200
processing node, named rcm. The processing node instance in turn con-
tains an instance of GDM2004 Display IO device, named gdm2004. The

32 Chapter 3. Sensors and actuators in CBD

complete. This, for example, allows early analysis of system properties
using the combination of software and hardware layers.

3.2.4 Example

To illustrate use of the proposed modeling approach, it will be demon-
strated on an example. The example model, shown in Figure 3.3, de-
scribes a simple system that consists of an IO component for output to
a display, a GDM2004 display device and an RCM2200 microcontroller.
It should be noted that the example does not capture all functionality
or hardware provided by the display or the microcontroller, but only the
parts needed to demonstrate the approach.

The IO device component for communication with a hardware display
provides interface for showing text messages. For this, the component
receives as input the message text, and position, in rows and columns,
where the message should appear.

The GDM2004 display provides only textual output capabilities, hav-
ing four lines with 20 character columns each. The characters are sent
to the display one at a time by writing data to a data register, with
each character printed at the position defined by the inner state of the
display, described by a cursor. The position of the cursor can be set at
any time by writing data to a control register, and is increased by one
column after each character write.

For the purpose of the example, the RCM2200 microcontroller will
provide two ports, PA and PE, which can be either used for parallel 8-bit
input or output, or as 8 separate single-bit inputs or outputs.

Processing node specification defines reusable model elements which
describe processing nodes, IO types, and IO instances provided by pro-
cessing nodes. In this example, processing node specification consist of a
single processing node type, the RCM2200 microcontroller, and two IO
types: OneBitIO which sends or receive s single bit value from a hard-
ware pin, and IO8BitPort which can be used to send or receive eight bits
in parallel through eight hardware pins. To describe the communication
capabilities of the microcontroller, RCM2200 contains four IO instances:
PE0, PE4 and PE5 of type OneBitIO, and PA of type IO8BitPort.

IO device specification provides reusable definitions of IO devices,
together with IOs that devices require for communication. IO device
specification for the example consists of an IO device GDM2004 Display.
The device defines four required IOs: registerSelect, rw and enable of

3.2 Modeling sensors and actuators in component-based
approaches 33

<IO Component>
Display Component

<Component Instance>
display

<IO Device Mapping>

<IO Device Instance>
gdm2004

<IO Device>
GDM2004 Display

<Required IO>
registerSelect

<Required IO>
rw

<Required IO>
enable

<Required IO>
data

<IO Instance>
PE0

<IO Instance>
PE4

<IO Instance>
PE5

<IO Instance>
PA

<IO Allocation>

<IO Allocation>

<IO Allocation>

<IO Allocation>

<IO>
OneBitIO

<IO>
IO8BitPort

target component

IO allocationsrequired IOs

required IO

target IOrequired IO

required IO

required IO target IO

target IO

target IO

type

type

target device

IO type

IO type

IO type

IO type

<Processing Node Instance>
rcm

<Processing Node>
RCM2200

processing node type

devices

IOs

Platform instantiation
model element

Processing node
specification model element

IO device specification
model element

Mapping model
element

Software model
element

Legend

Reference
Aggregation

<Platform><Deployment configuration>
device

mappings

processing nodes

Figure 3.3: Example system, consisting of an IO component for display
output, a GDM2004 display, and an RCM2200 microcontroller.

type OneBitIO, and data of type IO8BitPort.

Platform specification describes instances of processing nodes and IO
devices, and how the two are connected. The top-level model element of
this part of the code, a platform, consists of an instance of the RCM2200
processing node, named rcm. The processing node instance in turn con-
tains an instance of GDM2004 Display IO device, named gdm2004. The

34 Chapter 3. Sensors and actuators in CBD

connection between the IO device instance and the processing node in-
stance is defined by four IO allocations contained by gdm2004. These
allocations connect registerSelect, rw, enable and data required IOs of the
device to PE0, PE4 PE5 and PA IOs provided by the node, respectively.

The software layer of the example, which describes software com-
ponents and connections between them, consists of a single IO compo-
nent type, Display Component, and an instance of that component type
named display.

The software and the hardware layers of the model are connected
by the mapping layer. In this example, the mapping layer consists of
a deployment configuration, which contains only one device mapping.
The mapping connects the display IO device component instance and
the gdm2004 IO device instance.

3.3 Automatic synthesis of executable code

Code synthesis is a common way to provide executable code from soft-
ware models. Generation of efficient code, compared to interpretation-
based model execution, is especially valuable in embedded systems do-
main, where processing resources and available memory are scarce. In
component-based systems, synthesis most often implies creating glue-
code which connects reusable code fragments defined and encapsulated
by software components. In this section we define how similar synthesis
principles can be combined with the previously presented meta-model
which includes IO devices, in order to automatically generate code for
communication with sensors and actuators. The synthesis is based on
two principles – (i) definition of context-independent reusable code el-
ements, and (ii) automatic generation of system-specific code based on
a model of the system. The result of the synthesis is a combination of
code elements that gives a system-specific deployable functionality. An
overview of the generation process is given in Figure 3.4.

The synthesis method is based on the C programming language, as
C is the language still most common language used in the embedded
domain. However, the principles used in this solution are not limited to
C and could also be implemented in other programming languages.

As already mentioned, the synthesis method separates predefined
reusable code elements, to which we refer to as input code, and generated
system-specific code elements which we call output code.

3.3 Automatic synthesis of executable code 35

Reusable model entities and code

IO component

IO
component

code

IO device
code

IO code
IO

instance
code

Mapping
code

Allocation
code

Device mapping

IO device

IO allocation

IO IO instance

IO
component

code

IO device
code IO code

IO
instance

code

Mapping
code

Allocation
code

System model

Generated code

Synthesis result

Legend
<name>

<name>

Code reference

Model reference

Input code
definition

Model element

Code element

Code output

Figure 3.4: Overview of the synthesis process.

The following sections give a detailed description of input and out-
put code. The code element descriptions are complemented by Fig-
ure 3.5, which gives an overview of all the elements, the parts that the
elements consist of, and the relations between these parts. The descrip-
tions also include code examples, based on the example system given in
Section 3.2.4.

34 Chapter 3. Sensors and actuators in CBD

connection between the IO device instance and the processing node in-
stance is defined by four IO allocations contained by gdm2004. These
allocations connect registerSelect, rw, enable and data required IOs of the
device to PE0, PE4 PE5 and PA IOs provided by the node, respectively.

The software layer of the example, which describes software com-
ponents and connections between them, consists of a single IO compo-
nent type, Display Component, and an instance of that component type
named display.

The software and the hardware layers of the model are connected
by the mapping layer. In this example, the mapping layer consists of
a deployment configuration, which contains only one device mapping.
The mapping connects the display IO device component instance and
the gdm2004 IO device instance.

3.3 Automatic synthesis of executable code

Code synthesis is a common way to provide executable code from soft-
ware models. Generation of efficient code, compared to interpretation-
based model execution, is especially valuable in embedded systems do-
main, where processing resources and available memory are scarce. In
component-based systems, synthesis most often implies creating glue-
code which connects reusable code fragments defined and encapsulated
by software components. In this section we define how similar synthesis
principles can be combined with the previously presented meta-model
which includes IO devices, in order to automatically generate code for
communication with sensors and actuators. The synthesis is based on
two principles – (i) definition of context-independent reusable code el-
ements, and (ii) automatic generation of system-specific code based on
a model of the system. The result of the synthesis is a combination of
code elements that gives a system-specific deployable functionality. An
overview of the generation process is given in Figure 3.4.

The synthesis method is based on the C programming language, as
C is the language still most common language used in the embedded
domain. However, the principles used in this solution are not limited to
C and could also be implemented in other programming languages.

As already mentioned, the synthesis method separates predefined
reusable code elements, to which we refer to as input code, and generated
system-specific code elements which we call output code.

3.3 Automatic synthesis of executable code 35

Reusable model entities and code

IO component

IO
component

code

IO device
code

IO code
IO

instance
code

Mapping
code

Allocation
code

Device mapping

IO device

IO allocation

IO IO instance

IO
component

code

IO device
code IO code

IO
instance

code

Mapping
code

Allocation
code

System model

Generated code

Synthesis result

Legend
<name>

<name>

Code reference

Model reference

Input code
definition

Model element

Code element

Code output

Figure 3.4: Overview of the synthesis process.

The following sections give a detailed description of input and out-
put code. The code element descriptions are complemented by Fig-
ure 3.5, which gives an overview of all the elements, the parts that the
elements consist of, and the relations between these parts. The descrip-
tions also include code examples, based on the example system given in
Section 3.2.4.

36 Chapter 3. Sensors and actuators in CBD

IO component code

IO component struct
Data variables [0..*]
IO allocation pointer
Entry function pointer

IO device code

Entry function implementation

IO allocation struct
IO interface struct instance [1..*]

Mapping code

IO component struct instance

Allocation mapping function

Entry function mapping function

Allocation code

IO allocation struct instance

Allocation function
Allocation function call [1..*]

IO instance code

IO interface assignment function
IO function assignment [1..*]

IO function implementation

IO code

Data definition struct [0..*]
Variable definition [1..*]

IO interface struct
IO function pointer definition [1..*]

Legend

<name>

Implementation or
instantiation ReferenceValue assignment

Code element Code element part<name>

Figure 3.5: Overview of the code elements used and generated by the
synthesis, and relations between them.

3.3.1 Input code definition

Input code elements are defined for elements of the model which are
intended to be reused. These are IO components in the software layer, IO
devices and IOs in the IO device specification of the hardware layer, and
IO instances in the processing node specification part of the hardware
layer. Each input code element is named after the model element it is
attached to. We will now give a detailed description of the input code
elements.

3.3 Automatic synthesis of executable code 37

IO component code

IO component code is used to provide a common interface which allows
connecting components in the software layer to various implementations
of an IO device. As this code contains no implementation of function-
ality, it leaves the software layer completely independent of platform-
specific implementation.

IO component code consists of a definition of a structure that in-
cludes: (a) definitions of zero or more variables to be used for commu-
nicating data to and from an IO device, and (b) pointers for mapping
and allocating appropriate platform-specific functionality to the software
component layer. While for storing IO allocation data a void pointer is
used, device mapping is done via a pointer to an entry function which
implements the IO device-specific functionality.

It should be noted that IO component code only defines a signature
(list of parameters and the return type) of the entry function, while
the implementation is defined in the IO device code. The single input
argument to the entry function is the IO component structure, which is
used by the entry function implementation to assign or read data values,
and use appropriate platform IO functions. A description of how these
pointers are assigned is given in Section 3.3.2.

Example: The input code for the Display Component defined in the
example system can be seen in Listing 3.1. The IO component structure
begins at line 1. Lines 2 and 3 contain data variables that will be used for
communication between the component and the IO device. The pointer
for referencing allocation data is defined on line 6, and line 7 defines the
pointer for referencing the IO device entry function implementation.

1 typedef struct DisplayComponent {

2 int row;

3 int column;

4 char* text;

5

6 void * ioAllocation; // Pointer to IO allocation

7 void (* entryFunction) (struct DisplayComponent *);

// Pointer to device specific entry function

8 } DisplayComponent;

Listing 3.1: IO component input code for DisplayComponent.

36 Chapter 3. Sensors and actuators in CBD

IO component code

IO component struct
Data variables [0..*]
IO allocation pointer
Entry function pointer

IO device code

Entry function implementation

IO allocation struct
IO interface struct instance [1..*]

Mapping code

IO component struct instance

Allocation mapping function

Entry function mapping function

Allocation code

IO allocation struct instance

Allocation function
Allocation function call [1..*]

IO instance code

IO interface assignment function
IO function assignment [1..*]

IO function implementation

IO code

Data definition struct [0..*]
Variable definition [1..*]

IO interface struct
IO function pointer definition [1..*]

Legend

<name>

Implementation or
instantiation ReferenceValue assignment

Code element Code element part<name>

Figure 3.5: Overview of the code elements used and generated by the
synthesis, and relations between them.

3.3.1 Input code definition

Input code elements are defined for elements of the model which are
intended to be reused. These are IO components in the software layer, IO
devices and IOs in the IO device specification of the hardware layer, and
IO instances in the processing node specification part of the hardware
layer. Each input code element is named after the model element it is
attached to. We will now give a detailed description of the input code
elements.

3.3 Automatic synthesis of executable code 37

IO component code

IO component code is used to provide a common interface which allows
connecting components in the software layer to various implementations
of an IO device. As this code contains no implementation of function-
ality, it leaves the software layer completely independent of platform-
specific implementation.

IO component code consists of a definition of a structure that in-
cludes: (a) definitions of zero or more variables to be used for commu-
nicating data to and from an IO device, and (b) pointers for mapping
and allocating appropriate platform-specific functionality to the software
component layer. While for storing IO allocation data a void pointer is
used, device mapping is done via a pointer to an entry function which
implements the IO device-specific functionality.

It should be noted that IO component code only defines a signature
(list of parameters and the return type) of the entry function, while
the implementation is defined in the IO device code. The single input
argument to the entry function is the IO component structure, which is
used by the entry function implementation to assign or read data values,
and use appropriate platform IO functions. A description of how these
pointers are assigned is given in Section 3.3.2.

Example: The input code for the Display Component defined in the
example system can be seen in Listing 3.1. The IO component structure
begins at line 1. Lines 2 and 3 contain data variables that will be used for
communication between the component and the IO device. The pointer
for referencing allocation data is defined on line 6, and line 7 defines the
pointer for referencing the IO device entry function implementation.

1 typedef struct DisplayComponent {

2 int row;

3 int column;

4 char* text;

5

6 void * ioAllocation; // Pointer to IO allocation

7 void (* entryFunction) (struct DisplayComponent *);

// Pointer to device specific entry function

8 } DisplayComponent;

Listing 3.1: IO component input code for DisplayComponent.

38 Chapter 3. Sensors and actuators in CBD

IO code

IO code has a role similar to IO component code. It too contains no
implementation, but only defines an interface for communicating with
an IO device using a specific IO type. The main element of IO code is the
IO interface structure. This function contains pointers (signatures) for
one or more functions that will provide platform-specific implementation
of communication. The number of functions can differ for different kinds
of IOs, and some of the functions can also be used for configuration of
the communication channel, rather than the actual communication. IO
code can also contain definitions of data structures used as arguments
of the communication functions in case the arguments are not basic C
types. How an instance of the IO interface structure is used to allocate
IO devices to IOs is described in Section 3.3.2.

Example: The IO code defining the interface for OneBitIO is shown
in Listing 3.2. Lines 2 to 5 of the listing define the data structure for
configuring the port. The IO interface structure that defines pointers
for functions used for interaction with the port is located at lines 8 to
12. The interface structure defines three functions, one for writing data
to the port, one for reading data from the port, and one for configuring
the port using a data structure defined in lines 2 to 5.

1 // Data definition

2 typedef struct {

3 int isOutput;

4 int isOpenDrain;

5 } OneBitIO_configData;

6

7 // IO interface structure

8 typedef struct {

9 void (* writeData) (int);

10 void (* readData) (int*);

11 void (* configure) (OneBitIO_configData *);

12 } OneBitIO;

Listing 3.2: IO input code for OneBitIO.

IO instance code

IO instance code gives a platform-specific implementation for the IO
communication functions defined in the interface structure of the IO
code. For IO instance code to be valid it must implement all the functions

3.3 Automatic synthesis of executable code 39

defined in the interface structure. IO instance code also defines an IO
interface assignment function that receives an IO interface structure,
and assigns function implementations to the function pointers of the
structure. How this function is used for the actual allocation is described
in Section 3.3.2.

Example: Listing 3.3 shows the IO instance code for microcontroller
port PE0. Lines 2 to 12 contain functions that implement controller-
specific communication through OnBitIO. These functions adhere to
function signatures defined in the IO interface structure provided in the
previous section. The IO interface assignment function, which assigns
function definitions contained in lines 2 to 12 to an instance of IO inter-
face structure is located on lines 16 to 20.

1 // START functions implementing IO

2 void PE0_writeData(int value) {

3 BitWrPortI(PADR , &PEDRShadow , value , 0);

4 }

5

6 void PE0_readData(int* value) {

7 BitRdPortI(PADR , &PEDRShadow , value , 0);

8 }

9

10 void PE0_configure(OneBitIO_configData* data) {

11 BitWrPortI(PEFR , &PEFRShadow , 0, (1<<0));

12 BitWrPortI(PEDDR , &PEDDRShadow , data ->isOutput ,

(1<<0) & PEDDRShadow);

13 }

14 // END functions implementing IO

15

16 // Assigning functions for allocation

17 void allocate_PE0(OneBitIO* allocation) {

18 allocation ->writeData = PE0_writeData;

19 allocation ->readData = PE0_readData;

20 allocation ->configure = PE0_configure;

21 }

Listing 3.3: IO instance input code for PE0.

IO device code

IO device code provides implementation for a specific kind of sensor or
actuator. This includes the protocol used to communicate with the IO
device, possible adaptation of data, and calls to IO functions.

38 Chapter 3. Sensors and actuators in CBD

IO code

IO code has a role similar to IO component code. It too contains no
implementation, but only defines an interface for communicating with
an IO device using a specific IO type. The main element of IO code is the
IO interface structure. This function contains pointers (signatures) for
one or more functions that will provide platform-specific implementation
of communication. The number of functions can differ for different kinds
of IOs, and some of the functions can also be used for configuration of
the communication channel, rather than the actual communication. IO
code can also contain definitions of data structures used as arguments
of the communication functions in case the arguments are not basic C
types. How an instance of the IO interface structure is used to allocate
IO devices to IOs is described in Section 3.3.2.

Example: The IO code defining the interface for OneBitIO is shown
in Listing 3.2. Lines 2 to 5 of the listing define the data structure for
configuring the port. The IO interface structure that defines pointers
for functions used for interaction with the port is located at lines 8 to
12. The interface structure defines three functions, one for writing data
to the port, one for reading data from the port, and one for configuring
the port using a data structure defined in lines 2 to 5.

1 // Data definition

2 typedef struct {

3 int isOutput;

4 int isOpenDrain;

5 } OneBitIO_configData;

6

7 // IO interface structure

8 typedef struct {

9 void (* writeData) (int);

10 void (* readData) (int*);

11 void (* configure) (OneBitIO_configData *);

12 } OneBitIO;

Listing 3.2: IO input code for OneBitIO.

IO instance code

IO instance code gives a platform-specific implementation for the IO
communication functions defined in the interface structure of the IO
code. For IO instance code to be valid it must implement all the functions

3.3 Automatic synthesis of executable code 39

defined in the interface structure. IO instance code also defines an IO
interface assignment function that receives an IO interface structure,
and assigns function implementations to the function pointers of the
structure. How this function is used for the actual allocation is described
in Section 3.3.2.

Example: Listing 3.3 shows the IO instance code for microcontroller
port PE0. Lines 2 to 12 contain functions that implement controller-
specific communication through OnBitIO. These functions adhere to
function signatures defined in the IO interface structure provided in the
previous section. The IO interface assignment function, which assigns
function definitions contained in lines 2 to 12 to an instance of IO inter-
face structure is located on lines 16 to 20.

1 // START functions implementing IO

2 void PE0_writeData(int value) {

3 BitWrPortI(PADR , &PEDRShadow , value , 0);

4 }

5

6 void PE0_readData(int* value) {

7 BitRdPortI(PADR , &PEDRShadow , value , 0);

8 }

9

10 void PE0_configure(OneBitIO_configData* data) {

11 BitWrPortI(PEFR , &PEFRShadow , 0, (1<<0));

12 BitWrPortI(PEDDR , &PEDDRShadow , data ->isOutput ,

(1<<0) & PEDDRShadow);

13 }

14 // END functions implementing IO

15

16 // Assigning functions for allocation

17 void allocate_PE0(OneBitIO* allocation) {

18 allocation ->writeData = PE0_writeData;

19 allocation ->readData = PE0_readData;

20 allocation ->configure = PE0_configure;

21 }

Listing 3.3: IO instance input code for PE0.

IO device code

IO device code provides implementation for a specific kind of sensor or
actuator. This includes the protocol used to communicate with the IO
device, possible adaptation of data, and calls to IO functions.

40 Chapter 3. Sensors and actuators in CBD

The IO device code provides a device specific implementation for a
IO component using an entry function. This function has a signature
matching the signature of the entry function definition in the IO compo-
nent code (described in Section 3.3.1. The IO requirements of a device
are captured by an IO allocation structure definition. The structure
contains one member for each required IO, using IO interface structures
defined by the IO code for member types.

1 // Structure for IO allocation

2 typedef struct GDM2004_allocation{

3 OneBitIO registerSelect;

4 OneBitIO rw;

5 OneBitIO enable;

6 IO8bitPort data;

7 } GDM2004_allocation;

8

9 // Implementation of the entry function

10 void entry_GDM2004(DisplayComponent* instanceData) {

11 int i;

12 GDM2004_allocation* alloc = (GDM2004_allocation *)

instanceData ->ioAllocation;

13

14 GDM2004SetPosition(instanceData ->column ,

instanceData ->row , alloc);

15 for (i=0; i < strlen(instanceData ->text; ++i) {

16 GDM2004PrintChar(instanceData ->text[i], alloc);

17 }

18 }

19

20 void GDM2004SetPosition(int column , int row ,

GDM2004_allocation* alloc) {

21 // Implementation skipped

22 }

23

24 void GDM2004PrintChar(char c, GDM2004_allocation*

alloc) {

25 alloc ->registerSelect.writeData (1);

26 alloc ->rw.writeData (0);

27 alloc ->enable.writeData (1);

28 Delay_60usec ();

29 alloc ->data.writeData(c);

30 Delay_60usec ();

31 alloc ->enable.writeData (0);

32 Delay_60usec ();

33 }

Listing 3.4: IO device input code for GDM2400.

3.3 Automatic synthesis of executable code 41

As it will be described in the following sections, an instance of this struc-
ture will be referenced by the allocation pointer in the IO component
code, allowing calls to platform-specific IO functions.

Example: The IO device code for GDM2004 Display is given in
Listing 3.4. This code provides the GDM2004 LCD display specific im-
plementation for Display Component. The definition of the IO alloca-
tion structure for the device starts at line 2. The structure contains four
members, one for each IO required by the device. Lines 10 to 18 con-
tain the the GDM2004-specific implementation of the GDM2004 Display
entry function, matching the signature of the function pointer defined
in the IO component code. On line 12, the allocation data is extracted
from the IO component structure of the Display Component instance.
This data is then passed to the device-specific functions on lines 14 and
16. How the IO interface structures of the allocation data are used for
communication can be seen in the GDM2004PrintChar function which
starts on line 26.

3.3.2 Output code generation

Generated output code creates connections between previously described
input code elements, allowing them to form a system-specific function-
ality. How the input elements should be connected is defined by system-
specific model elements: IO allocations and device mappings. Output
code for the two is generated in separation, and the details of the gen-
eration are given in the following sections.

IO allocation code

IO allocation code provides connections between instances of IO devices
and IOs provided by processing nodes. It enables IO devices to make calls
to low-level IO functions, while abstracting the specifics of IO communi-
cation. IO allocation code generation starts with creating an instance of
the IO allocation structure for each IO device instance of the platform
model. The exact type of the structure is determined by the IO device
referenced by the instance. A unique name for each structure instance
is inferred from the name of the device instance. Is should be noted
that one device can have multiple allocations, one for each required IO,
but still only one IO structure instance, covering all the allocations, is
generated.

40 Chapter 3. Sensors and actuators in CBD

The IO device code provides a device specific implementation for a
IO component using an entry function. This function has a signature
matching the signature of the entry function definition in the IO compo-
nent code (described in Section 3.3.1. The IO requirements of a device
are captured by an IO allocation structure definition. The structure
contains one member for each required IO, using IO interface structures
defined by the IO code for member types.

1 // Structure for IO allocation

2 typedef struct GDM2004_allocation{

3 OneBitIO registerSelect;

4 OneBitIO rw;

5 OneBitIO enable;

6 IO8bitPort data;

7 } GDM2004_allocation;

8

9 // Implementation of the entry function

10 void entry_GDM2004(DisplayComponent* instanceData) {

11 int i;

12 GDM2004_allocation* alloc = (GDM2004_allocation *)

instanceData ->ioAllocation;

13

14 GDM2004SetPosition(instanceData ->column ,

instanceData ->row , alloc);

15 for (i=0; i < strlen(instanceData ->text; ++i) {

16 GDM2004PrintChar(instanceData ->text[i], alloc);

17 }

18 }

19

20 void GDM2004SetPosition(int column , int row ,

GDM2004_allocation* alloc) {

21 // Implementation skipped

22 }

23

24 void GDM2004PrintChar(char c, GDM2004_allocation*

alloc) {

25 alloc ->registerSelect.writeData (1);

26 alloc ->rw.writeData (0);

27 alloc ->enable.writeData (1);

28 Delay_60usec ();

29 alloc ->data.writeData(c);

30 Delay_60usec ();

31 alloc ->enable.writeData (0);

32 Delay_60usec ();

33 }

Listing 3.4: IO device input code for GDM2400.

3.3 Automatic synthesis of executable code 41

As it will be described in the following sections, an instance of this struc-
ture will be referenced by the allocation pointer in the IO component
code, allowing calls to platform-specific IO functions.

Example: The IO device code for GDM2004 Display is given in
Listing 3.4. This code provides the GDM2004 LCD display specific im-
plementation for Display Component. The definition of the IO alloca-
tion structure for the device starts at line 2. The structure contains four
members, one for each IO required by the device. Lines 10 to 18 con-
tain the the GDM2004-specific implementation of the GDM2004 Display
entry function, matching the signature of the function pointer defined
in the IO component code. On line 12, the allocation data is extracted
from the IO component structure of the Display Component instance.
This data is then passed to the device-specific functions on lines 14 and
16. How the IO interface structures of the allocation data are used for
communication can be seen in the GDM2004PrintChar function which
starts on line 26.

3.3.2 Output code generation

Generated output code creates connections between previously described
input code elements, allowing them to form a system-specific function-
ality. How the input elements should be connected is defined by system-
specific model elements: IO allocations and device mappings. Output
code for the two is generated in separation, and the details of the gen-
eration are given in the following sections.

IO allocation code

IO allocation code provides connections between instances of IO devices
and IOs provided by processing nodes. It enables IO devices to make calls
to low-level IO functions, while abstracting the specifics of IO communi-
cation. IO allocation code generation starts with creating an instance of
the IO allocation structure for each IO device instance of the platform
model. The exact type of the structure is determined by the IO device
referenced by the instance. A unique name for each structure instance
is inferred from the name of the device instance. Is should be noted
that one device can have multiple allocations, one for each required IO,
but still only one IO structure instance, covering all the allocations, is
generated.

42 Chapter 3. Sensors and actuators in CBD

The generation continues with creating an allocation function which
assigns appropriate IO functions to function pointers in the IO alloca-
tion structure instances. The allocation function contains a call to an IO
interface assignment function (defined by the IO instance input code) for
each allocation element. The exact function name to be used is deter-
mined by the IO instance referenced by the allocations. The argument
for the function call, an IO allocation structure instance and its IO inter-
face structure member, are determined by the device instance element
which is the parent of the allocation model element, and the required IO
referenced by the allocation.

Example: The allocation code, shown in Listing 3.5, starts by cre-
ating a new instance of the IO allocation structure for GDM2004Device
named gdm2004. The allocation function which calls an appropriate IO
interface assignment functions for each IO required by the device in-
stances begins on line 3. The body of this function is generated based
on the IO allocations defined in the system model. As the only device in-
stance in the example is gdm2004, the function only assigns the members
of its IO allocation structure.

1 GDM2004_allocation gdm2004;

2

3 void doIOAllocation () {

4 allocate_PE0 (&(gdm2004.registerSelect));

5 allocate_PE4 (&(gdm2004.rw));

6 allocate_PE5 (&(gdm2004.enable));

7 allocate_PA (&(gdm2004.data));

8 }

Listing 3.5: Allocation output code for the example system.

Device mapping code

Device mapping code connects IO software component code to the plat-
form-specific code. Similarly to the allocation code, the generation be-
gins with creating one instance of the IO component structure for each
instance of an IO device component, using the IO component referenced
by the instance to determine the exact structure type.

After this, an allocation mapping function is created. The purpose of
this function is to connect the IO allocation structure instances of the IO
allocation code with the previously generated IO component structure
instances. For each device mapping, one statement in the function body

3.3 Automatic synthesis of executable code 43

is created. In each of these statements, an IO allocation structure is
assigned to an ioAllocation void pointer of an IO component structure
instance. The structure instances to be used are defined by the IO
component instance and IO device instance referenced by the device
mapping.

The final step of device mapping code generation is creation of a
function which is responsible for mapping entry functions defined by IO
device code to the IO component instances. Each statement of this func-
tion contains an assignment of an entry function to the entry function
pointer of an IO component structure instance, one for each device map-
ping model element. The structure instance to be used is determined
by the IO component instance referenced by the mapping. The entry
function for the assignment is selected by the IO device type reference
of the IO device instance which is referenced by the mapping.

Example: The code for device mapping is given in Listing 3.6 and
starts with a definition of DisplayComponent IO component structure
named display. IO allocation mapping is performed by a function be-
ginning at line 3. As again the only device instance in the system is
gdm2004, the only line of this function assigns its IO allocation struc-
ture to the IO allocation structure pointer of display. The function that
implements mapping of device entry functions starts on line 7.It assigns
the entry function of GDM2004 Device to display.

Once defined, the three functions defined by the IO allocation and
mapping output code can be called during system initialization to bind
together the input code to form system-specific functionality.

1 DisplayComponent display;

2

3 void doAllocationMapping () {

4 display.ioAllocation = &gdm2004;

5 }

6

7 void doEntryMapping () {

8 display.entryFunction = entry_GDM2004;

9 }

Listing 3.6: Mapping output code for the example system.

42 Chapter 3. Sensors and actuators in CBD

The generation continues with creating an allocation function which
assigns appropriate IO functions to function pointers in the IO alloca-
tion structure instances. The allocation function contains a call to an IO
interface assignment function (defined by the IO instance input code) for
each allocation element. The exact function name to be used is deter-
mined by the IO instance referenced by the allocations. The argument
for the function call, an IO allocation structure instance and its IO inter-
face structure member, are determined by the device instance element
which is the parent of the allocation model element, and the required IO
referenced by the allocation.

Example: The allocation code, shown in Listing 3.5, starts by cre-
ating a new instance of the IO allocation structure for GDM2004Device
named gdm2004. The allocation function which calls an appropriate IO
interface assignment functions for each IO required by the device in-
stances begins on line 3. The body of this function is generated based
on the IO allocations defined in the system model. As the only device in-
stance in the example is gdm2004, the function only assigns the members
of its IO allocation structure.

1 GDM2004_allocation gdm2004;

2

3 void doIOAllocation () {

4 allocate_PE0 (&(gdm2004.registerSelect));

5 allocate_PE4 (&(gdm2004.rw));

6 allocate_PE5 (&(gdm2004.enable));

7 allocate_PA (&(gdm2004.data));

8 }

Listing 3.5: Allocation output code for the example system.

Device mapping code

Device mapping code connects IO software component code to the plat-
form-specific code. Similarly to the allocation code, the generation be-
gins with creating one instance of the IO component structure for each
instance of an IO device component, using the IO component referenced
by the instance to determine the exact structure type.

After this, an allocation mapping function is created. The purpose of
this function is to connect the IO allocation structure instances of the IO
allocation code with the previously generated IO component structure
instances. For each device mapping, one statement in the function body

3.3 Automatic synthesis of executable code 43

is created. In each of these statements, an IO allocation structure is
assigned to an ioAllocation void pointer of an IO component structure
instance. The structure instances to be used are defined by the IO
component instance and IO device instance referenced by the device
mapping.

The final step of device mapping code generation is creation of a
function which is responsible for mapping entry functions defined by IO
device code to the IO component instances. Each statement of this func-
tion contains an assignment of an entry function to the entry function
pointer of an IO component structure instance, one for each device map-
ping model element. The structure instance to be used is determined
by the IO component instance referenced by the mapping. The entry
function for the assignment is selected by the IO device type reference
of the IO device instance which is referenced by the mapping.

Example: The code for device mapping is given in Listing 3.6 and
starts with a definition of DisplayComponent IO component structure
named display. IO allocation mapping is performed by a function be-
ginning at line 3. As again the only device instance in the system is
gdm2004, the only line of this function assigns its IO allocation struc-
ture to the IO allocation structure pointer of display. The function that
implements mapping of device entry functions starts on line 7.It assigns
the entry function of GDM2004 Device to display.

Once defined, the three functions defined by the IO allocation and
mapping output code can be called during system initialization to bind
together the input code to form system-specific functionality.

1 DisplayComponent display;

2

3 void doAllocationMapping () {

4 display.ioAllocation = &gdm2004;

5 }

6

7 void doEntryMapping () {

8 display.entryFunction = entry_GDM2004;

9 }

Listing 3.6: Mapping output code for the example system.

44 Chapter 3. Sensors and actuators in CBD

3.4 Implementation and evaluation

The IO device modeling and code synthesis approach proposed in this
chapter has been implemented as a prototype tool. The following sec-
tions first describe the details of the implementation, and then provide
information about how the tool was used to evaluate the approach.

3.4.1 Implementation

The prototype tool for modeling of sensors and actuators and automatic
code synthesis of code for communication using these devices was im-
plemented in the context of the ProCom component model. To provide
integration of IO device modeling with ProCom, the prototype tool was
build as a plug-in for PRIDE [8] – an Eclipse based integrated deve-
lopment environment for ProCom. This approach also allowed use of
Eclipse Modeling Framework [55] to define meta-model for modeling IO
devices, and to create Java code for model elements and visual model
editors. Although most of the new model elements were defined as an
addition to ProCom ones, the standard ProCom meta-model had to be
updated to allow definition of IO components and IO dependencies inside
the software model.

The part of the tool for automatic code synthesis relies on Eclipse
Modeling Framework [55] for model traversal and Java for code gener-
ation. The tool relies on universally-unique identifiers to link reusable
model elements with files with pre-defined input code elements, and gen-
erates the mapping and allocation code. The only element left out of
automatic synthesis process is a call from standard ProCom component
entry function to the IO device entry function mapped by the synthe-
sis process, as it would require making changes to standard ProCom
synthesis.

3.4.2 Evaluation

The aim of evaluation of work presented in this chapter was to (i) test
whether the method can be used to model a realistic system and gener-
ate correct executable code, and (ii) measure the overhead of the gener-
ated code in both program size and execution time compared to hand-
written code. For this purpose we have used the previously described
example containing a GMD2004 display connected to a RCM2200 mi-

3.4 Implementation and evaluation 45

crocontroller. As current implementation of ProCom synthesis does not
provide synthesis of code RCM2200, the test have been executed on the
generated code in isolation, by directly calling the mapped IO device
entry function.

For the first part of evaluation was preformed by first creating the
system model, and then and synthesizing the communication code code.
The aim of the test was filling out all lines of display with text. As
a result, the display was showing expected output, confirming that the
model and synthesized code are valid.

Overhead of the generated code was measured by comparing four dif-
ferent implementations of functionality which initializes communication
with the display and fills one line of the display with an output. The first
implementation used a pre-existing hand-written library for communica-
tion with the display. The second implementation used code synthesized
by the method proposed in this chapter, with input code elements based
on the code from the library used in the first implementation. For the
third implementation, the code from the first implementation was opti-
mized by composing all the code needed for outputting one line to the
display into one function, thus removing all unnecessary code and func-
tion calls. The fourth implementation also used synthesized code, but
the input code elements were based on the third, optimized implemen-
tation.

While the deployed program size measurements took into account the
whole program, including the program initialization and code stack of
RCM2200, the execution time measurement included only the function
call for outputting a line on the display. To perform more accurate mea-
surements of short time intervals, the execution time was measured for
3000 consecutive calls to the output function, and calculated by dividing
the accumulated time by the number of function calls. Each execution
time measurement was repeated 10 times to account to possible execu-
tion anomalies. However, as the program executed on the microcon-
troller without possible preemptions, all measurements for 3000 output
function calls were within a range of 5 milliseconds, which is a negligible
difference when scaled to execution of one function call. The results of
the measurements, together with the calculated overhead, are given in
Table 3.1.

The results show that execution time overhead for the synthesized
code compared to the hand-written one is 59.74% for the first and second
implementation alternative (based on existing library code), and 41.57%

44 Chapter 3. Sensors and actuators in CBD

3.4 Implementation and evaluation

The IO device modeling and code synthesis approach proposed in this
chapter has been implemented as a prototype tool. The following sec-
tions first describe the details of the implementation, and then provide
information about how the tool was used to evaluate the approach.

3.4.1 Implementation

The prototype tool for modeling of sensors and actuators and automatic
code synthesis of code for communication using these devices was im-
plemented in the context of the ProCom component model. To provide
integration of IO device modeling with ProCom, the prototype tool was
build as a plug-in for PRIDE [8] – an Eclipse based integrated deve-
lopment environment for ProCom. This approach also allowed use of
Eclipse Modeling Framework [55] to define meta-model for modeling IO
devices, and to create Java code for model elements and visual model
editors. Although most of the new model elements were defined as an
addition to ProCom ones, the standard ProCom meta-model had to be
updated to allow definition of IO components and IO dependencies inside
the software model.

The part of the tool for automatic code synthesis relies on Eclipse
Modeling Framework [55] for model traversal and Java for code gener-
ation. The tool relies on universally-unique identifiers to link reusable
model elements with files with pre-defined input code elements, and gen-
erates the mapping and allocation code. The only element left out of
automatic synthesis process is a call from standard ProCom component
entry function to the IO device entry function mapped by the synthe-
sis process, as it would require making changes to standard ProCom
synthesis.

3.4.2 Evaluation

The aim of evaluation of work presented in this chapter was to (i) test
whether the method can be used to model a realistic system and gener-
ate correct executable code, and (ii) measure the overhead of the gener-
ated code in both program size and execution time compared to hand-
written code. For this purpose we have used the previously described
example containing a GMD2004 display connected to a RCM2200 mi-

3.4 Implementation and evaluation 45

crocontroller. As current implementation of ProCom synthesis does not
provide synthesis of code RCM2200, the test have been executed on the
generated code in isolation, by directly calling the mapped IO device
entry function.

For the first part of evaluation was preformed by first creating the
system model, and then and synthesizing the communication code code.
The aim of the test was filling out all lines of display with text. As
a result, the display was showing expected output, confirming that the
model and synthesized code are valid.

Overhead of the generated code was measured by comparing four dif-
ferent implementations of functionality which initializes communication
with the display and fills one line of the display with an output. The first
implementation used a pre-existing hand-written library for communica-
tion with the display. The second implementation used code synthesized
by the method proposed in this chapter, with input code elements based
on the code from the library used in the first implementation. For the
third implementation, the code from the first implementation was opti-
mized by composing all the code needed for outputting one line to the
display into one function, thus removing all unnecessary code and func-
tion calls. The fourth implementation also used synthesized code, but
the input code elements were based on the third, optimized implemen-
tation.

While the deployed program size measurements took into account the
whole program, including the program initialization and code stack of
RCM2200, the execution time measurement included only the function
call for outputting a line on the display. To perform more accurate mea-
surements of short time intervals, the execution time was measured for
3000 consecutive calls to the output function, and calculated by dividing
the accumulated time by the number of function calls. Each execution
time measurement was repeated 10 times to account to possible execu-
tion anomalies. However, as the program executed on the microcon-
troller without possible preemptions, all measurements for 3000 output
function calls were within a range of 5 milliseconds, which is a negligible
difference when scaled to execution of one function call. The results of
the measurements, together with the calculated overhead, are given in
Table 3.1.

The results show that execution time overhead for the synthesized
code compared to the hand-written one is 59.74% for the first and second
implementation alternative (based on existing library code), and 41.57%

46 Chapter 3. Sensors and actuators in CBD

Table 3.1: Execution time and code size of measured programs.

Hand-
Value written Synthesized Overhead

Execution 4.58 7.32 59.74%
time (ms)
Program size 33100 34851 5.29%
(bytes)

Hand-
Value written Synthesized Overhead

optimized optimized

Execution 3.78 5.36 41.57%
time (ms)
Program size 32714 35194 7.58%
(bytes)

for the third and fourth implementation alternative (based on optimized
code). Program size overhead is 5.29% when comparing the library-
based alternatives, and 7.58% for the optimized ones. Such results are
expected, as the synthesized code introduces more function calls, requires
de-referencing of various function and data pointers, and contains more
statements than the hand-written code. It should be noted that the
execution time and program size overhead was measured on isolated
communication with the display, and would have less impact if included
as only a part of a more complex system. Because of this, we argue that
the performance and memory footprint of the synthesized code is still
acceptable, while allowing faster and less error-prone development.

3.5 Summary

In this chapter we have presented a method for modeling sensors and
actuators in component-based development, and a method for auto-
matic synthesis of code for communication with such IO devices in a
component-based environment. The model supporting IO devices is di-
vided into multiple loosely-bound layers, and has a clear distinction be-

3.5 Summary 47

tween types and instances, with the aim of promoting reuse of model
elements in different scenarios. The presented code synthesis method
relies on the proposed models, and defines how to specify pre-defined
input code elements for the reusable model entities, and how to generate
glue-code between these elements based on the system configuration.
The presented methods have been exemplified, and evaluated using a
prototype tool.

46 Chapter 3. Sensors and actuators in CBD

Table 3.1: Execution time and code size of measured programs.

Hand-
Value written Synthesized Overhead

Execution 4.58 7.32 59.74%
time (ms)
Program size 33100 34851 5.29%
(bytes)

Hand-
Value written Synthesized Overhead

optimized optimized

Execution 3.78 5.36 41.57%
time (ms)
Program size 32714 35194 7.58%
(bytes)

for the third and fourth implementation alternative (based on optimized
code). Program size overhead is 5.29% when comparing the library-
based alternatives, and 7.58% for the optimized ones. Such results are
expected, as the synthesized code introduces more function calls, requires
de-referencing of various function and data pointers, and contains more
statements than the hand-written code. It should be noted that the
execution time and program size overhead was measured on isolated
communication with the display, and would have less impact if included
as only a part of a more complex system. Because of this, we argue that
the performance and memory footprint of the synthesized code is still
acceptable, while allowing faster and less error-prone development.

3.5 Summary

In this chapter we have presented a method for modeling sensors and
actuators in component-based development, and a method for auto-
matic synthesis of code for communication with such IO devices in a
component-based environment. The model supporting IO devices is di-
vided into multiple loosely-bound layers, and has a clear distinction be-

3.5 Summary 47

tween types and instances, with the aim of promoting reuse of model
elements in different scenarios. The presented code synthesis method
relies on the proposed models, and defines how to specify pre-defined
input code elements for the reusable model entities, and how to generate
glue-code between these elements based on the system configuration.
The presented methods have been exemplified, and evaluated using a
prototype tool.

Chapter 4

Automatic generation of
inter-node
communication

A common approach for facilitating development of distributed applica-
tions is by providing means to describe them using platform-independent1

models. In this way a developer can focus on providing correct func-
tionality while abstracting the complexity of communication between
distributed nodes. However, using such an approach still requires imple-
menting this communication before an executable system is deployed.
This can be done by either transforming the platform-independent mod-
els to directly to platform-specific executable code, or by introducing
intermediate platform-specific models. Although in component-based
approaches the former is more common, it leads to having properties
of the platform-specific implementation available only in late stages of
system development. Thus, such properties can be unavailable during
most of the development process. This can be avoided by using platform-
specific models, which can be available early in the development process.
However, in current component-based approaches, such models most of-
ten need to be generated and updated by hand, resulting in increase
of development time and risk of introducing errors. An alternative to

1In the context of this chapter, we refer to platform-independence only in the
context of communication between distributed processing nodes.

49

Chapter 4

Automatic generation of
inter-node
communication

A common approach for facilitating development of distributed applica-
tions is by providing means to describe them using platform-independent1

models. In this way a developer can focus on providing correct func-
tionality while abstracting the complexity of communication between
distributed nodes. However, using such an approach still requires imple-
menting this communication before an executable system is deployed.
This can be done by either transforming the platform-independent mod-
els to directly to platform-specific executable code, or by introducing
intermediate platform-specific models. Although in component-based
approaches the former is more common, it leads to having properties
of the platform-specific implementation available only in late stages of
system development. Thus, such properties can be unavailable during
most of the development process. This can be avoided by using platform-
specific models, which can be available early in the development process.
However, in current component-based approaches, such models most of-
ten need to be generated and updated by hand, resulting in increase
of development time and risk of introducing errors. An alternative to

1In the context of this chapter, we refer to platform-independence only in the
context of communication between distributed processing nodes.

49

50 Chapter 4. Automatic generation of inter-node
communication

manual creation of platform-specific models is generating them auto-
matically. To account for the possibility of inconsistencies between the
platform-specific and platform-independent models, approach for auto-
matic generation should also address co-existence of the two by providing
means for synchronization.

An example of an approach which supports separation of platform-
independent and platform-specific models can be seen in the IEC 61499
standard [28, 67, 70]. The standard allows platform-independent deve-
lopment of distributed applications, abstracting some of the additional
complexity of communication between distributed nodes. While some
development tools [26, 47] automatically generate code for this commu-
nication when deploying an application to hardware, inter-node commu-
nication can also be implemented by manually adding specialized com-
munication components on the model level.

In this chapter we present a framework for automatic generation of
inter-node communication on the level of software models, and provide
an implementation of the framework for the IEC 61499 standard.

An overview of the approach is depicted in Figure 4.1. The gen-
eration is performed by utilizing platform-independent software mod-
els, platform models, and models of mapping between the two. Based
on these models, the generation method first determines distributed-
communication requirements of an application, determines how these
requirements can be satisfied, and creates communication components
in the platform-specific models. In the end, information about the gen-
erated communication is propagated back to the platform-independent
model in form of annotations to connections between components.

The approach allows developers to model distributed functionality
without having to manually implement the details of inter-node commu-
nication, and provides means to keep platform-independent and platform-
specific models synchronized through annotations to model elements.
The communication components can be generated even in the early
stages of development, before the system is fully implemented, which
makes it easier to explore different allocation options. To increase flex-
ibility and make it easier to apply the method do different component
frameworks, the generation is separated into multiple phases, each with
clearly defined inputs and outputs. The framework also distinguishes
between the generic generation mechanism and generation of protocol-
specific elements, allowing the method to be easily extended with support
for different protocols.

4.1 The communication model 51

Node 2Node 1

Platform-specific model

Platform-independent model

Node 1 Node 2

Network

Platform model

Component
1

Component
2

Component
3

Component
4

Component
1

Component
2

Component
3

Component
4

Communication
Component 1

Communication
Component 2

Component
creation Annotations

Figure 4.1: Overview of the generation process. Matching colors of
software components and processing nodes denote mapping between the
two. While the orange boxes specify parts of the models used in the
generation, the orange arrows depict flow of information between these
parts.

Since the generation process uses an intermediate model to describe
the communication needs of an application, in the following sections we
first introduce the intermediate communication model, and then describe
the details of the generation. After that we give a description of the
implementation of the framework for the IEC 61499 standard, including
a prototype tool, and exemplify the approach. The contributions of this
chapter are based on Paper C [36] of the main contributing publications.

4.1 The communication model

We capture the communication between components located on different
nodes by creating a communication model. The Ecore metamodel of the
communication model can be seen in Figure 4.2. The main elements
of the model are Channels, which represent data or events produced
together on the same source node, and transferred together as messages
to one or more destination nodes.

50 Chapter 4. Automatic generation of inter-node
communication

manual creation of platform-specific models is generating them auto-
matically. To account for the possibility of inconsistencies between the
platform-specific and platform-independent models, approach for auto-
matic generation should also address co-existence of the two by providing
means for synchronization.

An example of an approach which supports separation of platform-
independent and platform-specific models can be seen in the IEC 61499
standard [28, 67, 70]. The standard allows platform-independent deve-
lopment of distributed applications, abstracting some of the additional
complexity of communication between distributed nodes. While some
development tools [26, 47] automatically generate code for this commu-
nication when deploying an application to hardware, inter-node commu-
nication can also be implemented by manually adding specialized com-
munication components on the model level.

In this chapter we present a framework for automatic generation of
inter-node communication on the level of software models, and provide
an implementation of the framework for the IEC 61499 standard.

An overview of the approach is depicted in Figure 4.1. The gen-
eration is performed by utilizing platform-independent software mod-
els, platform models, and models of mapping between the two. Based
on these models, the generation method first determines distributed-
communication requirements of an application, determines how these
requirements can be satisfied, and creates communication components
in the platform-specific models. In the end, information about the gen-
erated communication is propagated back to the platform-independent
model in form of annotations to connections between components.

The approach allows developers to model distributed functionality
without having to manually implement the details of inter-node commu-
nication, and provides means to keep platform-independent and platform-
specific models synchronized through annotations to model elements.
The communication components can be generated even in the early
stages of development, before the system is fully implemented, which
makes it easier to explore different allocation options. To increase flex-
ibility and make it easier to apply the method do different component
frameworks, the generation is separated into multiple phases, each with
clearly defined inputs and outputs. The framework also distinguishes
between the generic generation mechanism and generation of protocol-
specific elements, allowing the method to be easily extended with support
for different protocols.

4.1 The communication model 51

Node 2Node 1

Platform-specific model

Platform-independent model

Node 1 Node 2

Network

Platform model

Component
1

Component
2

Component
3

Component
4

Component
1

Component
2

Component
3

Component
4

Communication
Component 1

Communication
Component 2

Component
creation Annotations

Figure 4.1: Overview of the generation process. Matching colors of
software components and processing nodes denote mapping between the
two. While the orange boxes specify parts of the models used in the
generation, the orange arrows depict flow of information between these
parts.

Since the generation process uses an intermediate model to describe
the communication needs of an application, in the following sections we
first introduce the intermediate communication model, and then describe
the details of the generation. After that we give a description of the
implementation of the framework for the IEC 61499 standard, including
a prototype tool, and exemplify the approach. The contributions of this
chapter are based on Paper C [36] of the main contributing publications.

4.1 The communication model

We capture the communication between components located on different
nodes by creating a communication model. The Ecore metamodel of the
communication model can be seen in Figure 4.2. The main elements
of the model are Channels, which represent data or events produced
together on the same source node, and transferred together as messages
to one or more destination nodes.

52 Chapter 4. Automatic generation of inter-node
communication

Figure 4.2: Ecore metamodel that defines the communication model.

The content of a message sent through a channel is defined by a set of
Data elements. Each data element defines the type of data it represents
using the type attribute. As events are not distinguished by types, and
carry no semantics besides the occurrence of an event, we represent them
by Data elements with type set to none.

In addition to a set of data elements, a channel also contains one
Source and one or more Destination elements. Both of these element
types have a reference to the platform node which is the endpoint of the
communication. The Destination element has an additional isLocal flag,
which indicates if the source and destination nodes reside on the same
physical node, or if they are distributed on separate physical nodes. As
an example, in the IEC 61499 implementation of the generation method,
communication between two resources belonging to the same device is
marked as local. The inter-node connections for which the Source and
Destination elements are generated are referenced using the connections
attributes.

4.2 Generation process 53

The Source and Destination elements also describe how the messages
are created and consumed by components. This is done by a set of
Port elements which are added either to the sourcePorts set of a source
or the destinationPorts set of a destination. Each of these elements
define from which port of which component in the application model the
message data is read (in case it is added to a source) or to which port of
which component the data needs to be delivered (in case it is added to
a destination). This is done using the component and port attributes.
The message element that is generated by or delivered to the referenced
port is denoted by a reference to a Data element of the Channel.

Each Destination element can also contain a number of Media ele-
ments. These elements are used to describe which communication media
can be used for communication between the destination and the source
of the channel. Besides the networkSegment attribute which references
the network segment of the platform model, a Media element also con-
tains a properties attribute which can contain information about how
the destination node is connected to the network segment, for example
an IP address of a device on an Ethernet network.

4.2 Generation process

The generation of platform-specific model elements is separated into four
activities, each with clearly defined inputs and outputs, and the frame-
work also distinguishes between the generic generation mechanism and
generation of protocol-specific elements. These phases are (i) communi-
cation model extraction, (ii) detection of available media, (iii) protocol
selection and (iv) component creation. An overview of the generation
process can be seen in Figure 4.3.

Separation of the generation process in multiple phases introduces a
level of flexibility which results in multiple benefits. First, the method
can easily be extended, for example to add new optimization algorithms
during protocol selection, or to update the generation with new com-
munication components or protocols. The level of automation of the
generation process can be varied, which provides a possibility for man-
ual input of a developer. Also, the separation allows easier adaptation
of the method to different component frameworks.

The following sections give a detailed description of the four genera-
tion phases.

52 Chapter 4. Automatic generation of inter-node
communication

Figure 4.2: Ecore metamodel that defines the communication model.

The content of a message sent through a channel is defined by a set of
Data elements. Each data element defines the type of data it represents
using the type attribute. As events are not distinguished by types, and
carry no semantics besides the occurrence of an event, we represent them
by Data elements with type set to none.

In addition to a set of data elements, a channel also contains one
Source and one or more Destination elements. Both of these element
types have a reference to the platform node which is the endpoint of the
communication. The Destination element has an additional isLocal flag,
which indicates if the source and destination nodes reside on the same
physical node, or if they are distributed on separate physical nodes. As
an example, in the IEC 61499 implementation of the generation method,
communication between two resources belonging to the same device is
marked as local. The inter-node connections for which the Source and
Destination elements are generated are referenced using the connections
attributes.

4.2 Generation process 53

The Source and Destination elements also describe how the messages
are created and consumed by components. This is done by a set of
Port elements which are added either to the sourcePorts set of a source
or the destinationPorts set of a destination. Each of these elements
define from which port of which component in the application model the
message data is read (in case it is added to a source) or to which port of
which component the data needs to be delivered (in case it is added to
a destination). This is done using the component and port attributes.
The message element that is generated by or delivered to the referenced
port is denoted by a reference to a Data element of the Channel.

Each Destination element can also contain a number of Media ele-
ments. These elements are used to describe which communication media
can be used for communication between the destination and the source
of the channel. Besides the networkSegment attribute which references
the network segment of the platform model, a Media element also con-
tains a properties attribute which can contain information about how
the destination node is connected to the network segment, for example
an IP address of a device on an Ethernet network.

4.2 Generation process

The generation of platform-specific model elements is separated into four
activities, each with clearly defined inputs and outputs, and the frame-
work also distinguishes between the generic generation mechanism and
generation of protocol-specific elements. These phases are (i) communi-
cation model extraction, (ii) detection of available media, (iii) protocol
selection and (iv) component creation. An overview of the generation
process can be seen in Figure 4.3.

Separation of the generation process in multiple phases introduces a
level of flexibility which results in multiple benefits. First, the method
can easily be extended, for example to add new optimization algorithms
during protocol selection, or to update the generation with new com-
munication components or protocols. The level of automation of the
generation process can be varied, which provides a possibility for man-
ual input of a developer. Also, the separation allows easier adaptation
of the method to different component frameworks.

The following sections give a detailed description of the four genera-
tion phases.

54 Chapter 4. Automatic generation of inter-node
communication

I. Communication
model extraction

Platform-
independent

model

Deployment
model

Platform
model

Communication
model

II. Detection of
available media

Extended
communication

model

Media /
protocol

information
Platform-specific

model

III. Protocol
selection

Automatic
selection

Manual
selection

IV. Component
creationGeneric generator

Protocol-specific
generators

Communication
components

Annotations

Annotations

<Model
element>

<Generation
activity>

<Activity
element>

Legend

Figure 4.3: Overview of the communication component generation pro-
cess.

4.2.1 Communication model extraction

The communication model of an application is extracted from the platform-
independent model and the deployment model. The process starts with
detecting connections which connect components deployed to different
platform nodes. A Channel element is generated for each group of con-
nections for which source values are generated together and on the same
node. Then, the Data element set of each channel is generated based on
the information about the sources of the connections. The channels’ sin-
gle Source element is created and initialized with the information about
the source node and the represented connection, and Port elements of
the sourcePorts set are created based on the output ports from which
the connections start.

The represented connections are then grouped by the nodes that
their destination components are mapped to. For each such group, a
Destination element is added to the channel. A Port element for each
connection is then added to the destinationPorts set, and initialized to
point to the target port of the connection.

4.2 Generation process 55

4.2.2 Communication media detection

Once the communication model has been derived, it can be used to
determine which media alternatives are available to implement the inter-
node communication. This is done in combination with the model of the
platform.

As channels can have multiple destinations, each on a distinct plat-
form node, media detection has to be performed separately for each
channel destination. Available media for a destination is determined
by finding all communication networks in the platform model to which
both the node of the destination and the node of the channel source are
connected. For each available media, a Media element is added to the
Destination and the value of the properties attribute for the new element
is set based on how the node is connected to the network.

The results of the media detection are added to the existing commu-
nication model and the new extended model is stored.

4.2.3 Protocol selection

After the media detection is done, it must be decided which of the avail-
able media will be used for communication, and how (i.e. using which
protocol). The protocols which can be used to implement communication
using each communication media are defined by the available protocol-
specific generators (described in more details in the following section).
Each protocol-specific generator provides a list of media it can be used
for, and for each supported media a list of available protocols.

Protocol selection is a combination of manual and automated process.
Manual protocol selection allows developers to use expert knowledge to
satisfy possible communication constrains that can not be expressed by
models, or to obtain a desired system behavior. For communication that
does not have any specific requirements to be considered, media and
protocols can be selected automatically. In addition to just providing
a viable communication solution, automated selection can also include
various optimizations of communication on the system level. Thus, auto-
mated protocol selection reduces the amount of activities the developer
has to perform to implement the system, and thus allows faster develop-
ment.

54 Chapter 4. Automatic generation of inter-node
communication

I. Communication
model extraction

Platform-
independent

model

Deployment
model

Platform
model

Communication
model

II. Detection of
available media

Extended
communication

model

Media /
protocol

information
Platform-specific

model

III. Protocol
selection

Automatic
selection

Manual
selection

IV. Component
creationGeneric generator

Protocol-specific
generators

Communication
components

Annotations

Annotations

<Model
element>

<Generation
activity>

<Activity
element>

Legend

Figure 4.3: Overview of the communication component generation pro-
cess.

4.2.1 Communication model extraction

The communication model of an application is extracted from the platform-
independent model and the deployment model. The process starts with
detecting connections which connect components deployed to different
platform nodes. A Channel element is generated for each group of con-
nections for which source values are generated together and on the same
node. Then, the Data element set of each channel is generated based on
the information about the sources of the connections. The channels’ sin-
gle Source element is created and initialized with the information about
the source node and the represented connection, and Port elements of
the sourcePorts set are created based on the output ports from which
the connections start.

The represented connections are then grouped by the nodes that
their destination components are mapped to. For each such group, a
Destination element is added to the channel. A Port element for each
connection is then added to the destinationPorts set, and initialized to
point to the target port of the connection.

4.2 Generation process 55

4.2.2 Communication media detection

Once the communication model has been derived, it can be used to
determine which media alternatives are available to implement the inter-
node communication. This is done in combination with the model of the
platform.

As channels can have multiple destinations, each on a distinct plat-
form node, media detection has to be performed separately for each
channel destination. Available media for a destination is determined
by finding all communication networks in the platform model to which
both the node of the destination and the node of the channel source are
connected. For each available media, a Media element is added to the
Destination and the value of the properties attribute for the new element
is set based on how the node is connected to the network.

The results of the media detection are added to the existing commu-
nication model and the new extended model is stored.

4.2.3 Protocol selection

After the media detection is done, it must be decided which of the avail-
able media will be used for communication, and how (i.e. using which
protocol). The protocols which can be used to implement communication
using each communication media are defined by the available protocol-
specific generators (described in more details in the following section).
Each protocol-specific generator provides a list of media it can be used
for, and for each supported media a list of available protocols.

Protocol selection is a combination of manual and automated process.
Manual protocol selection allows developers to use expert knowledge to
satisfy possible communication constrains that can not be expressed by
models, or to obtain a desired system behavior. For communication that
does not have any specific requirements to be considered, media and
protocols can be selected automatically. In addition to just providing
a viable communication solution, automated selection can also include
various optimizations of communication on the system level. Thus, auto-
mated protocol selection reduces the amount of activities the developer
has to perform to implement the system, and thus allows faster develop-
ment.

56 Chapter 4. Automatic generation of inter-node
communication

4.2.4 Communication component creation

The actual creation of the communication components is based on the
extended communication model and the information about selected com-
munication protocols. It is done using two mechanisms: a generic gen-
erator and a set of protocol specific generators.

The task of the generic generator is to traverse the communication
model and initiate creation of communication components for sources
and destinations. For each destination one component is generated on
the destination node. Creation of components on the source side is more
complex. Messages from one source can be delivered to more than one
destination, and the destinations can require different communication
media or protocol. Because of this, in some cases there is a need to
generate more than one communication component for a single commu-
nication channel source, each for a specific media or protocol.

The component creation initiated by the generic generator is per-
formed by protocol-specific generators. A protocol-specific generator first
determines the type of the component that needs to be generated. This
is done based on the selected media and protocol, and information about
data that needs to be transferred. Once the type of the component is
determined, it is added to the platform-specific model. After adding the
component, a protocol-specific generator also configures it for commu-
nication. As already mentioned in the previous section, each protocol-
specific generator provides a list of media and protocols it supports. This
information is also used by the generic generator to determine which spe-
cific generator is to be used for each communication channel.

After the communication components are generated, the generic gen-
erator creates connections between application components and the gen-
erated communication components based on the information stored in
the Port elements of the communication model. In the end, the infor-
mation about the connections represented by sources and destinations is
used to annotate these connections with information about the generated
components.

4.3 IEC 61499 implementation of the framework 57

Figure 4.4: Screenshot of a) example application and the automatic
generation menu in 4DIAC-IDE and b) a resource-specific software model
containing components created by the prototype generation tool.

4.3 IEC 61499 implementation of the frame-
work

To demonstrate applicability of the communication generation frame-
work it was applied to the IEC 61499 standard, and implemented as a
prototype tool. The tool was developed as a plug-in for the 4DIAC-IDE,
an open-source IEC 61499 development environment [56]. Integration
with 4DIAC allows us to execute the tool using the graphical model
editors, and perform generation using existing system models. Genera-
tion results in systems which are fully executable without any need for
manual editing of resource-specific software models or code.

A screenshot depicting the 4DIAC-IDE is shown in Figure 4.4. The
figure contains a) the application model from the previous example and
the generation menu added by our plug-in, and b) the resource-specific
software model for Resource 2 containing the generated communication
blocks. The prototype tool is freely available for download2.

The section continues by describing the details of how the generation
process was applied to the specifics of IEC 61499, and how the prototype
tool implements the the framework.

2http://www.idt.mdh.se/˜jcn01/research/4DIAC-plugins/

56 Chapter 4. Automatic generation of inter-node
communication

4.2.4 Communication component creation

The actual creation of the communication components is based on the
extended communication model and the information about selected com-
munication protocols. It is done using two mechanisms: a generic gen-
erator and a set of protocol specific generators.

The task of the generic generator is to traverse the communication
model and initiate creation of communication components for sources
and destinations. For each destination one component is generated on
the destination node. Creation of components on the source side is more
complex. Messages from one source can be delivered to more than one
destination, and the destinations can require different communication
media or protocol. Because of this, in some cases there is a need to
generate more than one communication component for a single commu-
nication channel source, each for a specific media or protocol.

The component creation initiated by the generic generator is per-
formed by protocol-specific generators. A protocol-specific generator first
determines the type of the component that needs to be generated. This
is done based on the selected media and protocol, and information about
data that needs to be transferred. Once the type of the component is
determined, it is added to the platform-specific model. After adding the
component, a protocol-specific generator also configures it for commu-
nication. As already mentioned in the previous section, each protocol-
specific generator provides a list of media and protocols it supports. This
information is also used by the generic generator to determine which spe-
cific generator is to be used for each communication channel.

After the communication components are generated, the generic gen-
erator creates connections between application components and the gen-
erated communication components based on the information stored in
the Port elements of the communication model. In the end, the infor-
mation about the connections represented by sources and destinations is
used to annotate these connections with information about the generated
components.

4.3 IEC 61499 implementation of the framework 57

Figure 4.4: Screenshot of a) example application and the automatic
generation menu in 4DIAC-IDE and b) a resource-specific software model
containing components created by the prototype generation tool.

4.3 IEC 61499 implementation of the frame-
work

To demonstrate applicability of the communication generation frame-
work it was applied to the IEC 61499 standard, and implemented as a
prototype tool. The tool was developed as a plug-in for the 4DIAC-IDE,
an open-source IEC 61499 development environment [56]. Integration
with 4DIAC allows us to execute the tool using the graphical model
editors, and perform generation using existing system models. Genera-
tion results in systems which are fully executable without any need for
manual editing of resource-specific software models or code.

A screenshot depicting the 4DIAC-IDE is shown in Figure 4.4. The
figure contains a) the application model from the previous example and
the generation menu added by our plug-in, and b) the resource-specific
software model for Resource 2 containing the generated communication
blocks. The prototype tool is freely available for download2.

The section continues by describing the details of how the generation
process was applied to the specifics of IEC 61499, and how the prototype
tool implements the the framework.

2http://www.idt.mdh.se/˜jcn01/research/4DIAC-plugins/

58 Chapter 4. Automatic generation of inter-node
communication

Communication model extraction

The IEC 61499 application model provides both a platform independent
view of software and information about deployment decisions. Because
of that, the IEC 61499 implementation of the generation performs com-
munication channel extraction using only this model.

The requirements for distributed communication are determined by
detecting event or data connections which link function blocks deployed
to different resources. Such connections are grouped into channels us-
ing the The WITH operators specified for the output ports of function
blocks, as each WITH defines one event and an arbitrary number of data
outputs generated at the same time.

As already mentioned, destinations which target IEC 61499 resources
residing on the same device as the source resource are marked as local
destinations.

Communication media detection

Detection of media available for satisfying communication requirements
is performed based on the IEC 61499 system model, which describes
which devices exist in the system and which network segments, and how,
connect the devices.

Protocol selection

As the aim of the contribution presented in this chapter was to provide
a definition of a framework for generation of distributed communication,
rather than actual optimization of communication, or a fully working
tool, the implementation of protocol selection includes only basic func-
tionality. The implemented automated selection is able to determine a
valid set of communication protocols which can be used for communi-
cation, is such set exists. We have however omitted providing an im-
plementation of manual protocol selection, as this would require a fairly
complicated user interface.

To provide an example of optimization during automated selection,
we have implemented an algorithm which uses heuristics to find common
media for multiple destination of a single communication channel. The
goal of this algorithm is to reduce the number of messages that need to
sent over the network.

4.3 IEC 61499 implementation of the framework 59

Communication component creation

When applied to IEC 61499, the component creation generates commu-
nication function blocks in resource models, which are platform-specific
software models of the standard, while annotations about generated com-
ponents are created in both application model and resource models. The
prototype tool implements two protocol-specific generators: a generator
for UDP communication over an Ethernet network, and a generator for
communication using CAN bus.

Communication using UDP over Ethernet is part of an interoper-
ability provisions defined by Holobloc [24]. In the platform-specific re-
source software model, the communication is implemented using two
standardized function block types: the publish function blocks are used
to send multicast UDP messages to the network, while subscribe func-
tion blocks receive such multicast messages. There exist multiple ver-
sions of both function block types, each with a different number of data
values they send or receive. To enable sending messages from one pub-
lish function block to one or more subscribe function blocks, they must
be configured to send and receive messages on the same UDP port.

The protocol-specific generator for UDP over Ethernet generates
publish function blocks for channel sources, and subscribe blocks for
destinations, choosing the correct versions of the function blocks based
on the number of data values transferred by the channel. Because of
the specifics of the implementation of message decoding in subscribe
function blocks, which does not allow data output ports of these func-
tion blocks to be left disconnected, in some cases the generator creates
multiple publish blocks for a single source. In this case each destina-
tion is treated as a separate communication channel. After creation of
communication function blocks, each channel is assigned a unique UDP
port. The selected ports are then used to configure all the generated
blocks.

In case of communication destinations that are marked as local, the
generator creates special version of function blocks which provide imple-
mentation optimized for communication between resources residing on
same physical device.

The generator for CAN communication functions in a manner simi-
lar to the UDP one, generating publish and subscribe function blocks
configured for communication using CAN identifier parameter. However,
current implementation of the IEC 61499 run-time that we used to build

58 Chapter 4. Automatic generation of inter-node
communication

Communication model extraction

The IEC 61499 application model provides both a platform independent
view of software and information about deployment decisions. Because
of that, the IEC 61499 implementation of the generation performs com-
munication channel extraction using only this model.

The requirements for distributed communication are determined by
detecting event or data connections which link function blocks deployed
to different resources. Such connections are grouped into channels us-
ing the The WITH operators specified for the output ports of function
blocks, as each WITH defines one event and an arbitrary number of data
outputs generated at the same time.

As already mentioned, destinations which target IEC 61499 resources
residing on the same device as the source resource are marked as local
destinations.

Communication media detection

Detection of media available for satisfying communication requirements
is performed based on the IEC 61499 system model, which describes
which devices exist in the system and which network segments, and how,
connect the devices.

Protocol selection

As the aim of the contribution presented in this chapter was to provide
a definition of a framework for generation of distributed communication,
rather than actual optimization of communication, or a fully working
tool, the implementation of protocol selection includes only basic func-
tionality. The implemented automated selection is able to determine a
valid set of communication protocols which can be used for communi-
cation, is such set exists. We have however omitted providing an im-
plementation of manual protocol selection, as this would require a fairly
complicated user interface.

To provide an example of optimization during automated selection,
we have implemented an algorithm which uses heuristics to find common
media for multiple destination of a single communication channel. The
goal of this algorithm is to reduce the number of messages that need to
sent over the network.

4.3 IEC 61499 implementation of the framework 59

Communication component creation

When applied to IEC 61499, the component creation generates commu-
nication function blocks in resource models, which are platform-specific
software models of the standard, while annotations about generated com-
ponents are created in both application model and resource models. The
prototype tool implements two protocol-specific generators: a generator
for UDP communication over an Ethernet network, and a generator for
communication using CAN bus.

Communication using UDP over Ethernet is part of an interoper-
ability provisions defined by Holobloc [24]. In the platform-specific re-
source software model, the communication is implemented using two
standardized function block types: the publish function blocks are used
to send multicast UDP messages to the network, while subscribe func-
tion blocks receive such multicast messages. There exist multiple ver-
sions of both function block types, each with a different number of data
values they send or receive. To enable sending messages from one pub-
lish function block to one or more subscribe function blocks, they must
be configured to send and receive messages on the same UDP port.

The protocol-specific generator for UDP over Ethernet generates
publish function blocks for channel sources, and subscribe blocks for
destinations, choosing the correct versions of the function blocks based
on the number of data values transferred by the channel. Because of
the specifics of the implementation of message decoding in subscribe
function blocks, which does not allow data output ports of these func-
tion blocks to be left disconnected, in some cases the generator creates
multiple publish blocks for a single source. In this case each destina-
tion is treated as a separate communication channel. After creation of
communication function blocks, each channel is assigned a unique UDP
port. The selected ports are then used to configure all the generated
blocks.

In case of communication destinations that are marked as local, the
generator creates special version of function blocks which provide imple-
mentation optimized for communication between resources residing on
same physical device.

The generator for CAN communication functions in a manner simi-
lar to the UDP one, generating publish and subscribe function blocks
configured for communication using CAN identifier parameter. However,
current implementation of the IEC 61499 run-time that we used to build

60 Chapter 4. Automatic generation of inter-node
communication

and test a prototype of the generation framework (described in the fol-
lowing section) does not support CAN communication. Because of this,
systems which include function blocks created using this generator can
not be deployed for execution.

4.4 Example and case-study

To validate the applicability of the framework and the tool, it will first
be demonstrated on an extended example. After that, a description of
how the generation framework was applied to two case-study system is
given.

4.4.1 Example

The proposed communication component generation method will be
demonstrated on an example system. The distributed application of
the example is shown in Figure 4.5 a), and the platform model is given
in Figure 4.5 b). The application contains three function blocks: FB 1,
FB 2 and FB 3. The example platform consists of three devices, each
with a single resource: Device 1 containing Resource 1, Device 2 con-
taining Resource 2, and Device 3 containing Resource 3. Function block
FB 1 is mapped to run on Resource 1, FB 2 and FB 3 to Resource 2,
and FB 4 to Resource 3.

Figure 4.5 c) shows the communication model extracted from the ap-
plication and deployment models. The extraction results in two commu-
nication channels, one for each with qualifier of FB 1. The first channel
is used to transmit one event and two data values from Resource 1 to a
single destination on Resource 2. The model also shows at which port the
message data originates, and which destination ports receive the data.
The second channel transmits one event and one data value originating
on Resource 1, and has two destinations, one on Resource 2 and one on
Resource 3.

Results from communication media detection are also depicted in
Figure 4.5 c). Both Destination 1 of Channel 1 and Destination 1 of
Channel 2 can be reached from their sources by either the CAN bus or
the Ethernet connection. Ethernet is however the only media that can be
used to communicate between the source of Channel 2 and Destination 2
of the same channel.

4.4 Example and case-study 61

FB_1

E_i11
E_o12

D_o11
D_o12
D_o13

FB_2

E_i21

D_i21
D_i22

FB_4

D_i41

E_i41

FB_3

E_i31

D_i31

c)

a)

FB_1

E_o11
E_o12

D_o11
D_o12
D_o13

FB_2

E_i21

D_i21
D_i22

FB_4

D_i41

E_i41

FB_3

E_i31

D_i31

b)

Device 1
Resource 1

Device 2
Resource 2

Device 3
Resource 3

Ethernet

CAN

Source
node = Resource 1

Port 1
data = Data 1

Port 2
data = Data 2

Port 3
data = Data 3

Destination 1
node = Resource 2

Port 1
data = Data 1

Port 2
data = Data 2

Port 3
data = Data 3

Source
node = Resource 1

Port 1
data = Data 1

Port 2
data = Data 2

Destination 1
node = Resource 2

Port 1
data = Data 1

Port 2
data = Data 2

Destination 2
node = Resource 3

Port 1
data = Data 1

Port 2
data = Data 2

Resource 3Resource 2Resource 1

FB_1

E_o11
E_o12

D_o11
D_o12
D_o13

FB_2

E_i21

D_i21
D_i22

FB_4

D_i41

E_i41

PUBLISH_1

REQ

PARAMS
SD_1
SD_2

PUBLISH_2

REQ

PARAMS
SD_1

SUBSCRIBE_22

IND

RD_1PARAMS

SUBSCRIBE_1

IND

RD_1
RD_2

PARAMS

225.0.0.1
:65001

SUBSCRIBE_21

IND

RD_1PARAMS

FB_3

E_i31

D_i31

d)

225.0.0.1
:65001

CAN
:512

225.0.0.1
:65001

CAN
:512

Channel 2

Data 1
type = none

Data 2
type = int

Channel 1

Data 1
type = none

Data 2
type = int

Data 3
type = bool

Available media
CAN
*Ethernet

Available media
*CAN
Ethernet

Available media
*Ethernet

Figure 4.5: a) Platform-independent application model. b) Platform
model. c) Communication model derived from the example applica-
tion and platform model. d) Platform-specific resource software model
containing generated communication components. The colors of the re-
source models matches the color of devices that they belong to, while
the colors of function blocks denote to which device and resource they
are deployed to.

60 Chapter 4. Automatic generation of inter-node
communication

and test a prototype of the generation framework (described in the fol-
lowing section) does not support CAN communication. Because of this,
systems which include function blocks created using this generator can
not be deployed for execution.

4.4 Example and case-study

To validate the applicability of the framework and the tool, it will first
be demonstrated on an extended example. After that, a description of
how the generation framework was applied to two case-study system is
given.

4.4.1 Example

The proposed communication component generation method will be
demonstrated on an example system. The distributed application of
the example is shown in Figure 4.5 a), and the platform model is given
in Figure 4.5 b). The application contains three function blocks: FB 1,
FB 2 and FB 3. The example platform consists of three devices, each
with a single resource: Device 1 containing Resource 1, Device 2 con-
taining Resource 2, and Device 3 containing Resource 3. Function block
FB 1 is mapped to run on Resource 1, FB 2 and FB 3 to Resource 2,
and FB 4 to Resource 3.

Figure 4.5 c) shows the communication model extracted from the ap-
plication and deployment models. The extraction results in two commu-
nication channels, one for each with qualifier of FB 1. The first channel
is used to transmit one event and two data values from Resource 1 to a
single destination on Resource 2. The model also shows at which port the
message data originates, and which destination ports receive the data.
The second channel transmits one event and one data value originating
on Resource 1, and has two destinations, one on Resource 2 and one on
Resource 3.

Results from communication media detection are also depicted in
Figure 4.5 c). Both Destination 1 of Channel 1 and Destination 1 of
Channel 2 can be reached from their sources by either the CAN bus or
the Ethernet connection. Ethernet is however the only media that can be
used to communicate between the source of Channel 2 and Destination 2
of the same channel.

4.4 Example and case-study 61

FB_1

E_i11
E_o12

D_o11
D_o12
D_o13

FB_2

E_i21

D_i21
D_i22

FB_4

D_i41

E_i41

FB_3

E_i31

D_i31

c)

a)

FB_1

E_o11
E_o12

D_o11
D_o12
D_o13

FB_2

E_i21

D_i21
D_i22

FB_4

D_i41

E_i41

FB_3

E_i31

D_i31

b)

Device 1
Resource 1

Device 2
Resource 2

Device 3
Resource 3

Ethernet

CAN

Source
node = Resource 1

Port 1
data = Data 1

Port 2
data = Data 2

Port 3
data = Data 3

Destination 1
node = Resource 2

Port 1
data = Data 1

Port 2
data = Data 2

Port 3
data = Data 3

Source
node = Resource 1

Port 1
data = Data 1

Port 2
data = Data 2

Destination 1
node = Resource 2

Port 1
data = Data 1

Port 2
data = Data 2

Destination 2
node = Resource 3

Port 1
data = Data 1

Port 2
data = Data 2

Resource 3Resource 2Resource 1

FB_1

E_o11
E_o12

D_o11
D_o12
D_o13

FB_2

E_i21

D_i21
D_i22

FB_4

D_i41

E_i41

PUBLISH_1

REQ

PARAMS
SD_1
SD_2

PUBLISH_2

REQ

PARAMS
SD_1

SUBSCRIBE_22

IND

RD_1PARAMS

SUBSCRIBE_1

IND

RD_1
RD_2

PARAMS

225.0.0.1
:65001

SUBSCRIBE_21

IND

RD_1PARAMS

FB_3

E_i31

D_i31

d)

225.0.0.1
:65001

CAN
:512

225.0.0.1
:65001

CAN
:512

Channel 2

Data 1
type = none

Data 2
type = int

Channel 1

Data 1
type = none

Data 2
type = int

Data 3
type = bool

Available media
CAN
*Ethernet

Available media
*CAN
Ethernet

Available media
*Ethernet

Figure 4.5: a) Platform-independent application model. b) Platform
model. c) Communication model derived from the example applica-
tion and platform model. d) Platform-specific resource software model
containing generated communication components. The colors of the re-
source models matches the color of devices that they belong to, while
the colors of function blocks denote to which device and resource they
are deployed to.

62 Chapter 4. Automatic generation of inter-node
communication

We assume that the developer has manually selected the CAN bus
as the media to be used for Destination 1 of Channel 1, and that media
selection for Channel 2 is left to the tool. As Ethernet is a common
available media to all destinations of Channel 2, it is selected to imple-
ment communication for both destinations by the automated selection
process. The selected media are marked with an asterisk in the model
figure.

The result of the component creation can be seen in Figure 4.5 d).
The figure shows resource-specific software models of the system re-
sources, which, in addition to the deployed function blocks, contain the
inter-node communication function blocks. For the sake of simplicity,
the models do not show all ports of publish and subscribe function
blocks, such as the ports used to trigger function block initialization.
Communication between FB 1 and FB 2, captured by Destination 1 of
Channel 1 is implemented by PUBLISH 1 and SUBSCRIBE 1. Com-
munication from FB 1 to FB 3 and FB 4, described by Channel 2 of
the communication model, is implemented by a single publish function
block,PUBLISH 2. Messages sent by this publisher are received by two
subscribers: SUBSCRIBE 21, which implements Destination 1 of the
channel and delivers messages to FB 3, and SUBSCRIBE 21, imple-
menting Destination 2 of the channel and delivering messages to FB 4.

4.4.2 Case-study evaluation

In order to validate applicability of the framework in a realistic sce-
nario, we have applied it to two example systems provided by the 4DIAC
group3. The first system is an implementation of a traffic light system
for pedestrian crossing, while the second one is simulation of manual
operation mode of a mechanical press.

The first step of testing the generation was a thorough inspection
of the original system functionality. After that, the two systems were
recreated without communication components. During this process, we
also needed to create connections between distributed devices and an
Ethernet network segment, as these connections were left out of the
original platform model. We then applied the automatic communication
generation to the recreated models.

3Publicly available as a part of the 4DIAC project at
http://sourceforge.net/projects/fordiac/.

4.5 Summary 63

The resulting platform-specific models were first visually compared to
the same models of the original systems. As a result of the comparison,
we concluded that the automatically generated models were in-line with
the original one, although the original models contained some optimiza-
tions which were not present in the generated ones (e.g. reuse of same
communication blocks for multiple communication channels). However,
lack of such optimization in the generated models was to be expected,
as providing optimization was not the primary goal of the contribution
presented in this chapter.

After the visual inspection of the generated models, the systems con-
taining them were deployed, and the functionality of the generated sys-
tems was compared to the one previously examined in the original mod-
els. In both cases, the generated systems provided the same functionality
as the original ones.

4.5 Summary

In this chapter we have presented a framework which allows automatic
generation distributed communication in component-based systems. The
framework defines separate phases of generation, each with well defined
inputs and outputs: (i) extracting communication requirements from
platform-independent model and model of deployment, (ii) determining
which communication media can be used to satisfy these requirements,
(iii) a combination of automatic and manual protocol selection, and
(iv) creation of communication components in platform-specific mod-
els. Clear separation between these phases allows framework to be eas-
ily extensible and adaptable to different component models. The defined
framework has been applied to the IEC 61499 standard and implemented
by a prototype tool. Applicability of the framework has been evaluated
using an extended example, and two case-study systems, showing the
applicability of the approach.

62 Chapter 4. Automatic generation of inter-node
communication

We assume that the developer has manually selected the CAN bus
as the media to be used for Destination 1 of Channel 1, and that media
selection for Channel 2 is left to the tool. As Ethernet is a common
available media to all destinations of Channel 2, it is selected to imple-
ment communication for both destinations by the automated selection
process. The selected media are marked with an asterisk in the model
figure.

The result of the component creation can be seen in Figure 4.5 d).
The figure shows resource-specific software models of the system re-
sources, which, in addition to the deployed function blocks, contain the
inter-node communication function blocks. For the sake of simplicity,
the models do not show all ports of publish and subscribe function
blocks, such as the ports used to trigger function block initialization.
Communication between FB 1 and FB 2, captured by Destination 1 of
Channel 1 is implemented by PUBLISH 1 and SUBSCRIBE 1. Com-
munication from FB 1 to FB 3 and FB 4, described by Channel 2 of
the communication model, is implemented by a single publish function
block,PUBLISH 2. Messages sent by this publisher are received by two
subscribers: SUBSCRIBE 21, which implements Destination 1 of the
channel and delivers messages to FB 3, and SUBSCRIBE 21, imple-
menting Destination 2 of the channel and delivering messages to FB 4.

4.4.2 Case-study evaluation

In order to validate applicability of the framework in a realistic sce-
nario, we have applied it to two example systems provided by the 4DIAC
group3. The first system is an implementation of a traffic light system
for pedestrian crossing, while the second one is simulation of manual
operation mode of a mechanical press.

The first step of testing the generation was a thorough inspection
of the original system functionality. After that, the two systems were
recreated without communication components. During this process, we
also needed to create connections between distributed devices and an
Ethernet network segment, as these connections were left out of the
original platform model. We then applied the automatic communication
generation to the recreated models.

3Publicly available as a part of the 4DIAC project at
http://sourceforge.net/projects/fordiac/.

4.5 Summary 63

The resulting platform-specific models were first visually compared to
the same models of the original systems. As a result of the comparison,
we concluded that the automatically generated models were in-line with
the original one, although the original models contained some optimiza-
tions which were not present in the generated ones (e.g. reuse of same
communication blocks for multiple communication channels). However,
lack of such optimization in the generated models was to be expected,
as providing optimization was not the primary goal of the contribution
presented in this chapter.

After the visual inspection of the generated models, the systems con-
taining them were deployed, and the functionality of the generated sys-
tems was compared to the one previously examined in the original mod-
els. In both cases, the generated systems provided the same functionality
as the original ones.

4.5 Summary

In this chapter we have presented a framework which allows automatic
generation distributed communication in component-based systems. The
framework defines separate phases of generation, each with well defined
inputs and outputs: (i) extracting communication requirements from
platform-independent model and model of deployment, (ii) determining
which communication media can be used to satisfy these requirements,
(iii) a combination of automatic and manual protocol selection, and
(iv) creation of communication components in platform-specific mod-
els. Clear separation between these phases allows framework to be eas-
ily extensible and adaptable to different component models. The defined
framework has been applied to the IEC 61499 standard and implemented
by a prototype tool. Applicability of the framework has been evaluated
using an extended example, and two case-study systems, showing the
applicability of the approach.

Chapter 5

Model-level timing and
utilization analysis

Many embedded software systems are safety-critical and have a require-
ment to operate in real-time. For such systems the ability to provide
functionality on time is as vital as the functionality itself. One possibil-
ity to ensure their correct behavior is by analysis of system properties.
However, analysis is typically not performed until late in system de-
velopment, leading to late detection of problems. Providing a way to
perform analysis early in development can reduce the risk of redesign in
late stages of development, thereby reducing development time and cost.

One approach that allows for early investigation of system properties
is analysis on the model level. This type, which relies on determining sys-
tem properties using abstract system models, provides multiple benefits.
One of such benefits is that a system does not have to be deployed or even
fully implemented to perform the analysis. The unimplemented parts of
the system can be represented by abstract model elements, which can
provide estimates of timing properties. During the development, these
elements can gradually be replaced by the actual implementation, pro-
viding more accurate analysis results. Another benefit of model-level
analysis is that it can also result in very efficient analysis methods, since
the analysis is performed on an abstract view of a system, and doesn’t
need to process all the details of the implementation. Model-level ap-
proach to analysis can also include some disadvantages. For example,
the fact that it is performed on an abstract view of a system can reduce

65

Chapter 5

Model-level timing and
utilization analysis

Many embedded software systems are safety-critical and have a require-
ment to operate in real-time. For such systems the ability to provide
functionality on time is as vital as the functionality itself. One possibil-
ity to ensure their correct behavior is by analysis of system properties.
However, analysis is typically not performed until late in system de-
velopment, leading to late detection of problems. Providing a way to
perform analysis early in development can reduce the risk of redesign in
late stages of development, thereby reducing development time and cost.

One approach that allows for early investigation of system properties
is analysis on the model level. This type, which relies on determining sys-
tem properties using abstract system models, provides multiple benefits.
One of such benefits is that a system does not have to be deployed or even
fully implemented to perform the analysis. The unimplemented parts of
the system can be represented by abstract model elements, which can
provide estimates of timing properties. During the development, these
elements can gradually be replaced by the actual implementation, pro-
viding more accurate analysis results. Another benefit of model-level
analysis is that it can also result in very efficient analysis methods, since
the analysis is performed on an abstract view of a system, and doesn’t
need to process all the details of the implementation. Model-level ap-
proach to analysis can also include some disadvantages. For example,
the fact that it is performed on an abstract view of a system can reduce

65

66 Chapter 5. Timing and utilization analysis analysis

Software
Model

Platform
Model

Mapping

Trigger
Period

Definition

BFB
WCET Analysis

Application
WCET Analysis

Device
Utilization Analysis

References

Uses

CFB
WCET Analysis

Legend <Analysis
mechanism>

<Model
element>

Figure 5.1: Overview of the analysis approach.

the accuracy of analysis results. The fact that in component-based sys-
tems are already developed using models makes this approach to analysis
highly suitable to component-based systems.

An important property that can be analyzed in real-time embedded
software systems is the Worst Case Execution Time (WCET) of tasks
or components. The WCET value corresponds to the maximum time
that a processing resource will be used to finish execution of a task or a
component’s functionality [48]. Knowing the WCET for the components
of a real-time system is essential for ensuring it’s timing requirements
are met.

This chapter describes a model-level analysis approach for determin-
ing the WCET of components and applications in IEC 61499 systems,
and a way to derive the utilization of processing resources in distributed
applications. An overview of the complete method is shown in Figure 5.1.
It consists of four analysis mechanisms, targeting different levels in the
IEC 61499 software model. The first two analysis mechanisms, basic
and composite function block WCET analysis, are performed using only
platform-independent software models. Analysis of applications extends
the function block analysis to take into account platform models and
models of deployment. Finally, device utilization analysis combines the
application analysis and information about periods of execution triggers.

The WCET data for each model element is calculated using the data

5.1 Formal definition of IEC 61499 67

of its subcomponents, based on the models of subcomponent interaction.
For basic function blocks, this means that the results are attained by ex-
amining their internal execution control charts. Analysis of composite
function blocks is performed in a compositional manner. The results
for a composite are calculated by composing the existing WCET data
attached to the function blocks implementing the composite. These re-
sults are then stored together with the composite, and used for analysis
whenever a composite is instantiated on a higher level of hierarchy.

The rest of the chapter first gives a formal definition of IEC 61499
model elements. It then continues by first describing the WCET anal-
ysis of basic and composite function blocks. The approach is then ex-
tended with the ability to handle cyclic execution paths, and methods
for analysis of platform-specific application WCET and device utiliza-
tion is presented. After that, an overview of the implemented prototype
analysis tool is given, together with information about evaluation of the
approach. This chapter is based on the main contributing publications
Paper D [40], Paper E [39] and Paper F [37].

5.1 Formal definition of IEC 61499

The description of the WCET analysis requires exact definitions of the
involved IEC 61499 elements. This section provides these definitions,
on a level more formal than is given by the standard [28]. Parts of
the definition provided in this paper are based on work from Čengić
and Åkesson [62]. Definitions that differ from the ones defined in the
mentioned paper were modeled according to the IEC 61499 standard
definition [28]. In this definitions we will disregard elements that are
not relevant to the analysis described in this paper, such as data ports
and connections between them. The following definitions constitute the
representation of IEC 61499 systems used in this chapter

Definition 1. A function block interface is represented by the fol-
lowing construct:

Function block interface: fbi = 〈Ei, Eo〉 where

Ei is a set of event inputs;
Eo is a set of event outputs.

66 Chapter 5. Timing and utilization analysis analysis

Software
Model

Platform
Model

Mapping

Trigger
Period

Definition

BFB
WCET Analysis

Application
WCET Analysis

Device
Utilization Analysis

References

Uses

CFB
WCET Analysis

Legend <Analysis
mechanism>

<Model
element>

Figure 5.1: Overview of the analysis approach.

the accuracy of analysis results. The fact that in component-based sys-
tems are already developed using models makes this approach to analysis
highly suitable to component-based systems.

An important property that can be analyzed in real-time embedded
software systems is the Worst Case Execution Time (WCET) of tasks
or components. The WCET value corresponds to the maximum time
that a processing resource will be used to finish execution of a task or a
component’s functionality [48]. Knowing the WCET for the components
of a real-time system is essential for ensuring it’s timing requirements
are met.

This chapter describes a model-level analysis approach for determin-
ing the WCET of components and applications in IEC 61499 systems,
and a way to derive the utilization of processing resources in distributed
applications. An overview of the complete method is shown in Figure 5.1.
It consists of four analysis mechanisms, targeting different levels in the
IEC 61499 software model. The first two analysis mechanisms, basic
and composite function block WCET analysis, are performed using only
platform-independent software models. Analysis of applications extends
the function block analysis to take into account platform models and
models of deployment. Finally, device utilization analysis combines the
application analysis and information about periods of execution triggers.

The WCET data for each model element is calculated using the data

5.1 Formal definition of IEC 61499 67

of its subcomponents, based on the models of subcomponent interaction.
For basic function blocks, this means that the results are attained by ex-
amining their internal execution control charts. Analysis of composite
function blocks is performed in a compositional manner. The results
for a composite are calculated by composing the existing WCET data
attached to the function blocks implementing the composite. These re-
sults are then stored together with the composite, and used for analysis
whenever a composite is instantiated on a higher level of hierarchy.

The rest of the chapter first gives a formal definition of IEC 61499
model elements. It then continues by first describing the WCET anal-
ysis of basic and composite function blocks. The approach is then ex-
tended with the ability to handle cyclic execution paths, and methods
for analysis of platform-specific application WCET and device utiliza-
tion is presented. After that, an overview of the implemented prototype
analysis tool is given, together with information about evaluation of the
approach. This chapter is based on the main contributing publications
Paper D [40], Paper E [39] and Paper F [37].

5.1 Formal definition of IEC 61499

The description of the WCET analysis requires exact definitions of the
involved IEC 61499 elements. This section provides these definitions,
on a level more formal than is given by the standard [28]. Parts of
the definition provided in this paper are based on work from Čengić
and Åkesson [62]. Definitions that differ from the ones defined in the
mentioned paper were modeled according to the IEC 61499 standard
definition [28]. In this definitions we will disregard elements that are
not relevant to the analysis described in this paper, such as data ports
and connections between them. The following definitions constitute the
representation of IEC 61499 systems used in this chapter

Definition 1. A function block interface is represented by the fol-
lowing construct:

Function block interface: fbi = 〈Ei, Eo〉 where

Ei is a set of event inputs;
Eo is a set of event outputs.

68 Chapter 5. Timing and utilization analysis analysis

Definition 2. A basic function block and it’s subcomponents are rep-
resented by the following constructs:

Basic function block: bfb = 〈fbi , ecc, A〉 where

fbi is a function block interface;
ecc is an execution control chart (ECC);
A is a set of algorithm functions.

Execution control chart (ECC): ecc = 〈Q, T 〉 where

Q is a set {q0, . . . , q|Q|} of ECC states;
T is a set {t0, . . . , t|T |} of ECC transitions.

ECC state: q = 〈k1, . . . , k|q|〉 where

ki is a ECC state action;

ECC state action: k = 〈a, eo〉 where

a is the algorithm to be executed, a ∈ A;
eo is the output event to be generated, eo ∈ Eo.

ECC transition: t = 〈qs, eg, qd〉 where

qs is the source state, qs ∈ Q;
eg is the input event guarding the transition, or 1 if the transition

is not guarded by an event, eg ∈ Ei ∪ {1};
qd is the destination state, qd ∈ Q.

Definition 3. A service interface function block is represented by
the following construct:

Service interface function block: sifb = 〈fbi〉 where

fbi is a function block interface.

5.2 WCET analysis of function blocks 69

Definition 4. A composite function block and it’s constituting ele-
ments are represented by the following construct:

Composite function block: cfb = 〈fbi , fbn〉 where

fbi is the function block interface;
fbn is the internal function block network.

Function block network: fbn = 〈F,C〉 where

F is a set of function blocks, each of which is either a bfb, sifb
or cfb;

C is a set {c0, . . . , c|C|} of connections between event ports.

Connection: c = 〈es, ed〉 where

es is the event port used as the source of the connection;
ed is the event port used as the connection target.

For the purpose of the presented analysis applications being just
function block networks. Therefore we do not need to introduce a sepa-
rate formal definition for applications.

Definition 5. Deployment of function blocks to platform devices is
modeled by function deployedTo(fb), returning the device d to which
the function block fb is deployed to:

Deployment: deployedTo(fb) = d

5.2 WCET analysis of function blocks

As already mentioned, the analysis of function blocks is performed by
composing the WCET data of its subcomponents. It is applied to a single
level of hierarchy at a time, starting from the bottom. In case of basic
function blocks this is done by analysis of the ECC implementing the
block, using the WCET of individual algorithms. For composite function
blocks the WCET data is obtained by composing the WCET data of the
constituent function blocks, according to the event connections in the
internal function block network.

The compositional analysis approach is enabled by providing context-
independent WCET data on the level of function block interface. In this

68 Chapter 5. Timing and utilization analysis analysis

Definition 2. A basic function block and it’s subcomponents are rep-
resented by the following constructs:

Basic function block: bfb = 〈fbi , ecc, A〉 where

fbi is a function block interface;
ecc is an execution control chart (ECC);
A is a set of algorithm functions.

Execution control chart (ECC): ecc = 〈Q, T 〉 where

Q is a set {q0, . . . , q|Q|} of ECC states;
T is a set {t0, . . . , t|T |} of ECC transitions.

ECC state: q = 〈k1, . . . , k|q|〉 where

ki is a ECC state action;

ECC state action: k = 〈a, eo〉 where

a is the algorithm to be executed, a ∈ A;
eo is the output event to be generated, eo ∈ Eo.

ECC transition: t = 〈qs, eg, qd〉 where

qs is the source state, qs ∈ Q;
eg is the input event guarding the transition, or 1 if the transition

is not guarded by an event, eg ∈ Ei ∪ {1};
qd is the destination state, qd ∈ Q.

Definition 3. A service interface function block is represented by
the following construct:

Service interface function block: sifb = 〈fbi〉 where

fbi is a function block interface.

5.2 WCET analysis of function blocks 69

Definition 4. A composite function block and it’s constituting ele-
ments are represented by the following construct:

Composite function block: cfb = 〈fbi , fbn〉 where

fbi is the function block interface;
fbn is the internal function block network.

Function block network: fbn = 〈F,C〉 where

F is a set of function blocks, each of which is either a bfb, sifb
or cfb;

C is a set {c0, . . . , c|C|} of connections between event ports.

Connection: c = 〈es, ed〉 where

es is the event port used as the source of the connection;
ed is the event port used as the connection target.

For the purpose of the presented analysis applications being just
function block networks. Therefore we do not need to introduce a sepa-
rate formal definition for applications.

Definition 5. Deployment of function blocks to platform devices is
modeled by function deployedTo(fb), returning the device d to which
the function block fb is deployed to:

Deployment: deployedTo(fb) = d

5.2 WCET analysis of function blocks

As already mentioned, the analysis of function blocks is performed by
composing the WCET data of its subcomponents. It is applied to a single
level of hierarchy at a time, starting from the bottom. In case of basic
function blocks this is done by analysis of the ECC implementing the
block, using the WCET of individual algorithms. For composite function
blocks the WCET data is obtained by composing the WCET data of the
constituent function blocks, according to the event connections in the
internal function block network.

The compositional analysis approach is enabled by providing context-
independent WCET data on the level of function block interface. In this

70 Chapter 5. Timing and utilization analysis analysis

way, WCET for function blocks, regardless of their type, can be described
without the need of knowing details about their implementation.

The analysis presented in this section is performed only using platform-
independent models, ignores the fact that WCET depends on the type
of hardware that a function block is deployed to. How the analysis is ex-
tended to include platform-specific models and hardware-specific WCET
values is described in Section 5.4.

At the bottom of the IEC 61499 model hierarchy are algorithms im-
plemented by code rather than further defined by models. Determining
the WCET values for algorithms is outside the scope of this thesis, and
we assume that this information has been already established, either as
expert estimates, measurements, of from code analysis (some existing
methods and analysis tools are described in [68]). Similarly, service in-
terface function blocks are also not further elaborated at model level,
and thus not handled by the analysis. We assume the WCET data for
these blocks have been defined manually, e.g. using code analysis.

In the following sections we first five an overview of how WCET data
for function blocks is defined and normalized, and then describe details
of basic and composite function blocks analysis.

5.2.1 WCET data definition

This section describes how WCET data for algorithms used for imple-
mentation of basic function blocks, and for all types of function blocks
on the level of their interface. As already mentioned, the WCET values
represent the maximum amount of time that an algorithm or a function
block will require a processing resource for its execution. This time does
not include waiting due to preemption or blocking.

The WCET for algorithms used to implement basic function blocks
are defined as functions returning a single positive integer value. How
this value is attained is out of scope of the presented analysis.

Definition 6. The WCET data for an algorithm a ∈ A, represented
by the function wcet(a):

wcet(a) ∈ N

Defining WCET data for function blocks is, however, a more complex
task. To allow compositional WCET analysis, this data has to be context

5.2 WCET analysis of function blocks 71

independent, and describe possibly complex execution inside a function
block on the interface level.

Each IEC 61499 function block can have multiple execution alterna-
tives, depending on how the execution was triggered and the internal
state of the function block. To be able to correctly describe these al-
ternatives, the WCET data assigned a function block can contain more
than one WCET entry, each described by a WCET value

The need for the WCET data to be context-independent means that
the data entries do not only have to specify time needed for execution
of function block functionality, but also the effects that this execution
can have on the rest of the system. Since function blocks can transfer
execution flow only through event ports, such effects can be described
by the output events this execution generates. Because of this, besides a
WCET value, each data entry also contains information about generated
events.

The alternative WCET entries are organized in two data sets, based
on how their execution is initiated: (a) event WCET data and (b) in-
ternal trigger WCET data.

The event data set consists of entries with information about execu-
tion initiated by the arrival of event inputs to the function block. Each
event data entry is associated with an input event of the function block,
which can trigger the execution alternative described by the entry.

Similarly, the internal trigger WCET data contains information for
executions initiated by the internal activities in the function block. In
this case the WCET data entry sets are associated with a trigger ID
instead of an input event.

An event input or an internal trigger can result in multiple internal
execution paths, each with a different WCET value and a different set
of generated outputs. When considering a function block in isolation, in
some cases it can not be decided which of these internal paths will lead
to the worst execution time on the system level. Because of this, each
event input and internal trigger can gave more than one WCET data
entry describing it.

Once we calculate the WCET data of a function block it can be
reused in any context, and needs to be recalculated only if the internals
of the function block change.

70 Chapter 5. Timing and utilization analysis analysis

way, WCET for function blocks, regardless of their type, can be described
without the need of knowing details about their implementation.

The analysis presented in this section is performed only using platform-
independent models, ignores the fact that WCET depends on the type
of hardware that a function block is deployed to. How the analysis is ex-
tended to include platform-specific models and hardware-specific WCET
values is described in Section 5.4.

At the bottom of the IEC 61499 model hierarchy are algorithms im-
plemented by code rather than further defined by models. Determining
the WCET values for algorithms is outside the scope of this thesis, and
we assume that this information has been already established, either as
expert estimates, measurements, of from code analysis (some existing
methods and analysis tools are described in [68]). Similarly, service in-
terface function blocks are also not further elaborated at model level,
and thus not handled by the analysis. We assume the WCET data for
these blocks have been defined manually, e.g. using code analysis.

In the following sections we first five an overview of how WCET data
for function blocks is defined and normalized, and then describe details
of basic and composite function blocks analysis.

5.2.1 WCET data definition

This section describes how WCET data for algorithms used for imple-
mentation of basic function blocks, and for all types of function blocks
on the level of their interface. As already mentioned, the WCET values
represent the maximum amount of time that an algorithm or a function
block will require a processing resource for its execution. This time does
not include waiting due to preemption or blocking.

The WCET for algorithms used to implement basic function blocks
are defined as functions returning a single positive integer value. How
this value is attained is out of scope of the presented analysis.

Definition 6. The WCET data for an algorithm a ∈ A, represented
by the function wcet(a):

wcet(a) ∈ N

Defining WCET data for function blocks is, however, a more complex
task. To allow compositional WCET analysis, this data has to be context

5.2 WCET analysis of function blocks 71

independent, and describe possibly complex execution inside a function
block on the interface level.

Each IEC 61499 function block can have multiple execution alterna-
tives, depending on how the execution was triggered and the internal
state of the function block. To be able to correctly describe these al-
ternatives, the WCET data assigned a function block can contain more
than one WCET entry, each described by a WCET value

The need for the WCET data to be context-independent means that
the data entries do not only have to specify time needed for execution
of function block functionality, but also the effects that this execution
can have on the rest of the system. Since function blocks can transfer
execution flow only through event ports, such effects can be described
by the output events this execution generates. Because of this, besides a
WCET value, each data entry also contains information about generated
events.

The alternative WCET entries are organized in two data sets, based
on how their execution is initiated: (a) event WCET data and (b) in-
ternal trigger WCET data.

The event data set consists of entries with information about execu-
tion initiated by the arrival of event inputs to the function block. Each
event data entry is associated with an input event of the function block,
which can trigger the execution alternative described by the entry.

Similarly, the internal trigger WCET data contains information for
executions initiated by the internal activities in the function block. In
this case the WCET data entry sets are associated with a trigger ID
instead of an input event.

An event input or an internal trigger can result in multiple internal
execution paths, each with a different WCET value and a different set
of generated outputs. When considering a function block in isolation, in
some cases it can not be decided which of these internal paths will lead
to the worst execution time on the system level. Because of this, each
event input and internal trigger can gave more than one WCET data
entry describing it.

Once we calculate the WCET data of a function block it can be
reused in any context, and needs to be recalculated only if the internals
of the function block change.

72 Chapter 5. Timing and utilization analysis analysis

fb

10 eo1

eo2

eo3

ei1

ei2
5
30

3
p1

Figure 5.2: Example of WCET data.

Definition 7. The WCET data for a function block f is represented by
the function wcet(f):

Function block WCET data: wcet(f) = 〈We,Wi〉 where

We is a set of elements on the form 〈ei,W 〉, representing WCET
information for input events.

Wi is a multiset of elements on the form 〈t,W 〉, representing
WCET information for execution started by internal triggers;

ei is an input event, ei ∈ Ei;
t is the ID of an internal trigger;
W is a set of WCET data entries.

WCET data entry: w = 〈v, o〉 where

v is the WCET value, v ∈ N;
o is a function mapping output ports to the maximum number of

events generated at them, o ⊆ Eo × N.

Example

We can illustrate the WCET data for a function block by the following
example:

wcet(fb) = 〈{ 〈ei1, { 〈10,{eo1=1}〉,
〈 5,{eo1=2, eo2=1}〉 }〉,

〈ei2, { 〈30,{eo2=1}〉 }〉 },
{ 〈 p1, { 〈 3,{eo3=1}〉 }〉 }〉

The same data is also represented with a graphical notation in Fig-

5.2 WCET analysis of function blocks 73

ure 5.2. Each dashed arrow represents a WCET data entry. The start
of the arrows denotes either the input event or the internal trigger that
the entry is associated with, while the arrow end depicts the generated
outputs. Output of multiple events is shown by a split in the arrow.
Multiple outputs to a single event are represented by multiple arrow
heads. The numbers next to the arrows give the WCET value of the
alternative.

In the example, the o functions are shown as sets of equalities between
ports and the number of generated events at that port, and for all output
events that do not appear in the set the value of the function is 0. We
can see that for input event ei1 we have two WCET data entries. One
has a value of 10 and generates one event at the eo1 output port. The
other one has a value of 5 but generates two events at eo1 and one event
at the output port eo2. Input event ei2 has only one data entry with a
value of 30 and one event generated at the output port eo2. The WCET
data also contains one internal trigger with the ID p1 and a single WCET
data entry with the value 3 and one output at the eo3 port.

Operations on WCET data

For the purpose of our analysis we also need to define the following
operations on the data elements:

Definition 8. For the functions o, and n ∈ N, we define the operations
+, ∗ and inc as follows:

inc(o, e′, n) (e) =

{
o(e) + n if e = e′

o(e) otherwise

(o1 + o2) (e) = o1(e) + o2(e)

(o ∗ n)(e) = n ∗ o(e)

Definition 9. For the sets of WCET data entries, W in the definition
above, and for n ∈ N, we define the following operations:

W ∗ n = {〈v ∗ n, o ∗ n〉 | 〈v, o〉 ∈ W}

W1 ⊗W2 =

W1 if W2 = ∅
W2 if W1 = ∅
{ 〈v1 + v2, o1 + o2〉 |

〈v1, o1〉 ∈ W1 ∧
〈v2, o2〉 ∈ W2 }

otherwise

72 Chapter 5. Timing and utilization analysis analysis

fb

10 eo1

eo2

eo3

ei1

ei2
5
30

3
p1

Figure 5.2: Example of WCET data.

Definition 7. The WCET data for a function block f is represented by
the function wcet(f):

Function block WCET data: wcet(f) = 〈We,Wi〉 where

We is a set of elements on the form 〈ei,W 〉, representing WCET
information for input events.

Wi is a multiset of elements on the form 〈t,W 〉, representing
WCET information for execution started by internal triggers;

ei is an input event, ei ∈ Ei;
t is the ID of an internal trigger;
W is a set of WCET data entries.

WCET data entry: w = 〈v, o〉 where

v is the WCET value, v ∈ N;
o is a function mapping output ports to the maximum number of

events generated at them, o ⊆ Eo × N.

Example

We can illustrate the WCET data for a function block by the following
example:

wcet(fb) = 〈{ 〈ei1, { 〈10,{eo1=1}〉,
〈 5,{eo1=2, eo2=1}〉 }〉,

〈ei2, { 〈30,{eo2=1}〉 }〉 },
{ 〈 p1, { 〈 3,{eo3=1}〉 }〉 }〉

The same data is also represented with a graphical notation in Fig-

5.2 WCET analysis of function blocks 73

ure 5.2. Each dashed arrow represents a WCET data entry. The start
of the arrows denotes either the input event or the internal trigger that
the entry is associated with, while the arrow end depicts the generated
outputs. Output of multiple events is shown by a split in the arrow.
Multiple outputs to a single event are represented by multiple arrow
heads. The numbers next to the arrows give the WCET value of the
alternative.

In the example, the o functions are shown as sets of equalities between
ports and the number of generated events at that port, and for all output
events that do not appear in the set the value of the function is 0. We
can see that for input event ei1 we have two WCET data entries. One
has a value of 10 and generates one event at the eo1 output port. The
other one has a value of 5 but generates two events at eo1 and one event
at the output port eo2. Input event ei2 has only one data entry with a
value of 30 and one event generated at the output port eo2. The WCET
data also contains one internal trigger with the ID p1 and a single WCET
data entry with the value 3 and one output at the eo3 port.

Operations on WCET data

For the purpose of our analysis we also need to define the following
operations on the data elements:

Definition 8. For the functions o, and n ∈ N, we define the operations
+, ∗ and inc as follows:

inc(o, e′, n) (e) =

{
o(e) + n if e = e′

o(e) otherwise

(o1 + o2) (e) = o1(e) + o2(e)

(o ∗ n)(e) = n ∗ o(e)

Definition 9. For the sets of WCET data entries, W in the definition
above, and for n ∈ N, we define the following operations:

W ∗ n = {〈v ∗ n, o ∗ n〉 | 〈v, o〉 ∈ W}

W1 ⊗W2 =

W1 if W2 = ∅
W2 if W1 = ∅
{ 〈v1 + v2, o1 + o2〉 |

〈v1, o1〉 ∈ W1 ∧
〈v2, o2〉 ∈ W2 }

otherwise

74 Chapter 5. Timing and utilization analysis analysis

5.2.2 Data normalization

As we have shown in Section 5.2.1, the WCET data that we define can
contain more than one data entry for the same execution source (i.e.
input event or internal trigger). When using such data sets in compo-
sitional analysis the amount of resulting data can grow rapidly, when
all combinations of alternatives for all subcomponents must be consid-
ered. To address this problem we will use data normalization to remove
redundant data entries and optimize large data sets by introducing over-
approximations.

First, we introduce a comparison relation capturing when one WCET
data entry is completely covered by another one.

Definition 10. We define the following comparison relation between
w1 = 〈v1, o1〉 and w2 = 〈v2, o2〉:

w1 � w2 = v1 ≤ v2 ∧ ∀e : o1(e) ≤ o2(e)

w1 ≺ w2 = w1 � w2 ∧ w1 �= w2

In our current work we have defined two methods of data normal-
ization, the maximal elements method and the supremum method, which
we will now describe.

The maximal elements method

Using the maximal elements method we only remove redundant data
from our WCET data sets. By this method we normalize a data set
by keeping only entries which are maximal elements. Since all other
elements are guaranteed to produce lower or equal WCET values in
any context, and thus can be removed without loss of precision, this
method allows reducing the number of data entries without introducing
any overestimation in the normalization process.

Definition 11. The maximal elements normalization function is defined
as follows:

normalizemax(W) = {w | w ∈ W ∧ ¬∃w′ ∈ W : w ≺ w′}

The Supremum Method

The second normalization method deals with incomparable WCET data
values by replacing them by the supremum (the least upper bound), i.e.

5.2 WCET analysis of function blocks 75

the smallest value which is greater than both of them. The result of
such normalization can be a drastic reduction of data and complexity
of analysis, as all alternative execution paths for the input event or
internally triggered activity are represented by a single WCET entry.
However, this method also introduces an overestimation of the function
block execution time and generated outputs. This overestimation can
increase with each use of the normalization when applied to the whole
function block hierarchy, and thus decrease the precision of the analysis
results.

Definition 12. The supremum normalization function is defined as fol-
lows:

normalizesup(W) = {sup(W)}

Example

As an example of the two normalization methods, consider the following
set of WCET data entries:

W = {〈10,{eo1=2}〉,
〈 8,{eo1=1, eo2=1}〉,
〈 3,{eo1=2}〉}

For this set, the two normalization methods give the following results:

normalizemax(W) = {〈10,{eo1=2}〉,
〈 8,{eo1=1, eo2=1}〉}

normalizesup(W) = {〈10,{eo1=2, eo2=1}〉}

The maximal elements normalization removes the third element since it
is smaller than the first element, while the supremum method returns a
single element that safely approximates all three.

5.2.3 Basic Function Block Analysis

Now that we have described the WCET data that we will use in the
analysis and the operations for manipulating this data, we can present
the actual analysis method. This section will describe the first part of
our analysis method, the analysis of basic function blocks. Analysis of
composite function blocks will be given in the Section 5.2.4.

The WCET of a basic function block is determined by analysis of
its ECC. To gather the data about execution based on input events, we

74 Chapter 5. Timing and utilization analysis analysis

5.2.2 Data normalization

As we have shown in Section 5.2.1, the WCET data that we define can
contain more than one data entry for the same execution source (i.e.
input event or internal trigger). When using such data sets in compo-
sitional analysis the amount of resulting data can grow rapidly, when
all combinations of alternatives for all subcomponents must be consid-
ered. To address this problem we will use data normalization to remove
redundant data entries and optimize large data sets by introducing over-
approximations.

First, we introduce a comparison relation capturing when one WCET
data entry is completely covered by another one.

Definition 10. We define the following comparison relation between
w1 = 〈v1, o1〉 and w2 = 〈v2, o2〉:

w1 � w2 = v1 ≤ v2 ∧ ∀e : o1(e) ≤ o2(e)

w1 ≺ w2 = w1 � w2 ∧ w1 �= w2

In our current work we have defined two methods of data normal-
ization, the maximal elements method and the supremum method, which
we will now describe.

The maximal elements method

Using the maximal elements method we only remove redundant data
from our WCET data sets. By this method we normalize a data set
by keeping only entries which are maximal elements. Since all other
elements are guaranteed to produce lower or equal WCET values in
any context, and thus can be removed without loss of precision, this
method allows reducing the number of data entries without introducing
any overestimation in the normalization process.

Definition 11. The maximal elements normalization function is defined
as follows:

normalizemax(W) = {w | w ∈ W ∧ ¬∃w′ ∈ W : w ≺ w′}

The Supremum Method

The second normalization method deals with incomparable WCET data
values by replacing them by the supremum (the least upper bound), i.e.

5.2 WCET analysis of function blocks 75

the smallest value which is greater than both of them. The result of
such normalization can be a drastic reduction of data and complexity
of analysis, as all alternative execution paths for the input event or
internally triggered activity are represented by a single WCET entry.
However, this method also introduces an overestimation of the function
block execution time and generated outputs. This overestimation can
increase with each use of the normalization when applied to the whole
function block hierarchy, and thus decrease the precision of the analysis
results.

Definition 12. The supremum normalization function is defined as fol-
lows:

normalizesup(W) = {sup(W)}

Example

As an example of the two normalization methods, consider the following
set of WCET data entries:

W = {〈10,{eo1=2}〉,
〈 8,{eo1=1, eo2=1}〉,
〈 3,{eo1=2}〉}

For this set, the two normalization methods give the following results:

normalizemax(W) = {〈10,{eo1=2}〉,
〈 8,{eo1=1, eo2=1}〉}

normalizesup(W) = {〈10,{eo1=2, eo2=1}〉}

The maximal elements normalization removes the third element since it
is smaller than the first element, while the supremum method returns a
single element that safely approximates all three.

5.2.3 Basic Function Block Analysis

Now that we have described the WCET data that we will use in the
analysis and the operations for manipulating this data, we can present
the actual analysis method. This section will describe the first part of
our analysis method, the analysis of basic function blocks. Analysis of
composite function blocks will be given in the Section 5.2.4.

The WCET of a basic function block is determined by analysis of
its ECC. To gather the data about execution based on input events, we

76 Chapter 5. Timing and utilization analysis analysis

START S1 A1 eo1

S2 A2 eo1

ei1

1

1

S3 A3 eo2

ei1

1

wcet(A1) = 10

wcet(A2) = 5

wcet(A3) = 3

Figure 5.3: ECC analysis example.

must analyze all possible ECC runs that can be executed by the event
input ports in the function block interface. As the execution of a basic
function block can only start by receiving an input event, their WCET
data only contains information in the event data set We, while the Wp

set of information for internal triggers is always empty.

We start the basic function block analysis by going through the inter-
face, and for each input event port we look for all transitions in the ECC
guarded by the given event. For each such transition we go through all
possible ECC runs, and for each run add together the WCET values of
the algorithms to be executed and collect information about produced
output events.

Example

We can illustrate how the ECC analysis is performed on the example
shown in Figure 5.3. We will assume that the ECC in the figure is part
of a basic function block bfb1 containing only one input event port, ei1,
and two output event ports, eo1 and eo2. Here we can see that the event
ei1 can result in two different runs. The first run visits only state S1,
executes algorithm A1 and produces an event on the output port eo1.
The second run visits states S2 and S3, executes algorithms A2 and A3,
and produces events at both outputs eo1 and eo2.

5.2 WCET analysis of function blocks 77

As the result of the analysis of bfb1 we would get the following data:

WCET (bfb1) = 〈{ 〈ei1, { 〈10,{eo1=1}〉,
〈 8,{eo1=1, eo2=1}〉 }〉 },

∅ 〉

The BFB Analysis Algorithm

Algorithm 1 defines the analysis of a basic function block. The for loop
starting on line 3 is used to iterate over all event inputs. The combination
of the for loop on line 5 and the if statement on line 6 is used to find all
transitions that are guarded with the given input event. Then, on line 7,
we call the ECC analysis function (described in Algorithm 2) to collect
analysis results for all ECC runs starting from the destination state of
a transition. The results from the ECC analysis are added to a set W ,
which will in the end be associated with the currently analyzed input
event and added to the result set We on line 11.

The ECC Analysis Algorithm

The ECC run analysis is described by Algorithm 2. In lines 1 to 6 we
collect the WCET value v for all algorithms and output information o
of actions defined for current ECC state. We use the combination of a

Algorithm 1 bfbAnalysis(bfb)

1: We ← ∅
2: 〈〈Ei, Eo〉, 〈Q, T 〉, A〉 ← bfb
3: for each ei ∈ Ei do
4: W ← ∅
5: for each 〈qs, eg, qd〉 ∈ T do
6: if eg = ei then
7: W ← W ∪ eccAnalysis(qd, T)
8: end if
9: end for

10: W ← normalize(W)
11: We ← We ∪ {〈ei,W 〉}
12: end for
13: return 〈We, ∅〉

76 Chapter 5. Timing and utilization analysis analysis

START S1 A1 eo1

S2 A2 eo1

ei1

1

1

S3 A3 eo2

ei1

1

wcet(A1) = 10

wcet(A2) = 5

wcet(A3) = 3

Figure 5.3: ECC analysis example.

must analyze all possible ECC runs that can be executed by the event
input ports in the function block interface. As the execution of a basic
function block can only start by receiving an input event, their WCET
data only contains information in the event data set We, while the Wp

set of information for internal triggers is always empty.

We start the basic function block analysis by going through the inter-
face, and for each input event port we look for all transitions in the ECC
guarded by the given event. For each such transition we go through all
possible ECC runs, and for each run add together the WCET values of
the algorithms to be executed and collect information about produced
output events.

Example

We can illustrate how the ECC analysis is performed on the example
shown in Figure 5.3. We will assume that the ECC in the figure is part
of a basic function block bfb1 containing only one input event port, ei1,
and two output event ports, eo1 and eo2. Here we can see that the event
ei1 can result in two different runs. The first run visits only state S1,
executes algorithm A1 and produces an event on the output port eo1.
The second run visits states S2 and S3, executes algorithms A2 and A3,
and produces events at both outputs eo1 and eo2.

5.2 WCET analysis of function blocks 77

As the result of the analysis of bfb1 we would get the following data:

WCET (bfb1) = 〈{ 〈ei1, { 〈10,{eo1=1}〉,
〈 8,{eo1=1, eo2=1}〉 }〉 },

∅ 〉

The BFB Analysis Algorithm

Algorithm 1 defines the analysis of a basic function block. The for loop
starting on line 3 is used to iterate over all event inputs. The combination
of the for loop on line 5 and the if statement on line 6 is used to find all
transitions that are guarded with the given input event. Then, on line 7,
we call the ECC analysis function (described in Algorithm 2) to collect
analysis results for all ECC runs starting from the destination state of
a transition. The results from the ECC analysis are added to a set W ,
which will in the end be associated with the currently analyzed input
event and added to the result set We on line 11.

The ECC Analysis Algorithm

The ECC run analysis is described by Algorithm 2. In lines 1 to 6 we
collect the WCET value v for all algorithms and output information o
of actions defined for current ECC state. We use the combination of a

Algorithm 1 bfbAnalysis(bfb)

1: We ← ∅
2: 〈〈Ei, Eo〉, 〈Q, T 〉, A〉 ← bfb
3: for each ei ∈ Ei do
4: W ← ∅
5: for each 〈qs, eg, qd〉 ∈ T do
6: if eg = ei then
7: W ← W ∪ eccAnalysis(qd, T)
8: end if
9: end for

10: W ← normalize(W)
11: We ← We ∪ {〈ei,W 〉}
12: end for
13: return 〈We, ∅〉

78 Chapter 5. Timing and utilization analysis analysis

Algorithm 2 eccAnalysis(q, T)

1: v ← 0
2: o ← ∅
3: for each 〈a, eo〉 ∈ q do
4: v ← v +WCET (a)
5: o ← inc(o, eo, 1)
6: end for
7: W ′ ← ∅
8: for each 〈qs, eg, qd〉 ∈ T do
9: if qs = q and eg = 1 then

10: W ′ ← W ′ ∪ eccAnalysis(qd, T)
11: end if
12: end for
13: if W ′ = ∅ then
14: W ← {〈v, o〉}
15: else
16: W ← ∅
17: for each 〈v′, o′〉 ∈ W ′ do
18: W ← W ∪ {〈v + v′, o+ o′〉}
19: end for
20: W ← normalize(W)
21: end if
22: return W

for loop and an if statement on lines 8 and 9 to find all ECC transi-
tions starting with current state that do not have any event inputs as
guards. We recursively start ECC analysis for destination states of such
transitions. The results of recursive analysis are stored in a temporary
WCET data entry set, W ′. If there were no such results (i.e. no possible
transitions), we assign the WCET value and output information for the
current state as the final ECC analysis results on lines 13 and 14. Oth-
erwise, we add the data for the current state to all WCET data entries
collected by the recursive analysis of ECC in lines 16 to 20. Before the
result data set W is returned, it is normalized on line 20.

5.2 WCET analysis of function blocks 79

5.2.4 Composite Function Block Analysis

Analysis of a composite function block consists of two separate parts:
(a) analysis of execution based on input events and (b) analysis of the
internal execution sources. Both of these parts are based on the analysis
of the function block network contained in the composite function block.
The algorithms presented in this section assume that the function block
networks do not contain any cyclic execution paths. Section 5.3 describes
how this restriction is lifted.

Input event execution analysis starts from the interface of the com-
posite function block. Similar to the analysis of basic function blocks,
for each input event we find all possible execution paths in the internal
function block network. The analysis is performed on only one hierar-
chical level at a time. The execution paths are determined by traversing
event connections of the network and by using event output informa-
tion included in the existing WCET data for the function blocks in the
network. For each execution path we accumulate the WCET values de-
fined in the function block WCET data and gather information about
produced output events if a path ends at one output event ports of the
composite.

Analysis of the internal event sources is performed by iterating over
all function blocks contained in the network and finding the ones which
have at least one entry in their internal trigger WCET data set. For
each such entry we start a network analysis based on the event output
information of the entry.

Example

We will illustrate the analysis of composite function blocks by a simple
example depicted in Figure 5.4. The figure shows a composite, cfb, con-
taining three function blocks, and we assume the following WCET data
for them:

wcet(fb1) = 〈{ 〈ei11, { 〈1,{eo11=1, eo12=2}〉 }〉 },
∅〉

wcet(fb2) = 〈{ 〈ei21, { 〈10,{eo21=2}〉,
〈30,{eo21=1}〉 }〉 },

∅〉

78 Chapter 5. Timing and utilization analysis analysis

Algorithm 2 eccAnalysis(q, T)

1: v ← 0
2: o ← ∅
3: for each 〈a, eo〉 ∈ q do
4: v ← v +WCET (a)
5: o ← inc(o, eo, 1)
6: end for
7: W ′ ← ∅
8: for each 〈qs, eg, qd〉 ∈ T do
9: if qs = q and eg = 1 then

10: W ′ ← W ′ ∪ eccAnalysis(qd, T)
11: end if
12: end for
13: if W ′ = ∅ then
14: W ← {〈v, o〉}
15: else
16: W ← ∅
17: for each 〈v′, o′〉 ∈ W ′ do
18: W ← W ∪ {〈v + v′, o+ o′〉}
19: end for
20: W ← normalize(W)
21: end if
22: return W

for loop and an if statement on lines 8 and 9 to find all ECC transi-
tions starting with current state that do not have any event inputs as
guards. We recursively start ECC analysis for destination states of such
transitions. The results of recursive analysis are stored in a temporary
WCET data entry set, W ′. If there were no such results (i.e. no possible
transitions), we assign the WCET value and output information for the
current state as the final ECC analysis results on lines 13 and 14. Oth-
erwise, we add the data for the current state to all WCET data entries
collected by the recursive analysis of ECC in lines 16 to 20. Before the
result data set W is returned, it is normalized on line 20.

5.2 WCET analysis of function blocks 79

5.2.4 Composite Function Block Analysis

Analysis of a composite function block consists of two separate parts:
(a) analysis of execution based on input events and (b) analysis of the
internal execution sources. Both of these parts are based on the analysis
of the function block network contained in the composite function block.
The algorithms presented in this section assume that the function block
networks do not contain any cyclic execution paths. Section 5.3 describes
how this restriction is lifted.

Input event execution analysis starts from the interface of the com-
posite function block. Similar to the analysis of basic function blocks,
for each input event we find all possible execution paths in the internal
function block network. The analysis is performed on only one hierar-
chical level at a time. The execution paths are determined by traversing
event connections of the network and by using event output informa-
tion included in the existing WCET data for the function blocks in the
network. For each execution path we accumulate the WCET values de-
fined in the function block WCET data and gather information about
produced output events if a path ends at one output event ports of the
composite.

Analysis of the internal event sources is performed by iterating over
all function blocks contained in the network and finding the ones which
have at least one entry in their internal trigger WCET data set. For
each such entry we start a network analysis based on the event output
information of the entry.

Example

We will illustrate the analysis of composite function blocks by a simple
example depicted in Figure 5.4. The figure shows a composite, cfb, con-
taining three function blocks, and we assume the following WCET data
for them:

wcet(fb1) = 〈{ 〈ei11, { 〈1,{eo11=1, eo12=2}〉 }〉 },
∅〉

wcet(fb2) = 〈{ 〈ei21, { 〈10,{eo21=2}〉,
〈30,{eo21=1}〉 }〉 },

∅〉

80 Chapter 5. Timing and utilization analysis analysis

fb1

1

eoc1eic1

eoc2

ei11 eo11
eo12

eoc3

fb3

100
300

ei31 eo31

fb2

10
ei21 eo21

eo32

cfb

30

p1 5

Figure 5.4: CFB analysis example.

wcet(fb3) = 〈{ 〈ei31, { 〈100,{eo31=1}〉,
〈300,{eo32=1}〉 }〉 },

{ 〈 p1, { 〈 5,{eo32=1}〉 }〉 }〉
The analysis of composite cfb begins by determining WCET data for

its single input event port eic1 . Starting from this port, four different
execution paths can be traced. The first one takes the single execution
alternative with two outputs defined for fb2, the first alternative for fb2,
and the first alternative for fb3. As the execution of fb1 generates two
output at eo12, all execution started by this output needs to be multiplied
by two. The same is valid for the first execution alternative of fb2. In
total, the first execution path of cfb has WCET value 211 (1+10+2∗100),
and generates two outputs to both eoc1 and eoc2 .

The second path in cfb takes the single alternative of fb1, the second
execution alternative of fb2 and the first alternative of fb3, resulting in
WCET value 231, one output to eoc1 and two outputs to eoc2 .

Analogously to the first two execution paths, the second two execu-
tion paths are traced by taking the second alternative of mathitfb3.

The internally triggered execution data for the cfb is calculated using
the information about internal triggers of its subcomponents, in this case
only fb3. Because the eo32 event output which the internal trigger of fb3
generates is connected directly to the output of the composite, the result
will include just the WCET value of the internal trigger data entry (10)
with its trigger ID p1, and an output to eoc3.

Assuming that we use the maximal element normalization method,

5.2 WCET analysis of function blocks 81

which in this case does not remove any entries, the final result of the
analysis is:

wcet(cfb) = 〈{〈eic1, { 〈211,{eoc1=2, eoc2=2}〉,
〈231,{eoc1=1, eoc2=2}〉,
〈611,{eoc1=2, eoc3=2}〉,
〈631,{eoc1=1, eoc3=2}〉 }〉},

{〈 p1, { 〈 5,{eoc3=1}〉 }〉 }〉
The supremum normalization would instead give:

wcet(cfb) = 〈{〈eic1, { 〈631,{eoc1=2, eoc2=2, eoc3=2}〉 }〉},
{〈 p1, { 〈 5,{eoc3=1}〉 }〉 }〉

The CFB Analysis Algorithm

The start of the composite analysis is given in Algorithm 3, where the
separate execution of event based and internally triggered execution
analysis is performed. The results attained by the two is then com-
bination into a final WCET data set.

Algorithm 3 cfbAnalysis(cfb)

1: 〈fbi, fbn〉 ← cfb
2: We ← eventAnalysis(cfb)
3: Wi ← triggerAnalysis(fbn)
4: return 〈We,Wp〉

The CFB Event Analysis Algorithm

Algorithm 4 shows how we start the event analysis for a composite func-
tion block. In the for loop starting on line 3, we iterate through all event
inputs of the composite. We start the network analysis algorithm (given
in Algorithm 5) for each input and store the results of the analysis to
the event WCET data set, linking it with the starting event input port.

The FBN Analysis Algorithm

As the algorithm for internally triggered execution analysis uses some
concepts from the function block network analysis algorithm, the latter

80 Chapter 5. Timing and utilization analysis analysis

fb1

1

eoc1eic1

eoc2

ei11 eo11
eo12

eoc3

fb3

100
300

ei31 eo31

fb2

10
ei21 eo21

eo32

cfb

30

p1 5

Figure 5.4: CFB analysis example.

wcet(fb3) = 〈{ 〈ei31, { 〈100,{eo31=1}〉,
〈300,{eo32=1}〉 }〉 },

{ 〈 p1, { 〈 5,{eo32=1}〉 }〉 }〉
The analysis of composite cfb begins by determining WCET data for

its single input event port eic1 . Starting from this port, four different
execution paths can be traced. The first one takes the single execution
alternative with two outputs defined for fb2, the first alternative for fb2,
and the first alternative for fb3. As the execution of fb1 generates two
output at eo12, all execution started by this output needs to be multiplied
by two. The same is valid for the first execution alternative of fb2. In
total, the first execution path of cfb has WCET value 211 (1+10+2∗100),
and generates two outputs to both eoc1 and eoc2 .

The second path in cfb takes the single alternative of fb1, the second
execution alternative of fb2 and the first alternative of fb3, resulting in
WCET value 231, one output to eoc1 and two outputs to eoc2 .

Analogously to the first two execution paths, the second two execu-
tion paths are traced by taking the second alternative of mathitfb3.

The internally triggered execution data for the cfb is calculated using
the information about internal triggers of its subcomponents, in this case
only fb3. Because the eo32 event output which the internal trigger of fb3
generates is connected directly to the output of the composite, the result
will include just the WCET value of the internal trigger data entry (10)
with its trigger ID p1, and an output to eoc3.

Assuming that we use the maximal element normalization method,

5.2 WCET analysis of function blocks 81

which in this case does not remove any entries, the final result of the
analysis is:

wcet(cfb) = 〈{〈eic1, { 〈211,{eoc1=2, eoc2=2}〉,
〈231,{eoc1=1, eoc2=2}〉,
〈611,{eoc1=2, eoc3=2}〉,
〈631,{eoc1=1, eoc3=2}〉 }〉},

{〈 p1, { 〈 5,{eoc3=1}〉 }〉 }〉
The supremum normalization would instead give:

wcet(cfb) = 〈{〈eic1, { 〈631,{eoc1=2, eoc2=2, eoc3=2}〉 }〉},
{〈 p1, { 〈 5,{eoc3=1}〉 }〉 }〉

The CFB Analysis Algorithm

The start of the composite analysis is given in Algorithm 3, where the
separate execution of event based and internally triggered execution
analysis is performed. The results attained by the two is then com-
bination into a final WCET data set.

Algorithm 3 cfbAnalysis(cfb)

1: 〈fbi, fbn〉 ← cfb
2: We ← eventAnalysis(cfb)
3: Wi ← triggerAnalysis(fbn)
4: return 〈We,Wp〉

The CFB Event Analysis Algorithm

Algorithm 4 shows how we start the event analysis for a composite func-
tion block. In the for loop starting on line 3, we iterate through all event
inputs of the composite. We start the network analysis algorithm (given
in Algorithm 5) for each input and store the results of the analysis to
the event WCET data set, linking it with the starting event input port.

The FBN Analysis Algorithm

As the algorithm for internally triggered execution analysis uses some
concepts from the function block network analysis algorithm, the latter

82 Chapter 5. Timing and utilization analysis analysis

Algorithm 4 eventAnalysis(cfb)

1: We ← ∅
2: 〈〈Ei, Eo〉, fbn〉 ← cfb
3: for each ei ∈ Ei do
4: W ← fbnAnalysis(ei)
5: We ← We ∪ 〈ei,W 〉
6: end for
7: return We

one is introduced first.

The function block network analysis described in Algorithm 5 starts
from an input event port e of the composite or an output port of a
function block instance and gathers WCET data for all execution paths
that can be taken from that event port. The algorithm starts with
initialization of the WCET data entry set W which will hold the results
associated with the port e.

On line 3 we test if there is any connection leading out from the
selected event port. If not, the resulting WCET data for this event is
empty. Otherwise, the analysis continues at the destination port of the
connection.

On line 7, we test if the destination port is an output port of the
composite. If it is, we return a WCET data entry with WCET value
0 and a single output to the destination port as the only WCET data
entry for the currently analyzed event.

If the connection’s destination port is an input event port of a func-
tion block, we continue by first retrieving the WCET data for that func-
tion block, as shown on line 13.

As the function block WCET data can have multiple data entries
(for multiple internal execution paths), we continue the analysis for each
data entry separately by a for loop on line 15. On line 16 we initialize a
temporary set W ′ which we will use to collect the intermediate results.
The intermediate results will be added to the final result set on line 23.

With a recursive call of network analysis for each output event in the
output information of the current WCET entry we gather information
for execution paths started by these events, as shown on lines 17 and
18. The results of a single recursive call are stored in the Wr set, which
is multiplied by the number of occurrences of the output event on line

5.2 WCET analysis of function blocks 83

19. On line 20 we construct all possible combinations of WCET data for
execution paths started by the current output event (Wr) with the ones
already gathered in the temporary set W ′, and use these combinations
as our new temporary set. By this we have created all possible execution
paths that can be taken by generating all output events of the currently
examined WCET data entry.

Once we have collected the data for all possible execution paths we
add the WCET value of the current data entry to all the data in the

Algorithm 5 fbnAnalysis(e, fbn)

1: W ← ∅
2: 〈Fi, C〉 ← fbn
3: if ¬∃〈es, ed〉 ∈ C : es = e then
4: return ∅
5: else
6: Let 〈es, ed〉 ∈ C be the connection for which es = e
7: if ed is an output port then
8: o ← inc(∅, ed, 1)
9: W ← 〈0, o〉

10: return W
11: end if
12: Let f be the FB to which ed belongs
13: 〈We,Wi〉 ← wcet(f)
14: Let 〈ei,Wt〉 be the element in We for which ei = ed
15: for each 〈v, o〉 ∈ Wt do
16: W ′ ← ∅
17: for each eo ∈ E0 : o(eo) > 0 do
18: Wr ← fbnAnalysis(e0, fbn)
19: Wr ← Wr ∗ o(eo)
20: W ′ ← W ′ ⊗Wr

21: end for
22: W ′ ← {〈v′ + v, o′〉 : 〈v′, o′〉 ∈ W ′}
23: W ← W ∪W ′

24: end for
25: W ← normalize(W)
26: return W
27: end if

82 Chapter 5. Timing and utilization analysis analysis

Algorithm 4 eventAnalysis(cfb)

1: We ← ∅
2: 〈〈Ei, Eo〉, fbn〉 ← cfb
3: for each ei ∈ Ei do
4: W ← fbnAnalysis(ei)
5: We ← We ∪ 〈ei,W 〉
6: end for
7: return We

one is introduced first.

The function block network analysis described in Algorithm 5 starts
from an input event port e of the composite or an output port of a
function block instance and gathers WCET data for all execution paths
that can be taken from that event port. The algorithm starts with
initialization of the WCET data entry set W which will hold the results
associated with the port e.

On line 3 we test if there is any connection leading out from the
selected event port. If not, the resulting WCET data for this event is
empty. Otherwise, the analysis continues at the destination port of the
connection.

On line 7, we test if the destination port is an output port of the
composite. If it is, we return a WCET data entry with WCET value
0 and a single output to the destination port as the only WCET data
entry for the currently analyzed event.

If the connection’s destination port is an input event port of a func-
tion block, we continue by first retrieving the WCET data for that func-
tion block, as shown on line 13.

As the function block WCET data can have multiple data entries
(for multiple internal execution paths), we continue the analysis for each
data entry separately by a for loop on line 15. On line 16 we initialize a
temporary set W ′ which we will use to collect the intermediate results.
The intermediate results will be added to the final result set on line 23.

With a recursive call of network analysis for each output event in the
output information of the current WCET entry we gather information
for execution paths started by these events, as shown on lines 17 and
18. The results of a single recursive call are stored in the Wr set, which
is multiplied by the number of occurrences of the output event on line

5.2 WCET analysis of function blocks 83

19. On line 20 we construct all possible combinations of WCET data for
execution paths started by the current output event (Wr) with the ones
already gathered in the temporary set W ′, and use these combinations
as our new temporary set. By this we have created all possible execution
paths that can be taken by generating all output events of the currently
examined WCET data entry.

Once we have collected the data for all possible execution paths we
add the WCET value of the current data entry to all the data in the

Algorithm 5 fbnAnalysis(e, fbn)

1: W ← ∅
2: 〈Fi, C〉 ← fbn
3: if ¬∃〈es, ed〉 ∈ C : es = e then
4: return ∅
5: else
6: Let 〈es, ed〉 ∈ C be the connection for which es = e
7: if ed is an output port then
8: o ← inc(∅, ed, 1)
9: W ← 〈0, o〉

10: return W
11: end if
12: Let f be the FB to which ed belongs
13: 〈We,Wi〉 ← wcet(f)
14: Let 〈ei,Wt〉 be the element in We for which ei = ed
15: for each 〈v, o〉 ∈ Wt do
16: W ′ ← ∅
17: for each eo ∈ E0 : o(eo) > 0 do
18: Wr ← fbnAnalysis(e0, fbn)
19: Wr ← Wr ∗ o(eo)
20: W ′ ← W ′ ⊗Wr

21: end for
22: W ′ ← {〈v′ + v, o′〉 : 〈v′, o′〉 ∈ W ′}
23: W ← W ∪W ′

24: end for
25: W ← normalize(W)
26: return W
27: end if

84 Chapter 5. Timing and utilization analysis analysis

temporary set W ′ in line 22. We can now add this temporary data set
to our final data set W , as can be seen in line 23. The final analysis
results are normalized in line 25.

The internal trigger execution analysis algorithm

Analysis of WCET for internally triggered execution inside a function
block network is described by Algorithm 6. The algorithm starts with
preparing an empty set W ′

p which will hold our result.
The for loops on lines 3 and 5 iterates through all function blocks in

the network, and their internal trigger WCET data if it is defined. For
each such data entry a temporary empty data set W ′ is created.

Lines 7 to 16 contain the same recursive analysis of all possible ex-
ecution paths that can be started using the currently analyzed internal
trigger WCET entry, as already described in the function block network

Algorithm 6 triggerAnalysis(fbn)

1: W ′
t ← ∅

2: 〈F,C〉 ← fbn
3: for each f ∈ F do
4: 〈We,Wi〉 ← wcet(f)
5: for each 〈t,W 〉 ∈ Wi do
6: W ′ ← ∅
7: for each 〈v, o〉 ∈ W do
8: W ′′ ← ∅
9: for each eo ∈ Eo : o(eo) > 0 do

10: Wr ← fbnAnalysis(eo, fbn)
11: Wr ← Wr ∗ o(eo)
12: W ′′ ← W ′′ ×Wr

13: end for
14: W ′′ ← {〈v′′ + v, o′′〉 : 〈v′′, o′′〉 ∈ W ′′}
15: W ′ ← W ′ ∪W ′′

16: end for
17: W ′ ← normalize(W ′)
18: W ′

t ← W ′
t ∪ 〈t,W ′〉

19: end for
20: end for
21: return W ′

t

5.3 Handling cyclic execution paths 85

analysis. After the results collected in the temporary data set W ′ are
normalized on line 17, they are added to the final result data set on line
18. They are linked to the trigger ID defined for the internal trigger
WCET data entry that was the origin of execution paths collected in
the temporary data set.

5.3 Handling cyclic execution paths

The timing analysis presented in the previous section was restricted to
function block networks which do not contain cyclic execution paths.
Such cyclic paths can, for example, be used to implement functionalities
such as aggregation of sensor data, or iterative algorithms. This section
presents an extension to the previously defined function block network
analysis, which allows this analysis to be performed on networks con-
taining cyclic execution paths.

The support for analysis of cyclic execution paths consists of three
parts. First, it is specified how to define limits to cycle iterations using
cycle bounds. Having defined such bounds, the function block network
analysis algorithm is extended to allow analysis of bounded cycles. To
still support the compositional analysis approach and treatment of func-
tion blocks as black boxes, a method for propagation of cycle bounds
through function block hierarchy is provided. The following sections
give a detailed description of these three parts.

5.3.1 Cycle bound definition

Performing WCET analysis on code containing program loops is possible
if the number of loop iterations has an upper limit – a loop bound. To
allow for analysis of cyclic paths in component-based models we will
use a similar approach and introduce cycle bounds to the model. Cycle
bounds are defined by annotating elements of the component model.
These annotations will be used by the WCET analysis to determine the
maximum number of cycle iterations when the annotated element is part
of a cycle. Cycle bound annotations defined in this work are only used
by the WCET analysis, and have no impact on system execution. When
developing composite components, cycle bounds can also be defined on
elements which are not contained by a cycle. Although in this case the
cycle bound will not be used when analyzing the composite in isolation,

84 Chapter 5. Timing and utilization analysis analysis

temporary set W ′ in line 22. We can now add this temporary data set
to our final data set W , as can be seen in line 23. The final analysis
results are normalized in line 25.

The internal trigger execution analysis algorithm

Analysis of WCET for internally triggered execution inside a function
block network is described by Algorithm 6. The algorithm starts with
preparing an empty set W ′

p which will hold our result.
The for loops on lines 3 and 5 iterates through all function blocks in

the network, and their internal trigger WCET data if it is defined. For
each such data entry a temporary empty data set W ′ is created.

Lines 7 to 16 contain the same recursive analysis of all possible ex-
ecution paths that can be started using the currently analyzed internal
trigger WCET entry, as already described in the function block network

Algorithm 6 triggerAnalysis(fbn)

1: W ′
t ← ∅

2: 〈F,C〉 ← fbn
3: for each f ∈ F do
4: 〈We,Wi〉 ← wcet(f)
5: for each 〈t,W 〉 ∈ Wi do
6: W ′ ← ∅
7: for each 〈v, o〉 ∈ W do
8: W ′′ ← ∅
9: for each eo ∈ Eo : o(eo) > 0 do

10: Wr ← fbnAnalysis(eo, fbn)
11: Wr ← Wr ∗ o(eo)
12: W ′′ ← W ′′ ×Wr

13: end for
14: W ′′ ← {〈v′′ + v, o′′〉 : 〈v′′, o′′〉 ∈ W ′′}
15: W ′ ← W ′ ∪W ′′

16: end for
17: W ′ ← normalize(W ′)
18: W ′

t ← W ′
t ∪ 〈t,W ′〉

19: end for
20: end for
21: return W ′

t

5.3 Handling cyclic execution paths 85

analysis. After the results collected in the temporary data set W ′ are
normalized on line 17, they are added to the final result data set on line
18. They are linked to the trigger ID defined for the internal trigger
WCET data entry that was the origin of execution paths collected in
the temporary data set.

5.3 Handling cyclic execution paths

The timing analysis presented in the previous section was restricted to
function block networks which do not contain cyclic execution paths.
Such cyclic paths can, for example, be used to implement functionalities
such as aggregation of sensor data, or iterative algorithms. This section
presents an extension to the previously defined function block network
analysis, which allows this analysis to be performed on networks con-
taining cyclic execution paths.

The support for analysis of cyclic execution paths consists of three
parts. First, it is specified how to define limits to cycle iterations using
cycle bounds. Having defined such bounds, the function block network
analysis algorithm is extended to allow analysis of bounded cycles. To
still support the compositional analysis approach and treatment of func-
tion blocks as black boxes, a method for propagation of cycle bounds
through function block hierarchy is provided. The following sections
give a detailed description of these three parts.

5.3.1 Cycle bound definition

Performing WCET analysis on code containing program loops is possible
if the number of loop iterations has an upper limit – a loop bound. To
allow for analysis of cyclic paths in component-based models we will
use a similar approach and introduce cycle bounds to the model. Cycle
bounds are defined by annotating elements of the component model.
These annotations will be used by the WCET analysis to determine the
maximum number of cycle iterations when the annotated element is part
of a cycle. Cycle bound annotations defined in this work are only used
by the WCET analysis, and have no impact on system execution. When
developing composite components, cycle bounds can also be defined on
elements which are not contained by a cycle. Although in this case the
cycle bound will not be used when analyzing the composite in isolation,

86 Chapter 5. Timing and utilization analysis analysis

fb2 fb3

ei21 ei31 eo31eo21 5

fb1

10
ei11 eo11

(b)

(a)

Figure 5.5: Example of graphical representation of (a) a component cycle
bound and (b) a connection cycle bound.

it may be used when the cycle is formed on a higher level of hierarchy.
The approach defines two different types of cycle bounds: component

cycle bounds and connection cycle bounds. The two are described in
detail in the following sections.

Component cycle bounds

Component cycle bounds are defined by the component developer as
annotations to the component interface. They are used to describe in-
ternal mechanisms that a component implements to limit the number of
cyclic iterations. Because the iteration limit is a result of the compo-
nent’s internals, it is independent of the context that the component is
used in, and can be reused together with the component.

Each component cycle bound is defined between one input and one
output event port. The value of the bound represents the maximum
number of times an execution started at the input port will result in an
event at the output port if the two are used in a cycle.

The graphical notation used for component cycle bound can be seen
in Figure 5.5 (a). The bound for component fb1 between ports ei11 and
eo11 with value 10 is represented by a green connection between the
ports, containing the value of the bound inside a square.

When coupled with WCET data definition for components, compo-
nent cycle bounds can give special semantics to WCET execution al-
ternatives of the data. These semantics are applied to the alternatives

5.3 Handling cyclic execution paths 87

which start with an input port contained by a cycle bound. If an exe-
cution alternative starts with the input of the bound, and produces an
event at the output port of the bound, during the analysis it will be
treated as a cycle-forming alternative. If an execution alternative con-
tains only the input port of the bound, but does not produce an event
at the output port of the bound, it will be treated as an exit alternative.

Definition 13. To be able to store component cycle bounds together
with WCET data for components, the component WCET data function
defined in Section 5.2.1 is extended with cycle bound information:

Function block WCET data: WCET (f) = 〈We,Wp,CB fb〉 where

We, Wp are previously defined sets of WCET elements.
CB fb is a set of elements in the form 〈eicb , eocb , b〉, represent-

ing component’s cycle bounds.
eicb is an input event, ei ∈ Ei.
eocb is an output event, eo ∈ Eo.
b is the cycle bound value, b ∈ Z+.

Connection cycle bounds

Connection cycle bounds are defined by component integrators as anno-
tations on connections between components. These bounds denote that
the number of cyclic iterations is limited by the interaction of multiple
components. Opposed to the component bounds, connection bounds
are specific to the component network, and are not aimed to be reused.
They can however be propagated to component bounds of a composite
and reused in this form, as we will describe in Section 5.3.3.

Connection cycle bounds can only be defined for event connections,
as the data connections do not transfer control flow in IEC 61499. The
values of a connection cycle bound represents the maximum number of
times the connection will be traversed if it is part of a cycle.

Figure 5.5 (b) shows how connection cycle bounds are represented
in the model, where a connection bound with value 5 is defined as an
annotation for the connection between ports eo21 and ei31 .

86 Chapter 5. Timing and utilization analysis analysis

fb2 fb3

ei21 ei31 eo31eo21 5

fb1

10
ei11 eo11

(b)

(a)

Figure 5.5: Example of graphical representation of (a) a component cycle
bound and (b) a connection cycle bound.

it may be used when the cycle is formed on a higher level of hierarchy.
The approach defines two different types of cycle bounds: component

cycle bounds and connection cycle bounds. The two are described in
detail in the following sections.

Component cycle bounds

Component cycle bounds are defined by the component developer as
annotations to the component interface. They are used to describe in-
ternal mechanisms that a component implements to limit the number of
cyclic iterations. Because the iteration limit is a result of the compo-
nent’s internals, it is independent of the context that the component is
used in, and can be reused together with the component.

Each component cycle bound is defined between one input and one
output event port. The value of the bound represents the maximum
number of times an execution started at the input port will result in an
event at the output port if the two are used in a cycle.

The graphical notation used for component cycle bound can be seen
in Figure 5.5 (a). The bound for component fb1 between ports ei11 and
eo11 with value 10 is represented by a green connection between the
ports, containing the value of the bound inside a square.

When coupled with WCET data definition for components, compo-
nent cycle bounds can give special semantics to WCET execution al-
ternatives of the data. These semantics are applied to the alternatives

5.3 Handling cyclic execution paths 87

which start with an input port contained by a cycle bound. If an exe-
cution alternative starts with the input of the bound, and produces an
event at the output port of the bound, during the analysis it will be
treated as a cycle-forming alternative. If an execution alternative con-
tains only the input port of the bound, but does not produce an event
at the output port of the bound, it will be treated as an exit alternative.

Definition 13. To be able to store component cycle bounds together
with WCET data for components, the component WCET data function
defined in Section 5.2.1 is extended with cycle bound information:

Function block WCET data: WCET (f) = 〈We,Wp,CB fb〉 where

We, Wp are previously defined sets of WCET elements.
CB fb is a set of elements in the form 〈eicb , eocb , b〉, represent-

ing component’s cycle bounds.
eicb is an input event, ei ∈ Ei.
eocb is an output event, eo ∈ Eo.
b is the cycle bound value, b ∈ Z+.

Connection cycle bounds

Connection cycle bounds are defined by component integrators as anno-
tations on connections between components. These bounds denote that
the number of cyclic iterations is limited by the interaction of multiple
components. Opposed to the component bounds, connection bounds
are specific to the component network, and are not aimed to be reused.
They can however be propagated to component bounds of a composite
and reused in this form, as we will describe in Section 5.3.3.

Connection cycle bounds can only be defined for event connections,
as the data connections do not transfer control flow in IEC 61499. The
values of a connection cycle bound represents the maximum number of
times the connection will be traversed if it is part of a cycle.

Figure 5.5 (b) shows how connection cycle bounds are represented
in the model, where a connection bound with value 5 is defined as an
annotation for the connection between ports eo21 and ei31 .

88 Chapter 5. Timing and utilization analysis analysis

Definition 14. As connection cycle bounds are a property of each indi-
vidual connection, the definition of a connection presented in Section 5.1
is extended with bound information. The new connection definition al-
lows each connection to also represent a cycle bound:

Connection: c = 〈es, ed, b〉 where

es is the event port used as the source of the connection;
ed is the event port used as the connection target;
b is the cycle bound value, b ∈ N∪ 0, where 0 represents connec-

tions with no cycle bound.

5.3.2 Cycle analysis

With the ability to define cycle bound annotations on model elements,
and thus defining a limit to the number of cycle iterations, we can extend
the standard WCET analysis algorithms to allow analysis of systems
containing cycles. Cycle analysis consists of three separate stages: (i)
cycle discovery, (ii) isolated cycle analysis, and (iii) merging of cycle
analysis results with the results of the standard WCET analysis. The
following sections give details of these three stages, while also describing
them on the example depicted in Figure 5.6.

Cycle discovery

Because cycle bounds can be defined on two different types of model
elements, components and connections, the cycle discovery is also im-
plemented in two parts of the network analysis algorithm – whenever an
event connection between two components is considered, and on each us-
age of component WCET data. When a cycle bound definition is found
during network analysis, the network is traversed in search of an ana-
lyzable cycle which contains the bound. If no such cycle is found, the
the bound definition is disregarded, and the cycle analysis and merging
stages omitted. Such bound definitions can however still be used as a
candidate for hierarchical cycle bound propagation, described in Sec-
tion 5.3.3. If the bound is included in more than one event cycle, cycle
analysis will give an error, as the bound can be applied to only one of
them, leaving the other unbound. In case exactly one event cycle for the
bound is found, we can proceed with the isolated cycle analysis.

Cycle discovery is depicted in Figure 5.6 (i). When applying analysis
to the application, a component cycle bound is detected between the two

5.3 Handling cyclic execution paths 89

fb1 fb2

fb5

fb3 fb4

fb2 fb3 fb4

CYCLE

fb1

fb5

CYCLE x 10

10
(i)

(ii)

(iii)

Figure 5.6: The cycle analysis approach depicted on an example system.
A component cycle bound with value 10 is shown between two ports of
component fb2.

ports of function block fb2. As there also exists a cyclic execution path
which crosses the bound, spanning function blocks fb2 and fb3, isolated
cyclic analysis is applied.

Isolated cycle analysis

The algorithm that implements the actual WCET analysis of a cycle
uses a modified version of the standard network WCET analysis algo-
rithm described in Section 5.2.4. The network analysis is extended with
a stack of currently analyzed cycles. For each cycle detected by cycle dis-
covery, a new instance of network analysis is started form the beginning
of the cycle, while adding the cycle definition to the top of the stack.
By starting a new instance of analysis for each cycle, the cycle paths
are isolated from the analysis performed for the rest of the component
network. The cycle definition stack is used to break the connections

88 Chapter 5. Timing and utilization analysis analysis

Definition 14. As connection cycle bounds are a property of each indi-
vidual connection, the definition of a connection presented in Section 5.1
is extended with bound information. The new connection definition al-
lows each connection to also represent a cycle bound:

Connection: c = 〈es, ed, b〉 where

es is the event port used as the source of the connection;
ed is the event port used as the connection target;
b is the cycle bound value, b ∈ N∪ 0, where 0 represents connec-

tions with no cycle bound.

5.3.2 Cycle analysis

With the ability to define cycle bound annotations on model elements,
and thus defining a limit to the number of cycle iterations, we can extend
the standard WCET analysis algorithms to allow analysis of systems
containing cycles. Cycle analysis consists of three separate stages: (i)
cycle discovery, (ii) isolated cycle analysis, and (iii) merging of cycle
analysis results with the results of the standard WCET analysis. The
following sections give details of these three stages, while also describing
them on the example depicted in Figure 5.6.

Cycle discovery

Because cycle bounds can be defined on two different types of model
elements, components and connections, the cycle discovery is also im-
plemented in two parts of the network analysis algorithm – whenever an
event connection between two components is considered, and on each us-
age of component WCET data. When a cycle bound definition is found
during network analysis, the network is traversed in search of an ana-
lyzable cycle which contains the bound. If no such cycle is found, the
the bound definition is disregarded, and the cycle analysis and merging
stages omitted. Such bound definitions can however still be used as a
candidate for hierarchical cycle bound propagation, described in Sec-
tion 5.3.3. If the bound is included in more than one event cycle, cycle
analysis will give an error, as the bound can be applied to only one of
them, leaving the other unbound. In case exactly one event cycle for the
bound is found, we can proceed with the isolated cycle analysis.

Cycle discovery is depicted in Figure 5.6 (i). When applying analysis
to the application, a component cycle bound is detected between the two

5.3 Handling cyclic execution paths 89

fb1 fb2

fb5

fb3 fb4

fb2 fb3 fb4

CYCLE

fb1

fb5

CYCLE x 10

10
(i)

(ii)

(iii)

Figure 5.6: The cycle analysis approach depicted on an example system.
A component cycle bound with value 10 is shown between two ports of
component fb2.

ports of function block fb2. As there also exists a cyclic execution path
which crosses the bound, spanning function blocks fb2 and fb3, isolated
cyclic analysis is applied.

Isolated cycle analysis

The algorithm that implements the actual WCET analysis of a cycle
uses a modified version of the standard network WCET analysis algo-
rithm described in Section 5.2.4. The network analysis is extended with
a stack of currently analyzed cycles. For each cycle detected by cycle dis-
covery, a new instance of network analysis is started form the beginning
of the cycle, while adding the cycle definition to the top of the stack.
By starting a new instance of analysis for each cycle, the cycle paths
are isolated from the analysis performed for the rest of the component
network. The cycle definition stack is used to break the connections

90 Chapter 5. Timing and utilization analysis analysis

that lead from the end of a cycle back to its beginning. Using a stack
to store information about currently analyzed cycles allows starting the
cycle analysis recursively, thus providing the ability to analyze multiple
nested cycles. When the analysis reaches the end of the cycle that is
currently at the top of the stack, the analysis for the current top-most
cycle is stopped, the cycle definition is remove from the stack, and the
obtained results for the isolated cycle are temporarily stored. In case
that during cycle analysis the cycle discovery detects a cycle which is
already in the analysis stack, and is not the top-most cycle, the analysis
will report an error. In this way we detect combinations of cycles which
would result in infinite recursions.

Figure 5.6 (ii) shows isolated cyclic analysis. As the cycle bound is
defined for fb2, the connection leading from fb3 to fb2 is broken. The
isolated analysis is performed starting from the input port of fb2, and the
results are stored temporarily. It should be noted that function block fb4
is also included in isolated cycle analysis, although it is not part of the
path forming the cycle. This is because fb4 is triggered in each iteration
of the cycle, and therefore is a part of the cyclic execution.

Merging cycle analysis results

Once the isolated analysis of a cycle is finished, the obtained results can
be merged with the standard network analysis. The cycle results are
first multiplied by the value of the cycle bound. The multiplied results,
together with possible results for exit alternatives, are then added to the
cumulative results of the network.

The standard analysis of the execution paths covered by the cycle
bound is skipped. If the analyzed cycle bound was defined for a compo-
nent, the standard network analysis is continued using cycle exit alter-
natives of the WCET data of the component, i.e. alternatives that do
not produce outputs to the output port of the component cycle bound.

Merging of cycle analysis results is shown in Figure 5.6 (iii). The re-
sults of isolated cycle analysis are multiplied by the bound value, 10, and
returned to the standard analysis. The standard analysis then continues
by analyzing execution of function block fb5.

Example

We demonstrate the cycle analysis method on an example composite
function block which is used to filter sensor input noise by providing a

5.3 Handling cyclic execution paths 91

Accu Sensor Trans

REQ START
ADD

RD TRANSCNF CNF TMP
FIN

5 10FIN
NEXT

9

2 5

13

FilteredSensor

Figure 5.7: Composite component used in the example of cycle analysis.

mean value out of ten sensor readings. The composite and its internal
component network is shown in Figure 5.7. The Accu component is
used to accumulate ten readings using an internal counter which is reset
when an event is received at the START port. Resetting the counter also
results in an event at the NEXT port, signaling that a new value should
be read. The Sensor component reads the actual sensor value, and
the Trans component transforms and normalizes the raw sensor input.
The transformed (non-accumulated) sensor data is sent outside of the
composite by an event at the TMP output port of the composite, and
also back to the Accu component. An event at the ADD port of Accu
adds the current value to the accumulator and increments the internal
counter. Depending on the state of the counter an event is generated at
either the NEXT port again (starting another iteration of the cycle) or
at the FIN port (exiting the cycle).

While explaining how the example composite is analyzed we will refer
to the intermediate and final results of the analysis shown in Table 5.1.

The analysis starts from the REQ port of the composite, and follow-
ing the execution path collects the temporary WCET value of 17 and
one output to TMP for the initial execution of the three components.
This temporary WCET result is shown in Table 5.1 as Step 1.

When the standard analysis algorithm arrives to the ADD port the
cycle discovery algorithm detects the cycle bound with value 9 between
this port and the port NEXT . The discovery algorithm then performs
a test to determine if the bound is a part of an analyzable cycle. Since
it is, the isolated cycle analysis is triggered.

The isolated cycle analysis starts by adding the cycle bound to the
cycle analysis stack, and proceeds with analysis of the network starting

90 Chapter 5. Timing and utilization analysis analysis

that lead from the end of a cycle back to its beginning. Using a stack
to store information about currently analyzed cycles allows starting the
cycle analysis recursively, thus providing the ability to analyze multiple
nested cycles. When the analysis reaches the end of the cycle that is
currently at the top of the stack, the analysis for the current top-most
cycle is stopped, the cycle definition is remove from the stack, and the
obtained results for the isolated cycle are temporarily stored. In case
that during cycle analysis the cycle discovery detects a cycle which is
already in the analysis stack, and is not the top-most cycle, the analysis
will report an error. In this way we detect combinations of cycles which
would result in infinite recursions.

Figure 5.6 (ii) shows isolated cyclic analysis. As the cycle bound is
defined for fb2, the connection leading from fb3 to fb2 is broken. The
isolated analysis is performed starting from the input port of fb2, and the
results are stored temporarily. It should be noted that function block fb4
is also included in isolated cycle analysis, although it is not part of the
path forming the cycle. This is because fb4 is triggered in each iteration
of the cycle, and therefore is a part of the cyclic execution.

Merging cycle analysis results

Once the isolated analysis of a cycle is finished, the obtained results can
be merged with the standard network analysis. The cycle results are
first multiplied by the value of the cycle bound. The multiplied results,
together with possible results for exit alternatives, are then added to the
cumulative results of the network.

The standard analysis of the execution paths covered by the cycle
bound is skipped. If the analyzed cycle bound was defined for a compo-
nent, the standard network analysis is continued using cycle exit alter-
natives of the WCET data of the component, i.e. alternatives that do
not produce outputs to the output port of the component cycle bound.

Merging of cycle analysis results is shown in Figure 5.6 (iii). The re-
sults of isolated cycle analysis are multiplied by the bound value, 10, and
returned to the standard analysis. The standard analysis then continues
by analyzing execution of function block fb5.

Example

We demonstrate the cycle analysis method on an example composite
function block which is used to filter sensor input noise by providing a

5.3 Handling cyclic execution paths 91

Accu Sensor Trans

REQ START
ADD

RD TRANSCNF CNF TMP
FIN

5 10FIN
NEXT

9

2 5

13

FilteredSensor

Figure 5.7: Composite component used in the example of cycle analysis.

mean value out of ten sensor readings. The composite and its internal
component network is shown in Figure 5.7. The Accu component is
used to accumulate ten readings using an internal counter which is reset
when an event is received at the START port. Resetting the counter also
results in an event at the NEXT port, signaling that a new value should
be read. The Sensor component reads the actual sensor value, and
the Trans component transforms and normalizes the raw sensor input.
The transformed (non-accumulated) sensor data is sent outside of the
composite by an event at the TMP output port of the composite, and
also back to the Accu component. An event at the ADD port of Accu
adds the current value to the accumulator and increments the internal
counter. Depending on the state of the counter an event is generated at
either the NEXT port again (starting another iteration of the cycle) or
at the FIN port (exiting the cycle).

While explaining how the example composite is analyzed we will refer
to the intermediate and final results of the analysis shown in Table 5.1.

The analysis starts from the REQ port of the composite, and follow-
ing the execution path collects the temporary WCET value of 17 and
one output to TMP for the initial execution of the three components.
This temporary WCET result is shown in Table 5.1 as Step 1.

When the standard analysis algorithm arrives to the ADD port the
cycle discovery algorithm detects the cycle bound with value 9 between
this port and the port NEXT . The discovery algorithm then performs
a test to determine if the bound is a part of an analyzable cycle. Since
it is, the isolated cycle analysis is triggered.

The isolated cycle analysis starts by adding the cycle bound to the
cycle analysis stack, and proceeds with analysis of the network starting

92 Chapter 5. Timing and utilization analysis analysis

Table 5.1: Intermediate and final results of the analysis example.

Step Analysis/result type WCET Outputs

1 Standard 17 TMP = 1
2 Isolated cycle 20 TMP = 1
3 Multiplied cycle 180 TMP = 9
4 Cycle exit 13 FIN = 1

5 Final (1+3+4) 210 TMP = 10, FIN = 1

from ADD port, using the cycle-forming execution alternative in Accu
with WCET value 5. As the cycle execution path is traced through all
three components, collecting the cycle WCET value of 20 and one output
to TMP . At this point the analysis reaches the ADD port again, and
because the cycle bound for that port is on top of cycle analysis stack,
the isolated cycle analysis is stopped. The results of this analysis are
shown in Table 5.1 as Step 2. After the isolated analysis of the cycle
is finished, the results are multiplied with the value of the cycle bound,
resulting in the values shown as Step 3 in Table 5.1.

The analysis continues with the cycle-exit alternative of the AND
port, which has WCET value 13 and generates an output to the FIN
output port. The cycle-exit results are shown as Step 4 in Table 5.1. The
multiplied cycle results are added to the cycle-exit results and combined
with the temporary WCET result. The final results for the composite
are shown in Table 5.1 as Step 5.

The cycle analysis algorithm

The cycle analysis algorithm is defined by two separate parts. First, a
function for starting isolated cycle analysis is defined. After that, the
extended function block network analysis, including the cycle detection,
invocation of isolated cycle analysis, and merging of isolated cycle anal-
ysis results, is given.

The starting of isolated cycle analysis is presented in Algorithm 7.
As arguments, the cycleAnalysis function takes the cycle bound cb
for which the analysis should be started, and the function block network
fbn which is the context of the analysis. The if statement on line 2
checks if the current cycle bound is on top of the cycle analysis stack. If
this is true, the isolated analysis has reached the end of the cycle, and

5.3 Handling cyclic execution paths 93

Algorithm 7 cycleAnalysis(cb, fbn)

1: 〈escb , eecb , b〉 ← cb
2: if cb is on top of the cycle stack then
3: return ∅
4: else
5: push cb to the cycle stack
6: Wc ← fbnAnalysis(eecb , fbn)
7: pop cb from the cycle stack
8: return Wc

9: end if

an empty result is returned on line 3. If the cycle bound definition is
not at the top of the cycle analysis stack, it is first put there by the
push operation on line 5. On line 6, a new instance of function block
network analysis is started from the cycle bound end port, giving the
results for the cyclic path. Next, on line 7 the currently analyzed cycle
bound is removed from the cycle analysis stack In the end, line 8 returns
the isolated cycle analysis result.

The new function block network analysis, extended with analysis of
cyclic execution paths, is given in Algorithm 8. The changes to the
original algorithm, presented in Algorithm 5, are highlighted by red text
color. Detection of connection cycle bounds is located on line 12. In case
a cycle bound for the current connection exists, isolated cycle analysis
for that bound is performed on line 13, multiplied by the bound value
on line 14, and returned as the result of analysis of current sub-network
on line 15.

Detection and handling of component cycle bounds is performed in
two separate parts of the algorithm. In this way it is way, most of the

Algorithm 8 fbnAnalysis(e, fbn)

1: W ← ∅
2: 〈Fi, C〉 ← fbn
3: if ¬∃〈es, ed, b〉 ∈ C : es = e then
4: return ∅
5: else
6: Let 〈es, ed, b〉 ∈ C be the connection for which es = e

92 Chapter 5. Timing and utilization analysis analysis

Table 5.1: Intermediate and final results of the analysis example.

Step Analysis/result type WCET Outputs

1 Standard 17 TMP = 1
2 Isolated cycle 20 TMP = 1
3 Multiplied cycle 180 TMP = 9
4 Cycle exit 13 FIN = 1

5 Final (1+3+4) 210 TMP = 10, FIN = 1

from ADD port, using the cycle-forming execution alternative in Accu
with WCET value 5. As the cycle execution path is traced through all
three components, collecting the cycle WCET value of 20 and one output
to TMP . At this point the analysis reaches the ADD port again, and
because the cycle bound for that port is on top of cycle analysis stack,
the isolated cycle analysis is stopped. The results of this analysis are
shown in Table 5.1 as Step 2. After the isolated analysis of the cycle
is finished, the results are multiplied with the value of the cycle bound,
resulting in the values shown as Step 3 in Table 5.1.

The analysis continues with the cycle-exit alternative of the AND
port, which has WCET value 13 and generates an output to the FIN
output port. The cycle-exit results are shown as Step 4 in Table 5.1. The
multiplied cycle results are added to the cycle-exit results and combined
with the temporary WCET result. The final results for the composite
are shown in Table 5.1 as Step 5.

The cycle analysis algorithm

The cycle analysis algorithm is defined by two separate parts. First, a
function for starting isolated cycle analysis is defined. After that, the
extended function block network analysis, including the cycle detection,
invocation of isolated cycle analysis, and merging of isolated cycle anal-
ysis results, is given.

The starting of isolated cycle analysis is presented in Algorithm 7.
As arguments, the cycleAnalysis function takes the cycle bound cb
for which the analysis should be started, and the function block network
fbn which is the context of the analysis. The if statement on line 2
checks if the current cycle bound is on top of the cycle analysis stack. If
this is true, the isolated analysis has reached the end of the cycle, and

5.3 Handling cyclic execution paths 93

Algorithm 7 cycleAnalysis(cb, fbn)

1: 〈escb , eecb , b〉 ← cb
2: if cb is on top of the cycle stack then
3: return ∅
4: else
5: push cb to the cycle stack
6: Wc ← fbnAnalysis(eecb , fbn)
7: pop cb from the cycle stack
8: return Wc

9: end if

an empty result is returned on line 3. If the cycle bound definition is
not at the top of the cycle analysis stack, it is first put there by the
push operation on line 5. On line 6, a new instance of function block
network analysis is started from the cycle bound end port, giving the
results for the cyclic path. Next, on line 7 the currently analyzed cycle
bound is removed from the cycle analysis stack In the end, line 8 returns
the isolated cycle analysis result.

The new function block network analysis, extended with analysis of
cyclic execution paths, is given in Algorithm 8. The changes to the
original algorithm, presented in Algorithm 5, are highlighted by red text
color. Detection of connection cycle bounds is located on line 12. In case
a cycle bound for the current connection exists, isolated cycle analysis
for that bound is performed on line 13, multiplied by the bound value
on line 14, and returned as the result of analysis of current sub-network
on line 15.

Detection and handling of component cycle bounds is performed in
two separate parts of the algorithm. In this way it is way, most of the

Algorithm 8 fbnAnalysis(e, fbn)

1: W ← ∅
2: 〈Fi, C〉 ← fbn
3: if ¬∃〈es, ed, b〉 ∈ C : es = e then
4: return ∅
5: else
6: Let 〈es, ed, b〉 ∈ C be the connection for which es = e

94 Chapter 5. Timing and utilization analysis analysis

Algorithm 8 fbnAnalysis(e, fbn) – continued

7: if ed is an output port then
8: o ← inc(∅, ed, 1)
9: W ← 〈0, o〉

10: return W
11: end if
12: if b > 0 then
13: W ← cycleAnalysis(〈es, ed, b〉, fbn)
14: W ← W ∗ b
15: return W
16: end if
17: Let f be the FB to which ed belongs
18: 〈We,Wp,CB fb〉 ← wcet(f)
19: Let 〈ei,Wt〉 be the element in We for which ei = ed
20: for each 〈v, o〉 ∈ Wt do
21: W ′ ← ∅
22: for each eo ∈ E0 : o(eo) > 0 do
23: if ∃cb = 〈eicb , eocb , b〉 ∈ CB fb : eicb = ei ∧ eocb = eo then
24: W ′ ← W ′ ∪ cycleAnalysis(cb, fbn)
25: else
26: Wr ← fbnAnalysis(e0)
27: Wr ← Wr ∗ o(eo)
28: W ′ ← W ′ ⊗Wr

29: end if
30: end for
31: W ′ ← {〈v′ + v, o′〉 : 〈v′, o′〉 ∈ W ′}
32: if ∃cb = 〈eicb , eocb , b〉 ∈ CB fb : eicb = ei ∧ o(eocb) > 0 then
33: W ′ ← W ′ ∗ b
34: end if
35: W ← W ∪W ′

36: end for
37: W ← normalize(W)
38: return W
39: end if

code for analysis of normal and cycle-forming execution alternatives is
reused. On lines 23 and 24, the standard network analysis is extended
to detect component cycle bounds, and start isolated cycle analysis for

5.3 Handling cyclic execution paths 95

output the event of a cycle-forming alternative which actually forms the
cyclic path. The task of the statements on lines 26 to 28 is twofold. In
case that the current execution alternative is cycle-forming, these lines
perform analysis of output events which are generated as a part of a cycle,
but do not form the cyclic path. If the current execution alternative is
not a cycle-forming one, these lines perform standard network analysis.

The second part of component cycle bound analysis starts on line
32, where it is tested if the current execution alternative is a cycle-
forming one. In this case the temporary result W ′ contains results of
cycle analysis, and it is multiplied by the bound value on line 33. Because
the temporary resultW ′ is used to store both standard and cycle analysis
results, the statement on line 35, which collects standard analysis results,
also merges the results of cycle analysis.

5.3.3 Hierarchical propagation of cycle bounds

The WCET analysis method we extend in this work takes advantage of
the component-based development approach, and performs the analysis
in a compositional manner. Analysis of each component is performed
in isolation, and only on one hierarchical level. Analysis results for a
component are stored with the component, and reused together with
it. However, cyclic execution paths can span over multiple levels of
hierarchy. As a result, there can be a situation in which the mechanism
that limits the cycle is inside a composite component, while the actual
cycle is formed outside the composite, on a higher level of hierarchy. In
this case the cycle bound will be defined on a model element that is inside
of the composite, and will not be visible on the composites component’s
interface, which causes a problem for the compositional WCET analysis.
To still support the compositional approach to analysis, we have to be
able to represent cycle bounds defined inside composites as cycle bounds
on the level of the composites’ interfaces. We do this by propagation of
cycle bounds.

Both component and connection cycle bounds can be propagated
to higher levels of hierarchy. However, as by propagation we define
representing composite’s internal bounds on the level of it’s interface,
results are always component bounds.

94 Chapter 5. Timing and utilization analysis analysis

Algorithm 8 fbnAnalysis(e, fbn) – continued

7: if ed is an output port then
8: o ← inc(∅, ed, 1)
9: W ← 〈0, o〉

10: return W
11: end if
12: if b > 0 then
13: W ← cycleAnalysis(〈es, ed, b〉, fbn)
14: W ← W ∗ b
15: return W
16: end if
17: Let f be the FB to which ed belongs
18: 〈We,Wp,CB fb〉 ← wcet(f)
19: Let 〈ei,Wt〉 be the element in We for which ei = ed
20: for each 〈v, o〉 ∈ Wt do
21: W ′ ← ∅
22: for each eo ∈ E0 : o(eo) > 0 do
23: if ∃cb = 〈eicb , eocb , b〉 ∈ CB fb : eicb = ei ∧ eocb = eo then
24: W ′ ← W ′ ∪ cycleAnalysis(cb, fbn)
25: else
26: Wr ← fbnAnalysis(e0)
27: Wr ← Wr ∗ o(eo)
28: W ′ ← W ′ ⊗Wr

29: end if
30: end for
31: W ′ ← {〈v′ + v, o′〉 : 〈v′, o′〉 ∈ W ′}
32: if ∃cb = 〈eicb , eocb , b〉 ∈ CB fb : eicb = ei ∧ o(eocb) > 0 then
33: W ′ ← W ′ ∗ b
34: end if
35: W ← W ∪W ′

36: end for
37: W ← normalize(W)
38: return W
39: end if

code for analysis of normal and cycle-forming execution alternatives is
reused. On lines 23 and 24, the standard network analysis is extended
to detect component cycle bounds, and start isolated cycle analysis for

5.3 Handling cyclic execution paths 95

output the event of a cycle-forming alternative which actually forms the
cyclic path. The task of the statements on lines 26 to 28 is twofold. In
case that the current execution alternative is cycle-forming, these lines
perform analysis of output events which are generated as a part of a cycle,
but do not form the cyclic path. If the current execution alternative is
not a cycle-forming one, these lines perform standard network analysis.

The second part of component cycle bound analysis starts on line
32, where it is tested if the current execution alternative is a cycle-
forming one. In this case the temporary result W ′ contains results of
cycle analysis, and it is multiplied by the bound value on line 33. Because
the temporary resultW ′ is used to store both standard and cycle analysis
results, the statement on line 35, which collects standard analysis results,
also merges the results of cycle analysis.

5.3.3 Hierarchical propagation of cycle bounds

The WCET analysis method we extend in this work takes advantage of
the component-based development approach, and performs the analysis
in a compositional manner. Analysis of each component is performed
in isolation, and only on one hierarchical level. Analysis results for a
component are stored with the component, and reused together with
it. However, cyclic execution paths can span over multiple levels of
hierarchy. As a result, there can be a situation in which the mechanism
that limits the cycle is inside a composite component, while the actual
cycle is formed outside the composite, on a higher level of hierarchy. In
this case the cycle bound will be defined on a model element that is inside
of the composite, and will not be visible on the composites component’s
interface, which causes a problem for the compositional WCET analysis.
To still support the compositional approach to analysis, we have to be
able to represent cycle bounds defined inside composites as cycle bounds
on the level of the composites’ interfaces. We do this by propagation of
cycle bounds.

Both component and connection cycle bounds can be propagated
to higher levels of hierarchy. However, as by propagation we define
representing composite’s internal bounds on the level of it’s interface,
results are always component bounds.

96 Chapter 5. Timing and utilization analysis analysis

Cycle bound propagation method

The cycle bound propagation starts by searching the internal component
network of a composite and finding bounds which are candidates for
propagation. For a bound to be a candidate for propagation, it must
not be a part of an event cycle inside the composite. If it is a part of an
event cycle already, the bound is treated as consumed, since in this case
there is no guarantee that the mechanism that implements the bound
will still work if contained by a new cycle outside of the composite.
However, if the bound is not a part of a cyclic path in the composite’s
network, the bound mechanism can be utilized when the cycle is formed
on a higher level of hierarchy.

Once the propagation candidate bounds have been found, they are
tested for propagation to each pair of one input and one output port of
the composite. To propagate a candidate bound, the port pair has to
satisfy two requirements. First, there must be at least one path between
the two ports in the internal network of the composite. Second, all
paths between the port pair must traverse the candidate bound. If a
combination of a port pair and a candidate bound that satisfies the
two requirements is found, a new component cycle bound definition for
the composite can be defined between the input and output port pair,
with the same value as the candidate bound. This bound definition can
then be used in any component network which contains the composite,
without the need to reanalyze it.

Example

We will demonstrate cycle bound propagation on the example shown in
Figure 5.8. The composite in this example is a modified version of the
one used to demonstrate cycle analysis (shown in Figure 5.7). The new
composite, shown in Figure 5.8 (a), encapsulates the filtering function-
ality of the previous composite, and exposes it as a reusable component.
This is done by removing the sensor component from the function block
network, and allowing it to be connected on the next level of hierarchy
to the S CNF and S RD ports on the composite interface. The usage of
the filter composite is depicted in Figure 5.8 (b). To be able to still per-
form compositional analysis on the new system, the cycle bound defined
in Accu component needs to be propagated to the Filter composite.

Examining the Filter composite for bound propagation candidates
identifies the cycle bound defined in the Accu component, as it is not

5.3 Handling cyclic execution paths 97

Filter Sensor

S_CNF FIN
S_RD

TMP

CNFRDREQ

(a)

(b)

AccuTrans

S_CNF START
ADD

TRANS CNF

S_RD

FIN10 FIN
NEXT

9

2 5

13
TMP

REQ

Filter

Filter Sensor

S_CNF FIN
S_RD

TMP

CNFRDREQ
(c)

52

23
15
9

Figure 5.8: (a) Filter composite component used for exemplifying cycle
bound propagation. (b) An instance of the composite used to filter sensor
data. (c) Results of WCET analysis and cycle bound propagation for
the composite and the sensor component.

contained by a cycle in the internal composite network. As the candidate
bound is traversed by the only path (and thus also all paths) between
ports S CNF and S RD , it can be propagated from the Accu component
to the Filter composite. A new bound will be defined between ports
S CNF and S RD , and the value of the bound will be 9. The combined
results of WCET analysis and bound propagation for Filter are shown
as annotations to its interface in Figure 5.8 (c).

96 Chapter 5. Timing and utilization analysis analysis

Cycle bound propagation method

The cycle bound propagation starts by searching the internal component
network of a composite and finding bounds which are candidates for
propagation. For a bound to be a candidate for propagation, it must
not be a part of an event cycle inside the composite. If it is a part of an
event cycle already, the bound is treated as consumed, since in this case
there is no guarantee that the mechanism that implements the bound
will still work if contained by a new cycle outside of the composite.
However, if the bound is not a part of a cyclic path in the composite’s
network, the bound mechanism can be utilized when the cycle is formed
on a higher level of hierarchy.

Once the propagation candidate bounds have been found, they are
tested for propagation to each pair of one input and one output port of
the composite. To propagate a candidate bound, the port pair has to
satisfy two requirements. First, there must be at least one path between
the two ports in the internal network of the composite. Second, all
paths between the port pair must traverse the candidate bound. If a
combination of a port pair and a candidate bound that satisfies the
two requirements is found, a new component cycle bound definition for
the composite can be defined between the input and output port pair,
with the same value as the candidate bound. This bound definition can
then be used in any component network which contains the composite,
without the need to reanalyze it.

Example

We will demonstrate cycle bound propagation on the example shown in
Figure 5.8. The composite in this example is a modified version of the
one used to demonstrate cycle analysis (shown in Figure 5.7). The new
composite, shown in Figure 5.8 (a), encapsulates the filtering function-
ality of the previous composite, and exposes it as a reusable component.
This is done by removing the sensor component from the function block
network, and allowing it to be connected on the next level of hierarchy
to the S CNF and S RD ports on the composite interface. The usage of
the filter composite is depicted in Figure 5.8 (b). To be able to still per-
form compositional analysis on the new system, the cycle bound defined
in Accu component needs to be propagated to the Filter composite.

Examining the Filter composite for bound propagation candidates
identifies the cycle bound defined in the Accu component, as it is not

5.3 Handling cyclic execution paths 97

Filter Sensor

S_CNF FIN
S_RD

TMP

CNFRDREQ

(a)

(b)

AccuTrans

S_CNF START
ADD

TRANS CNF

S_RD

FIN10 FIN
NEXT

9

2 5

13
TMP

REQ

Filter

Filter Sensor

S_CNF FIN
S_RD

TMP

CNFRDREQ
(c)

52

23
15
9

Figure 5.8: (a) Filter composite component used for exemplifying cycle
bound propagation. (b) An instance of the composite used to filter sensor
data. (c) Results of WCET analysis and cycle bound propagation for
the composite and the sensor component.

contained by a cycle in the internal composite network. As the candidate
bound is traversed by the only path (and thus also all paths) between
ports S CNF and S RD , it can be propagated from the Accu component
to the Filter composite. A new bound will be defined between ports
S CNF and S RD , and the value of the bound will be 9. The combined
results of WCET analysis and bound propagation for Filter are shown
as annotations to its interface in Figure 5.8 (c).

98 Chapter 5. Timing and utilization analysis analysis

The cycle bound propagation algorithm

Definition of the algorithm for propagation of cycle bounds requires
means to find all execution paths between a pair of event ports. The
first step to this is to define a function which can be used to detect if
two event ports are connected by a single connection or a single function
block.

Definition 15. The function connected returns true if an event signal
can be transferred from event port es to event port ee, through either a
single connection or a single function block, in function block network
fbn:

connected(es, ee, fbn) = 〈es, ed, b〉 ∈ C ∨
∃f ∈ F : 〈We,Wi〉 = wcet(f) ∧
∃〈es,W 〉 ∈ We :
∃〈v, o〉 ∈ W : o(ee) > 0

where

fbn is a function block network in form 〈F,C〉.

Using the previously defined function, a function for retrieving exe-
cution paths from a function block network can be defined.

Definition 16. The function getPaths returns a set of execution paths
{p0, . . . , pn} execution paths between a starting event port es and an end-
ing event port ee, from a function block network fbn:

getPaths(es, ee, fbn) = {p | p = 〈e0, . . . , en〉 ∧ e0 = es ∧ en = ee ∧
∀0 ≤ i < n : connected(ei, ei+1, fbn) ∧
∀0 ≤ i, i < m : ei �= ej ∨ i = j}

The final prerequisite for defining the cycle bound propagation al-
gorithm is a function which can be used to test if an execution path
traverses a cycle bound.

Definition 17. The function traverses returns true if an event path
p contains a cycle bound cb:

traverses(p, cb) =

{
true if ∃ei, ei+1 ∈ p : ei = es ∧ ei+1 = ed
false otherwise

where

p is a path in form 〈e0..en〉;
cb is a cycle bound definition in form 〈es, ed, b〉.

5.3 Handling cyclic execution paths 99

Algorithm 9 propagateBounds(cfb)

1: 〈fbi , fbn〉 ← cfb
2: 〈Ei, Eo〉 ← fbi
3: Let CB be a set of all cycle bounds defined for connections and

function blocks of fbn
4: CBp ← ∅
5: for each ei ∈ Ei, eo ∈ Eo do
6: P = getPaths(ei, eo, fbn)
7: if ∃cb ∈ CB : ∀p ∈ P : traverses(p, cb) then
8: 〈ecbs , ecbd , b〉 ← cb
9: CBp ← CBp ∪ 〈ei, eo, b〉

10: end if
11: end for
12: return CBp

Having the definition the functions to retrieve execution paths from
function block networks, and test if execution paths contain cycle bounds,
the formal definition of cycle bound propagation for composite function
blocks can be defined. This definition is given by Algorithm 9.

The algorithm initiates a set CBp, which will contain the cycle bounds
to be propagated to the composite, on line 4. On line 5, the algorithm it-
erates through all combinations of input event ports ei and output event
ports eo of the composite’s interface. All execution paths between the
current combination of input and output events are retrieved on line 6.
The if statement on line 7 checks if there exists a cycle bound cb, which
all retrieved execution paths traverse. If such a cycle bound exists, a
new cycle bound is created and added to the list of cycle bounds to be
propagated, on line 9. The new bound contains the input and output
event ports of the composite, and the bound value of the cycle bound
cb. As a result, the algorithm returns the list of cycle bound that can
be defined for the composite on line 12.

98 Chapter 5. Timing and utilization analysis analysis

The cycle bound propagation algorithm

Definition of the algorithm for propagation of cycle bounds requires
means to find all execution paths between a pair of event ports. The
first step to this is to define a function which can be used to detect if
two event ports are connected by a single connection or a single function
block.

Definition 15. The function connected returns true if an event signal
can be transferred from event port es to event port ee, through either a
single connection or a single function block, in function block network
fbn:

connected(es, ee, fbn) = 〈es, ed, b〉 ∈ C ∨
∃f ∈ F : 〈We,Wi〉 = wcet(f) ∧
∃〈es,W 〉 ∈ We :
∃〈v, o〉 ∈ W : o(ee) > 0

where

fbn is a function block network in form 〈F,C〉.

Using the previously defined function, a function for retrieving exe-
cution paths from a function block network can be defined.

Definition 16. The function getPaths returns a set of execution paths
{p0, . . . , pn} execution paths between a starting event port es and an end-
ing event port ee, from a function block network fbn:

getPaths(es, ee, fbn) = {p | p = 〈e0, . . . , en〉 ∧ e0 = es ∧ en = ee ∧
∀0 ≤ i < n : connected(ei, ei+1, fbn) ∧
∀0 ≤ i, i < m : ei �= ej ∨ i = j}

The final prerequisite for defining the cycle bound propagation al-
gorithm is a function which can be used to test if an execution path
traverses a cycle bound.

Definition 17. The function traverses returns true if an event path
p contains a cycle bound cb:

traverses(p, cb) =

{
true if ∃ei, ei+1 ∈ p : ei = es ∧ ei+1 = ed
false otherwise

where

p is a path in form 〈e0..en〉;
cb is a cycle bound definition in form 〈es, ed, b〉.

5.3 Handling cyclic execution paths 99

Algorithm 9 propagateBounds(cfb)

1: 〈fbi , fbn〉 ← cfb
2: 〈Ei, Eo〉 ← fbi
3: Let CB be a set of all cycle bounds defined for connections and

function blocks of fbn
4: CBp ← ∅
5: for each ei ∈ Ei, eo ∈ Eo do
6: P = getPaths(ei, eo, fbn)
7: if ∃cb ∈ CB : ∀p ∈ P : traverses(p, cb) then
8: 〈ecbs , ecbd , b〉 ← cb
9: CBp ← CBp ∪ 〈ei, eo, b〉

10: end if
11: end for
12: return CBp

Having the definition the functions to retrieve execution paths from
function block networks, and test if execution paths contain cycle bounds,
the formal definition of cycle bound propagation for composite function
blocks can be defined. This definition is given by Algorithm 9.

The algorithm initiates a set CBp, which will contain the cycle bounds
to be propagated to the composite, on line 4. On line 5, the algorithm it-
erates through all combinations of input event ports ei and output event
ports eo of the composite’s interface. All execution paths between the
current combination of input and output events are retrieved on line 6.
The if statement on line 7 checks if there exists a cycle bound cb, which
all retrieved execution paths traverse. If such a cycle bound exists, a
new cycle bound is created and added to the list of cycle bounds to be
propagated, on line 9. The new bound contains the input and output
event ports of the composite, and the bound value of the cycle bound
cb. As a result, the algorithm returns the list of cycle bound that can
be defined for the composite on line 12.

100 Chapter 5. Timing and utilization analysis analysis

5.4 Analysis using hardware-specific mod-
els

The WCET analysis described in previous sections was performed only
using platform-independent models, and did not take into account that
WCET information for algorithms and function blocks depends on the
type of the device they are deployed to. In this section previously defined
analysis is extended to utilize the model of function block deployment,
and two new methods are introduced: device-specific application WCET
analysis and device utilization analysis.

The section continues by first extending the previously defined analy-
sis with device-specific WCET information, and then describing the two
new analysis methods.

5.4.1 Device-specific WCET analysis

As algorithms can have different execution time when running on dif-
ferent types of hardware devices, providing timing analysis that takes
into account deployment requires the function block analysis presented
in Section 5.2 to take into account to which device a function block is
deployed. In this section we present how the previously defined WCET
data and analysis algorithms are extended to take into account deploy-
ment information.

To allow describing device-specific WCET for algorithms and func-
tion blocks, the two WCET functions presented in Section 5.2.1 are
extended to allow returning different values for an algorithm or a func-
tion block for different devices. This is done by adding an argument
representing a specific device. The rest of the function definition is kept
the same. The definition of the new functions follow:

Definition 18. The WCET data for an algorithm a ∈ A or a func-
tion block fb, specific for a device d, are represented by the function
wcet(a, d) and wcet(fb, d), respectively:

Algorithm WCET data: wcet(a, d) ∈ N

Function block WCET data: wcet(f, d) = 〈We,Wi〉

The same principle used for WCET data is also used to extend func-
tion block analysis algorithms. Their list of arguments is in the same

5.4 Analysis using hardware-specific models 101

way extended with device information, which is used when retrieving
WCET data values. Because the changes in the algorithms are minor,
they will not be explicitly presented.

One of the consequences of using device-specific WCET information
for function blocks is that results of analysis can be reused only in the
context of the device for which the analysis was performed. This means
that analysis for a single function block has to be performed multiple
times, once for each device.

5.4.2 Application Analysis

The method presented in this section uses the previously defined anal-
ysis, and applies it to the application software model and the model of
deployment to calculate device-specific WCET for applications. The rest
of the section first defines how device-specific WCET is represented, and
then describes the details of the analysis method.

Device-specific application WCET data

Applications are the top-most elements in the hierarchy of IEC 61499
software models which usually provide functionality which is highly spe-
cific to a concrete system. They are not intended for reuse, and there-
fore do not have an explicit interface. Because of this, compared to the
WCET data for function blocks, the WCET data describing applica-
tions does not have to be context-independent. Lack of an interface,
and therefore input event ports, means that the WCET data for appli-
cations can consist of only a set of entries describing execution initiated
by internal triggers. Also, as there are no generated output event ports
to consider, each WCET data entry for an application can be described
by just a single WCET value. Since there will always be a maximum of
these values, a clear worst case, each internal trigger can be described
by only one WCET data entry. The following definition provides formal
description of device-specific WCET data.

Definition 19. The WCET data for an application app, specific for a
device d, is represented by the function wcet(app, d):

Application WCET data: wcet(app, d) = S where

100 Chapter 5. Timing and utilization analysis analysis

5.4 Analysis using hardware-specific mod-
els

The WCET analysis described in previous sections was performed only
using platform-independent models, and did not take into account that
WCET information for algorithms and function blocks depends on the
type of the device they are deployed to. In this section previously defined
analysis is extended to utilize the model of function block deployment,
and two new methods are introduced: device-specific application WCET
analysis and device utilization analysis.

The section continues by first extending the previously defined analy-
sis with device-specific WCET information, and then describing the two
new analysis methods.

5.4.1 Device-specific WCET analysis

As algorithms can have different execution time when running on dif-
ferent types of hardware devices, providing timing analysis that takes
into account deployment requires the function block analysis presented
in Section 5.2 to take into account to which device a function block is
deployed. In this section we present how the previously defined WCET
data and analysis algorithms are extended to take into account deploy-
ment information.

To allow describing device-specific WCET for algorithms and func-
tion blocks, the two WCET functions presented in Section 5.2.1 are
extended to allow returning different values for an algorithm or a func-
tion block for different devices. This is done by adding an argument
representing a specific device. The rest of the function definition is kept
the same. The definition of the new functions follow:

Definition 18. The WCET data for an algorithm a ∈ A or a func-
tion block fb, specific for a device d, are represented by the function
wcet(a, d) and wcet(fb, d), respectively:

Algorithm WCET data: wcet(a, d) ∈ N

Function block WCET data: wcet(f, d) = 〈We,Wi〉

The same principle used for WCET data is also used to extend func-
tion block analysis algorithms. Their list of arguments is in the same

5.4 Analysis using hardware-specific models 101

way extended with device information, which is used when retrieving
WCET data values. Because the changes in the algorithms are minor,
they will not be explicitly presented.

One of the consequences of using device-specific WCET information
for function blocks is that results of analysis can be reused only in the
context of the device for which the analysis was performed. This means
that analysis for a single function block has to be performed multiple
times, once for each device.

5.4.2 Application Analysis

The method presented in this section uses the previously defined anal-
ysis, and applies it to the application software model and the model of
deployment to calculate device-specific WCET for applications. The rest
of the section first defines how device-specific WCET is represented, and
then describes the details of the analysis method.

Device-specific application WCET data

Applications are the top-most elements in the hierarchy of IEC 61499
software models which usually provide functionality which is highly spe-
cific to a concrete system. They are not intended for reuse, and there-
fore do not have an explicit interface. Because of this, compared to the
WCET data for function blocks, the WCET data describing applica-
tions does not have to be context-independent. Lack of an interface,
and therefore input event ports, means that the WCET data for appli-
cations can consist of only a set of entries describing execution initiated
by internal triggers. Also, as there are no generated output event ports
to consider, each WCET data entry for an application can be described
by just a single WCET value. Since there will always be a maximum of
these values, a clear worst case, each internal trigger can be described
by only one WCET data entry. The following definition provides formal
description of device-specific WCET data.

Definition 19. The WCET data for an application app, specific for a
device d, is represented by the function wcet(app, d):

Application WCET data: wcet(app, d) = S where

102 Chapter 5. Timing and utilization analysis analysis

S is a set {s0, . . . , s|S|} of application WCET data entries;
si is a WCET data entry in form of 〈t, v〉;
t is the ID of an internal trigger;
v is the WCET value, v ∈ N.

Application analysis method

The device-specific WCET application analysis is performed using same
principles as the internal trigger analysis for composite function blocks.
The function block network is scanned for function blocks containing
internal execution triggers. For each such trigger, an analysis of function
block network is performed.

Compared to function block network implementing composites, where
all function blocks have to execute on the same device, each function
block on the application level can be deployed separately. To analyze
WCET of an application for a specific device, the analysis method needs
to consider only execution time of function blocks deployed to that de-
vice. Compared to the function block network analysis for composites,
the network analysis for applications ignores WCET values for function
blocks not deployed to the currently analyzed device. However, the part
of function block WCET data containing information about generated
outputs is still used. In this way, all possible execution paths are still
explored, but the results for each device contain only execution paths
that produce maximal WCET value for that device, rather than ones
that lead to maximal overall WCET in the whole system.

Example

We will show an example of application analysis using the application
depicted in Figure 5.9 a). The example platform consists of two devices,
d1 and d2, and for the purpose of simplicity, we will assume that both
devices are of the same type. In the example we will explore two different
deployment alternatives specified in Figure 5.9 b).

In case of deployment alternative A, for device d1 there will be two
WCET entries. The first one is for execution trigger p11 . Starting from
this trigger, two execution paths can be traced. The first one takes the
first execution alternative of fb2 and the only alternative of fb3. The
second one takes the second alternative of fb2, and the only execution
alternative of fb4. As the latter execution path has greater WCET value,

5.4 Analysis using hardware-specific models 103

eo11

eo12

fb1

ei21 eo21
eo22

fb2

ei31 eo31

fb3

ei41 eo41

fb4

ei51 eo51

fb5

ei61 eo61

fb6

4040

100

3030

p1
5

p2
5

10

(a)

(b) Deployment Device Function blocks

fb1, fb2, fb3, fb4

fb5, fb6

fb1, fb2, fb3, fb5

fb4, fb6

d1

d2

d1

d2

A

B

Figure 5.9: a) Application example. b) Function block deployment in-
formation.

and there is no need to consider generated outputs, only the WCET value
of this path is assigned to p11 .

The second entry for device d1 only takes into account the alternative
of fb1 which starts by the trigger p12 , as fb5 and fb6, which are triggered
by that alternative, are not deployed to this device.

The same deployment alternative for device d2 results in WCET value
0 for execution trigger p11 , because none of the function blocks that are
executed as a consequence of this trigger are deployed to d2. The entry
for this device and trigger p12 takes into account execution of function
blocks fb5 and fb6. The results for the example application using map-
ping alternative A are the following:

wcet(app, d1) = {〈p11, 115〉, 〈p12, 5〉}
wcet(app, d2) = {〈p11, 0〉, 〈p12, 60〉}

102 Chapter 5. Timing and utilization analysis analysis

S is a set {s0, . . . , s|S|} of application WCET data entries;
si is a WCET data entry in form of 〈t, v〉;
t is the ID of an internal trigger;
v is the WCET value, v ∈ N.

Application analysis method

The device-specific WCET application analysis is performed using same
principles as the internal trigger analysis for composite function blocks.
The function block network is scanned for function blocks containing
internal execution triggers. For each such trigger, an analysis of function
block network is performed.

Compared to function block network implementing composites, where
all function blocks have to execute on the same device, each function
block on the application level can be deployed separately. To analyze
WCET of an application for a specific device, the analysis method needs
to consider only execution time of function blocks deployed to that de-
vice. Compared to the function block network analysis for composites,
the network analysis for applications ignores WCET values for function
blocks not deployed to the currently analyzed device. However, the part
of function block WCET data containing information about generated
outputs is still used. In this way, all possible execution paths are still
explored, but the results for each device contain only execution paths
that produce maximal WCET value for that device, rather than ones
that lead to maximal overall WCET in the whole system.

Example

We will show an example of application analysis using the application
depicted in Figure 5.9 a). The example platform consists of two devices,
d1 and d2, and for the purpose of simplicity, we will assume that both
devices are of the same type. In the example we will explore two different
deployment alternatives specified in Figure 5.9 b).

In case of deployment alternative A, for device d1 there will be two
WCET entries. The first one is for execution trigger p11 . Starting from
this trigger, two execution paths can be traced. The first one takes the
first execution alternative of fb2 and the only alternative of fb3. The
second one takes the second alternative of fb2, and the only execution
alternative of fb4. As the latter execution path has greater WCET value,

5.4 Analysis using hardware-specific models 103

eo11

eo12

fb1

ei21 eo21
eo22

fb2

ei31 eo31

fb3

ei41 eo41

fb4

ei51 eo51

fb5

ei61 eo61

fb6

4040

100

3030

p1
5

p2
5

10

(a)

(b) Deployment Device Function blocks

fb1, fb2, fb3, fb4

fb5, fb6

fb1, fb2, fb3, fb5

fb4, fb6

d1

d2

d1

d2

A

B

Figure 5.9: a) Application example. b) Function block deployment in-
formation.

and there is no need to consider generated outputs, only the WCET value
of this path is assigned to p11 .

The second entry for device d1 only takes into account the alternative
of fb1 which starts by the trigger p12 , as fb5 and fb6, which are triggered
by that alternative, are not deployed to this device.

The same deployment alternative for device d2 results in WCET value
0 for execution trigger p11 , because none of the function blocks that are
executed as a consequence of this trigger are deployed to d2. The entry
for this device and trigger p12 takes into account execution of function
blocks fb5 and fb6. The results for the example application using map-
ping alternative A are the following:

wcet(app, d1) = {〈p11, 115〉, 〈p12, 5〉}
wcet(app, d2) = {〈p11, 0〉, 〈p12, 60〉}

104 Chapter 5. Timing and utilization analysis analysis

We can see how application analysis results change depending on the
deployment configuration by applying the analysis to the same exam-
ple, but using deployment alternative B. In this case, fb4 is no longer
deployed to d1, so the WCET entry for p11 on this device now uses the
first alternative in fb2 and the only alternative in fb3. The entry for p12
on device d1 now also includes the execution of fb5. Using this deploy-
ment alternative, the WCET result for device d2 now has two entries,
one for each trigger in fb1. This is because now fb4, which is triggered
by p11, is now mapped to this device. In case of using deployment alter-
native B the result of application WCET analysis would be the following:

wcet(app, d1) = {〈p11, 85〉, 〈p12, 35〉}
wcet(app, d2) = {〈p11, 100〉, 〈p12, 30〉}

The Application analysis algorithm

The algorithm for device-specific WCET analysis of applications is sep-
arated into two functions. The first function, appFBNAnalysis, is
used to recursively analyze the function block network implementing
the application. The second function, appAnalysis, starts the network
analysis for the application’s internal triggers, and collects the results in
a set representing the device-specific WCET of the application.

The function for analysis of application function block network is
given in Algorithm 10. It uses the same principles as the function block
network analysis for the composites, but does not collect information
about generated outputs, and takes into account deployment of function
blocks. The arguments for the function are event port e from which to
start analysis, function block network fbn which is the context of the
analysis, and device d for which the application analysis is performed.
As a result, the function returns an integer value, corresponding to the
WCET of the part of fbn starting with event port e.

The function starts with finding a connection leading from the se-
lected event port on line 2, and returns 0 as a result on line 3 if no such
connection exists. As applications have no interface, destination ports
of connections can only be input event ports of function blocks. On line
7, the device-specific WCET data for the function block f , to which the
destination port of the connection belongs to, is retrieved. The device
argument of the wcet function is set to be the device that f is deployed

5.4 Analysis using hardware-specific models 105

to. Line 9 initializes the WCET value v, which represents the result
of the application network analysis function. The analysis continues on
line 10 by considering all WCET data entries defined for the function
block’s input event port. On line 11, the temporary WCET value for the
currently analyzed data entry is initialized to 0. The for loop starting on
line 12 iterates through all generated output events of the WCET entry.
For each event, the WCET value of the sub-network starting with the
event is analyzed to the recursive function call on line 13. The recursive
result is multiplied by the number of event occurrences, and added to
the temporary result v′. The combination of the if statement and the
assignment on lines 16 and 17 add the WCET value of the data entry to
the temporary result, but only if the function block f is deployed to the
device d. Line 19 ensures that the function result v contains the highest

Algorithm 10 appFBNAnalysis(e, fbn, d)

1: 〈Fi, C〉 ← fbn
2: if ¬∃〈es, ed〉 ∈ C : es = e then
3: return 0
4: else
5: Let 〈es, ed〉 ∈ C be the connection for which es = e
6: Let f be the FB to which ed belongs
7: 〈We,Wi〉 ← wcet(f, deployedTo(f))
8: Let 〈ei,Wt〉 be the element in We for which ei = ed
9: v ← 0

10: for each 〈vfb , o〉 ∈ Wt do
11: v′ ← 0
12: for each eo ∈ E0 : o(eo) > 0 do
13: vr ← appFBNAnalysis(e0, fbn, d)
14: v′ ← v′ + vr ∗ o(eo)
15: end for
16: if deployedTo(f) = d then
17: v′ ← v′ + vfb
18: end if
19: v ← max(v, v′)
20: end for
21: return v
22: end if

104 Chapter 5. Timing and utilization analysis analysis

We can see how application analysis results change depending on the
deployment configuration by applying the analysis to the same exam-
ple, but using deployment alternative B. In this case, fb4 is no longer
deployed to d1, so the WCET entry for p11 on this device now uses the
first alternative in fb2 and the only alternative in fb3. The entry for p12
on device d1 now also includes the execution of fb5. Using this deploy-
ment alternative, the WCET result for device d2 now has two entries,
one for each trigger in fb1. This is because now fb4, which is triggered
by p11, is now mapped to this device. In case of using deployment alter-
native B the result of application WCET analysis would be the following:

wcet(app, d1) = {〈p11, 85〉, 〈p12, 35〉}
wcet(app, d2) = {〈p11, 100〉, 〈p12, 30〉}

The Application analysis algorithm

The algorithm for device-specific WCET analysis of applications is sep-
arated into two functions. The first function, appFBNAnalysis, is
used to recursively analyze the function block network implementing
the application. The second function, appAnalysis, starts the network
analysis for the application’s internal triggers, and collects the results in
a set representing the device-specific WCET of the application.

The function for analysis of application function block network is
given in Algorithm 10. It uses the same principles as the function block
network analysis for the composites, but does not collect information
about generated outputs, and takes into account deployment of function
blocks. The arguments for the function are event port e from which to
start analysis, function block network fbn which is the context of the
analysis, and device d for which the application analysis is performed.
As a result, the function returns an integer value, corresponding to the
WCET of the part of fbn starting with event port e.

The function starts with finding a connection leading from the se-
lected event port on line 2, and returns 0 as a result on line 3 if no such
connection exists. As applications have no interface, destination ports
of connections can only be input event ports of function blocks. On line
7, the device-specific WCET data for the function block f , to which the
destination port of the connection belongs to, is retrieved. The device
argument of the wcet function is set to be the device that f is deployed

5.4 Analysis using hardware-specific models 105

to. Line 9 initializes the WCET value v, which represents the result
of the application network analysis function. The analysis continues on
line 10 by considering all WCET data entries defined for the function
block’s input event port. On line 11, the temporary WCET value for the
currently analyzed data entry is initialized to 0. The for loop starting on
line 12 iterates through all generated output events of the WCET entry.
For each event, the WCET value of the sub-network starting with the
event is analyzed to the recursive function call on line 13. The recursive
result is multiplied by the number of event occurrences, and added to
the temporary result v′. The combination of the if statement and the
assignment on lines 16 and 17 add the WCET value of the data entry to
the temporary result, but only if the function block f is deployed to the
device d. Line 19 ensures that the function result v contains the highest

Algorithm 10 appFBNAnalysis(e, fbn, d)

1: 〈Fi, C〉 ← fbn
2: if ¬∃〈es, ed〉 ∈ C : es = e then
3: return 0
4: else
5: Let 〈es, ed〉 ∈ C be the connection for which es = e
6: Let f be the FB to which ed belongs
7: 〈We,Wi〉 ← wcet(f, deployedTo(f))
8: Let 〈ei,Wt〉 be the element in We for which ei = ed
9: v ← 0

10: for each 〈vfb , o〉 ∈ Wt do
11: v′ ← 0
12: for each eo ∈ E0 : o(eo) > 0 do
13: vr ← appFBNAnalysis(e0, fbn, d)
14: v′ ← v′ + vr ∗ o(eo)
15: end for
16: if deployedTo(f) = d then
17: v′ ← v′ + vfb
18: end if
19: v ← max(v, v′)
20: end for
21: return v
22: end if

106 Chapter 5. Timing and utilization analysis analysis

value computed so far. Line 21 returns the final WCET value.

The function performing device-specific application analysis, given
in Algorithm 11, is similar to the internal trigger analysis defined for
composite function blocks. As arguments, the function takes applica-
tion function block network fbn, and device d, for which to perform the
analysis. The function returns the previously defined application WCET
data.

The application analysis function starts by initializing the result set
wapp on line 1. The for loop on line 3 iterates through all function
blocks contained by the network. For each function block, the WCET
data specific for the device to which it is deployed to is retrieved on line
4. The analysis continues by considering all internal trigger WCET data
entries of the retrieved data on line 5. On line 6, the WCET value v
for the internal trigger is initialized to 0. The analysis then considers all

Algorithm 11 appAnalysis(fbn, d)

1: Wapp ← ∅
2: 〈F,C〉 ← fbn
3: for each f ∈ F do
4: 〈We,Wi〉 ← wcet(f, deployedTo(f))
5: for each 〈t,W 〉 ∈ Wi do
6: v ← 0
7: for each 〈vfb , o〉 ∈ W do
8: v′ ← 0
9: for each eo ∈ Eo : o(eo) > 0 do

10: vr ← appFBNAnalysis(eo, fbn, d)
11: v′ ← v′ + vr ∗ o(eo)
12: end for
13: if deployedTo(f) = d then
14: v′ ← v′ + vfb
15: end if
16: v ← max(v, v′)
17: end for
18: Wapp ← Wapp ∪ 〈t, v〉
19: end for
20: end for
21: return Wapp

5.4 Analysis using hardware-specific models 107

data entries associated with that internal trigger, in order to find the one
with the highest WCET value. The temporary value v′ for each entry
is initialized on line 8. The loop starting on line 9 iterates through all
generated output events. The WCET value for each event is calculated
by a call to the appFBNAnalysis function on line 10, multiplied by
the number of event occurrences, and added to the temporary value v′

on line 11. Lines 13 and 14 add the value of the function block WCET
data to v′, but only if the function block is deployed to the device for
which the analysis is performed. On line 16 the WCET value for the
internal trigger v is updated to the highest value calculated so far. The
assignment on line 18 combines the internal trigger id with the final
WCET value for the trigger, and adds it to the result set wapp .

5.4.3 Utilization analysis

A valuable property that can be calculated for processing resources, such
as IEC 61499 devices, is their utilization. Knowing the utilization of pro-
cessing resources early in the development process can help dimensioning
the hardware platform to satisfy the needs of real-time execution even
in the worst-case scenarios.

We calculate device utilization by combining the device-specific WCET
of an application with the period of each execution trigger. The periods
of execution triggers are defined on the system level, by assigning values
to internal trigger IDs defined in function block WCET data. In case
of sporadic triggers, the period denotes the minimal interarrival time
between two triggering events.

Utilization is calculated for each device separately, as a sum of uti-
lization of all execution triggers. For each execution trigger we calculate
its utilization contribution by dividing the WCET value by the period
of the trigger.

Definition 20. The utilization U of device d in application app can thus
be defined as:

U(app, d) =
∑

〈p,w〉∈S

w

period(p)
,

where S = wcet(app, d).

The result of the utilization analysis is a positive real number, with

106 Chapter 5. Timing and utilization analysis analysis

value computed so far. Line 21 returns the final WCET value.

The function performing device-specific application analysis, given
in Algorithm 11, is similar to the internal trigger analysis defined for
composite function blocks. As arguments, the function takes applica-
tion function block network fbn, and device d, for which to perform the
analysis. The function returns the previously defined application WCET
data.

The application analysis function starts by initializing the result set
wapp on line 1. The for loop on line 3 iterates through all function
blocks contained by the network. For each function block, the WCET
data specific for the device to which it is deployed to is retrieved on line
4. The analysis continues by considering all internal trigger WCET data
entries of the retrieved data on line 5. On line 6, the WCET value v
for the internal trigger is initialized to 0. The analysis then considers all

Algorithm 11 appAnalysis(fbn, d)

1: Wapp ← ∅
2: 〈F,C〉 ← fbn
3: for each f ∈ F do
4: 〈We,Wi〉 ← wcet(f, deployedTo(f))
5: for each 〈t,W 〉 ∈ Wi do
6: v ← 0
7: for each 〈vfb , o〉 ∈ W do
8: v′ ← 0
9: for each eo ∈ Eo : o(eo) > 0 do

10: vr ← appFBNAnalysis(eo, fbn, d)
11: v′ ← v′ + vr ∗ o(eo)
12: end for
13: if deployedTo(f) = d then
14: v′ ← v′ + vfb
15: end if
16: v ← max(v, v′)
17: end for
18: Wapp ← Wapp ∪ 〈t, v〉
19: end for
20: end for
21: return Wapp

5.4 Analysis using hardware-specific models 107

data entries associated with that internal trigger, in order to find the one
with the highest WCET value. The temporary value v′ for each entry
is initialized on line 8. The loop starting on line 9 iterates through all
generated output events. The WCET value for each event is calculated
by a call to the appFBNAnalysis function on line 10, multiplied by
the number of event occurrences, and added to the temporary value v′

on line 11. Lines 13 and 14 add the value of the function block WCET
data to v′, but only if the function block is deployed to the device for
which the analysis is performed. On line 16 the WCET value for the
internal trigger v is updated to the highest value calculated so far. The
assignment on line 18 combines the internal trigger id with the final
WCET value for the trigger, and adds it to the result set wapp .

5.4.3 Utilization analysis

A valuable property that can be calculated for processing resources, such
as IEC 61499 devices, is their utilization. Knowing the utilization of pro-
cessing resources early in the development process can help dimensioning
the hardware platform to satisfy the needs of real-time execution even
in the worst-case scenarios.

We calculate device utilization by combining the device-specific WCET
of an application with the period of each execution trigger. The periods
of execution triggers are defined on the system level, by assigning values
to internal trigger IDs defined in function block WCET data. In case
of sporadic triggers, the period denotes the minimal interarrival time
between two triggering events.

Utilization is calculated for each device separately, as a sum of uti-
lization of all execution triggers. For each execution trigger we calculate
its utilization contribution by dividing the WCET value by the period
of the trigger.

Definition 20. The utilization U of device d in application app can thus
be defined as:

U(app, d) =
∑

〈p,w〉∈S

w

period(p)
,

where S = wcet(app, d).

The result of the utilization analysis is a positive real number, with

108 Chapter 5. Timing and utilization analysis analysis

Table 5.2: Results of the utilization analysis.

Deployment Trigger Device
alternative Device Trigger WCET Util. Util.

A d1 p11 (300) 115 0.383 0.483
p12 (50) 5 0.1

d2 p11 (300) 0 0 1.2
p12 (50) 60 1.2

B d1 p11 (300) 85 0.283 0.983
p12 (50) 35 0.7

d2 p11 (300) 100 0.333 0.933
p12 (50) 30 0.6

the value of 1 representing full utilization of a device. A value over 1
corresponds to overutilization.

Example

To demonstrate the utilization analysis we will again use the application
from Figure 5.9 a). To show how we can detect overutilization of a de-
vice, and verify that the problem is solved after redistributing function
blocks between the two devices, we will use the two function block de-
ployment alternatives given in Figure 5.9 b). As period values for p11
and p12 we will use 300 and 500, respectively. Table 5.2 shows the utiliza-
tion analysis results. The first column gives the deployment alternative
for which utilization is calculated. The second column states for which
device the utilization is calculated. While the ID of the internal triggers
and the period associated with it is given in the third column, the fourth
column contains the WCET for each trigger. The fifth column describes
how each trigger contributes to device utilization, and the sixth column
gives the resulting device utilization.

From the results we can see that when using deployment alternative
A the device d2 is overutilized, having the utilization value 1.2. Changing
the mapping of the function blocks to option B resolves the problem of
overutilization, as in this case utilization is lower than 1 for of both
devices.

It should be noted that the sum of WCET for all devices and ex-
ecution triggers is not the same in deployment alternatives A and B.
This is because the analysis considers the worst case for each device in

5.5 Implementation and evaluation 109

isolation. For deployment alternative A, only one of the two alternative
paths in fb2 contributes to the worst case. For deployment alternative
B, however, both of them result in worst cases, for device d1 and d2
respectively.

5.5 Implementation and evaluation

In addition to from formally defining the analysis algorithm, a part of
the contribution of this thesis is a prototype analysis tool. In this section
we first give an overview of the tool, and then describe how the tool was
used to validate different parts of the analysis approach.

5.5.1 Analysis tool

The prototype analysis tool implements all algorithms defined in this
chapter, including compositional WCET analysis, two alternatives for
normalizing WCET data, analysis of bounded cycles and propagation
of cycle bounds, and analysis of processing resource utilization. The
analysis tool is built as a plug-in for 4DIAC-IDE [56]. The implemen-
tation is completely integrated with 4DIAC-IDE model editors and al-
lows analysis to be performed on standard 4DIAC models extended with
WCET values for basic function block algorithms. The analysis results
are also stored as a part of 4DIAC model elements, allowing reuse dur-
ing compositional analysis. The plug-in also defines GUI elements for
presentation and editing of WCET data stored together with function
blocks. A screenshot of the 4DIAC tool containing a dialog window for
presentation of WCET data can be seen in Figure 5.10.

The tool, packaged as an Eclipse plug-in, is freely available for down-
load1.

5.5.2 Evaluation of the WCET analysis

The analysis tool has been used to evaluate three separate aspects of the
compositional analysis method: (i) demonstrate that the analysis can be
applied to non-trivial systems, (ii) test the performance (running time)
of the analysis method and how it scales with the size of the system, and

1http://www.idt.mdh.se/˜jcn01/research/4DIAC-plugins/

108 Chapter 5. Timing and utilization analysis analysis

Table 5.2: Results of the utilization analysis.

Deployment Trigger Device
alternative Device Trigger WCET Util. Util.

A d1 p11 (300) 115 0.383 0.483
p12 (50) 5 0.1

d2 p11 (300) 0 0 1.2
p12 (50) 60 1.2

B d1 p11 (300) 85 0.283 0.983
p12 (50) 35 0.7

d2 p11 (300) 100 0.333 0.933
p12 (50) 30 0.6

the value of 1 representing full utilization of a device. A value over 1
corresponds to overutilization.

Example

To demonstrate the utilization analysis we will again use the application
from Figure 5.9 a). To show how we can detect overutilization of a de-
vice, and verify that the problem is solved after redistributing function
blocks between the two devices, we will use the two function block de-
ployment alternatives given in Figure 5.9 b). As period values for p11
and p12 we will use 300 and 500, respectively. Table 5.2 shows the utiliza-
tion analysis results. The first column gives the deployment alternative
for which utilization is calculated. The second column states for which
device the utilization is calculated. While the ID of the internal triggers
and the period associated with it is given in the third column, the fourth
column contains the WCET for each trigger. The fifth column describes
how each trigger contributes to device utilization, and the sixth column
gives the resulting device utilization.

From the results we can see that when using deployment alternative
A the device d2 is overutilized, having the utilization value 1.2. Changing
the mapping of the function blocks to option B resolves the problem of
overutilization, as in this case utilization is lower than 1 for of both
devices.

It should be noted that the sum of WCET for all devices and ex-
ecution triggers is not the same in deployment alternatives A and B.
This is because the analysis considers the worst case for each device in

5.5 Implementation and evaluation 109

isolation. For deployment alternative A, only one of the two alternative
paths in fb2 contributes to the worst case. For deployment alternative
B, however, both of them result in worst cases, for device d1 and d2
respectively.

5.5 Implementation and evaluation

In addition to from formally defining the analysis algorithm, a part of
the contribution of this thesis is a prototype analysis tool. In this section
we first give an overview of the tool, and then describe how the tool was
used to validate different parts of the analysis approach.

5.5.1 Analysis tool

The prototype analysis tool implements all algorithms defined in this
chapter, including compositional WCET analysis, two alternatives for
normalizing WCET data, analysis of bounded cycles and propagation
of cycle bounds, and analysis of processing resource utilization. The
analysis tool is built as a plug-in for 4DIAC-IDE [56]. The implemen-
tation is completely integrated with 4DIAC-IDE model editors and al-
lows analysis to be performed on standard 4DIAC models extended with
WCET values for basic function block algorithms. The analysis results
are also stored as a part of 4DIAC model elements, allowing reuse dur-
ing compositional analysis. The plug-in also defines GUI elements for
presentation and editing of WCET data stored together with function
blocks. A screenshot of the 4DIAC tool containing a dialog window for
presentation of WCET data can be seen in Figure 5.10.

The tool, packaged as an Eclipse plug-in, is freely available for down-
load1.

5.5.2 Evaluation of the WCET analysis

The analysis tool has been used to evaluate three separate aspects of the
compositional analysis method: (i) demonstrate that the analysis can be
applied to non-trivial systems, (ii) test the performance (running time)
of the analysis method and how it scales with the size of the system, and

1http://www.idt.mdh.se/˜jcn01/research/4DIAC-plugins/

110 Chapter 5. Timing and utilization analysis analysis

Figure 5.10: A screenshot of the 4DIAC tool showing results from the
analysis plug-in.

(iii) compare the performance and output of the two suggested WCET
data normalization methods.

The tests were carried out on four different IEC 61499 models taken
from the example systems provided by 4DIAC-IDE [56] and FBDK [24]
tools. The four models were selected because they were most complex
when taking into account the number of function blocks and their in-
stances, and the number of levels of hierarchy. The analysis was exe-
cuted on a computer containing a 4-core Intel I7 processor and 4GB of
RAM.

Because true WCET values for algorithms and internal execution
of service interface function blocks were not attainable, the tests were
conducted using random WCET values for algorithms, uniformly dis-
tributed between 1 and 100. To account for the randomness of the data
the test were repeated 1000 times for each system, each time with a new
random set of WCET values. For each analysis invocation the existing
WCET data stored in the models was cleared, forcing re-analysis of all
function blocks.

Information about the number of function block types, instances,
hierarchical levels and average analysis running time for the test systems
is given in Table 5.3. To increase the precision of measuring short time
intervals, the actual analysis running time values were measure for ten
consecutive invocations and then divided to estimate running time of a
single analysis invocation.

5.5 Implementation and evaluation 111

Table 5.3: Experiment setup and runtime results

Average Average
System FB FB Hierarchy max. el. supremum

types instan- levels running running
ces time (ms) time (ms)

Boiler 60 158 6 11.81 11.86
DSCY MDLL 20 41 4 4.64 4.47
ASSY CTL 7 7 2 1.46 1.45
XFER MDL 8 17 2 6.96 6.87

The time needed to perform the analysis using the maximal elements
and the supremum normalization methods can be seen in the fifth and
sixth column of Table 5.3, respectively. The results show that the choice
of the normalization method did not significantly impact analysis run-
ning time. The time needed for performing the analysis was in the order
of magnitude of 10ms, also for the fairly complex Boiler system.

During evaluation we have also compared results given by analysis
using the two proposed normalization methods. The comparison was
done for each individual execution origin (i.e. event source) within the
systems, using the same sets of random algorithm WCET values. The
results of this investigation are given in Table 5.4. They are aggregated
by the systems and the execution origins, as shown in the first and the
second column. The third column gives the number of different execu-
tion paths that can be taken from each origin. The fourth column con-
tains the overestimation produced by the supremum method compared
to the maximal elements method, on average over all random WCET
input sets. The fifth column shows the maximum of all the supremum
overestimation.

The results contain many execution origins with only one execution
path, for which the supremum method naturally did not produce any
overestimation. The average WCET increase when using the supremum
method was between 3% and 75%. Although the maximal overestima-
tion was only 12% for one origin, it went up to 258% in the worst case.
The data shows that there is no direct correlation between the num-
ber of components, instances, hierarchy levels and execution paths, and
the overestimation of the supremum method. This indicates that the
effects of the normalization mostly depend on specific combinations of

110 Chapter 5. Timing and utilization analysis analysis

Figure 5.10: A screenshot of the 4DIAC tool showing results from the
analysis plug-in.

(iii) compare the performance and output of the two suggested WCET
data normalization methods.

The tests were carried out on four different IEC 61499 models taken
from the example systems provided by 4DIAC-IDE [56] and FBDK [24]
tools. The four models were selected because they were most complex
when taking into account the number of function blocks and their in-
stances, and the number of levels of hierarchy. The analysis was exe-
cuted on a computer containing a 4-core Intel I7 processor and 4GB of
RAM.

Because true WCET values for algorithms and internal execution
of service interface function blocks were not attainable, the tests were
conducted using random WCET values for algorithms, uniformly dis-
tributed between 1 and 100. To account for the randomness of the data
the test were repeated 1000 times for each system, each time with a new
random set of WCET values. For each analysis invocation the existing
WCET data stored in the models was cleared, forcing re-analysis of all
function blocks.

Information about the number of function block types, instances,
hierarchical levels and average analysis running time for the test systems
is given in Table 5.3. To increase the precision of measuring short time
intervals, the actual analysis running time values were measure for ten
consecutive invocations and then divided to estimate running time of a
single analysis invocation.

5.5 Implementation and evaluation 111

Table 5.3: Experiment setup and runtime results

Average Average
System FB FB Hierarchy max. el. supremum

types instan- levels running running
ces time (ms) time (ms)

Boiler 60 158 6 11.81 11.86
DSCY MDLL 20 41 4 4.64 4.47
ASSY CTL 7 7 2 1.46 1.45
XFER MDL 8 17 2 6.96 6.87

The time needed to perform the analysis using the maximal elements
and the supremum normalization methods can be seen in the fifth and
sixth column of Table 5.3, respectively. The results show that the choice
of the normalization method did not significantly impact analysis run-
ning time. The time needed for performing the analysis was in the order
of magnitude of 10ms, also for the fairly complex Boiler system.

During evaluation we have also compared results given by analysis
using the two proposed normalization methods. The comparison was
done for each individual execution origin (i.e. event source) within the
systems, using the same sets of random algorithm WCET values. The
results of this investigation are given in Table 5.4. They are aggregated
by the systems and the execution origins, as shown in the first and the
second column. The third column gives the number of different execu-
tion paths that can be taken from each origin. The fourth column con-
tains the overestimation produced by the supremum method compared
to the maximal elements method, on average over all random WCET
input sets. The fifth column shows the maximum of all the supremum
overestimation.

The results contain many execution origins with only one execution
path, for which the supremum method naturally did not produce any
overestimation. The average WCET increase when using the supremum
method was between 3% and 75%. Although the maximal overestima-
tion was only 12% for one origin, it went up to 258% in the worst case.
The data shows that there is no direct correlation between the num-
ber of components, instances, hierarchy levels and execution paths, and
the overestimation of the supremum method. This indicates that the
effects of the normalization mostly depend on specific combinations of

112 Chapter 5. Timing and utilization analysis analysis

Table 5.4: Experiment results per execution origin

Average Maximal
System Execution Execution WCET WCET

origin paths overesti- overesti-
mation (%) mation (%)

Boiler 1 – 8 1 0 0
9 36 10 21

DSCY MDLL 1 – 7 1 0 0
8 6 3 12

ASSY CTL 1 – 4 1 0 0
5 3 24 80
6 2 26 80

XFER MDL 1, 2, 3 1 0 0
4, 5, 6 4 75 244
7, 8, 9 4 75 258
10 4 75 238

components rather than architectural complexity.

The two normalization methods have not shown any significant dif-
ference in terms of analysis running time. Lack of performance increase
when using the supremum normalization can be explained by a combi-
nation of multiple factors. The target applications were not complex
enough for the supremum method to have much effect on running time.
This is also indicated by a large amount of execution paths having the
same WCET value for both normalization methods. Also, in many cases
the maximal elements method greatly reduced the number of examined
execution paths, and thus also shortened the analysis running time.
Lastly, the implementation of the supremum normalization results in
a more complex algorithm than the maximal elements one, which can
lead to a decline in performance for systems with a small number of
hierarchical levels and execution paths. Still, we believe that the supre-
mum method could be useful for dealing with combinatorial complexity
in very large systems.

5.5 Implementation and evaluation 113

Table 5.5: Description of validation tests for cyclic execution path anal-
ysis.

Test Tested functionality

1a Detection of unbounded cycle.
1b Application-level cycle analysis using a connection bound.
1c Detection of unsupported cycle pattern.
2a Analysis of nested cycles.
2b Dependency of analysis results on bound position.
3a Application-level cycle analysis using a component bound.
3b Cycle analysis inside a composite component, with execu-

tion starting at an internal trigger.
3c Cycle analysis inside a composite component, with execu-

tion starting at an input port of a composite.
4 Analysis of exit alternatives for component cycle bounds.
5 Detection of multiple cycle bounds for a single cycle.
6a Propagation of a component cycle bound.
6b Propagation of a connection cycle bound.
6c Omitting propagation of consumed cycle bounds.
7a Does not test a functionality which is not covered by previ-

ous test, but the results are used in combination with Test
7b and Test 7c.

7b Correct handling of cycle exit alternatives in cases when
cycle bound is propagated. Also used together with Test
7a and Test 7c.

7c Validation of analysis using hierarchical composition of
analysis results and bound propagation. Used together with
Test 7a and Test 7b.

5.5.3 Validation of cyclic path analysis

The validity of the cycle analysis method and the functionality of the
prototype implementation has been evaluated using 16 test scenarios.
Each scenario was designed to cover a part of the desirable analysis
behavior using a simple example. This approach allowed for parts of
analysis method to be validated in isolation. The scenarios consisted of
a test model and results which are expected as output of the analysis.
Testing was done by re-creating the test models in the 4DIAC develop-

112 Chapter 5. Timing and utilization analysis analysis

Table 5.4: Experiment results per execution origin

Average Maximal
System Execution Execution WCET WCET

origin paths overesti- overesti-
mation (%) mation (%)

Boiler 1 – 8 1 0 0
9 36 10 21

DSCY MDLL 1 – 7 1 0 0
8 6 3 12

ASSY CTL 1 – 4 1 0 0
5 3 24 80
6 2 26 80

XFER MDL 1, 2, 3 1 0 0
4, 5, 6 4 75 244
7, 8, 9 4 75 258
10 4 75 238

components rather than architectural complexity.

The two normalization methods have not shown any significant dif-
ference in terms of analysis running time. Lack of performance increase
when using the supremum normalization can be explained by a combi-
nation of multiple factors. The target applications were not complex
enough for the supremum method to have much effect on running time.
This is also indicated by a large amount of execution paths having the
same WCET value for both normalization methods. Also, in many cases
the maximal elements method greatly reduced the number of examined
execution paths, and thus also shortened the analysis running time.
Lastly, the implementation of the supremum normalization results in
a more complex algorithm than the maximal elements one, which can
lead to a decline in performance for systems with a small number of
hierarchical levels and execution paths. Still, we believe that the supre-
mum method could be useful for dealing with combinatorial complexity
in very large systems.

5.5 Implementation and evaluation 113

Table 5.5: Description of validation tests for cyclic execution path anal-
ysis.

Test Tested functionality

1a Detection of unbounded cycle.
1b Application-level cycle analysis using a connection bound.
1c Detection of unsupported cycle pattern.
2a Analysis of nested cycles.
2b Dependency of analysis results on bound position.
3a Application-level cycle analysis using a component bound.
3b Cycle analysis inside a composite component, with execu-

tion starting at an internal trigger.
3c Cycle analysis inside a composite component, with execu-

tion starting at an input port of a composite.
4 Analysis of exit alternatives for component cycle bounds.
5 Detection of multiple cycle bounds for a single cycle.
6a Propagation of a component cycle bound.
6b Propagation of a connection cycle bound.
6c Omitting propagation of consumed cycle bounds.
7a Does not test a functionality which is not covered by previ-

ous test, but the results are used in combination with Test
7b and Test 7c.

7b Correct handling of cycle exit alternatives in cases when
cycle bound is propagated. Also used together with Test
7a and Test 7c.

7c Validation of analysis using hierarchical composition of
analysis results and bound propagation. Used together with
Test 7a and Test 7b.

5.5.3 Validation of cyclic path analysis

The validity of the cycle analysis method and the functionality of the
prototype implementation has been evaluated using 16 test scenarios.
Each scenario was designed to cover a part of the desirable analysis
behavior using a simple example. This approach allowed for parts of
analysis method to be validated in isolation. The scenarios consisted of
a test model and results which are expected as output of the analysis.
Testing was done by re-creating the test models in the 4DIAC develop-

114 Chapter 5. Timing and utilization analysis analysis

E_1 F_0

Comp_A E_A
E_B

F_A F_X Comp_X
Comp_Y

5E_X10
2

1

Comp_4

F_Y

Figure 5.11: Model used for the example test scenario.

ment environment, and applying the prototype analysis tool to them. A
detailed description of the test scenarios is publicly available as a techni-
cal report [38], while an overview is given in Table 5.5. The first column
of the table provides the test ID, assigned based on the general model
used in the test, and the second column gives a short description of the
tested functionality. For all test scenarios, the analysis results obtained
by the prototype tool matched the expected analysis results.

Test scenario example

To provide an overview of how testing was performed, this section de-
scribes one of the test scenarios in details. For this purpose, test 6a from
the technical report [38] was chosen, because it is the first one covering
both WCET analysis and propagation of cycle bounds.

The purpose of the scenario is to test if a component cycle bound
defined for a function block inside a composite is properly propagated
to the interface of the composite. The model used for the test is given
in Figure 5.11.

Because the cycle bound defined for function block E 1 is traversed
by the only path from input port Comp A to input port Comp X, and
it is not consumed by a cycle inside the composite, it should be propa-
gated to these two ports. In the same way, the same bound should be also
propagated to ports Comp A and Comp Y. In addition, the timing anal-
ysis should return one execution alternative, starting from port Comp A,
having WCET value 7, and resulting in one output to both Comp X and
Comp Y. The expected results can also be seen in Table 5.6.

It should be noted that although the propagation should create two
new bounds, only one of them can be used on a higher level of hier-
archy. From the point of view of composite’s internal function block

5.6 Summary 115

Table 5.6: Expected results of WCET analysis and cycle bound propa-
gation for the example test scenario.

WCET analysis results for Comp 4
Input event WCET Generated outputs

Comp A 7 Comp x = 1; Comp Y = 1;

Cycle bounds created for Comp 4
Input port Output port Bound value

Comp A Comp X 10
Comp A Comp Y 10

network, this is because a single internal bound can not be applied to
two cyclic paths. From the point of view of composite’s interface, using
both bounds would result with an unsupported cyclic pattern.

With the test scenario defined, the evaluation continued by creating
the test model inside the 4DIAC development tool, and applying the
analysis tool. The results obtained by the tool matched the expected
results.

5.6 Summary

In this chapter we have presented a method for analysis of WCET and
utilization of processing nodes for systems developed using the IEC 61499
standard. The analysis is performed in a compositional manner, us-
ing models of software, hardware and deployment. The compositional
model-level approach results in efficient analysis methods, and allows the
analysis to be performed in early stages of system development.

The WCET analysis is performed for each component in isolation,
and results in context-independent WCET data that can be stored to-
gether with the component. This data can be reused when applying
analysis to compositions which contain the component. The analysis
method can also be applied to models containing cyclic execution paths
through definition of cycle bounds, analysis of bounded cycles, and cycle
bound propagation. By taking into account the model of the platform,
and how components are deployed to the platform’s processing nodes,
the method can also be used to calculate a specific WCET of an appli-

114 Chapter 5. Timing and utilization analysis analysis

E_1 F_0

Comp_A E_A
E_B

F_A F_X Comp_X
Comp_Y

5E_X10
2

1

Comp_4

F_Y

Figure 5.11: Model used for the example test scenario.

ment environment, and applying the prototype analysis tool to them. A
detailed description of the test scenarios is publicly available as a techni-
cal report [38], while an overview is given in Table 5.5. The first column
of the table provides the test ID, assigned based on the general model
used in the test, and the second column gives a short description of the
tested functionality. For all test scenarios, the analysis results obtained
by the prototype tool matched the expected analysis results.

Test scenario example

To provide an overview of how testing was performed, this section de-
scribes one of the test scenarios in details. For this purpose, test 6a from
the technical report [38] was chosen, because it is the first one covering
both WCET analysis and propagation of cycle bounds.

The purpose of the scenario is to test if a component cycle bound
defined for a function block inside a composite is properly propagated
to the interface of the composite. The model used for the test is given
in Figure 5.11.

Because the cycle bound defined for function block E 1 is traversed
by the only path from input port Comp A to input port Comp X, and
it is not consumed by a cycle inside the composite, it should be propa-
gated to these two ports. In the same way, the same bound should be also
propagated to ports Comp A and Comp Y. In addition, the timing anal-
ysis should return one execution alternative, starting from port Comp A,
having WCET value 7, and resulting in one output to both Comp X and
Comp Y. The expected results can also be seen in Table 5.6.

It should be noted that although the propagation should create two
new bounds, only one of them can be used on a higher level of hier-
archy. From the point of view of composite’s internal function block

5.6 Summary 115

Table 5.6: Expected results of WCET analysis and cycle bound propa-
gation for the example test scenario.

WCET analysis results for Comp 4
Input event WCET Generated outputs

Comp A 7 Comp x = 1; Comp Y = 1;

Cycle bounds created for Comp 4
Input port Output port Bound value

Comp A Comp X 10
Comp A Comp Y 10

network, this is because a single internal bound can not be applied to
two cyclic paths. From the point of view of composite’s interface, using
both bounds would result with an unsupported cyclic pattern.

With the test scenario defined, the evaluation continued by creating
the test model inside the 4DIAC development tool, and applying the
analysis tool. The results obtained by the tool matched the expected
results.

5.6 Summary

In this chapter we have presented a method for analysis of WCET and
utilization of processing nodes for systems developed using the IEC 61499
standard. The analysis is performed in a compositional manner, us-
ing models of software, hardware and deployment. The compositional
model-level approach results in efficient analysis methods, and allows the
analysis to be performed in early stages of system development.

The WCET analysis is performed for each component in isolation,
and results in context-independent WCET data that can be stored to-
gether with the component. This data can be reused when applying
analysis to compositions which contain the component. The analysis
method can also be applied to models containing cyclic execution paths
through definition of cycle bounds, analysis of bounded cycles, and cycle
bound propagation. By taking into account the model of the platform,
and how components are deployed to the platform’s processing nodes,
the method can also be used to calculate a specific WCET of an appli-

116 Chapter 5. Timing and utilization analysis analysis

cation for each processing node, allowing calculation of node utilization.
The proposed analysis method is implemented as a prototype tool.

The approach is validated through evaluation on a set of models from
the example libraries of two IEC 61499 development tools, and a set of
test scenarios.

Chapter 6

Related work

This section presents research related to the three topics covered by the
work presented in this thesis: design and synthesis of hardware-specific
code, communication in distributed embedded systems and analysis of
extra-functional properties.

6.1 Design and synthesis of hardware-
specific code

Although there exist many component models which specifically target
the domain of embedded systems [19] only a few of them provide any
support for modeling sensors and actuators, or the hardware platform
in general.

Support for platform modeling is one of the core elements of the
IEC 61499 standard [28], described in detail in Section 2.2. Although
the standard allows modeling processing nodes and computer networks
between them, it does not provide a method for modeling IO devices
such as sensors and actuators. Instead, communication with IO devices
is hard-coded inside software components.

A similar approach for modeling the hardware platform is provided
by the ProCom component model [14,53], described in Section 2.1. Orig-
inally, ProCom did not provide any support for integrating sensors and
actuators in the modeling or synthesis process. This support was added
through contributions RC1 and RC2 of this thesis.

117

116 Chapter 5. Timing and utilization analysis analysis

cation for each processing node, allowing calculation of node utilization.
The proposed analysis method is implemented as a prototype tool.

The approach is validated through evaluation on a set of models from
the example libraries of two IEC 61499 development tools, and a set of
test scenarios.

Chapter 6

Related work

This section presents research related to the three topics covered by the
work presented in this thesis: design and synthesis of hardware-specific
code, communication in distributed embedded systems and analysis of
extra-functional properties.

6.1 Design and synthesis of hardware-
specific code

Although there exist many component models which specifically target
the domain of embedded systems [19] only a few of them provide any
support for modeling sensors and actuators, or the hardware platform
in general.

Support for platform modeling is one of the core elements of the
IEC 61499 standard [28], described in detail in Section 2.2. Although
the standard allows modeling processing nodes and computer networks
between them, it does not provide a method for modeling IO devices
such as sensors and actuators. Instead, communication with IO devices
is hard-coded inside software components.

A similar approach for modeling the hardware platform is provided
by the ProCom component model [14,53], described in Section 2.1. Orig-
inally, ProCom did not provide any support for integrating sensors and
actuators in the modeling or synthesis process. This support was added
through contributions RC1 and RC2 of this thesis.

117

118 Chapter 6. Related work

One of the most extensive supports for modeling hardware plat-
form in component-based approaches is given by the AUTOSAR stan-
dard [2, 3, 23]. The standard is able to describe details of Electronic
Control Units (ECUs), such as available ports and pins, how an ECU
is connected to sensors and actuators, or how it is connected to a net-
work. The software components can be mapped to ECUs, resulting in
configuration descriptions for each ECU. In the software model, sensors
and actuators are modeled using specialized components. Connections
between these software components and actual devices are made dur-
ing ECU configuration. Although AUTOSAR supports the notion of
hierarchical component composition, the dependencies on sensors and
actuators are not propagated from specialized components to the inter-
face of composite components. Compared to our approach, where such
dependencies inside composite components are exposed on the level of
composite interface, the AUTOSAR composites hide the dependencies
of their sub-components. Compared to ProCom which supports code
synthesis, AUTOSAR relies on a run-time environment for execution of
software components. Thus, the standard also leaves the communication
with sensors and actuators to be handled by the run-time environment,
rather than by a code synthesis approach which we propose.

Development of embedded systems using software and platform mod-
els has also been explored in the context of model-driven development.
In general, automatic generation of code from models can be done using
many languages, and examples of this can be seen in code generation for
AADL [25,31], extended UML [12] and MARTE profile for UML [35,49].
Although the approaches using AADL and MARTE in some extent sup-
port modeling of sensors and actuators, all of these approaches either
explicitly exclude or do not describe synthesis of code for such devices.
Also, compared to the component-based development approach, model-
driven approaches do not try to use reusable components as building
blocks for systems, but only provide the ability to develop systems on a
higher level of abstraction, hiding some of the details of the executable
code.

Code synthesis for communication with IO devices is provided by
methods for automatic generation of device drivers. For example, Zhang
et al. [69], Chen et al. [16] and Ryzhyk [50] present methods where var-
ious domain-specific languages are used to describe hardware, behavior
and interface between a device and operating system. These descrip-
tions are used to generate C code for interaction with the device. These

6.2 Communication in distributed embedded systems 119

approaches, compared to ours, do not connect device models to mod-
els of applications, concentrating more on providing the correct code to
interface with a device, rather then integrating a device into a system.
The code generated using these methods could be compared with the
IO device input code used as a part of our synthesis. Also, methods
for automatic driver generation often target devices more complex than
most sensors and actuators used in embedded systems, like network or
graphical cards.

6.2 Communication in distributed embed-
ded systems

Automatic generation of inter-node communication for the IEC 61499
standard has already been implemented as a part of some development
tools, for example ISaGRAF [26] and nxtStudio [47]. Both of these tools
generate the communication on the level of executable code. Generation
of distributed systems from models is also investigated by several model-
driven development approaches. Balasubramanian et al. [4] describe how
models of software, platform and the mapping between the two can be
used to generate parts of code that implement access to the communi-
cation media. Gokhale et al. [21] describe how distributed embedded
systems can be generated using system models. The authors propose
using platform-independent application models together with models of
the platform to configure pre-existing middleware components. Hugues
et al. [25] also provide means for generation of distributed applications
from models, relying on predefined middleware to implement communi-
cations. Compared to all these approaches, which generate inter-node
communication on the level of code, the approach described in research
contribution RC3 of this thesis generates this communication on the
model level, making it more visible to the system developers and analy-
sis tools. Our approach also introduces separate generation phases, all of
which have well-defined inputs and outputs, making the generation eas-
ily adaptable to new communication protocols, or transferable to other
component-based frameworks.

A method for automatic generation of communication on an abstract
level is described by Keznikl et al. [29]. The authors propose a method
in which distributed applications can be modeled using components and
connectors. In this approach connectors are first-class entities encapsu-

118 Chapter 6. Related work

One of the most extensive supports for modeling hardware plat-
form in component-based approaches is given by the AUTOSAR stan-
dard [2, 3, 23]. The standard is able to describe details of Electronic
Control Units (ECUs), such as available ports and pins, how an ECU
is connected to sensors and actuators, or how it is connected to a net-
work. The software components can be mapped to ECUs, resulting in
configuration descriptions for each ECU. In the software model, sensors
and actuators are modeled using specialized components. Connections
between these software components and actual devices are made dur-
ing ECU configuration. Although AUTOSAR supports the notion of
hierarchical component composition, the dependencies on sensors and
actuators are not propagated from specialized components to the inter-
face of composite components. Compared to our approach, where such
dependencies inside composite components are exposed on the level of
composite interface, the AUTOSAR composites hide the dependencies
of their sub-components. Compared to ProCom which supports code
synthesis, AUTOSAR relies on a run-time environment for execution of
software components. Thus, the standard also leaves the communication
with sensors and actuators to be handled by the run-time environment,
rather than by a code synthesis approach which we propose.

Development of embedded systems using software and platform mod-
els has also been explored in the context of model-driven development.
In general, automatic generation of code from models can be done using
many languages, and examples of this can be seen in code generation for
AADL [25,31], extended UML [12] and MARTE profile for UML [35,49].
Although the approaches using AADL and MARTE in some extent sup-
port modeling of sensors and actuators, all of these approaches either
explicitly exclude or do not describe synthesis of code for such devices.
Also, compared to the component-based development approach, model-
driven approaches do not try to use reusable components as building
blocks for systems, but only provide the ability to develop systems on a
higher level of abstraction, hiding some of the details of the executable
code.

Code synthesis for communication with IO devices is provided by
methods for automatic generation of device drivers. For example, Zhang
et al. [69], Chen et al. [16] and Ryzhyk [50] present methods where var-
ious domain-specific languages are used to describe hardware, behavior
and interface between a device and operating system. These descrip-
tions are used to generate C code for interaction with the device. These

6.2 Communication in distributed embedded systems 119

approaches, compared to ours, do not connect device models to mod-
els of applications, concentrating more on providing the correct code to
interface with a device, rather then integrating a device into a system.
The code generated using these methods could be compared with the
IO device input code used as a part of our synthesis. Also, methods
for automatic driver generation often target devices more complex than
most sensors and actuators used in embedded systems, like network or
graphical cards.

6.2 Communication in distributed embed-
ded systems

Automatic generation of inter-node communication for the IEC 61499
standard has already been implemented as a part of some development
tools, for example ISaGRAF [26] and nxtStudio [47]. Both of these tools
generate the communication on the level of executable code. Generation
of distributed systems from models is also investigated by several model-
driven development approaches. Balasubramanian et al. [4] describe how
models of software, platform and the mapping between the two can be
used to generate parts of code that implement access to the communi-
cation media. Gokhale et al. [21] describe how distributed embedded
systems can be generated using system models. The authors propose
using platform-independent application models together with models of
the platform to configure pre-existing middleware components. Hugues
et al. [25] also provide means for generation of distributed applications
from models, relying on predefined middleware to implement communi-
cations. Compared to all these approaches, which generate inter-node
communication on the level of code, the approach described in research
contribution RC3 of this thesis generates this communication on the
model level, making it more visible to the system developers and analy-
sis tools. Our approach also introduces separate generation phases, all of
which have well-defined inputs and outputs, making the generation eas-
ily adaptable to new communication protocols, or transferable to other
component-based frameworks.

A method for automatic generation of communication on an abstract
level is described by Keznikl et al. [29]. The authors propose a method
in which distributed applications can be modeled using components and
connectors. In this approach connectors are first-class entities encapsu-

120 Chapter 6. Related work

lating communication and coordination between components, and can
describe communication style and required extra-functional properties.
On the application level, connectors are independent of component de-
ployment. Base on the application model, deployment model and in-
formation contained by connectors, the method automatically generates
deployment-specific connector instance configurations. Compared to the
approach presented in Chapter 4, because the information needed to
generate deployment-specific configurations is contained by the connec-
tor, generation does not need to extract a communication model or take
into account the model of the platform. Also, the method concentrates
more on providing configurations that satisfy requirements defined by
connector, as opposed to our method which aims to define a generic gen-
eration framework which would synchronize platform-independent and
platform-specific models.

Modeling of distributed software is also supported by the AUTOSAR
standard [2,23]. Applications can be developed in a platform-independent
manner, by connecting software components via a virtual function bus.
Similarly to communication with sensors and actuators, communication
between distributed nodes ia also provided during ECU configuration on
the level of executable code, rather than on the model level.

Doukas and Thramboulidis [18] present a real-time framework that
is able to run systems created using function block models, which also
includes automatic generation of inter-device communication. The com-
munication is implemented using entities called event-connection man-
agers, providing an implementation which is more flexible than directly
generating executable code code. Compared to our approach, the auto-
matically generated communication is not visible in function block mod-
els, and the generation takes into account only the deployment model as
opposed to the complete platform model. Also, the approach also only
targets one protocol, and does not provide means for extensions like the
approach presented in this thesis.

Brisolara et al. [9] provide generation of communication on the level
of models as a part of a method which uses high-level UML models to
generate executable and synthesizable Simulink models. Providing ex-
tensive support for automatic generation of communication was not the
main aim of this work. Compared to work presented in this paper, the
communication generation does not take into account the model of plat-
form nodes and network connections between them, and therefore can
not generate communication for different communication media and pro-

6.3 Analysis of extra-functional properties 121

tocols. Also, in this approach the information about generated elements
is not propagated back to the UML model.

6.3 Analysis of extra-functional properties

One of the main contributions of this thesis is a method for analysis of
Worst-Case Execution Time (WCET). An introduction to WCET analy-
sis and an overview of existing methods can be found in work by Wilhelm
et al. [68]. Although analysis of WCET on the level of executable code
is an already well established area, analysis of code can be performed
only in late stages of development, when the complete implementation
is available. As an alternative, in this thesis we describe a method for
WCET analysis which is performed on the level of models, and can be
applied in early stages of system development. The potential and some
of the problems of such an approach have been previously described by
Lisper [45].

The need for early analysis is also stressed in the work by Gustafsson
et al. [22] where the authors propose a method for early WCET analysis
on the code level by first creating a timing model of the code. Compared
to the work presented in this thesis, this method does not allow perform-
ing the analysis on a system level (taking into consideration the software
and the platform model at the same time), and does not produce safe
estimates.

An approach for WCET analysis on an architectural level using AADL
is presented by Gilles and Hugues [20]. The method first performs a
model-to-code transformation, and then applies the analysis on the code
level. The results of the analysis are in the end propagated back to
the model. A similar method for Matlab/Simulink models has been
presented by Kirner et al. [32]. Compared to these approaches, our con-
tribution performs the analysis using only models, without a need for
generation of executable code. The model-level analysis we propose can
potentially be executed much faster than the analysis on the level of
code, with the down side of producing greater overestimation.

Klobedanz et al. [33] present timing analysis for AUTOSAR. In their
approach standard AUTOSAR models are first transformed to a model
specialized for timing analysis, TIMMO, and described by event chains.
These chains can then be used to determine CPU load and reaction time
of parts of the AUTOSAR system. Compared to this, the analysis we

120 Chapter 6. Related work

lating communication and coordination between components, and can
describe communication style and required extra-functional properties.
On the application level, connectors are independent of component de-
ployment. Base on the application model, deployment model and in-
formation contained by connectors, the method automatically generates
deployment-specific connector instance configurations. Compared to the
approach presented in Chapter 4, because the information needed to
generate deployment-specific configurations is contained by the connec-
tor, generation does not need to extract a communication model or take
into account the model of the platform. Also, the method concentrates
more on providing configurations that satisfy requirements defined by
connector, as opposed to our method which aims to define a generic gen-
eration framework which would synchronize platform-independent and
platform-specific models.

Modeling of distributed software is also supported by the AUTOSAR
standard [2,23]. Applications can be developed in a platform-independent
manner, by connecting software components via a virtual function bus.
Similarly to communication with sensors and actuators, communication
between distributed nodes ia also provided during ECU configuration on
the level of executable code, rather than on the model level.

Doukas and Thramboulidis [18] present a real-time framework that
is able to run systems created using function block models, which also
includes automatic generation of inter-device communication. The com-
munication is implemented using entities called event-connection man-
agers, providing an implementation which is more flexible than directly
generating executable code code. Compared to our approach, the auto-
matically generated communication is not visible in function block mod-
els, and the generation takes into account only the deployment model as
opposed to the complete platform model. Also, the approach also only
targets one protocol, and does not provide means for extensions like the
approach presented in this thesis.

Brisolara et al. [9] provide generation of communication on the level
of models as a part of a method which uses high-level UML models to
generate executable and synthesizable Simulink models. Providing ex-
tensive support for automatic generation of communication was not the
main aim of this work. Compared to work presented in this paper, the
communication generation does not take into account the model of plat-
form nodes and network connections between them, and therefore can
not generate communication for different communication media and pro-

6.3 Analysis of extra-functional properties 121

tocols. Also, in this approach the information about generated elements
is not propagated back to the UML model.

6.3 Analysis of extra-functional properties

One of the main contributions of this thesis is a method for analysis of
Worst-Case Execution Time (WCET). An introduction to WCET analy-
sis and an overview of existing methods can be found in work by Wilhelm
et al. [68]. Although analysis of WCET on the level of executable code
is an already well established area, analysis of code can be performed
only in late stages of development, when the complete implementation
is available. As an alternative, in this thesis we describe a method for
WCET analysis which is performed on the level of models, and can be
applied in early stages of system development. The potential and some
of the problems of such an approach have been previously described by
Lisper [45].

The need for early analysis is also stressed in the work by Gustafsson
et al. [22] where the authors propose a method for early WCET analysis
on the code level by first creating a timing model of the code. Compared
to the work presented in this thesis, this method does not allow perform-
ing the analysis on a system level (taking into consideration the software
and the platform model at the same time), and does not produce safe
estimates.

An approach for WCET analysis on an architectural level using AADL
is presented by Gilles and Hugues [20]. The method first performs a
model-to-code transformation, and then applies the analysis on the code
level. The results of the analysis are in the end propagated back to
the model. A similar method for Matlab/Simulink models has been
presented by Kirner et al. [32]. Compared to these approaches, our con-
tribution performs the analysis using only models, without a need for
generation of executable code. The model-level analysis we propose can
potentially be executed much faster than the analysis on the level of
code, with the down side of producing greater overestimation.

Klobedanz et al. [33] present timing analysis for AUTOSAR. In their
approach standard AUTOSAR models are first transformed to a model
specialized for timing analysis, TIMMO, and described by event chains.
These chains can then be used to determine CPU load and reaction time
of parts of the AUTOSAR system. Compared to this, the analysis we

122 Chapter 6. Related work

propose does not require model transformations, and calculates timing
properties based on component composition rather than event chains.

A method for worst-case reaction time analysis in IEC 61499 systems
is described by Kuo et al. [34]. The authors first compile the system
to gather timing information for its code. The analysis continues by
applying a model-checker to the system code to incrementally predict
reaction time, while visiting all possible states of the system. Besides
the difference of analyzing execution time rather than reaction time, our
analysis method does not imply generation of code and does not consider
all possible execution paths in the system, as the compositional approach
removes some paths that will never contribute to a worst-case result.

The timing analysis method presented as part of contribution RC4 is
partly based on timing analysis for the ProCom component model pre-
sented by Carlson [13]. Although we applied some of the ideas of this
approach, it deals with many ProCom-specific constructs and could not
be directly applied to the IEC 61499 standard. Compared to the analysis
proposed in this thesis, the analysis for ProCom does not allow captur-
ing alternative execution alternatives, but always describes a single safe
over-approximation of execution, similar to the supremum normalization
described in our analysis. Also, it does not utilize platform and mapping
information during the analysis.

Schedulability analysis [46] can be used in real-time applications to
determine that all timing requirements of a system are satisfied, and can
be compared to the utilization analysis presented in this thesis. One of
the methods for performing schedulability analysis using system models
is presented by Khalgui et al. [30]. The analysis method relies on trans-
forming models to OS tasks. Each task is characterized by a WCET
value and its predecessor and successor. Arranging the tasks in chains
allows one to check if end to end deadlines are violated. Zoitl et al. [71]
define the concept of event chains for IEC 61499 models as sets of func-
tion block execution, starting from an event source inside a function
block and ending with a function block that will not cause any further
execution. The authors aim to allow application of real-time scheduling
theories by assigning real-time constraints to these event chains. Com-
pared to these two approaches, the utilization analysis method presented
in this thesis performs the analysis directly using models of component
composition, rather than extracting execution tasks or event chains from
such models. While these two approaches perform analysis only on the
level of whole systems, our method applies analysis for each component

6.3 Analysis of extra-functional properties 123

in isolation and reuses results by performing the analysis in a composi-
tional manner. Also, our approach computes only utilization, and not
response times or absence of deadline violation.

Another part of the contribution RC4 is support for analysis of soft-
ware models containing cyclic execution paths. How to apply model
level analysis to such systems has rarely been explored by the research
community None of the methods previously described in this section,
with the exception of [32], addresses this problem.

Vulgarakis et al. present a method [65] for analysis of resource con-
sumption of component-based systems by combining a component model
with models of component behavior. Although this approach cannot be
used to describe cyclic execution paths in multiple components, cyclic
behavior contained by a single component can be modeled using history
variables and specialized interface ports. Compared to this, we allow
analysis of cyclic paths in compositions of components, and provide a
method for propagating cycle bounds from a network inside a composite
component to the interface of the composite.

In some cases a modeling language has the ability to explicitly de-
scribe iterative execution. An example of this is for loop element in
Simulink. Support for analysis of such constructs for Simulink can be
seen in work by Kirner et al. [32]. Similar support for loop analysis is
included in work by Becker et al. [6] for the Palladio Component Model.
As such cyclic execution is explicit and contained in one level of hierar-
chy, it relates to analysis of loops on code level. Contrary to this, our
approach provides an analysis method that can be used on implicit cy-
cles that occur as a result of component composition and can span over
multiple levels of the model hierarchy.

122 Chapter 6. Related work

propose does not require model transformations, and calculates timing
properties based on component composition rather than event chains.

A method for worst-case reaction time analysis in IEC 61499 systems
is described by Kuo et al. [34]. The authors first compile the system
to gather timing information for its code. The analysis continues by
applying a model-checker to the system code to incrementally predict
reaction time, while visiting all possible states of the system. Besides
the difference of analyzing execution time rather than reaction time, our
analysis method does not imply generation of code and does not consider
all possible execution paths in the system, as the compositional approach
removes some paths that will never contribute to a worst-case result.

The timing analysis method presented as part of contribution RC4 is
partly based on timing analysis for the ProCom component model pre-
sented by Carlson [13]. Although we applied some of the ideas of this
approach, it deals with many ProCom-specific constructs and could not
be directly applied to the IEC 61499 standard. Compared to the analysis
proposed in this thesis, the analysis for ProCom does not allow captur-
ing alternative execution alternatives, but always describes a single safe
over-approximation of execution, similar to the supremum normalization
described in our analysis. Also, it does not utilize platform and mapping
information during the analysis.

Schedulability analysis [46] can be used in real-time applications to
determine that all timing requirements of a system are satisfied, and can
be compared to the utilization analysis presented in this thesis. One of
the methods for performing schedulability analysis using system models
is presented by Khalgui et al. [30]. The analysis method relies on trans-
forming models to OS tasks. Each task is characterized by a WCET
value and its predecessor and successor. Arranging the tasks in chains
allows one to check if end to end deadlines are violated. Zoitl et al. [71]
define the concept of event chains for IEC 61499 models as sets of func-
tion block execution, starting from an event source inside a function
block and ending with a function block that will not cause any further
execution. The authors aim to allow application of real-time scheduling
theories by assigning real-time constraints to these event chains. Com-
pared to these two approaches, the utilization analysis method presented
in this thesis performs the analysis directly using models of component
composition, rather than extracting execution tasks or event chains from
such models. While these two approaches perform analysis only on the
level of whole systems, our method applies analysis for each component

6.3 Analysis of extra-functional properties 123

in isolation and reuses results by performing the analysis in a composi-
tional manner. Also, our approach computes only utilization, and not
response times or absence of deadline violation.

Another part of the contribution RC4 is support for analysis of soft-
ware models containing cyclic execution paths. How to apply model
level analysis to such systems has rarely been explored by the research
community None of the methods previously described in this section,
with the exception of [32], addresses this problem.

Vulgarakis et al. present a method [65] for analysis of resource con-
sumption of component-based systems by combining a component model
with models of component behavior. Although this approach cannot be
used to describe cyclic execution paths in multiple components, cyclic
behavior contained by a single component can be modeled using history
variables and specialized interface ports. Compared to this, we allow
analysis of cyclic paths in compositions of components, and provide a
method for propagating cycle bounds from a network inside a composite
component to the interface of the composite.

In some cases a modeling language has the ability to explicitly de-
scribe iterative execution. An example of this is for loop element in
Simulink. Support for analysis of such constructs for Simulink can be
seen in work by Kirner et al. [32]. Similar support for loop analysis is
included in work by Becker et al. [6] for the Palladio Component Model.
As such cyclic execution is explicit and contained in one level of hierar-
chy, it relates to analysis of loops on code level. Contrary to this, our
approach provides an analysis method that can be used on implicit cy-
cles that occur as a result of component composition and can span over
multiple levels of the model hierarchy.

Chapter 7

Conclusion

In this thesis we have presented multiple contributions which provide
advancements in development of component-based embedded systems
through use of software and hardware models. These contributions in-
clude modeling of sensors and actuators and automatic synthesis of code
for communication with such devices, automatic generation of communi-
cation between distributed system nodes and analysis of extra-functional
properties of systems. In this chapter we first summarize the contribu-
tions and discuss how they relate to the research questions, and then
describe some of the possibilities for future research based on the work
presented in this thesis.

7.1 Summary and discussion

Research Question 1: How can we improve the support for integration
of sensors and actuators in component-based development for embedded
systems, so that dependencies to these devices are more easily manage-
able?

This question was addressed by two separate contributions presented
in Chapter 3. The first contribution allows modeling of sensors and
actuators, how they are connected to processing nodes, and how they
relate to software components. The modeling approach also provides
means for software components to explicitly state their dependencies on
sensors and actuators on the level of component interface, and permits

125

Chapter 7

Conclusion

In this thesis we have presented multiple contributions which provide
advancements in development of component-based embedded systems
through use of software and hardware models. These contributions in-
clude modeling of sensors and actuators and automatic synthesis of code
for communication with such devices, automatic generation of communi-
cation between distributed system nodes and analysis of extra-functional
properties of systems. In this chapter we first summarize the contribu-
tions and discuss how they relate to the research questions, and then
describe some of the possibilities for future research based on the work
presented in this thesis.

7.1 Summary and discussion

Research Question 1: How can we improve the support for integration
of sensors and actuators in component-based development for embedded
systems, so that dependencies to these devices are more easily manage-
able?

This question was addressed by two separate contributions presented
in Chapter 3. The first contribution allows modeling of sensors and
actuators, how they are connected to processing nodes, and how they
relate to software components. The modeling approach also provides
means for software components to explicitly state their dependencies on
sensors and actuators on the level of component interface, and permits

125

126 Chapter 7. Conclusion

definitions of these dependencies to propagate through the component
hierarchy.

This contribution provides multiple benefits when developing em-
bedded systems using a component-based approach: Firstly, it provides
developers with a better overview of a system, as the same set of models
that describes the software and execution platform now also provides
information about sensors and actuators. Secondly, by removing sensor-
and actuator specifics from software components, replacing them with
explicitly stated dependencies, the approach both promotes reuse of com-
ponents and reinforces the black-box view of a component. Lastly, the
models allow easier re-configuration of systems, as, for example, changes
in the hardware platform do not impose changes in the software model.

The second contribution addressing Research Question 1 utilizes the
previously defined model to provide automatic synthesis of code for com-
munication with sensors and actuators. The synthesis method relies on
defining reusable code elements for model entities that are not system-
specific, and automatic generation of code which combines such code
elements in a way that provides executable code for a specific configura-
tion of IO devices, processing nodes and software components.

The ability to automatically generate code for communication with
IO devices provides a potential to alleviate development of component-
based embedded systems by removing the time consuming and error
prone task of implementing this functionality by hand. Also, this ap-
proach simplifies the synchronization between the system model and
code, as the synthesized code always reflects the model it has been de-
rived from.

In order to test the applicability the two contributions and evalu-
ate them, we have created a prototype tool which implements both the
modeling and the synthesis method. The applicability of the new mod-
eling and code synthesis method has been tested by applying them to a
realistic example, showing that the models can accurately describe the
system and that the synthesized code implements the expected func-
tionality. We have also evaluated the overhead of the synthesized code
compared to a hand-written implementation.

Research Question 2: How can we enhance development of dis-
tributed component-based systems in order to reduce the effort of syn-
chronizing platform-independent and platform-specific models?

This research question was answered by proposing a framework for

7.1 Summary and discussion 127

automatic generation of communication between distributed platform
nodes on the level of software models. The framework analyzes platform-
independent software models in order to capture the distributed commu-
nication requirements of a system, detects how these requirements can
be satisfied based on models of the platform, and then generates commu-
nication components in platform-specific models in order to implement
the required communication. The framework was defined in a way which
(i) allows it to easily be extended with implementation of communication
using different media and protocols, (ii) provides means of implementing
automatic optimization of generated communication, and (iii) allows it to
be adapted to different component models. Synchronization between the
platform-specific and platform-independent models is facilitated through
annotations attached to both generated communication components and
the original connections represented by these components.

As a part of the contribution, we have applied the proposed frame-
work to the IEC 61499 standard and implemented a prototype tool. By
exemplifying the framework on a simple example, and applying it to a
case-study of two systems taken from an external library, we have eval-
uated the applicability of the approach.

Research Question 3: How can we utilize software and platform
models to efficiently analyze extra-functional properties of component-
based systems in early stages of development?

As a part of this thesis we have presented an approach that allows
analysis of worst-case execution time and processing node utilization
by using models of software, hardware and deployment defined by the
IEC 61499 standard. The analysis is performed in a compositional man-
ner. Each component is analyzed in isolation, by composing the data of
its subcomponents, based on a model of component’s implementation.
The results of a component’s analysis are stored together with the com-
ponent, and reused when an instance of that component is used in a
higher level of hierarchy. As a part of the contribution, we have also
provided means to analyze models containing cyclic execution paths.

The resulting analysis method is applicable in early stages of system
development, because it can be applied to system models even before
the full implementation of a system is available. Also, the combination
of a model-level and compositional analysis makes the analysis method
efficient, and thus allows analysis to be performed early and often, as
opposed to the traditional approach, where analysis is performed as a

126 Chapter 7. Conclusion

definitions of these dependencies to propagate through the component
hierarchy.

This contribution provides multiple benefits when developing em-
bedded systems using a component-based approach: Firstly, it provides
developers with a better overview of a system, as the same set of models
that describes the software and execution platform now also provides
information about sensors and actuators. Secondly, by removing sensor-
and actuator specifics from software components, replacing them with
explicitly stated dependencies, the approach both promotes reuse of com-
ponents and reinforces the black-box view of a component. Lastly, the
models allow easier re-configuration of systems, as, for example, changes
in the hardware platform do not impose changes in the software model.

The second contribution addressing Research Question 1 utilizes the
previously defined model to provide automatic synthesis of code for com-
munication with sensors and actuators. The synthesis method relies on
defining reusable code elements for model entities that are not system-
specific, and automatic generation of code which combines such code
elements in a way that provides executable code for a specific configura-
tion of IO devices, processing nodes and software components.

The ability to automatically generate code for communication with
IO devices provides a potential to alleviate development of component-
based embedded systems by removing the time consuming and error
prone task of implementing this functionality by hand. Also, this ap-
proach simplifies the synchronization between the system model and
code, as the synthesized code always reflects the model it has been de-
rived from.

In order to test the applicability the two contributions and evalu-
ate them, we have created a prototype tool which implements both the
modeling and the synthesis method. The applicability of the new mod-
eling and code synthesis method has been tested by applying them to a
realistic example, showing that the models can accurately describe the
system and that the synthesized code implements the expected func-
tionality. We have also evaluated the overhead of the synthesized code
compared to a hand-written implementation.

Research Question 2: How can we enhance development of dis-
tributed component-based systems in order to reduce the effort of syn-
chronizing platform-independent and platform-specific models?

This research question was answered by proposing a framework for

7.1 Summary and discussion 127

automatic generation of communication between distributed platform
nodes on the level of software models. The framework analyzes platform-
independent software models in order to capture the distributed commu-
nication requirements of a system, detects how these requirements can
be satisfied based on models of the platform, and then generates commu-
nication components in platform-specific models in order to implement
the required communication. The framework was defined in a way which
(i) allows it to easily be extended with implementation of communication
using different media and protocols, (ii) provides means of implementing
automatic optimization of generated communication, and (iii) allows it to
be adapted to different component models. Synchronization between the
platform-specific and platform-independent models is facilitated through
annotations attached to both generated communication components and
the original connections represented by these components.

As a part of the contribution, we have applied the proposed frame-
work to the IEC 61499 standard and implemented a prototype tool. By
exemplifying the framework on a simple example, and applying it to a
case-study of two systems taken from an external library, we have eval-
uated the applicability of the approach.

Research Question 3: How can we utilize software and platform
models to efficiently analyze extra-functional properties of component-
based systems in early stages of development?

As a part of this thesis we have presented an approach that allows
analysis of worst-case execution time and processing node utilization
by using models of software, hardware and deployment defined by the
IEC 61499 standard. The analysis is performed in a compositional man-
ner. Each component is analyzed in isolation, by composing the data of
its subcomponents, based on a model of component’s implementation.
The results of a component’s analysis are stored together with the com-
ponent, and reused when an instance of that component is used in a
higher level of hierarchy. As a part of the contribution, we have also
provided means to analyze models containing cyclic execution paths.

The resulting analysis method is applicable in early stages of system
development, because it can be applied to system models even before
the full implementation of a system is available. Also, the combination
of a model-level and compositional analysis makes the analysis method
efficient, and thus allows analysis to be performed early and often, as
opposed to the traditional approach, where analysis is performed as a

128 Chapter 7. Conclusion

separate stage late in the system development.
The analysis method was also implemented as a prototype tool. The

evaluation of the applicability and the performance of the analysis was
performed using two approaches. The overall timing analysis was eval-
uated by applying the tool to multiple models taken from an external
library, while a part of the analysis concerning cyclic execution path was
evaluated using a set of internally defined test scenarios.

7.2 Future work

This section discusses some of the possibilities of future research based
on the work described in this thesis.

7.2.1 Support for sensors and actuators

Although the approach for modeling sensors and actuators presented
in this thesis allows attaching extra-functional properties to sensors and
actuators, the presented work does not describe in detail how these prop-
erties should be propagated to the software model, or how to handle them
in analysis. As a part of the future work, it should be investigated how
to derive properties of IO software components from the properties of
the IO devices, IOs, and platforms, based on the defined mappings and
allocations.

The current method for defining synthesis input code, and generation
of the adequate output code, results in some function calls and struc-
ture member dereferencing which add overhead to both the execution
time and memory footprint of the synthesized code. It would be worth
investigating how the presented method could be updated to produce
more efficient code. This could, for example, be done by changing the
method for defining input and output code for the synthesis. This could,
however, reduce the readability of the input code and make definition
of input code more complex, and result in more complex output code
generation.

7.2.2 Automatic generation of distributed commu-
nication

The presented framework for automatic generation of distributed com-
munication in component-based models allows extension of its automatic

7.2 Future work 129

protocol selection phase. As has been demonstrated, in addition to the
selection of viable communication protocols, this phase can be used to
optimize the communication that will be generated. The optimization
presented in this thesis was mainly intended for exemplifying the ap-
proach, and was therefore very simple. The current work would benefit
by extending it to provide various optimization methods that could be
used during the automatic protocol selection phase. Such work could also
include defining extra-functional properties for communication media el-
ements and connections between communication media and processing
nodes. These properties could then be utilized by optimization methods.

The current version of the generation framework supports only direct
connections between distributed nodes. In order to generate communi-
cation between components on two different nodes, a common commu-
nication media between the two nodes is required. Considering this
limitation, the framework could be extended with the ability to gener-
ate relayed communication. This would enable communication between
nodes that are not directly linked by a network, but share a common
node to which both are connected. The principle could also be applied
to chains of relaying nodes, instead of just one. Providing such a pos-
sibility would require changes to multiple parts of the framework: the
communication model should be extended to allow describing relay com-
munication, the media detection phase would have to be updated with
the ability to detect possible relays, the protocol selection phase should
be extended to properly treat the relay connections, and the component
generation should include creation of relay components.

7.2.3 Analysis of extra-functional properties

The model-level worst-case execution time analysis presented in this the-
sis assumes that WCET values for algorithms implementing basic func-
tion blocks already exist, and the implemented prototype tool requires
these values to be set by hand. As a part of future work, it would be
worth exploring how the presented analysis method could be extended
with an ability to acquire such values automatically. This could be done,
for example, by static code analysis, or by performing measurements
while executing the code.

The proposed analysis method can also be applied to analysis of prop-
erties other than worst-case execution time, for example average execu-
tion time or memory usage. This would however require more than sim-

128 Chapter 7. Conclusion

separate stage late in the system development.
The analysis method was also implemented as a prototype tool. The

evaluation of the applicability and the performance of the analysis was
performed using two approaches. The overall timing analysis was eval-
uated by applying the tool to multiple models taken from an external
library, while a part of the analysis concerning cyclic execution path was
evaluated using a set of internally defined test scenarios.

7.2 Future work

This section discusses some of the possibilities of future research based
on the work described in this thesis.

7.2.1 Support for sensors and actuators

Although the approach for modeling sensors and actuators presented
in this thesis allows attaching extra-functional properties to sensors and
actuators, the presented work does not describe in detail how these prop-
erties should be propagated to the software model, or how to handle them
in analysis. As a part of the future work, it should be investigated how
to derive properties of IO software components from the properties of
the IO devices, IOs, and platforms, based on the defined mappings and
allocations.

The current method for defining synthesis input code, and generation
of the adequate output code, results in some function calls and struc-
ture member dereferencing which add overhead to both the execution
time and memory footprint of the synthesized code. It would be worth
investigating how the presented method could be updated to produce
more efficient code. This could, for example, be done by changing the
method for defining input and output code for the synthesis. This could,
however, reduce the readability of the input code and make definition
of input code more complex, and result in more complex output code
generation.

7.2.2 Automatic generation of distributed commu-
nication

The presented framework for automatic generation of distributed com-
munication in component-based models allows extension of its automatic

7.2 Future work 129

protocol selection phase. As has been demonstrated, in addition to the
selection of viable communication protocols, this phase can be used to
optimize the communication that will be generated. The optimization
presented in this thesis was mainly intended for exemplifying the ap-
proach, and was therefore very simple. The current work would benefit
by extending it to provide various optimization methods that could be
used during the automatic protocol selection phase. Such work could also
include defining extra-functional properties for communication media el-
ements and connections between communication media and processing
nodes. These properties could then be utilized by optimization methods.

The current version of the generation framework supports only direct
connections between distributed nodes. In order to generate communi-
cation between components on two different nodes, a common commu-
nication media between the two nodes is required. Considering this
limitation, the framework could be extended with the ability to gener-
ate relayed communication. This would enable communication between
nodes that are not directly linked by a network, but share a common
node to which both are connected. The principle could also be applied
to chains of relaying nodes, instead of just one. Providing such a pos-
sibility would require changes to multiple parts of the framework: the
communication model should be extended to allow describing relay com-
munication, the media detection phase would have to be updated with
the ability to detect possible relays, the protocol selection phase should
be extended to properly treat the relay connections, and the component
generation should include creation of relay components.

7.2.3 Analysis of extra-functional properties

The model-level worst-case execution time analysis presented in this the-
sis assumes that WCET values for algorithms implementing basic func-
tion blocks already exist, and the implemented prototype tool requires
these values to be set by hand. As a part of future work, it would be
worth exploring how the presented analysis method could be extended
with an ability to acquire such values automatically. This could be done,
for example, by static code analysis, or by performing measurements
while executing the code.

The proposed analysis method can also be applied to analysis of prop-
erties other than worst-case execution time, for example average execu-
tion time or memory usage. This would however require more than sim-

130 Chapter 7. Conclusion

ple inclusion of new properties as part of component description. Since
different properties involve different methods of property composition,
the part of the analysis which calculates results for networks of compo-
nents would have to be adapted for each property. Still, the principles of
compositional analysis and definition of context-independent properties
could be reused.

The presented analysis method includes two methods for reducing
the amount of context-independent WCET data stored with a compo-
nent – the maximal elements and the supremum normalization methods.
Although the tests conducted as part of the evaluation did not show any
significant difference in performance of the analysis when using the two
methods, in some cases of very complex systems the choice between the
two methods could impact the analysis performance. It would be worth
investigating on which level of complexity, or for which compositional
patters, the performance of the two methods would differ. If the per-
formance difference would justify the use of the less accurate method,
it would also be interesting to explore how hybrids between the two
methods could be used to provide a trade-off between the performance
and the accuracy of the analysis. An example of such hybrid normaliza-
tion method would be one which creates supremums only for groups of
WCET alternatives that cross a specific threshold of similarity.

The analysis method could also be extended to take into account data
flow in component compositions. In addition to being able to detect data
dependencies between components, the method could utilize values of the
exchanged data to provide more accurate analysis results. This could be
achieved by parameterizing WCET values, or defining data conditions
under which some execution alternatives are valid.

Bibliography

[1] Colin Atkinson, Christian Bunse, Christian Peper, and Hans-
Gerhard Gross. Component-based software development for em-
bedded systems – an introduction. In Component-Based Software
Development for Embedded Systems, pages 1–7. Springer, 2005.

[2] AUTOSAR Development Partnership. Software component tem-
plate version 4.2.1. Technical report, 2014.

[3] AUTOSAR Development Partnership. Specification for the ECU
resource template version 4.2.1. Technical report, 2014.

[4] K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits, and
S. Neema. Developing applications using model-driven design envi-
ronments. Computer, 39(2):33–40, Feb 2006.

[5] Victor R. Basili. The experimental paradigm in software engineer-
ing. In H.Dieter Rombach, VictorR. Basili, and RichardW. Selby,
editors, Experimental Software Engineering Issues: Critical Assess-
ment and Future Directions, volume 706 of Lecture Notes in Com-
puter Science, pages 1–12. Springer Berlin Heidelberg, 1993.

[6] Steffen Becker, Heiko Koziolek, and Ralf Reussner. Model-Based
Performance Prediction with the Palladio Component Model. In
Proceedings of the 6th International Workshop on Software and Per-
formance, WOSP ’07, pages 54–65, New York, NY, USA, 2007.
ACM.

[7] Jean Bézivin. On the unification power of models. Software &
Systems Modeling, 4(2):171–188, 2005.

131

130 Chapter 7. Conclusion

ple inclusion of new properties as part of component description. Since
different properties involve different methods of property composition,
the part of the analysis which calculates results for networks of compo-
nents would have to be adapted for each property. Still, the principles of
compositional analysis and definition of context-independent properties
could be reused.

The presented analysis method includes two methods for reducing
the amount of context-independent WCET data stored with a compo-
nent – the maximal elements and the supremum normalization methods.
Although the tests conducted as part of the evaluation did not show any
significant difference in performance of the analysis when using the two
methods, in some cases of very complex systems the choice between the
two methods could impact the analysis performance. It would be worth
investigating on which level of complexity, or for which compositional
patters, the performance of the two methods would differ. If the per-
formance difference would justify the use of the less accurate method,
it would also be interesting to explore how hybrids between the two
methods could be used to provide a trade-off between the performance
and the accuracy of the analysis. An example of such hybrid normaliza-
tion method would be one which creates supremums only for groups of
WCET alternatives that cross a specific threshold of similarity.

The analysis method could also be extended to take into account data
flow in component compositions. In addition to being able to detect data
dependencies between components, the method could utilize values of the
exchanged data to provide more accurate analysis results. This could be
achieved by parameterizing WCET values, or defining data conditions
under which some execution alternatives are valid.

Bibliography

[1] Colin Atkinson, Christian Bunse, Christian Peper, and Hans-
Gerhard Gross. Component-based software development for em-
bedded systems – an introduction. In Component-Based Software
Development for Embedded Systems, pages 1–7. Springer, 2005.

[2] AUTOSAR Development Partnership. Software component tem-
plate version 4.2.1. Technical report, 2014.

[3] AUTOSAR Development Partnership. Specification for the ECU
resource template version 4.2.1. Technical report, 2014.

[4] K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits, and
S. Neema. Developing applications using model-driven design envi-
ronments. Computer, 39(2):33–40, Feb 2006.

[5] Victor R. Basili. The experimental paradigm in software engineer-
ing. In H.Dieter Rombach, VictorR. Basili, and RichardW. Selby,
editors, Experimental Software Engineering Issues: Critical Assess-
ment and Future Directions, volume 706 of Lecture Notes in Com-
puter Science, pages 1–12. Springer Berlin Heidelberg, 1993.

[6] Steffen Becker, Heiko Koziolek, and Ralf Reussner. Model-Based
Performance Prediction with the Palladio Component Model. In
Proceedings of the 6th International Workshop on Software and Per-
formance, WOSP ’07, pages 54–65, New York, NY, USA, 2007.
ACM.

[7] Jean Bézivin. On the unification power of models. Software &
Systems Modeling, 4(2):171–188, 2005.

131

132 Bibliography

[8] Etienne Borde, Jan Carlson, Juraj Feljan, Luka Lednicki, Thomas
Leveque, Josip Maras, Ana Petricic, and Séverine Sentilles. PRIDE
– an Environment for Component-based Development of Dis-
tributed Real-time Embedded Systems. In 9th Working IEEE/IFIP
Conference on Software Architecture. IEEE, June 2011.

[9] Lisane B. Brisolara, Marcio F. S. Oliveira, Ricardo Redin, Luis C.
Lamb, Luigi Carro, and Flavio Wagner. Using UML as Front-end
for Heterogeneous Software Code Generation Strategies. In Proceed-
ings of the Conference on Design, Automation and Test in Europe,
DATE ’08, pages 504–509, New York, NY, USA, 2008. ACM.

[10] Tomáš Bureš, Jan Carlson, Ivica Crnković, Séverine Sentilles, and
Aneta Vulgarakis. ProCom – the Progress Component Model Refer-
ence Manual, version 1.0. Technical Report MDH-MRTC-230/2008-
1-SE, Mälardalen University, June 2008.

[11] Tomáš Bureš, Jan Carlson, Séverine Sentilles, and Aneta Vulgar-
akis. A component model family for vehicular embedded systems.
In Proceedings of ICSEA. IEEE, 2008.

[12] Sven Burmester, Holger Giese, and Wilhelm Schäfer. Model-driven
architecture for hard real-time systems: From platform independent
models to code. In Model Driven Architecture–Foundations and
Applications, pages 25–40. Springer, 2005.

[13] Jan Carlson. Timing analysis of component-based embedded sys-
tems. In 15th International ACM SIGSOFT Symposium on Com-
ponent Based Software Engineering. ACM, June 2012.

[14] Jan Carlson, Juraj Feljan, Jukka Mäki-Turja, and Mikael Sjödin.
Deployment modelling and synthesis in a component model for dis-
tributed embedded systems. In Proceedings of the 36th EUROMI-
CRO Conference on Software Engineering and Advanced Applica-
tions, pages 74–82. IEEE Computer Society, 2010.

[15] Jan Carlson and Luka Lednicki. Feasibility of migrating analysis and
synthesis mechanisms from procom to iec 61499. Technical Report
ISSN 1404-3041 ISRN MDH-MRTC-268/2012-1-SE, June 2012.

Bibliography 133

[16] Hui Chen, G. Godet-Bar, F. Rousseau, and F. Petrot. Me3d: A
model-driven methodology expediting embedded device driver de-
velopment. In Rapid System Prototyping (RSP), 2011 22nd IEEE
International Symposium on, pages 171–177, May 2011.

[17] Ivica Crnkovic and Magnus Larsson. Building reliable component-
based software systems. Artech House Publishers, 2002.

[18] G. Doukas and K. Thramboulidis. A Real-Time-Linux-Based
Framework for Model-Driven Engineering in Control and Automa-
tion. Industrial Electronics, IEEE Transactions on, 58(3):914–924,
March 2011.

[19] Juraj Feljan, Luka Lednicki, Josip Maras, Ana Petričić, and Ivica
Crnković. Classification and survey of component models. Tech-
nical Report ISSN 1404-3041 ISRN MDH-MRTC-242/2009-1-SE,
December 2009.

[20] Olivier Gilles and Jérôme Hugues. Applying WCET analysis at ar-
chitectural level. In 8th International Workshop on Worst-Case Ex-
ecution Time (WCET) Analysis, Dagstuhl, Germany, 2008. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

[21] Aniruddha Gokhale, Krishnakumar Balasubramanian, Arvind S.
Krishna, Jaiganesh Balasubramanian, George Edwards, Gan Deng,
Emre Turkay, Jeffrey Parsons, and Douglas C. Schmidt. Model
driven middleware: A new paradigm for developing distributed real-
time and embedded systems. Science of Computer Programming,
73(1):39 – 58, 2008. Special Issue on Foundations and Applications
of Model Driven Architecture (MDA).

[22] Jan Gustafsson, Peter Altenbernd, Andreas Ermedahl, and Björn
Lisper. Approximate worst-case execution time analysis for early
stage embedded systems development. In Software Technologies for
Embedded and Ubiquitous Systems, pages 308–319. Springer, 2009.

[23] H. Heinecke, W. Damm, B. Josko, A. Metzner, H. Kopetz,
A. Sangiovanni-Vincentelli, and M. Di Natale. Software components
for reliable automotive systems. In Proceedings of the conference on
Design, automation and test in Europe, DATE ’08, pages 549–554,
New York, NY, USA, 2008. ACM.

132 Bibliography

[8] Etienne Borde, Jan Carlson, Juraj Feljan, Luka Lednicki, Thomas
Leveque, Josip Maras, Ana Petricic, and Séverine Sentilles. PRIDE
– an Environment for Component-based Development of Dis-
tributed Real-time Embedded Systems. In 9th Working IEEE/IFIP
Conference on Software Architecture. IEEE, June 2011.

[9] Lisane B. Brisolara, Marcio F. S. Oliveira, Ricardo Redin, Luis C.
Lamb, Luigi Carro, and Flavio Wagner. Using UML as Front-end
for Heterogeneous Software Code Generation Strategies. In Proceed-
ings of the Conference on Design, Automation and Test in Europe,
DATE ’08, pages 504–509, New York, NY, USA, 2008. ACM.

[10] Tomáš Bureš, Jan Carlson, Ivica Crnković, Séverine Sentilles, and
Aneta Vulgarakis. ProCom – the Progress Component Model Refer-
ence Manual, version 1.0. Technical Report MDH-MRTC-230/2008-
1-SE, Mälardalen University, June 2008.

[11] Tomáš Bureš, Jan Carlson, Séverine Sentilles, and Aneta Vulgar-
akis. A component model family for vehicular embedded systems.
In Proceedings of ICSEA. IEEE, 2008.

[12] Sven Burmester, Holger Giese, and Wilhelm Schäfer. Model-driven
architecture for hard real-time systems: From platform independent
models to code. In Model Driven Architecture–Foundations and
Applications, pages 25–40. Springer, 2005.

[13] Jan Carlson. Timing analysis of component-based embedded sys-
tems. In 15th International ACM SIGSOFT Symposium on Com-
ponent Based Software Engineering. ACM, June 2012.

[14] Jan Carlson, Juraj Feljan, Jukka Mäki-Turja, and Mikael Sjödin.
Deployment modelling and synthesis in a component model for dis-
tributed embedded systems. In Proceedings of the 36th EUROMI-
CRO Conference on Software Engineering and Advanced Applica-
tions, pages 74–82. IEEE Computer Society, 2010.

[15] Jan Carlson and Luka Lednicki. Feasibility of migrating analysis and
synthesis mechanisms from procom to iec 61499. Technical Report
ISSN 1404-3041 ISRN MDH-MRTC-268/2012-1-SE, June 2012.

Bibliography 133

[16] Hui Chen, G. Godet-Bar, F. Rousseau, and F. Petrot. Me3d: A
model-driven methodology expediting embedded device driver de-
velopment. In Rapid System Prototyping (RSP), 2011 22nd IEEE
International Symposium on, pages 171–177, May 2011.

[17] Ivica Crnkovic and Magnus Larsson. Building reliable component-
based software systems. Artech House Publishers, 2002.

[18] G. Doukas and K. Thramboulidis. A Real-Time-Linux-Based
Framework for Model-Driven Engineering in Control and Automa-
tion. Industrial Electronics, IEEE Transactions on, 58(3):914–924,
March 2011.

[19] Juraj Feljan, Luka Lednicki, Josip Maras, Ana Petričić, and Ivica
Crnković. Classification and survey of component models. Tech-
nical Report ISSN 1404-3041 ISRN MDH-MRTC-242/2009-1-SE,
December 2009.

[20] Olivier Gilles and Jérôme Hugues. Applying WCET analysis at ar-
chitectural level. In 8th International Workshop on Worst-Case Ex-
ecution Time (WCET) Analysis, Dagstuhl, Germany, 2008. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

[21] Aniruddha Gokhale, Krishnakumar Balasubramanian, Arvind S.
Krishna, Jaiganesh Balasubramanian, George Edwards, Gan Deng,
Emre Turkay, Jeffrey Parsons, and Douglas C. Schmidt. Model
driven middleware: A new paradigm for developing distributed real-
time and embedded systems. Science of Computer Programming,
73(1):39 – 58, 2008. Special Issue on Foundations and Applications
of Model Driven Architecture (MDA).

[22] Jan Gustafsson, Peter Altenbernd, Andreas Ermedahl, and Björn
Lisper. Approximate worst-case execution time analysis for early
stage embedded systems development. In Software Technologies for
Embedded and Ubiquitous Systems, pages 308–319. Springer, 2009.

[23] H. Heinecke, W. Damm, B. Josko, A. Metzner, H. Kopetz,
A. Sangiovanni-Vincentelli, and M. Di Natale. Software components
for reliable automotive systems. In Proceedings of the conference on
Design, automation and test in Europe, DATE ’08, pages 549–554,
New York, NY, USA, 2008. ACM.

134 Bibliography

[24] Holobloc Inc. Function block development kit (FBDK), May 2012.
http://www.holobloc.org/.

[25] Jerome Hugues, Bechir Zalila, Laurent Pautet, and Fabrice Kor-
don. From the Prototype to the Final Embedded System Using the
Ocarina AADL Tool Suite. ACM Trans. Embed. Comput. Syst.,
7(4):42:1–42:25, August 2008.

[26] ICS Triplex ISaGRAF. ISaGRAF, April 2014.
http://www.isagraf.com/.

[27] IEC 61131-3: Programmable Controllers–Part 3: Programming
Languages. International Electrotechnical Commission, Geneva,
1993.

[28] IEC 61499-1: Function Blocks-Part 1 Architecture. International
Electrotechnical Commission, Geneva, 2005.

[29] Jaroslav Keznikl, Tomáš Bureš, Frantǐsek Plášil, and Petr
Hnětynka. Automated resolution of connector architectures using
constraint solving (ARCAS method). Software & Systems Modeling,
13(2):843–872, 2014.

[30] M Khalgui, X Rebeuf, and F Simonot-Lion. A tolerant temporal
validation of components based applications. In 12th IFAC Inter-
national Conference on Information Control Problems in Manufac-
turing (INCOM 06), 2006.

[31] BaekGyu Kim, L.T.X. Phan, O. Sokolsky, and Insup Lee. Platform-
dependent code generation for embedded real-time software. In
Compilers, Architecture and Synthesis for Embedded Systems
(CASES), 2013 International Conference on, pages 1–10, Sept 2013.

[32] R. Kirner, R. Lang, G. Freiberger, and P. Puschner. Fully automatic
worst-case execution time analysis for matlab/simulink models. In
Real-Time Systems, 2002. Proceedings. 14th Euromicro Conference
on, pages 31–40, 2002.

[33] Kay Klobedanz, Christoph Kuznik, Andreas Thuy, and Wolfgang
Mueller. Timing Modeling and Analysis for AUTOSAR-based Soft-
ware Development: A Case Study. In Proceedings of the Conference

Bibliography 135

on Design, Automation and Test in Europe, DATE ’10, pages 642–
645, 3001 Leuven, Belgium, Belgium, 2010. European Design and
Automation Association.

[34] M.M.Y. Kuo, Li Hsien Yoong, S. Andalam, and P.S. Roop. Deter-
mining the worst-case reaction time of IEC 61499 function blocks.
In Industrial Informatics (INDIN), 2010 8th IEEE International
Conference on, pages 1104 –1109, july 2010.

[35] Stéphane Lecomte, Samuel Guillouard, Christophe Moy, Pierre
Leray, and Philippe Soulard. A co-design methodology based on
model driven architecture for real time embedded systems. Mathe-
matical and Computer Modelling, 53(3–4):471 – 484, 2011. Telecom-
munications Software Engineering: Emerging Methods, Models and
Tools.

[36] Luka Lednicki and Jan Carlson. A framework for generation of
inter-node communication in component-based distributed embed-
ded systems. In 19th IEEE International Conference on Emerging
Technologies and Factory Automation. IEEE, September 2014.

[37] Luka Lednicki and Jan Carlson. Handling cyclic execution paths in
timing analysis of component-based software. In The 40th Euromi-
cro Conference on Software Engineering and Advanced Applications.
IEEE, August 2014.

[38] Luka Lednicki and Jan Carlson. Specification of tests for validation
of worst-case execution time analysis for cyclic execution paths in
IEC 61499. Technical report, February 2014.

[39] Luka Lednicki, Jan Carlson, and Kristian Sandström. Device uti-
lization analysis for IEC 61499 systems in early stages of develop-
ment. In Emerging Technologies Factory Automation (ETFA), 2013
IEEE 18th Conference on, pages 1–8, 2013.

[40] Luka Lednicki, Jan Carlson, and Kristian Sandström. Model Level
Worst-case Execution Time Analysis for IEC 61499. In Proceedings
of the 16th International ACM Sigsoft Symposium on Component-
based Software Engineering, CBSE ’13, pages 169–178, New York,
NY, USA, 2013. ACM.

134 Bibliography

[24] Holobloc Inc. Function block development kit (FBDK), May 2012.
http://www.holobloc.org/.

[25] Jerome Hugues, Bechir Zalila, Laurent Pautet, and Fabrice Kor-
don. From the Prototype to the Final Embedded System Using the
Ocarina AADL Tool Suite. ACM Trans. Embed. Comput. Syst.,
7(4):42:1–42:25, August 2008.

[26] ICS Triplex ISaGRAF. ISaGRAF, April 2014.
http://www.isagraf.com/.

[27] IEC 61131-3: Programmable Controllers–Part 3: Programming
Languages. International Electrotechnical Commission, Geneva,
1993.

[28] IEC 61499-1: Function Blocks-Part 1 Architecture. International
Electrotechnical Commission, Geneva, 2005.

[29] Jaroslav Keznikl, Tomáš Bureš, Frantǐsek Plášil, and Petr
Hnětynka. Automated resolution of connector architectures using
constraint solving (ARCAS method). Software & Systems Modeling,
13(2):843–872, 2014.

[30] M Khalgui, X Rebeuf, and F Simonot-Lion. A tolerant temporal
validation of components based applications. In 12th IFAC Inter-
national Conference on Information Control Problems in Manufac-
turing (INCOM 06), 2006.

[31] BaekGyu Kim, L.T.X. Phan, O. Sokolsky, and Insup Lee. Platform-
dependent code generation for embedded real-time software. In
Compilers, Architecture and Synthesis for Embedded Systems
(CASES), 2013 International Conference on, pages 1–10, Sept 2013.

[32] R. Kirner, R. Lang, G. Freiberger, and P. Puschner. Fully automatic
worst-case execution time analysis for matlab/simulink models. In
Real-Time Systems, 2002. Proceedings. 14th Euromicro Conference
on, pages 31–40, 2002.

[33] Kay Klobedanz, Christoph Kuznik, Andreas Thuy, and Wolfgang
Mueller. Timing Modeling and Analysis for AUTOSAR-based Soft-
ware Development: A Case Study. In Proceedings of the Conference

Bibliography 135

on Design, Automation and Test in Europe, DATE ’10, pages 642–
645, 3001 Leuven, Belgium, Belgium, 2010. European Design and
Automation Association.

[34] M.M.Y. Kuo, Li Hsien Yoong, S. Andalam, and P.S. Roop. Deter-
mining the worst-case reaction time of IEC 61499 function blocks.
In Industrial Informatics (INDIN), 2010 8th IEEE International
Conference on, pages 1104 –1109, july 2010.

[35] Stéphane Lecomte, Samuel Guillouard, Christophe Moy, Pierre
Leray, and Philippe Soulard. A co-design methodology based on
model driven architecture for real time embedded systems. Mathe-
matical and Computer Modelling, 53(3–4):471 – 484, 2011. Telecom-
munications Software Engineering: Emerging Methods, Models and
Tools.

[36] Luka Lednicki and Jan Carlson. A framework for generation of
inter-node communication in component-based distributed embed-
ded systems. In 19th IEEE International Conference on Emerging
Technologies and Factory Automation. IEEE, September 2014.

[37] Luka Lednicki and Jan Carlson. Handling cyclic execution paths in
timing analysis of component-based software. In The 40th Euromi-
cro Conference on Software Engineering and Advanced Applications.
IEEE, August 2014.

[38] Luka Lednicki and Jan Carlson. Specification of tests for validation
of worst-case execution time analysis for cyclic execution paths in
IEC 61499. Technical report, February 2014.

[39] Luka Lednicki, Jan Carlson, and Kristian Sandström. Device uti-
lization analysis for IEC 61499 systems in early stages of develop-
ment. In Emerging Technologies Factory Automation (ETFA), 2013
IEEE 18th Conference on, pages 1–8, 2013.

[40] Luka Lednicki, Jan Carlson, and Kristian Sandström. Model Level
Worst-case Execution Time Analysis for IEC 61499. In Proceedings
of the 16th International ACM Sigsoft Symposium on Component-
based Software Engineering, CBSE ’13, pages 169–178, New York,
NY, USA, 2013. ACM.

136 Bibliography

[41] Luka Lednicki, Ivica Crnković, and Mario Zagar. Automatic syn-
thesis of hardware-specific code in component-based embedded sys-
tems. In ICSEA 2012, The Seventh International Conference on
Software Engineering Advances, pages 563–570, 2012.

[42] Luka Lednicki, Ivica Crnkovic, and Mario Zagar. Towards auto-
matic synthesis of hardware-specific code in component-based em-
bedded systems. In Software Engineering and Advanced Applica-
tions (SEAA), 2012 38th EUROMICRO Conference on, pages 71–
74. IEEE, 2012.

[43] Luka Lednicki, Juraj Feljan, Jan Carlson, and Mario Žagar. Adding
support for hardware devices to component models for embedded
systems. In ICSEA 2011, The Sixth International Conference on
Software Engineering Advances, pages 149–154, 2011.

[44] Thomas Leveque, Etienne Borde, Amine Marref, and Jan Carl-
son. Hierarchical composition of parametric WCET in a compo-
nent based approach. In 14th IEEE International Symposium on
Object/Component/Service-oriented Real-time Distributed Comput-
ing. IEEE, March 2011.

[45] Björn Lisper. Trends in timing analysis. In From Model-Driven De-
sign to Resource Management for Distributed Embedded Systems,
IFIP TC 10 Working Conference on Distributed and Parallel Em-
bedded Systems (DIPES), volume 225, pages 85–94. Springer, 2006.

[46] Chung Laung Liu and James W Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. Journal of the
ACM (JACM), 20(1):46–61, 1973.

[47] nxtControl. nxtStudio, April 2014. http://www.nxtcontrol.com/.

[48] Peter Puschner and Alan Burns. Guest editorial: A review of worst-
case execution-time analysis. Real-Time Systems, 18(2):115–128,
2000.

[49] A. Wendell O. Rodrigues, Frédéric Guyomarc’h, and Jean-Luc
Dekeyser. An MDE Approach for Automatic Code Generation from
UML/MARTE to OpenCL. Computing in Science & Engineering,
15(1):46–55, 2013.

Bibliography 137

[50] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, Etienne Le Sueur, and
Gernot Heiser. Automatic device driver synthesis with termite. In
Proceedings of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, SOSP ’09, pages 73–86, New York, NY, USA,
2009. ACM.

[51] Cristina Seceleanu, Aneta Vulgarakis, and Paul Pettersson.
REMES: A resource model for embedded systems. In In Proc. of
the 14th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS 2009). IEEE CS, June 2009.

[52] Séverine Sentilles, Petr Štěpán, Jan Carlson, and Ivica Crnković. In-
tegration of Extra-Functional Properties in Component Models. In
12th International Symposium on Component Based Software En-
gineering. Springer, 2009.

[53] Séverine Sentilles, Aneta Vulgarakis, Tomáš Bureš, Jan Carlson,
and Ivica Crnković. A component model for control-intensive dis-
tributed embedded systems. In 11th Int. Symposium on Component
Based Software Engineering, pages 310–317. Springer, 2008.

[54] Mary Shaw. What makes good research in software engineering?
International Journal on Software Tools for Technology Transfer,
4(1):1–7, 2002.

[55] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternos-
tro. EMF: Eclipse Modeling Framework. Pearson Education, 2008.

[56] T. Strasser, M. Rooker, G. Ebenhofer, A. Zoitl, C. Sünder, A. Valen-
tini, and A. Martel. Framework for Distributed Industrial Automa-
tion and Control (4DIAC). In Industrial Informatics, 2008. INDIN
2008. 6th IEEE International Conference on, pages 283 –288, july
2008.

[57] Thomas Strasser, Alois Zoitl, James H Christensen, and C Sunder.
Design and execution issues in IEC 61499 distributed automation
and control systems. Systems, Man, and Cybernetics, Part C: Ap-
plications and Reviews, IEEE Transactions on, 41(1):41–51, 2011.

[58] C. Sunder, A. Zoitl, J.H. Christensen, M. Colla, and T. Strasser.
Execution Models for the IEC 61499 elements Composite Function
Block and Subapplication. In Industrial Informatics, 2007 5th IEEE
International Conference on, volume 2, pages 1169 –1175, june 2007.

136 Bibliography

[41] Luka Lednicki, Ivica Crnković, and Mario Zagar. Automatic syn-
thesis of hardware-specific code in component-based embedded sys-
tems. In ICSEA 2012, The Seventh International Conference on
Software Engineering Advances, pages 563–570, 2012.

[42] Luka Lednicki, Ivica Crnkovic, and Mario Zagar. Towards auto-
matic synthesis of hardware-specific code in component-based em-
bedded systems. In Software Engineering and Advanced Applica-
tions (SEAA), 2012 38th EUROMICRO Conference on, pages 71–
74. IEEE, 2012.

[43] Luka Lednicki, Juraj Feljan, Jan Carlson, and Mario Žagar. Adding
support for hardware devices to component models for embedded
systems. In ICSEA 2011, The Sixth International Conference on
Software Engineering Advances, pages 149–154, 2011.

[44] Thomas Leveque, Etienne Borde, Amine Marref, and Jan Carl-
son. Hierarchical composition of parametric WCET in a compo-
nent based approach. In 14th IEEE International Symposium on
Object/Component/Service-oriented Real-time Distributed Comput-
ing. IEEE, March 2011.

[45] Björn Lisper. Trends in timing analysis. In From Model-Driven De-
sign to Resource Management for Distributed Embedded Systems,
IFIP TC 10 Working Conference on Distributed and Parallel Em-
bedded Systems (DIPES), volume 225, pages 85–94. Springer, 2006.

[46] Chung Laung Liu and James W Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. Journal of the
ACM (JACM), 20(1):46–61, 1973.

[47] nxtControl. nxtStudio, April 2014. http://www.nxtcontrol.com/.

[48] Peter Puschner and Alan Burns. Guest editorial: A review of worst-
case execution-time analysis. Real-Time Systems, 18(2):115–128,
2000.

[49] A. Wendell O. Rodrigues, Frédéric Guyomarc’h, and Jean-Luc
Dekeyser. An MDE Approach for Automatic Code Generation from
UML/MARTE to OpenCL. Computing in Science & Engineering,
15(1):46–55, 2013.

Bibliography 137

[50] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, Etienne Le Sueur, and
Gernot Heiser. Automatic device driver synthesis with termite. In
Proceedings of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, SOSP ’09, pages 73–86, New York, NY, USA,
2009. ACM.

[51] Cristina Seceleanu, Aneta Vulgarakis, and Paul Pettersson.
REMES: A resource model for embedded systems. In In Proc. of
the 14th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS 2009). IEEE CS, June 2009.

[52] Séverine Sentilles, Petr Štěpán, Jan Carlson, and Ivica Crnković. In-
tegration of Extra-Functional Properties in Component Models. In
12th International Symposium on Component Based Software En-
gineering. Springer, 2009.

[53] Séverine Sentilles, Aneta Vulgarakis, Tomáš Bureš, Jan Carlson,
and Ivica Crnković. A component model for control-intensive dis-
tributed embedded systems. In 11th Int. Symposium on Component
Based Software Engineering, pages 310–317. Springer, 2008.

[54] Mary Shaw. What makes good research in software engineering?
International Journal on Software Tools for Technology Transfer,
4(1):1–7, 2002.

[55] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternos-
tro. EMF: Eclipse Modeling Framework. Pearson Education, 2008.

[56] T. Strasser, M. Rooker, G. Ebenhofer, A. Zoitl, C. Sünder, A. Valen-
tini, and A. Martel. Framework for Distributed Industrial Automa-
tion and Control (4DIAC). In Industrial Informatics, 2008. INDIN
2008. 6th IEEE International Conference on, pages 283 –288, july
2008.

[57] Thomas Strasser, Alois Zoitl, James H Christensen, and C Sunder.
Design and execution issues in IEC 61499 distributed automation
and control systems. Systems, Man, and Cybernetics, Part C: Ap-
plications and Reviews, IEEE Transactions on, 41(1):41–51, 2011.

[58] C. Sunder, A. Zoitl, J.H. Christensen, M. Colla, and T. Strasser.
Execution Models for the IEC 61499 elements Composite Function
Block and Subapplication. In Industrial Informatics, 2007 5th IEEE
International Conference on, volume 2, pages 1169 –1175, june 2007.

138 Bibliography

[59] Jagadish Suryadevara, Aneta Vulgarakis, Jan Carlson, Cristina Se-
celeanu, and Paul Pettersson. Procom: Formal semantics. Technical
Report ISSN 1404-3041 ISRN MDH-MRTC-234/2009-1-SE, March
2009.

[60] Clemens Szyperski. Component software: beyond object-oriented
programming. Pearson Education, 2002.

[61] Kleanthis Thramboulidis. IEC 61499 in factory automation. In
Advances in Computer, Information, and Systems Sciences, and
Engineering, pages 115–124. Springer, 2006.

[62] G. Čengić and K. Åkesson. On Formal Analysis of IEC 61499 Ap-
plications, Part A: Modeling. Industrial Informatics, IEEE Trans-
actions on, 6(2):136 –144, may 2010.

[63] G. Čengić and K. Åkesson. On Formal Analysis of IEC 61499 Appli-
cations, Part B: Execution Semantics. Industrial Informatics, IEEE
Transactions on, 6(2):145 –154, may 2010.

[64] K. Venkatesh Prasad, M. Broy, and I. Krueger. Scanning advances
in aerospace & automobile software technology. Proceedings of the
IEEE, 98(4):510–514, April 2010.

[65] A. Vulgarakis, S. Sentilles, J. Carlson, and C. Seceleanu. Integrating
behavioral descriptions into a component model for embedded sys-
tems. In Software Engineering and Advanced Applications (SEAA),
2010 36th EUROMICRO Conference on, pages 113–118, Sept 2010.

[66] Aneta Vulgarakis, Jagadish Suryadevara, Jan Carlson, Cristina Se-
celeanu, and Paul Pettersson. Formal semantics of the ProCom real-
time component model. In 35th Euromicro Conference on Software
Engineering and Advanced Applications, 2009.

[67] V. Vyatkin. IEC 61499 as Enabler of Distributed and Intelligent Au-
tomation: State-of-the-Art Review. Industrial Informatics, IEEE
Transactions on, 7(4):768 –781, nov. 2011.

[68] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Hol-
sti, Stephan Thesing, David Whalley, Guillem Bernat, Christian
Ferdinand, Reinhold Heckmann, Tulika Mitra, et al. The worst-
case execution-time problem – Overview of methods and survey

Bibliography 139

of tools. ACM Transactions on Embedded Computing Systems
(TECS), 7(3):36, 2008.

[69] Qing-Li Zhang, Ming-Yuan Zhu, and Shuo-Ying Chen. Automatic
generation of device drivers. SIGPLAN Not., 38(6):60–69, June
2003.

[70] A. Zoitl, T. Strasser, K. Hall, R. Staron, C. Sünder, and B. Favre-
Bulle. The past, present, and future of IEC 61499. Holonic and
Multi-Agent Systems for Manufacturing, pages 1–14, 2007.

[71] Alois Zoitl, Rene Smodic, C Sunder, and Gunnar Grabmair. En-
hanced real-time execution of modular control software based on
IEC 61499. In Robotics and Automation, 2006. ICRA 2006. Pro-
ceedings 2006 IEEE International Conference on, pages 327–332.
IEEE, 2006.

138 Bibliography

[59] Jagadish Suryadevara, Aneta Vulgarakis, Jan Carlson, Cristina Se-
celeanu, and Paul Pettersson. Procom: Formal semantics. Technical
Report ISSN 1404-3041 ISRN MDH-MRTC-234/2009-1-SE, March
2009.

[60] Clemens Szyperski. Component software: beyond object-oriented
programming. Pearson Education, 2002.

[61] Kleanthis Thramboulidis. IEC 61499 in factory automation. In
Advances in Computer, Information, and Systems Sciences, and
Engineering, pages 115–124. Springer, 2006.

[62] G. Čengić and K. Åkesson. On Formal Analysis of IEC 61499 Ap-
plications, Part A: Modeling. Industrial Informatics, IEEE Trans-
actions on, 6(2):136 –144, may 2010.

[63] G. Čengić and K. Åkesson. On Formal Analysis of IEC 61499 Appli-
cations, Part B: Execution Semantics. Industrial Informatics, IEEE
Transactions on, 6(2):145 –154, may 2010.

[64] K. Venkatesh Prasad, M. Broy, and I. Krueger. Scanning advances
in aerospace & automobile software technology. Proceedings of the
IEEE, 98(4):510–514, April 2010.

[65] A. Vulgarakis, S. Sentilles, J. Carlson, and C. Seceleanu. Integrating
behavioral descriptions into a component model for embedded sys-
tems. In Software Engineering and Advanced Applications (SEAA),
2010 36th EUROMICRO Conference on, pages 113–118, Sept 2010.

[66] Aneta Vulgarakis, Jagadish Suryadevara, Jan Carlson, Cristina Se-
celeanu, and Paul Pettersson. Formal semantics of the ProCom real-
time component model. In 35th Euromicro Conference on Software
Engineering and Advanced Applications, 2009.

[67] V. Vyatkin. IEC 61499 as Enabler of Distributed and Intelligent Au-
tomation: State-of-the-Art Review. Industrial Informatics, IEEE
Transactions on, 7(4):768 –781, nov. 2011.

[68] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Hol-
sti, Stephan Thesing, David Whalley, Guillem Bernat, Christian
Ferdinand, Reinhold Heckmann, Tulika Mitra, et al. The worst-
case execution-time problem – Overview of methods and survey

Bibliography 139

of tools. ACM Transactions on Embedded Computing Systems
(TECS), 7(3):36, 2008.

[69] Qing-Li Zhang, Ming-Yuan Zhu, and Shuo-Ying Chen. Automatic
generation of device drivers. SIGPLAN Not., 38(6):60–69, June
2003.

[70] A. Zoitl, T. Strasser, K. Hall, R. Staron, C. Sünder, and B. Favre-
Bulle. The past, present, and future of IEC 61499. Holonic and
Multi-Agent Systems for Manufacturing, pages 1–14, 2007.

[71] Alois Zoitl, Rene Smodic, C Sunder, and Gunnar Grabmair. En-
hanced real-time execution of modular control software based on
IEC 61499. In Robotics and Automation, 2006. ICRA 2006. Pro-
ceedings 2006 IEEE International Conference on, pages 327–332.
IEEE, 2006.

