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Abstract The preemptive scheduling paradigm is known to strictly dominate the
non-preemptive scheduling paradigm with respect to feasibility. On the other hand,
preemptively scheduling real-time tasks on uniprocessors, unlike non-preemptive sche-
duling, may lead to unschedulability due to, e.g., preemption related overheads. The
limited-preemptive scheduling paradigm, which is a generalization of preemptive and
non-preemptive paradigms, has, however, the potential to reduce the preemption re-
lated overheads while enabling high processor utilization.

In this paper, we focus on the characterization of the effects of increasing the
computational resources on the limited-preemptive feasibility of real-time tasks in or-
der to quantify the sub-optimality of limited-preemptive scheduling. Specifically, we
first derive the required processor speed-up bound that guarantees limited-preemptive
feasibility of any uniprocessor feasible taskset. Secondly, we demonstrate the appli-
cability of the results in the context of controlling preemption related overheads while
minimizing the required processor speed-up. In particular, we identify the preemptive
behavior that minimizes preemption-related overheads, as well as derive the optimal
processor speed associated with it. Finally, we examine the consequences of hav-
ing more processors on limited-preemptive feasibility and derive the bound on the
number of processors that guarantees a specified limited-preemptive behavior for any
uniprocessor feasible real-time taskset.

A. Thekkilakattil
Mälardalen University, Box 883, 72123, Sweden
tel: +4621101689
E-mail: abhilash.thekkilakattil@mdh.se

R. Dobrin
Mälardalen University, Box 883, 72123, Sweden
tel: +4621107356
E-mail: radu.dobrin@mdh.se

S. Punnekkat
Mälardalen University, Box 883, 72123, Sweden
tel: +4621107324
E-mail: sasikumar.punnekkat@mdh.se



2 Thekkilakattil, Dobrin, Punnekkat

This paper essentially bridges the preemptive and non-preemptive real-time sche-
duling paradigms by providing significant theoretical results building on the limited-
preemptive scheduling paradigm, as well as provides analytical inputs to developers
in order to perform various trade-offs, e.g., code refactoring, to control the preemptive
behavior of real-time tasks.

Keywords Real-time Scheduling · Limited Preemption Feasibility · Resource
Augmentation · Sensitivity Analysis

1 Introduction

Modern processors support performance enhancing features such as caches and in-
struction pipelines that pre-fetch data and instructions to speed-up computations. The
adoption of these types of processors in real-time computing requires a careful analy-
sis of the worst case scenarios, that the specialized hardware may introduce, in order
to provide hard real-time guarantees. For example, preemptively scheduling real-time
tasks can result in high preemption related overheads that may lead to unschedula-
bility. Preemptive scheduling requires capabilities to suspend the currently running
task, and perform a context switch, in favor of higher priority tasks. The time re-
quired to perform context switches, if significantly high, can lead to deadline misses
in the schedule. Similarly, when a preempted task resumes its execution, cache lines
may need to be reloaded due to potential loss of cache affinity. The delay incurred to
reload cache lines can be considerably high, leading to an increase in utilization by as
much as 33% (Bui et al (2008)), eventually causing deadlines to be missed. Besides
context switch costs and cache related preemption delays, preemptions may increase
bus contention due to frequent off-chip memory accesses, as well as may require
clearing and refilling of the instruction pipelines, all of which manifest as temporal
overheads affecting the schedulability of the system.

Since the seminal paper by Liu and Layland (1973), real-time scheduling theory
has matured to a point where a fairly large set of fundamental questions regarding
preemptive uniprocessor scheduling have been sufficiently addressed. The feasibil-
ity analysis (e.g., Baruah et al (1990a)) and schedulability analysis (e.g., Audsley
et al (1991)) of preemptive real-time tasks typically assume negligible preemption
related overheads. Whenever the overheads are not negligible, they are assumed to
be accounted for in the worst case execution times of the tasks. Extending some of
these works, many methods were proposed to account for the preemption related
overheads in the schedulability analysis (e.g., Busquets-Mataix et al (1996); Lee et al
(1998); Tan and Mooney (2007); Staschulat et al (2005); Altmeyer et al (2012); Ju
et al (2007)). Ward et al (2014) build on the best of these works and present an
improved preemption overhead accounting paradigm. However, all the preemptions
considered by the above mentioned works may not occur in the actual schedule lead-
ing to analysis pessimism.

On the other hand, as pointed out by Short (2010), non-preemptive scheduling is
often favored for applications with severe resource constraints due to its low mem-
ory requirements, and simple implementation. However, non-preemptive scheduling
has received less attention as compared to preemptive scheduling since the works
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by George et al (1996), George et al (1995) and Jeffay et al (1991). The facts that
non-preemptive scheduling can be infeasible even at arbitrarily low processor utiliza-
tions due to blocking on higher priority tasks (Yao et al (2010)), and the strict dom-
ination of preemptive scheduling over non-preemptive scheduling (Baruah (2005))
may have contributed towards the limited efforts in addressing the feasibility of non-
preemptively scheduling real-time tasks.

One way to address the blocking related infeasibility under non-preemptive sche-
duling is to adopt the limited-preemptive scheduling paradigm (a detailed survey of
which is available in Buttazzo et al (2012)). Under the limited-preemptive scheduling
paradigm, the preemptive behavior of real-time tasks is controlled by reducing the
number of preemptions and/or by restricting them to pre-determined points in the
code. The need to limit preemptions in real-time systems is well recognized by both
academia and industry. Buttle (2012), in his keynote, indicated that limited preemp-
tive scheduling is widely favored in the automotive industry where data-intensive
real-time tasks consisting of non-preemptable blocks are required to be cooperatively
scheduled. In this case the schedulability test must determine whether these non-
preemptable blocks can be scheduled without causing deadline misses. If the taskset
is unschedulable, it means that at least one of the non-preemptable blocks causes
significantly high blocking leading to deadline misses in the schedule.

A majority of the modern processors supports Dynamic Voltage and Frequency
Scaling (DVFS) using which the tasks’ Worst Case Execution Time (WCET) can
be manipulated by changing the CPU frequency, and is typically used to slow down
task executions to conserve power (Pillai and Shin (2001)). However, some recent
experiments (Saha and Ravindran (2012)) indicate that keeping the processor at idle
state for longer duration after completing tasks sooner by running at higher frequen-
cies can save more power. As noted by Thiele (2014), processor frequencies can
be increased to improve schedulability in real-time systems under specified power
and thermal constraints. Likewise, it is possible to speed-up the processor to ensure
that the largest non-preemptive regions of the tasks are ‘large’ enough to guaran-
tee a specified limited-preemptive behavior in the schedule, e.g., execute large non-
preemptable blocks without causing deadline misses. On the other hand, if thermal
and power constraints make speeding-up infeasible, more number of processors can
be used to guarantee a specified limited preemptive behavior by distributing the tasks
among the processors or by parallelizing the code. The widespread availability of
multicore processors makes this option particularly attractive.

Resource augmentation, first introduced by Kalyanasundaram and Pruhs (2000),
is widely used to quantitatively compare the performance of scheduling algorithms in
terms of the extra resources required to achieve optimality— the most commonly con-
sidered resource being the processor speed. While Fixed Priority Scheduling (FPS)
scheme is not uniprocessor optimal (Liu and Layland (1973)), there exit many sche-
duling schemes such as preemptive Earliest Deadline First (EDF), that are known
to optimally schedule real-time tasks on uniprocessors (Dertouzos (1974)). Conse-
quently, previous works quantified the performance of FPS with respect to optimal
scheduling schemes, under both preemptive and non-preemptive paradigms, using
resource augmentation. All of these efforts, started by Baruah and Burns (2008) and
later continued by Davis et al (2009a), Davis et al (2010) and Davis et al (2009b),
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focused specifically on processor speed-up and did not examine the possibility of
using more number of processors such as done by Lam and To (1999). Moreover,
inspite of the fact that preemptive scheduling strictly dominates limited- and non-
preemptive scheduling in feasibly scheduling real-time tasks (Baruah (2005)), none
of these efforts were directed towards quantifying their sub-optimality (using neither
faster processors nor more number of processors).

In this paper, we fill this gap by quantifying the sub-optimality of limited-preemptive
scheduling in terms of a) bound on the processor speed-up, and b) bound on the num-
ber of processors, required to guarantee a desired limited-preemptive behavior. The
results derived in this paper bound the ’cost’ to be paid in order to enable a desired
limited-preemptive behavior in terms of the computational resources.

In the following, the main contributions of this paper are summarized, while detailing
the differences from Thekkilakattil et al (2013):

1. In this paper, we generalize the speed-up bounds by considering the more realis-
tic execution time model proposed by Marinoni and Buttazzo (2007), instead of
the fully linear model assumed in Thekkilakattil et al (2013), as well as, present
a tighter bound (a two fold improvement) for the restricted model assumed in
Thekkilakattil et al (2013).

– If only a fraction φ of the task execution times scales with processor speed,
the speed-up bound S that guarantees limited-preemptive feasibility is given
by S≤

(
1+ 1

φ

)
in many cases.

– We present an improved result over Thekkilakattil et al (2013), and show
that, if the entire execution time of the tasks scales with processor speed, the
speed-up bound S that guarantees non-preemptive execution of all tasks for a
duration no greater than Lmax is given by

S≤ 2max
(

1,
Lmax

Dmin

)
The main result presented in Thekkilakattil et al (2013) was greater than the
above result by a factor of 2.

– We evaluate the speed-up required to guarantee a fully non-preemptive sched-
ule using randomly generated tasksets (which is not done in Thekkilakattil
et al (2013)), after presenting the two step sensitivity analysis method for pre-
emption control from Thekkilakattil et al (2013).

2. We derive the bound on the number of processors required (Lam and To (1999)) to
guarantee a specified limited-preemptive behavior of uniprocessor feasible real-
time tasks, which is not considered in Thekkilakattil et al (2013), allowing us to
consider a different dimension regarding the feasibility of limiting preemptions.

– In general, the number of processors is shown to be upper-bounded by the
number of tasks in the taskset.
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– In the specific case, in which the largest length of the specified limited-preemptive
regions in the taskset is no more than half the shortest deadline, the number
of processors is shown to be upper-bounded by 3.

Organization: We first present the system model in Section 2, and then review some
relevant results in Section 3. We derive the speed-up bounds in Section 4, after which
we present a methodology to calculate the minimum speed-up that guarantees a spec-
ified limited-preemptive behavior, along with an evaluation, in Section 5. We then
derive the upper-bound on the number of processors required to guarantee a specified
limited preemptive behavior in Section 6, followed by a discussion on the derived
resource augmentation bounds in Section 7, before concluding in Section 8.

2 System model

In this section, we introduce the notations used in the rest of the paper whilst describ-
ing the task model, scheduling model, and the execution time model.

2.1 Task model

We consider a set of sporadic real-time tasks Γ = {τ1,τ2, ...τn}, where each τi is char-
acterized by a minimum inter-arrival time Ti, a worst case execution time CS

i at pro-
cessor speed S, and a relative deadline Di. We assume that tasks’ worst case execution
times are equal to their worst case execution requirements on a speed S = 1 processor.
Let the length of the longest critical section of a task τi, on a processor of speed S,
be denoted by CSS

i . We assume that the tasks are indexed according to the increasing
order of their deadlines, which means that Dmin = D1. We assume that every task
τi has mi optimal preemption points (Peng et al (2014)) within its execution, where
the mth

i point denotes the end of the task execution. Let qS
i, j, j = 1...mi denote the

length of the execution of τi from its start up to the jth optimal preemption point on
a processor at speed S. In order to focus on the theoretical consequence of resource
augmentation on the preemptive behavior of the taskset, and for the sake of clarity
of presentation, we assume negligible preemption related overheads at these optimal
preemption points. However such an assumption does not affect the generality of our
results because the preemption related overheads can be accounted during the place-
ment of the preemption points, e.g., as done by Bertogna et al (2010).

Let β S
i denote the blocking tolerance of τi, which is the largest time for which τi

can be blocked without causing any deadline miss (Bertogna et al (2010)). Also, let
BS

i ≤ β S
i denote the largest time for which τi is effectively blocked at run-time. LCM

denotes the Least Common Multiple of the time periods of all the tasks in the set. The

utilization US
i of a task τi executing on a processor at speed S is defined as US

i =
CS

i
Ti

and the utilization of the entire taskset is given by US = ∑
n
i=1 US

i . The demand bound
function of a task τi, on a processor of speed S, during a time interval [0, t) is given
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by Baruah et al (1990b),

DBFS
i (t) = max

(
0,1+

⌊
t−Di

Ti

⌋)
CS

i

For example, DBF1
i (t) denotes the cumulative processor time requested by τi during

a time interval [0, t) on a processor of speed S = 1. Additionally, the density of task

τi is given by δi =
C1

i
Di

, and the total density of the taskset by δtot = ∑∀τi δi. We define
a specified limited-preemption length as follows.

Definition 1 A specified limited-preemption length of a task τi is defined as the
maximum specified length of the non-preemptive regions of τi.

For example, a specified limited-preemption length may guarantee a specified upper-
bound on the preemption related cost on τi that guarantees schedulability. We denote
the specified limited-preemption length of a task τi at speed S by LS

i . A specified
limited-preemption length can also be denoted by Li in case it does not change with
the processor speed.

Definition 2 A limited-preemption requirement on a task τi is defined as the re-
quirement that the task τi executes non-preemptively for a duration given by the spec-
ified limited-preemption length.

A limited-preemption requirement on any task τi is said to be feasible if τi can execute
non-preemptively for the specified limited-preemption length, consequently guaran-
teeing the feasibility of the specified limited-preemptive behavior for τi.

Definition 3 The feasibility of a specified limited-preemptive behavior of a taskset
is defined as the existence of a real-time schedule that guarantees the non-preemptive
execution of every task for the specified limited-preemption length, while ensuring
the absence of deadline misses in the schedule.

The feasibility of the specified limited-preemptive behavior of the taskset can be guar-
anteed by speeding up the processor to control the length of the non-preemptive re-
gions.

2.2 Scheduling model

We assume the Earliest Deadline First (EDF) scheduling paradigm. We assume that,
whenever a higher priority job is released during the execution of a lower priority job
of τi, instead of immediately preempting the job of τi, the scheduler blocks the higher
priority job for QS

i time units on a processor of speed S. Alternately, the tasks can
be composed of several non-preemptable chunks of code, whose maximum length is
QS

i . Here, QS
i is the length of the largest non-preemptive region of τi derived from

the task attributes (Baruah (2005); Bertogna and Baruah (2010)). Consequently, the
maximum number of times the task τi can be preempted when a processor of speed

S is used, is given by
⌈

CS
i

QS
i

⌉
−1. If LS

i > QS
i , then the system is not schedulable since
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the specified limited-preemption length is greater than the bound on the maximum
possible limited-preemption length.

We assume a work conserving scheduler, i.e., the scheduler does not idle the
processor when there are active tasks awaiting the processor. We leverage on the op-
timality of EDF (Dertouzos (1974); Jeffay et al (1991)) to study the processor speed-
up required to guarantee the feasibility of a required limited-preemptive behavior of
real-time tasks.

2.3 Execution time model

In this paper we focus mainly on the theoretical consequences of resource augmenta-
tion, specifically processor speed-up, on the preemptive behavior of real-time tasks.
We adopt the execution time model proposed by Marinoni and Buttazzo (2007). In
this model, the execution time of each task consists of two parts— one that is proces-
sor speed dependent and the other that is processor speed independent. Let φi denote
the fraction of execution time of τi that scales linearly with the processor speed. Con-
sequently, the fraction (1− φi) of the execution time of τi does not scale with the
processor frequency.

To ease the readability, and without loss of generality, we assume that the taskset
is initially executing on a processor of speed S = 1. We assume that, if C1

i is the
execution time at speed S = 1, the task execution time of τi scales as follows:

CS
i =

φiC1
i

S
+(1−φi)C1

i

Such a model also allows us to use processor speed-up factors and processor speeds
interchangeably. Changing the processor speed from S = 1 to S = a, is equivalent to
speeding up the processor by a factor of ‘a’. Finally, we define

φ = min
∀τi∈Γ

(φi)

Therefore, in any time interval t, at least φ ∑
n
i DBF1

i (t) units of execution scales with
the processor speed.

3 Feasibility analysis of real-time systems— a short review

The limited preemptive scheduling model proposed by Baruah (2005) can be seen
as generalizations of non-preemptive and preemptive scheduling models as they can
simulate a preemptive behavior ranging from non-preemptive to fully preemptive. If
QS

i is set equal to 0 for all τi, the system simulates a fully preemptive model, while
if QS

i is set equal to CS
i , the system simulates a fully non-preemptive model (Yao

et al (2010)). In our approach we build on Baruah’s (Baruah (2005)) model to study
the feasibility of preemptive, non-preemptive, and limited-preemptive scheduling of
real-time tasks, when the amount of available resources change

Let us now recall some previously published theoretical results presented by Jef-
fay et al (1991) (in Section 4 of their paper) and Bertogna et al (2010) (in Section
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IV of their paper). Due to sustainability of the EDF scheduling scheme (Baruah and
Burns (2006)), these theorems can be generalized to a processor of speed S, (S≥ 1).
A real-time taskset is feasible if the cumulative processor time requested by the set of
tasks during any time interval does not exceed the size of that time interval (Baruah
et al (1990b)). The following theorems presented in a revised uniform format, deter-
mines the feasibility of uniprocessor real-time scheduling.

Theorem 1 (from Bertogna et al (2010)) A taskset is feasible on a speed S processor,
if and only if, ∀i ∈ [1,n],

β
S
i ≥ 0

where, β S
i is given by

β
S
i = min

Di≤t<Di+1

(
t−

n

∑
j=1

DBFS
j (t)

)
(1)

t = kTj +D j,∀k ∈ N, j ∈ [1,n]

In the above theorem, Dn+1 is set as

Dn+1 = min(LCM,P)

Where,

P = max
{

D1,D2, ...,Dn,
∑

n
i=1(Ti−Di)US

i
1−US

}
When the β S

i = 0,∀i ∈ [1,n], the taskset is feasible only under a fully preemptive
scheduling scheme.

The above theorem can be used to determine the feasibility of limited-preemptive
scheduling on a processor at speed S, and is stated by the following theorem.

Theorem 2 (from Bertogna et al (2010)) A taskset is feasible under limited-preemptive
scheduling on a speed S processor if, ∀i ∈ [1,n],

BS
i ≤ β

S
i

where the blocking tolerance β S
i is given by equation 1 and BS

i is the largest blocking
actually experienced by τi due to the limited preemptions on a processor of speed S.

The bound QS
k on the length of the non-preemptive region of a task τk on a processor

of speed S is given by the following theorem.

Theorem 3 (from Bertogna et al (2010)) A taskset is feasible under limited-preemptive
scheduling on a speed S processor if, ∀k ∈ [1,n],

QS
k = min

1≤i<k
β

S
i

The task can execute entirely non-preemptively if QS
k is greater than or equal its ex-

ecution time CS
k . Hence, we can use the above theorem to state the non-preemptive

feasibility of the taskset, i.e., whether it is possible to find a non-preemptive schedule,
as follows:

Theorem 4 (from Jeffay et al (1991)) A taskset is feasible under non-preemptive
scheduling on a speed S processor if, ∀k ∈ [1,n],

CS
k ≤ QS

k
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4 Speed augmentation for limited-preemptive scheduling

In this section, we examine the consequences of having a faster processor on the lim-
ited preemptive scheduling of real-time tasks. In modern processors, due to effects
of e.g., the memory wall (McKee (2004)), the entire task execution times may not
scale linearly with the processor speed. We relax the assumption, made in (Thekki-
lakattil et al (2013)), that the entire task execution times scale linearly with processor
speed, and examine the consequences of changing the processor speed on the limited-
preemptive feasibility. We consider the generalized execution time model proposed
by Marinoni and Buttazzo (2007) (that is more realistic) in which only a part of
the WCETs scale linearly with the processor speed. First we show, in the following
example, that in general it is not practical to use faster processors to achieve limited-
preemptive EDF feasibility. We do this by constructing a taskset for which the use
processor speed-up to achieve limited-preemptive feasibility is not practical.

t t + 30 

t + 1 t + 9 

Task A 

Task B 

Non-preemptive region of task B Processor speed independent  
execution requirement 

Fig. 1: The schedule for example 1

Example 1 Consider two sporadic tasks A and B, having execution times C1
A = 5 and

C1
B = 10, φA = 0.4 and φB = 0.4, and deadlines TA = DA = 8 and TB = DB = 30. This

means that it is not possible to speed up 3 units of execution of task A and 6 units of
execution of task B. Assume that the limited-preemption requirement on task B is 6.
Consider the scenario, as shown in Figure 1, when a job of task B is released at time
instant t and has immediately started its execution— at time t +1 it has finished only
1 unit of execution. If a job of A is released at time t+1, clearly A has a higher priority
than B. When A tries to preempt B, B immediately starts executing non-preemptively.
If task B immediately starts executing the region of code that is independent of the
processor speed, clearly the job of task A will miss its deadline. In this case, no
amount of speeding up the processor helps because, no matter what the processor
speed is, 3 units of execution of task A and 6 units of execution of task B cannot
execute faster, and hence the non-preemptive execution of task B for 6 units will lead
to a deadline miss on task A at time t +9.

The example shows the difficulty of obtaining a speed-up bound for limiting preemp-
tions. However, if the limited-preemption requirement of a task is less than a certain
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fraction of the shortest deadline (whose exact value is presented later in this section),
we can obtain the resource augmentation bound even if only a part of the execution
time scales linearly with the processor speed. We then present an improved result
over the one presented in (Thekkilakattil et al (2013)) for the specific case in which
it is possible to speed-up the entire task WCET.

Theorem 5 The processor speed Si that guarantees the feasibility of a limited-preemption
requirement Li for any task τi ∈ Γ is given by,

Si = max
D1≤t<Di

{
φ ∑

n
j=1 DBF1

j (t)

t−Li− (1−φ)∑
n
j=1 DBF1

j (t)

}
Proof The maximum length of the non-preemptive region for τi at speed 1 is given
by Baruah (2005),

Q1
i = min

D1≤t<Di

{
t−

n

∑
j=1

DBF1
j (t)

}
,∀t,D1 ≤ t < Di

Our aim is to find the processor speed Si that guarantees the feasibility of a limited-
preemption requirement Li. Suppose,

Li > Q1
i = t−

n

∑
j=1

DBF1
j (t)

We know that, of the total demand bound in any interval t, at least φ percentage scales
with the processor speed. Thus, we can speed-up this part of the task executions to
guarantee the limited preemptive execution of τi for Li units, i.e., ∀t,D1 ≤ t < Di,

Li ≤ t−

{
φ ∑

n
j=1 DBF1

j (t)

Si
+(1−φ)

n

∑
j=1

DBF1
j (t)

}
Hence, ∀t,D1 ≤ t < Di,

SiLi ≤ Sit−

{
φ

n

∑
j=1

DBF1
j (t)+Si(1−φ)

n

∑
j=1

DBF1
j (t)

}
Solving for Si, we get, ∀t,D1 ≤ t < Di,

Si ≥

{
φ ∑

n
j=1 DBF1

j (t)

t−Li− (1−φ)∑
n
j=1 DBF1

j (t)

}
i.e.,

Si = max
D1≤t<Di

{
φ ∑

n
j=1 DBF1

j (t)

t−Li− (1−φ)∑
n
j=1 DBF1

j (t)

}
ut

Consequently, we find the upper-bound on the required processor speed that guaran-
tees a specified limited-preemption requirement Li for any task τi ∈ Γ .
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Lemma 1 The upper-bound on the minimum processor speed Si that guarantees the
feasibility of a limited-preemption requirement Li for any task τi ∈ Γ , during a time
interval t is given by,

Si ≤
y

y− 1
φ

where, y = t
Li

, ∀t ∈ [D1,Di).

Proof We know from theorem 5 that,

Si = max
D1≤t<Di

{
φ ∑

n
j=1 DBF1

j (t)

t−Li− (1−φ)∑
n
j=1 DBF1

j (t)

}

Since we have assumed that the taskset is feasible, the upper-bound on the value
of ∑

n
j=1 DBF1

j (t) is t. Hence,

Si ≤
{

φ t
t−Li− (1−φ)t

}
⇒ Si ≤

t
φ t−Li

Finally, substituting y = t
Li

,

Si ≤
φy

φy−1

⇒ Si ≤
y

y− 1
φ

ut

In order to derive the actual value of the upper-bound on the required processor speed
that guarantees the feasibility of a limited-preemption requirement Li, for any τi ∈Γ ,
during any time interval t we consider the following two cases:

Case 1: y≥
(

1+ 1
φ

)
Case 2: 0 < y <

(
1+ 1

φ

)
In the following lemma, we bound the speed-up required for case 1, i.e., when

y≥
(

1+ 1
φ

)
.

Lemma 2 The upper-bound on the minimum processor speed Si that guarantees the
feasibility of a limited-preemption requirement Li for any task τi ∈ Γ , such that y ≥(

1+ 1
φ

)
, is given by

Si ≤
(

1+
1
φ

)
where y = t

Li
and t ∈ [D1,Di)
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Proof Evaluating the limit of the equation in lemma 1 at y =
(

1+ 1
φ

)
, we get,

Si =

(
1+

1
φ

)
Evaluating the limit using l’Hopital’s rule, as y tends to infinity (∞), we get,

Si = 1

Therefore, for any value of y ∈ [
(

1+ 1
φ

)
,∞],

Si ≤
(

1+
1
φ

)
ut

In the case 2 above, in general, it is not practical to use processor speed-up to
guarantee a specified limited-preemptive behavior because, in the worst case, the
non-preemptive region does not scale with the processor speed (refer Example 1).
However, if φ = 1, it is possible to bound the required speed-up. This is derived in
the following subsection.

4.1 Speed-up bound under restricted execution time model

In this subsection, for completeness, we consider the special case in which the entire
task execution time scales linearly with processor speed considered in Thekkilakattil
et al (2013), while achieving a two fold improvement in the speed-up bound over
Thekkilakattil et al (2013).

When the entire task execution time scales with the processor speed, i.e., φ = 1,
we can restate Lemma 2 as follows:

Lemma 3 The upper-bound on the minimum processor speed Si that guarantees the
feasibility of a limited-preemption requirement Li for any task τi ∈ Γ , such that y≥ 2
and φ = 1, is given by

Si ≤ 2

Furthermore, under the assumption that φ = 1, Case 2 presented in the previous sec-
tion can be split into two sub-cases as follows:

Case 2.a: 1≤ y < 2
Case 2.b: 0 < y < 1

In the following lemma, we derive the speed-up bound for Case 2.a described
above:

Lemma 4 The upper-bound on the minimum speed Si that guarantees the feasibility
of a specified limited-preemption requirement Li for any task τi, such that 1 ≤ y < 2
and φ = 1, is given by

Si ≤ 2

where y = t
Li

and ∀t ∈ [D1,Di).
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Proof On a unit speed processor t clock ticks are available in any time interval of
length t. In the worst case, the processor is fully occupied during t, and hence the
limited-preemption requirement Li cannot be feasibly executed. Let us assume an
increase in the processor speed by a factor of 2. This implies that within an interval
of time t, there are in effect t ′ = 2t clock ticks. In this case the limited-preemption
requirement Li can be successfully executed without causing any deadline miss since
2t ≥ Li + t (remember that we are considering the case t ≥ Li). Therefore, when
1≤ y < 2, the tighter upper-bound is given by 2.

Lemma 5 The upper-bound on the minimum speed Si that guarantees the feasibility
of a limited-preemption requirement Li for any task τi, such that 0 < y < 1 and φ = 1,
is given by

Si ≤
2Li

t
where y = t

Li
and ∀t ∈ [D1,Di).

Proof On using a processor that is S= Li
t times faster, the number of clock ticks in the

time interval t increases from t to t ′ = t× Li
t = Li. Consequently, we can execute the

original demand of length no greater than t, and a part Li−t of the limited-preemption
requirement Li at speed S = Li

t . The remaining limited-preemption requirement that
cannot be executed is L′i = t. On a processor of speed S = Li

t , since t < Li, we ef-
fectively have t ′

L′i
= Li

t > 1. Using Lemma 3 and Lemma 4, the speed-up required

denoted by S′i is S′i ≤ 2. Remember that we had already increased the processor speed
by Li

t , therefore, the tighter upper-bound Si is:

Si ≤
2Li

t

In the following, we present a theorem that unifies the results in Lemma 3, Lemma 4
and Lemma 5 to obtain an integrated result on how the limited preemptivity changes
with respect to processor speed.

Theorem 6 The upper-bound on the minimum processor speed Si that guarantees
the feasibility of a limited-preemption requirement Li for any task τi ∈ Γ when φ = 1
is given by, ∀t > 0,

Si ≤ 2max
(

1,
Li

t

)
where, y = t

Li
.

Proof When φ = 1, the entire execution time of every task scales linearly with the
processor speed. We know that Li is bounded by the maximum of the execution times
of the tasks in the taskset, at speed S = 1 (i.e., its fully non-preemptive execution).
Similarly, since t is lower-bounded by the shortest deadline, we obtain t

Li
> 0.

When y≥ 2, according to Lemma 3, we obtain:

Si ≤ 2max
(

1,
1
y

)
= 2×1 = 2
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Similarly, when 1≤ y < 2, according to Lemma 4, we obtain

Si ≤ 2max
(

1,
1
y

)
= 2×1 = 2

Finally, when 0 < y < 1 the speed-up required, according to Lemma 5, is

Si ≤ 2max
(

1,
1
y

)
=

2Li

t

Therefore, it follows from lemmas 3, 4, and 5 that the speed-up required is bounded
as follows:

Si ≤ 2max
(

1,
Li

t

)
ut

The above theorem is valid for any time interval. However, in the following, we show
that the largest speed-up is obtained at the shortest relative deadline.

Corollary 1 The upper-bound on the minimum processor speed Si that guarantees
the feasibility of a limited-preemption requirement Li for any task τi ∈Γ , when φ = 1,
is given by

Si ≤ 2max
(

1,
Li

Dmin

)
The proof is intuitive as the value of t for which the blocking from Li is maximum, is
the smallest value of t given by the shortest relative deadline t = Dmin (remember that
Dmin = D1). It is when t = Dmin that the value Li

t is maximized. We have thus derived
the upper-bound on the processor speed that guarantees the feasibility of a specified
limited-preemptive behavior for any task τi ∈ Γ . The above result can be extended
to derive the bound on the speed-up that guarantees non-preemptive execution of the
entire task set Γ for a duration of at least Lmax, where Lmax = max∀τi Li.

Corollary 2 The upper-bound on the minimum processor speed S that guarantees
the feasibility of the specified limited-preemption requirement Lmax for any taskset Γ ,
when φ = 1, is given by

S≤ 2max
(

1,
Lmax

Dmin

)
where Lmax = max

∀τi∈Γ

(Li).

Therefore, the speed-up that guarantees the non-preemptive feasibility of the entire
taskset is given by the following.

Corollary 3 The upper-bound on the minimum processor speed S that guarantees
the non-preemptive EDF feasibility of any taskset Γ , when φ = 1, is given by

S≤ 2max
(

1,
Cmax

Dmin

)
where Cmax = max

∀τi∈Γ

(C1
i ).
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Fig. 3: Speed Vs. LP feasibility.

The executions of non-preemptive chunks of the tasks are independent of each other
(Baruah (2005)). Consequently, the processor speed-up bound that guarantees non-
preemptive feasibility of the task with largest execution time will also guarantee the
non-preemptive execution of the entire taskset.

Sub-optimality: The sub-optimality of limited-preemptive (non-preemptive) sche-
duling when compared to an optimal uniprocessor preemptive scheduling scheme,
with respect to any taskset Γ , can be quantified in terms of processor speed-up bound
given in Corollary 2 (Corollary 3).

Resource availability Vs. limited-preemptive feasibility: We illustrate the change
in preemptive behavior with respect to processor speed, under the assumption that
the entire WCETs scales linearly with the processor speed, in Figure 3. Note that the
Figure 3 is an attempt at visually representing the results presented in this paper in an
intuitive manner that reflects the dominance of preemptive real-time scheduling over
limited- and non- preemptive scheduling.

The base of the bucket in Figure 2 represents the set of all uniprocessor feasible
real-time tasks on a processor of speed S = 1. Obviously, on increasing the processor
speed to S = x, more tasksets become uniprocessor feasible. Consequently, the origi-
nal set of tasks that was feasible at speed S= 1, becomes a subset of the tasksets feasi-
ble at speed S= x. At this point, we additionally consider the limited-preemptive EDF
feasibility of all uniprocessor feasible real-time tasks. Figure 3 illustrates how the
limited-preemptive feasibility changes from fully preemptive uniprocessor feasibility
at speed S = 1 to the fully non-preemptive feasibility at speed S = 2max

(
1, Cmax

Dmin

)
.

5 Practical applications of the theoretical results

Many real-time systems consist of data intensive real-time tasks that are cooperatively
scheduled, where each task is composed of many non-preemtable chunks of code
(Buttle (2012)). If the size of these non-preemptable chunks are significantly large, it
may cause large blocking leading to unschedulability. Similarly, many methods (Peng
et al (2014)) have been proposed to place preemption points in the task code such
that the preemption overheads are minimized. However, if the duration between any
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two optimal preemption points is significantly high, it may lead to deadline misses
due to blocking. Thiele (2014) in his keynote presented the possibility of speeding
up the processor in order to achieve a schedulable system. Equivalently, processor
speed-up can be used to control the execution times of the non-preemptable chunks
and the processor demand to guarantee that tasks can execute non-preemptively for
a specified duration. Thereby, the number of preemptions can be reduced and/or the
preemption points can be placed at optimal locations with respect to the preemption
costs. In this section, we focus on deriving the minimum processor speed-up that
guarantees the specified preemption behavior that minimizes preemption overheads.

Task attributes 

Set of task level limited-preemption 
requirements 

Sensitivity 
analysis 

Minimum processor speed that guarantees 
the limited-preemption requirements 

Preemption reduction 
constraints 

Optimal preemption 
points 

Specification of 
limited-preemption 

requirements 
Step 1 

Step 2 

Fig. 4: Methodology overview

While in the previous section we derived the upper-bound on the required pro-
cessor speed-up that guarantees the feasibility of a user specified limited-preemptive
behavior, in this section, we apply this bound to enable trade-offs between processor
speed and preemption overheads.

Definition 4 The minimum processor speed Smin that guarantees the feasibility of
a specified limited-preemptive behavior is defined as Smin = min(S), where S ∈ the
set of available processor speeds such that, ∀ τi in Γ ,

QSmin
i ≥ LSmin

i

Here, LSmin
i is the specified limited-preemption length for τi that guarantees the fea-

sibility of a specified limited-preemptive behavior per τi. We can then calculate the
speed-up required to guarantee the feasibility of the limited-preemption requirement
LS

i , which will in turn guarantee specified bounds on the preemption related costs.

Methodology Overview: Our method is composed of 2 steps as shown in Figure 4:



The Limited-preemptive Feasibility of Real-time Tasks on Uniprocessors 17

Step 1: Specifying task level limited-preemption requirements to (a) reduce the
number of preemptions. (b) enable preemptions at optimal preemption points.
(c) enable critical sections execution within non-preemptive regions.

Step 2: Perform sensitivity analysis using the task parameters and the specified
limited-preemption requirements to derive the minimum processor speed that
guarantees the desired limited-preemptive behavior.

In the following sub-sections we describe each of the steps in detail, followed by
some evaluation results.

5.1 Specifying task-level limited-preemption requirements

We can derive task level limited-preemption requirements to (a) reduce the number
of preemptions. (b) enable preemptions at optimal preemption points. (c) enable crit-
ical sections execution within non-preemptive regions as follows.

i. Reducing the number of preemptions: If the schedulability of a taskset is guar-
anteed considering the upper-bound on the preemption related overheads, it is indeed
schedulable considering the exact overheads. The preemption related overheads can
be upper-bounded by the product of the upper-bound on the number of preemptions
and the upper-bound on the penalty associated with a single preemption. The upper-
bound on the number of times a task τi, characterized by a non-preemptive region
of maximum length QS

i , can be preempted while executing on a speed S processor

is given by Baruah (2005) and Yao et al (2010) as
⌈

CS
i

QS
i

⌉
−1. Therefore, the limited-

preemption length LS
i , ∀τi ∈ Γ , on a speed S processor, that guarantees at most pi

preemptions on τi, can be specified as:

LS
i ≥

CS
i

pi +1
⇒ LS

i =

⌈
CS

i
pi +1

⌉
(2)

It is evident that, on a speed 1 processor, if Q1
i < L1

i , where L1
i is calculated according

to equation 2, τi can be guaranteed to incur no more than pi preemptions. Hence, we
have to find a processor speed S which ensures that:

QS
i ≥ LS

i =

⌈
CS

i
pi +1

⌉
ii. Enabling preemptions at optimal preemption points: The possibility of enforc-
ing preemptions only at optimal preemption points (Peng et al (2014)) depends on
the maximum length of the non-preemptive region on a processor of a given speed S.
Remember that qS

i, j denotes the length of execution of τi up to its jth optimal preemp-
tion point on a speed S processor. Hence, the limited-preemption requirement for a
task τi can be specified as the largest interval between any two consecutive optimal
preemption points of τi when it executes on a speed S processor:

LS
i = max

1≤ j<m
(qS

i, j+1−qS
i, j,q

S
i,1) (3)
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Consequently, our goal is to find the processor speed S that satisfies:

QS
i ≥ LS

i = max
1≤ j<m

(qS
i, j+1−qS

i, j,q
S
i,1)

iii. Executing critical sections within non-preemptive regions: If the maximum
length of the non-preemptive region Q1

i of a task τi is shorter than its largest critical
section CS1

i , on a speed 1 processor, resource sharing protocols are required. This is-
sue, on the other hand, can be solved by using a faster processor. The processor speed
that guarantees the non-preemptive execution of critical sections, under a limited-
preemptive scheduling paradigm, is given by the speed S that satisfies the relation:

QS
i ≥ LS

i =CSS
i (4)

By specifying the limited-preemption length as the maximum of the lengths cal-
culated using equations 2, 3 and 4, we can both guarantee the requirements of re-
ducing the number of preemptions as well as retain the possibility of preemption
placement at optimal preemption points, while guaranteeing the execution of critical
sections entirely within non-preemptive regions.

5.2 Sensitivity analysis for preemption control

If the length of the largest non-preemptive region is less than the specified limited-
preemption length on a speed 1 processor, i.e., Q1

i < L1
i , it means that τi cannot exe-

cute non-preemptively for the specified duration. Therefore, we need to use a faster
processor of speed S such that QS

i ≥ LS
i . In most situations, changing the proces-

sor speed may also change the specified limited-preemption lengths to satisfy the
desired preemption related cost control requirements, as well as the maximum pos-
sible lengths of the limited-preemptive regions of the tasks. The lowest processor
speed that guarantees the specified limited-preemption requirements lies in the inter-
val [Slow = 1,Shigh], where Shigh corresponds to the bounds derived in the previous
section. We can perform a sensitivity analysis on the speeds between 1 and Shigh in
order to calculate the minimum processor speed Smin which guarantees that every task
τi can exhibit the specified limited-preemptive behavior, i.e., QSmin

i ≥ LSmin
i .

The length of the maximum non-preemptive regions increase with decrease in
the demand bound as shown by Baruah (2005). Therefore, it can be easily shown that
the maximum length of the non-preemptive regions increases monotonically with
the processor speed (even if only a part of the WCET scales linearly with processor
speed). Hence the correctness and optimality of our method is given by the correct-
ness of the binary search.

Evaluation: We validate the theoretical results by evaluating the sensitivity analy-
sis for a set of 1000 tasksets generated using UUniFast algorithm (Bini and But-
tazzo (2005)). We calculated the required minimum speed-up that guarantees a fully
non-preemptive schedule under the assumption that the entire WCETs scale linearly
with speed . We are interested in the speed-up that guarantees a fully non-preemptive
schedule because it corresponds to the maximum speed-up required to guarantee any
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Fig. 5: Required speed-up that guarantees non-preemptive feasibility.

limited-preemptive behavior, i.e., if the task can execute fully non-preemptively, it
can execute non-preemptively for a lesser duration.

We plotted the average and maximum speed-ups required to guarantee a fully
non-preemptive schedule for different utilization ranges (presented in Figure 5). We
observed that, in general, the required average and maximum speed-up factors in-
creases with utilization. Additionally, the average required speed-up was found to be
well below 2 as seen from Figure 5a. However, from Figure 5b, we observed that
the maximum speed-up required was the highest for utilizations between 0.5 and
0.6, and is greater than 16. On closer examination, we found that the corresponding
taskset ”suffered” from the long task problem, referred to by Short (2010), in which
at least one task has an execution time greater than the shortest deadline. It is possi-
ble to construct similar tasksets (that have very high required speed-up factors) in all
utilization ranges, i.e., it is possible to construct tasksets having any utilization that
require arbitrarily large speed-ups to guarantee non-preemptive feasibility. Abdelza-
her et al (2002) have identified a large class of real-time tasks, called liquid tasks,
where the shortest deadline is much greater than the largest computation time in the
taskset. Our evaluations indicate that using faster processors to guarantee specified
limited-preemptive behaviors can be particularly feasible for liquid tasks since the
speed-up required may not be significantly large.

6 Processor augmentation for limited-preemptive scheduling

This paper quantitatively compares limited-preemptive scheduling with fully preemp-
tive scheduling using the notion of resource augmentation. In the previous sections,
we considered the use of processor speed-up to quantify the sub-optimality of limited-
preemptive scheduling. Instead, in this section, we examine the consequences of hav-
ing more number of processors on the limited-preemptive feasibility (such as done by
Lam and To (1999) for global preemptive EDF). Specifically, we derive the proces-
sor augmentation bound that is defined as the upper-bound on the minimum number
of processors on which any uniprocessor feasible taskset is guaranteed the specified
limited-preemptive behavior. The use of more number of processors is particularly
interesting because of the widespread availability of multi-core systems that can be
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leveraged upon to limited-preemptively schedule hard real-time tasks, while sche-
duling the soft and non real-time tasks in the background.

We first show that, in the worst case, the number of processors required to guar-
antee a specified limited preemptive behavior is equal to the number of tasks in the
taskset. We then derive the processor augmentation bounds for the specific case in
which the specified limited-preemptive length is no larger than half the shortest dead-
line, and show that the upper-bound on the number of extra processor required is 3.
In the following, let us consider the general case in which no restriction is placed on
the specified length of the limited-preemptive region.

Lemma 6 The minimum number of processors on which a uniprocessor feasible
taskset Γ is guaranteed any specified limited preemptive behavior is n, which is the
number of tasks in Γ .

Proof We provide proof by constructing a taskset for which n processors are required
to guarantee limited preemptive feasibility— remember that no restrictions exists on
the values of the deadlines and specified limited-preemption lengths.

Consider a taskset Γ with each τi, i= 2,3, ..,n, having a specified limited-preemption
length Li such that Li > Di−1. In this case it is easily seen that if any two tasks are
scheduled on the same processor, it is impossible to guarantee the limited-preemptive
execution of one of the tasks for a duration equal to the corresponding specified
limited-preemption length. This is because if a task τ j with the shorter relative dead-
line is released when another task τk is executing, and if τk blocks τ j for a duration
Lk then τ j will miss its deadline since Lk > D j. ut

The above result shows that it is not possible to guarantee specified limited-preemptive
behaviors on fewer processors than the number of tasks. Therefore, in general, the in-
creased processing capacity provided by multicore platforms cannot be leveraged to
control preemptive behavior of real-time tasks using limited-preemptive scheduling
(Baruah (2005)), unless each core is assigned a single task. However, the above result
is derived for the worst case in which no assumptions are made about the taskset.
If the largest specified limited-preemption length is no more than half the shortest
deadline, a tighter bound can be obtained. In the following subsection, we derive a
density based test for limited-preemptive scheduling, and then use this test to derive
a tighter processor augmentation bound for limited-preemptive feasibility.

6.1 Density based test for limited-preemptive scheduling

There exists utilization/density based tests for schedulability and feasibility of pre-
emptive real-time tasks under various assumptions (Liu and Layland (1973)). How-
ever, to our knowledge, no utilization or density based test exists for limited- and
non-preemptive scheduling even under restrictive assumptions. Speeding-up the pro-
cessor by a constant factor is equivalent to ensuring a bound on the processor utiliza-
tion (density, in case deadlines can be less than periods).

Yao et al (2010)’s observation that there exists no least upper-bound on the pro-
cessor utilization below which the non-preemptive feasibility can be guaranteed, re-
lies on the fact that it is possible to construct tasksets with arbitrarily low utilization
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that are infeasible under non-preemptive scheduling. We observe that the unschedu-
lability primarily arises because of the fact that at least one task has an execution
time greater than the shortest deadline. Consequently, such a condition can be seen as
a necessary unschedulability test for non-preemptive scheduling, in particular non-
preemptive EDF scheduling, of sporadic real-time tasks.

Observation 1 A sporadic real-time taskset Γ is infeasible under non-preemptive
EDF if,

∃τi ∈ Γ : Ci ≥ Dmin

In the following, we first derive a density based test for limited-preemptive EDF fea-
sibility of sporadic real-time tasks. The test when instantiated in the context of non-
preemptive EDF provides us with a sufficient density based test for non-preemptive
EDF feasibility of sporadic real-time tasks.

Lemma 7 A sporadic real-time taskset Γ is feasible under limited-preemptive EDF,
such that every task can execute non-preemptively for at most Lmax units, if,

δtot ≤ 1− Lmax

Dmin

where Lmax = max
∀τi∈Γ

(L1
i ).

Proof A taskset Γ is limited-preemptive EDF feasible if during any time interval of
length t, the sum of total demand bound and the largest limited-preemptive region of
the tasks in the taskset is less than or equal to t. It is known that,

∑
∀τiinΓ

DBFi(t)≤ δtot × t

Therefore, a sufficient condition to guarantee limited-preemptive EDF feasibility is
given by, ∀t ≥ Dmin

δtot × t +Lmax ≤ t⇒ δtot ≤ 1− Lmax

t

The value of t that maximizes Lmax
t is t = Dmin, and hence, the taskset is limited-

preemptive EDF feasible if:

δtot ≤ 1− Lmax

Dmin

ut

Instantiating the above test in the context of a fully non-preemptive EDF scheduler,
we get the following test for non-preemptive EDF feasibility.

Corollary 4 A sporadic real-time taskset Γ is feasible under non-preemptive EDF
if,

δtot ≤ 1− Cmax

Dmin

where Cmax = max
∀τi∈Γ

(C1
i ).



22 Thekkilakattil, Dobrin, Punnekkat

The tests presented above generalizes to a utilization based test when the deadlines
of the tasks are equal to their time periods. This density based test is interesting since
it runs in a time polynomial in the number of tasks, when compared to the exact
demand bound based tests by Jeffay et al (1991) and Baruah (2005) that runs in
pseudo-polynomial time. The polynomial complexity of the density based test comes
at the cost of necessity i.e., the test presented above is only a sufficient condition
for schedulability. The density based test is especially applicable to the liquid task
model presented by Abdelzaher et al (2002) in which the shortest deadline is orders
of magnitude greater than the largest execution time.

6.2 Processor augmentation bound derivation

We now show that it is enough to use 3 processors to guarantee limited preemptivity
of a uniprocessor feasible taskset Γ for which Dmin

Lmax
≥ 2.

Lemma 8 The number of processors on which a uniprocessor feasible taskset Γ is
guaranteed limited preemptive feasibility, such that Dmin

Lmax
≥ 2, is upper-bounded by 3.

Proof Substituting Dmin
Lmax
≥ 2 in Lemma 7, we get that if the total density of the taskset

is no greater than 50%, the task set is LP-EDF feasible on a uniprocessor.
Therefore, if we partition Γ into subsets such that the utilization of each subset

does not exceed 50%, then we can guarantee the limited preemptive feasibility of
each subset on m unit speed processors, where m is equal to the number of such
subsets.

In the worst case, in order to partition Γ with total utilization Utot ≤ 1 into subset
of tasks, each with total utilization ≤ 1

2 , we need at most 3 processors. ut

The use of more number of processors to achieve predictability can be potentially
interesting in systems where the slack, after scheduling the hard real-time tasks, are
used to schedule soft real-time or non real-time tasks, e.g., using servers. The hard
real-time tasks can be partitioned upon the multiple processors/cores to achieve pre-
dictability, while the soft- and non- real-time tasks can execute upon servers while
maximizing the service to them using known schemes (Leontyev and Anderson (2008)).

7 Discussion

In this section, we discuss the resource augmentation bounds derived in the paper in
different (but related) contexts, as well as clarify some details:

– Enable limited-preemptive feasibility: Feasibility guarantees cannot be pro-
vided under limited preemptive scheduling if the length of the largest non-preemptive
region is greater than the shortest deadline in the taskset. However, as pointed out
by Short (2010), solutions are available to overcome this problem, e.g., by us-
ing code-refactoring or by changing design parameters. Code re-factoring can
be performed to reduce the execution time of real-time tasks, e.g., by the use of
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more efficient code, that effectively amounts to using a faster processor. Simi-
larly, scaling all deadlines/time periods by the same factor is similar to speeding
up the processor 1. Additionally, parallel algorithms can be used to speed-up task
executions, and hence, a specified limited-preemptive behavior can be guaranteed
by using one or more of the above techniques.

Our results: The speed-up bound presented in this paper quantifies the extent
to which code-refactoring must be performed to reduce task execution times, or
the extent to which task parameters must be adjusted, in order to address the un-
schedulability arising out of tasks with very large execution times. Similarly, the
speed-up bound also quantifies the requirement on the amount of parallelizable
code (Amdahl (1967)) when parallel algorithms are used to guarantee limited-
preemptivity.

– Accuracy of timing analysis tools: Most timing analysis tools overestimate the
Worst Case Execution Time (WCET) in order to provide safe bounds, conse-
quently enabling hard real-time guarantees. However, overestimating WCETs
cause significant loss of system utilization. One of the reasons behind this over-
estimation is the fact that it is very difficult to accurately account for preemption
related overheads, especially on fully preemptive systems. On the other hand,
the worst case preemption behavior that maximizes the associated overheads oc-
curs very rarely in practice— nevertheless the system should be built to handle
the worst case to provide hard guarantees. Preemption related overheads depend
on the number of preemptions, as well as the points at which these preemptions
occur. Hence, limiting preemptions to specified points in code improve WCET
predictions since preemption overheads can be more accurately accounted during
timing analysis.

Our results: The accuracy of timing analysis tools can be quantified in terms of
the feasibility of limiting preemptions to specified preemption points in the code.
We plan to further investigate this in a future work by considering the preemption
costs in the analysis.

8 Conclusions

This paper essentially bridges the preemptive and non-preemptive real-time sche-
duling paradigms by providing significant theoretical results building on the limited-
preemptive scheduling paradigm. We investigated the sub-optimality of limited-preemptive
scheduling with respect to a uniprocessor optimal scheduling algorithm, like the pre-
emptive EDF, using the widely accepted notion of resource augmentation. For this
purpose, we investigated how extra resources affect the preemptive behavior of real-
time tasks, and derived bounds on the 1) required processor speed-up and 2) required

1 Note that design parameters such as deadlines and time periods in many systems are negotiable not
only in many soft real-time applications, but also in many hard real-time applications (please refer to
Buttazzo and Abeni (2002) for more details).
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number of processors, that guarantees a specified limited-preemptive behavior. The
derived bounds when instantiated in the context of fully non-preemptive EDF allows
us to quantify the sub-optimality of non-preemptive scheduling. Finally, we use the
derived speed-up bounds to calculate the minimum processor speed-up required that
guarantees a specified limited-preemptive behavior, which in turn minimizes preemp-
tion related overheads in the schedule.

Future work includes extending limited preemptive scheduling to the case of
multiprocessors and deriving corresponding speed-up factors (a recent work that ex-
tended the results presented in this paper to the case of global EDF is presented in
Thekkilakattil et al (2014)), as well as applying resource augmentation to quantify
the accuracy of timing analysis tools.
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