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Abstract—An assurance case comprises evidence and argu-
ment showing how that evidence supports assurance claims
(e.g., about safety or security). It is unsurprising that some
computer scientists have proposed formalising assurance ar-
guments: most associate formality with rigour. But while
engineers can sometimes prove that source code refines a
formal specification, it is not clear that formalisation will
improve assurance arguments or that this benefit is worth its
cost. For example, formalisation might reduce the benefits of
argumentation by limiting the audience to people who can read
formal logic. In this paper, we present (1) a systematic survey
of the literature surrounding formal assurance arguments,
(2) an analysis of errors that formalism can help to eliminate,
(3) a discussion of existing evidence, and (4) suggestions for
experimental work to definitively answer the question.
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I. INTRODUCTION

A safety case is a ‘compelling, comprehensible, and valid’
case that a system is adequately safe for use in a given appli-
cation [1]. Safety cases have received academic attention and
are mandatory in some domains [1]–[3]. Similar cases have
been used for properties such as security or dependability
more broadly [4], [5]. All assurance cases comprise both
evidence and a structured assurance argument explaining
how that evidence supports an assurance claim such as ‘the
system is adequately safe to use in its intended operating
context’. Some authors have proposed formalising all or part
of safety, security, or similar arguments [6]–[25]. Because
most computer science researchers associate formality with
greater rigour, it is not surprising that they would attempt to
formalise assurance arguments. But it is not clear whether
such formalisation brings benefits that outweigh its costs.

Formal methods have been used to show that source code
refines a formal specification (e.g. [26]). But source code is
a formal specification for software; proving that one formal
specification refines another is different from proving a claim
about a system in the real world. Moreover, demonstrating
the validity of a safety rationale is not the (only) purpose of
an assurance argument: assurance arguments are meant as a
tool for managing safety through the life of a system [2],
[27]. This requires communicating the safety rationale to
managers considering operational changes, engineers mak-
ing changes to the system, and safety professionals tracking
system performance trends, amongst others.

Formalisation is not without costs such as limiting the
reading audience to those with the skill needed to read
formal logic and making the argument structures less com-
prehensible. Whether formalisation of assurance arguments
brings benefits that outweigh the imposed costs is an open
but largely unacknowledged research question.

In this paper, we make four contributions: (1) a systematic
literature survey of proposals for formal assurance arguments
and related research, (2) an analysis of the argument errors
that formal analysis can and can’t find, (3) a discussion of
the existing evidence regarding the problem to be addressed
by formalisation, and (4) suggestions for experimental work
to definitively answer the question.

In section II, we provide background on assurance cases,
existing argument notations, and the meaning of ‘formal’.
In section III, we present a literature survey on formal
assurance arguments. In section IV, we discuss fallacies and
the kinds of checks that formalisation might facilitate. In
section V, we summarise what is known about the costs
and benefits of formalisation. In section VI, we sketch
research activities for determining whether formalisation is
worthwhile. Finally, we conclude in section VII.

II. BACKGROUND

In this section, we recount the purposes of assurance
cases, survey existing argument notations, and clarify what
it might mean for an assurance argument to be ‘formal’.

A. The Purposes of Assurance Cases

Any discussion of proposed argument techniques must be
informed by the purposes of those arguments, which are
discussed in standards and in the academic literature [1],
[3], [27], [28]. Because safety cases are used in many
regulatory contexts, engineering disciplines, and domains,
any statement of their purpose will be a generalisation. The
following might be incomplete, but it will serve as a basis
for identifying some functions that safety arguments serve.

UK military contractors must ‘develop, maintain, and
refine the Safety Case through the life of the contract’ [1].
The safety case must be ‘sufficient to demonstrate that the
system is safe, so far as is reasonably practicable’, ‘address
the full life of the system’, and contain evidence that is
‘commensurate with the potential risk posed by the system,
the complexity of the system, and the unfamiliarity of the



circumstances involved’. This includes ‘relevant data from
the use of the system’ to validate or refute the safety ratio-
nale. The safety argument must also record ‘key decisions
made by the safety committee’ for future reference.

Clearly, a safety argument must organise the information
that is needed to judge safety claims. But standards and com-
mon sense also require maintenance of safety throughout the
system lifecycle, including planned and unplanned changes.
Playing its full role across the safety lifecycle will require
a safety argument to communicate many things, including:

• The system-specific operational definition of ‘ade-
quately safe’ (or ‘unacceptable risk’, etc.) to be used

• How the system will manage risk (e.g., safety concept)
• How the designers assume the system will be used
• Which claims developers think the evidence supports
• Which safety considerations the developers (and oper-

ators) think are most important
These details must be conveyed to many people, including:

• Engineers creating or refining the initial design
• Stakeholders judging how safe a system is or will be
• Certifiers and safety assessors
• Operators changing operating procedures
• Safety engineers monitoring safety in the field
• Developers making changes to existing systems

B. Assurance Argument Notations and ‘Formality’

Assurance arguments have been presented in a number
of forms. Many have been written in prose (e.g. [29]).
Others have been presented in tabular notations [2]. Many
papers discussing safety arguments use one of two graphical
notations: the Goal Structuring Notation (GSN) [2], [30]
and the Claims Argument Evidence (CAE) notation [31].
Opinions about which notation is the ‘best’ vary: while many
authors favour GSN or CAE, others favour prose text [32].

Prose, tables, GSN, and CAE are means of recording
‘informal’ arguments. When discussing ‘formal’ assurance
arguments, it is important to be clear that ‘formality’ covers
three distinct issues: (1) specification of syntax, (2) symbols
versus natural-language, and (3) deduction versus induction.

1) Specification of syntax: An argument language might
specify the argument’s syntax without providing a means
to compute the truth of the conclusion. For example, a
graphical argument notation might specify which kinds of
elements can be connected to which other kinds of elements,
yet not constrain the text within those elements (beyond
simple part-of-speech restrictions). These syntax rules might
be expressed in natural language or in a formal notation
such as Backus-Naur Form (BNF). Both the GSN and CAE
notation have syntax rules expressed in prose text [30], [31].
For example, in GSN, goals can directly support other goals
but solutions cannot be in the context of an away goal [30].

2) Symbols versus natural language: An argument’s
claims and premises might be expressed as either (a) natural-
language text or (b) symbols connected by operators. For

example, an arguer using natural-language might claim that
‘the thrust reversers are inhibited when the aircraft is not on
the ground’. In a symbolic language, an arguer might claim
that ‘¬on grnd ⇒ ¬threv en’ (after first defining those
symbols using natural language). Both GSN and CAE use
natural-language text in graphical argument elements.

3) Deduction versus induction: Regardless of whether
it is expressed in text or symbols, an argument might be
either deductive or inductive. (Some writers have pointed
out that these terms can themselves obscure other relevant
distinctions between forms of argument [33]. But for the
purposes of this paper, those common terms will serve.)

In deductive arguments, the truth of the premises entails
the truth of the conclusion. For example, consider the famous
syllogism about Socrates’ mortality: (P1) all men are mortal
and (P2) Socrates is a man, therefore (C) Socrates is mortal.
This argument is deductive even though expressed in natural
language: if (P1) and (P2) are true, (C) must be true.

In inductive arguments, the truth of the premises means
that the conclusion is likely but might be shown to be false by
new evidence. For example, most safety arguments contain
logic along the lines of the following: (P1) hazard identifica-
tion was done adequately and (P2) all identified hazards are
acceptably managed, therefore (C) all hazards are acceptably
managed. An accident involving an unidentified hazard
would refute (C). We could make this argument deductive
by changing (P1) to ‘all hazards have been identified’,
but this would merely relocate the unavoidable induction.
One difficulty with inductive logic is in specifying and
determining how likely claims are or must be. Researchers
have proposed many mechanisms for doing this, none of
which is known to be adequate in all cases [34].

Discussions of assurance argument semantics sometimes
reference Toulmin’s model of inductive argumentation [2],
[33]. Definitions of GSN reference Toulmin but stop short of
defining GSN in terms of Toulmin’s model [2], [30]. (There
is some ambiguity in how GSN is defined and used [35].)

III. A SURVEY OF PROPOSED ARGUMENT FORMALISMS

In this section, we present the method and results of our
survey of proposals to formalise assurance arguments.

A. Research Questions

The objective of the survey was to identify proposed
formalisms and characterise what is known and claimed
about each. More specifically, for each paper:

1) What uses of the argument are discussed? More specif-
ically, what artefact (or part or aspect of one) is
formalised? How is the formalised artefact to be used?
What sort of formalism is to be used? (For example,
which logical notation is used?)

2) Does the formalism replace or augment an informal
argument written in natural-language text?



3) Does the formalisation constrain or affect the argument
structure? If so, how?

4) What benefits of formalisation are noted? More specif-
ically, what potential benefits are mentioned? Which
benefits are specifically claimed? What evidence of
benefit is given or cited?

5) What potential drawbacks are mentioned?

B. Search Strategy

We knew that formalisation had been proposed in both the
safety and security domains. In order to capture both kinds
of proposals, we used two search terms: ‘formal safety ar-
gument’ and ‘formal security argument’. Relevant proposals
might have appeared at safety-, security-, or dependability-
themed conference and workshops. To capture a broad se-
lection of these, we searched four digital libraries: (1) IEEE
Xplore, (2) ACM Digital Library (publications from ACM
and affiliated organisations only), (3) Springer Link, and
(4) Google Scholar (case law and patents excluded). The
first three of these are the libraries of the most relevant
publishers. We added the fourth to include papers published
by smaller, special-purpose publishers. We considered only
English-language results but did not constrain our search to
specific publications, authors, or publication dates. Where
electronic searches returned many results – Springer Link
returned 40,283 results for the query ‘formal security argu-
ment’ – we restricted our attention to the first sixty.

C. Selection Strategy

We selected papers from the search results in two phases.
In the first phase, we examined titles and abstracts and
eliminated papers matching any of the following criteria:

• The title and abstract convey no hint that the paper
might be about a safety, security, or similar assurance
argument or technology related to such an argument

• The paper is about an item of evidence (e.g., proof
that an algorithm has specified properties) rather than
formalisation of a safety or security argument

• The word ‘formal’ is used in a sense other than that of
formalised syntax or symbolic or deductive logic

In the second phase, we examined the papers’ full texts.
We eliminated papers matching any of the following criteria:

• The paper is not concerned with a system of docu-
menting support for a safety claim, security claim, or
other dependability claim (regardless of whether this
system is explicitly named a safety case, assurance case,
security case, dependability case, or trust case)

• The paper does not discuss (even in passing) a means
of recording the linkage from evidence to dependability
claim that uses symbolic or deductive logic

We then read each selected paper and recorded our
answers to the questions listed in subsection III-A. Paper se-
lection and characterisation was done by a single researcher.

Table I
NUMBER OF PAPERS SELECTED IN THE FIRST SELECTION PHASE

Digital library Safety Security

IEEE Xplore 12 13
ACM Digital Library 17 7
Springer Link 24 2
Google Scholar 8 1

Unique results (72 total): 54 23

We might obtain more complete and accurate results by
querying more databases, considering more results from
each, or including multiple researchers. However, we are
not relying upon inclusion or exclusion decisions to make a
quantified conclusion about a proposition. Our approach is
sufficient to provide a reasonably-complete list of the kinds
of argument-formalisation proposals that have been made.

D. Survey Findings

Table I gives the number of papers we selected from
each digital library in phase one. Phase two yielded twenty
selected papers [6]–[25]. Since many of the papers report on
ideas that the same authors had reported in other selected
papers, we summarise related papers together below.

The papers and proposals vary dramatically. Some pro-
pose formalising syntax, while others propose symbolic
notation. Some propose formalising safety arguments, while
others propose formalising similar arguments such as se-
curity requirements satisfaction arguments. But few make
explicit claims about the benefit of formalisation, and none
backs up such a claim with substantial evidence.

E. Basir, Denney, Fischer, Pai, and Pohl: Automatically-
Generated Arguments

Three of the selected papers detail efforts by Basir, Den-
ney, Fisher, Pai, and Pohl to automatically generate safety
arguments from symbolic, deductive proofs [6], [7], [10].

1) Uses of the formalised argument: In all three papers,
the authors propose using a theorem prover to create a
symbolic, deductive proof and then automatically generate
a safety argument from that proof [6], [7], [10]. In the 2009
paper, premises used in the proof, such as

hi(attitudeBodyToNav_lv, 0)=A, 3::A)
&hi(attitudeBodyToNav_0, 0)=B, 3::B
&hi(dcmtoQuat_Single2, 0)=C, 3::C)
& ... => ... &has_unit(J, ang_vel))

become goals in the generated GSN argument [6]. In the
2010 paper, the generated argument contains more natural
language text surrounding the formal predicates [7]. For ex-
ample, one goal reads, ‘Formal proof that Quat4::quat(NED,
Body) holds for Fc.cpp’. (This goal, like others in the paper,
is not a proposition as GSN requires [2].) In the 2012 paper,
goals are also formal expressions within text frames [10].

The proposed scope of the generated arguments decreases
as the authors refine their work. In 2009, the authors



‘believe[d] that the result of [their] research [would] be
a comprehensive safety case (i.e., for the program being
certified, as well as the safety logic and the certification
system) that [would] clearly communicate the safety claims,
key safety requirements, and evidence required to trust the
software’ [6]. By 2012, the formalism is limited to proof that
source code refines a formal specification: ‘We auto-generate
safety argument fragments for the software components of
the example system from formal proofs of correctness. Then,
we automatically assemble these with the manually created
safety arguments, obtained from traditional safety analysis,
which are applicable to the wider system context’.

2) Relationship to informal argument: Basir et al. suggest
automatically generating an argument from a proof [6], [7],
[10]. The generated argument presents the logic of the proof
to the reader, ostensibly in an easier-to-understand form.

3) Effect on argument structure: In the proposed scheme,
the structure of the generated argument will follow that of
the proof from which it is generated [6], [7], [10]. Since
automatically-generated proofs can be obscure, the authors
‘concentrate on natural deduction style proofs, which are
closer to human reasoning than resolution proofs’ [6].

4) Noted benefits and drawbacks: In the 2009 and 2010
papers, Basir et al. claim that the generated argument makes
proofs more readable and gives the information needed to
trust the proof evidence [6], [7]. However, they claim no
benefit that an argument derived from a proof might have
over a hand-generated, informal argument. Moreover, they
note that ‘the straightforward conversion of . . . proofs into
safety cases is far from satisfactory as they typically contain
too many details’ and suggest future work on abstraction [6].

In the 2012 paper, Denney et al. claim to have shown
that automatic generation of argument from proof is feasi-
ble [10]. In passing, they also imply that automatic gen-
eration is needed to make safety-case-based certification
practical, asserting that writing arguments ‘quickly becomes
unmanageable during iterative systems and software devel-
opment’. Although development has not halted everywhere
safety cases have been adopted, the authors neither elaborate
nor offer evidence for this claim. Moreover, since the usual
alternative is to cite formal proof evidence as a solution [2],
the magnitude of any reduction in effort is unclear.

F. Bishop and Bloomfield: Deterministic Arguments

Bishop and Bloomfield raise the possibility of machine-
checked, deductive safety arguments in passing [8].

1) Uses of the formalised argument: The authors mention
that part of a safety argument ‘could be . . . deterministic,
where evidence can be axioms, the inference mechanism is
the rules of predicate logic, and the safety argument is a
proof using those rules’ [8]. They provide no example but
reference Gentzen: ‘There is much work on structuring and
representation of arguments in mathematical logic [36]’. In
later sections, the authors write that a deterministic argument

should support ‘a claim or sub-claim by showing that, given
some assumptions and a model of the real world, certain
hazardous behaviours are “incredible”’. Such arguments
‘would normally require a formal model of the system and
a proof that the system is safe with respect to its safety
requirements . . . . The supporting evidence could include
. . . explicit validation of the model assumptions [and] an
independent check of the formal argument’.

2) Relationship to informal argument: Bishop and
Bloomfield seem to suggest that symbolic, deductive logic
could replace part of a textual safety argument [8].

3) Effect on argument structure: It is not clear what
effect the proposal from Bishop and Bloomfield (again, made
briefly and in passing) would have on argument structure [8].

4) Noted benefits and drawbacks: None.

G. Brunel and Cazin: Arguments in LTL

Brunel and Cazin propose formalising a requirements
engineering goal structure into symbolic, deductive logic so
that it can be mechanically verified [9].

1) Uses of the formalised argument: Brunel and Cazin
propose a formal argument semantics ‘that allows automatic
validation of the argumentation’ and ‘a pragmatic approach
based on this framework to easily edit and validate a
safety argumentation [sic]’ [9]. Claims are expressed in a
symbolic, deductive language, namely linear temporal logic
(LTL). For example, the claim that the ‘Detect and Avoid
function is correct’ is formalised as ‘G (dobstacle < dmin) →
((dobstacle 6= 0) ∪ ((dobstacle > dmin)))’.

2) Relationship to informal argument: Brunel and Cazin
seem to propose first developing a KAOS goal structure [37]
and then deriving the formalised argument from this [9].

3) Effect on argument structure: In the proposed scheme,
the formal argument’s structure reflects that of the KAOS
goal structure from which it is derived [9].

4) Noted benefits and drawbacks: Brunel and Cazin
claim to have addressed the ‘objective of developing a clear,
convincing, formal, and verifiable argumentation [sic]’ by
developing ‘a formal semantics, based on LTL, . . . [that
facilitates] tackl[ing] the problems of validity and comple-
tion’ [9]. They offer no evidence that the formal argument
is clear, that the entire argument can be formalised, or that
informal arguments are frequently invalid or incomplete. But
they do note that ‘ “pretty” presentation of an argumentation
should be also a major concern as we must keep in mind
that the ultimate objective is to convince, not a specialist of
temporal logic, but a certification authority instead’.

H. Denney, Naylor, and Pai: Annotated Informal Arguments

Denney, Naylor, and Pai propose that developers ‘semanti-
cally enrich . . . GSN nodes’ to enable developers to express
structured queries about an argument’s contents [13].



1) Uses of the formalised argument: Denney et al. pro-
pose that ‘in addition to the descriptive text’ that argu-
ments comprise, developers should ‘associate nodes with
metadata’ [13]. This metadata has the form ‘attribute ::=
attributeName param*’ where ‘param ::= String | Int | Nat |
. . . userDefinedEnum’. The paper gives ‘element ::= aileron |
elevator | flaps . . . ’ as an example enumeration.

2) Relationship to informal argument: The authors pro-
pose adding formal annotations to informal arguments [13].

3) Effect on argument structure: Annotating an informal
argument shouldn’t affect its structure.

4) Noted benefits and drawbacks: Denney et al. claim
that formalisation enables rich querying [13]. For example,
they claim to be able to ‘generate a view . . . of traceability to
only those hazards whose likelihood of occurrence is remote,
and whose severity is catastrophic’. The authors support this
claim with an example query. The only potential drawback
they mention is the cost of creating the necessary ontologies,
which they plan to address with tool support. The paper
neither makes nor supports the claim that the benefits of
rich querying over simple text search outweigh the costs of
developing the ontology and annotating the argument.

I. Denney, Pai, and Whiteside: Formally-Specified Syntax

In two papers, Denney, Pai, and Whiteside propose for-
malising the syntax of GSN so as to ease pattern instantiation
and enable the construction of ‘hicases’ that allow readers to
collapse or expand parts of arguments on screen [11], [12].

1) Uses of the formalised argument: In both papers, the
authors propose the same formalism of GSN syntax [11]:

Let {s, g, e, a, j, c} be the node types strategy,
goal, evidence, assumption, justification, and con-
text respectively. A partial safety case argument
structure S is a tuple 〈N, l, t,→〉, comprising the
set of nodes, N , the labeling function l . . . that
gives the node type, t . . . giving the node contents
. . . and the connector relation, → . . . .

This formalism allows them to define syntax rules. For
example, both papers give a formalisation of the rule that
‘goals cannot connect to other goals’ [11]: (n→ m) ∧
[l(n) = g] ⇒ l(m) ∈ {s, e, a, j, c}. (Note: GSN explicitly
allows goals to support other goals [30].)

In their hicases paper, Denney et al. show formalised
content in the example arguments [12]. For example,
one goal reads, ‘output->m aileron m1p1 has property de-
sired(aileron) (i.e., has unit(output->m aileron m1p1, de-
sired(aileron)) holds.)’. This formalisation of the example
argument’s content appears to the result of the choice of
example rather than a consequence of the paper’s proposal.

2) Relationship to informal argument: In both papers, the
authors propose formalising the argument syntax; the GSN
elements might still contain natural-language text [11], [12].

3) Effect on argument structure: Except for errors in their
formalisation of GSN, the syntax of any GSN argument
could be formalised as the authors propose [11], [12].

4) Noted benefits and drawbacks: In their patterns paper,
Denney and Pai claim that formal syntax enables ‘automated
instantiation, composition, and transformation-based manip-
ulation’ [11]. (This claim is perhaps misleading: humans
must still supply the content for the instantiated pattern,
whether in a table or other form.) The authors claim that

the main benefit of our work . . . , we anticipate, is a
reduction in the effort involved in safety case cre-
ation/management . . . together with improved as-
surance. Specifically, given the assurance afforded
by automated instantiation that a pattern instance
is well-formed and meets its specification, . . .
safety engineers . . . and certification/qualification
authorities . . . can divert efforts to domain-specific
issues, e.g., selecting the appropriate patterns for
assurance, evaluating a smaller, abstract argument
structure for fallacies/deficits instead of its larger
concrete instantiation, determining the evidence
required to support the claims made, etc.

Nevertheless, the authors offer no direct evidence of reduced
effort and no evidence that developers make frequent or
problematic syntax errors when instantiating GSN patterns.

In the paper on hicases, Denney et al. make no specific
claims about the benefits of formalising syntax save that it
enabled the creation of their display and editing tools [12].

J. Forder: A Safety Argument Manager

Forder describes an early argument editing tool [14]. In
passing, he suggests the possibility of ‘formal statements’ in
arguments. We include this paper despite the brevity of its
suggestion because it indicates that interest in formalisation
dates from the early days of safety argumentation research.

1) Uses of the formalised argument: Describing the in-
ternal structure of safety argument software, Forder writes
that ‘the use of formal statements in models and arguments
will allow automatic detection of inconsistencies in models,
in arguments, and between arguments and models’ [14].

2) Relationship to informal argument: No clear relation-
ship between formal and informal argument is specified [14].

3) Effect on argument structure: The paper does not
clarify the effect of formality on the argument structure [14].

4) Noted benefits and drawbacks: This paper does not
discuss any benefits or drawbacks of formalisation beyond
the allusion to automatic checking above [14].

K. Franqueira, Haley, Laney, Moffet, Nuseibeh, Tadeschi,
Tun, and Yu: Security Requirements Satisfaction Arguments

In selected papers from 2006 and 2008, Haley et al.
suggest ‘security requirements satisfaction arguments’ split
into formal and informal parts [15], [16]. Tun et al. extend
these ideas in a 2010 paper [24] and Yu et al. present a



related tool in 2011 [25]. While these security requirements
satisfaction arguments are not security assurance arguments,
we include them because they are broadly similar.

1) Uses of the formalised argument: In their 2006 pa-
per, Haley et al. suggested splitting security requirements
satisfaction arguments into outer and inner arguments [15]:

The [outer] part of the argument consists of a
formal argument to prove that a system can satisfy
its security requirements, drawing upon claims
about the behavior and properties of domains
in a system. The claims about behavior of the
domains are trust assumptions . . . . The [inner] part
of the argument consists of structured informal
arguments to support the trust assumptions . . .
made in the formal argument.

Examples in the 2008 paper make the nature of both parts
clear. The outer argument is given in symbolic, deductive
logic. The authors provide the following example [16]:

1 I → V (Premise)
2 C → H (Premise)
3 Y → V&C (Premise)
4 D → Y (Premise)

5 D (Premise)
6 Y (Detach (→ elimination), 4, 5)
7 V&C (Detach, 3, 6)
8 V (Split (‘&’ elimination), 7)
9 C (Split, 7)
10 H (Detach, 2, 9)

11 D → H (Conclusion, 5)
The inner argument justifies the premises assumed by the
outer argument. Inner arguments are given in extended Toul-
min notation. The authors give the following example [16]:

given grounds G2: "Valid credentials are
given only to HR members"

warranted by (
given grounds G3: "Credentials are given

in person"
warranted by G4: "Credential administrators

are honest and reliable"
thus claim C1: "Credential administration

is correct")
thus claim P2: "HR credentials provided -->

HR member"
rebutted by R1: "HR member is dishonest", ...

Security requirements satisfaction arguments are not security
assurance requirements: they are meant to help requirements
engineers to develop and explore security requirements, not
as a means to collect and explain all of the evidence that
shows that a given system is acceptably secure.

In their 2010 paper, Tun et al. present more examples, but
the nature and purpose of the proposed formalism remains
essentially the same [24]. In their short 2011 paper, Yu et
al. describe their tool for creating these arguments [25].

2) Relationship to informal argument: Following the
proposal of Haley et al., developers create formal outer
arguments in lieu of informal argumentation [15], [16].
These ideas are used in later work [24], [25].

3) Effect on argument structure: The formal outer argu-
ments have a different structure than informal arguments
(such as the inner arguments) [15], [16].

4) Noted benefits and drawbacks: In the 2006 paper,
the authors introduce their requirements engineering ‘frame-
work’ but make no claims about its properties (e.g., feasibil-
ity, relative ability to reveal subtle security issues, etc.) [15].
The authors make no specific reference to the benefits or
drawbacks of the formalism they propose.

In the 2008 paper, the same authors present the same
framework in greater detail [16]. They conclude, in part,
that the ‘satisfaction argument facilitate[s] showing that a
system can meet its security requirements. . . . By first
requiring the construction of the formal argument based on
domain properties, one discovers which domain properties
are critical for security’. The authors note that ‘the more
rigorous the process used to establish [requirements] satis-
faction, the more confidence one can have that the system
will be secure. The strongest process is a proof. A weaker
alternative to a proof is an [informal] argument’. The authors
note no drawbacks of formality, except to point out the
relative benefits and advantages of specific formalisms. They
theorise that ‘use of a more fine-grained logic in the outer
argument may lead to fewer trust assumptions in the inner
argument. On the other hand, more expressive logics come
at the expense of tractability of reasoning and of potential
decidability problems’. The authors note that some industrial
partners ‘did not see the utility of [formal] outer arguments
and wanted to proceed directly to the inner arguments’.
They respond, ‘it is the outer argument that provides the
assumptions to be tested in the inner arguments’ but do not
explain why these must be formal.

In their 2010 paper, Tun et al. make no specific claims
about the benefits or drawbacks of argument formality [24].

In their 2011 paper, Yu et al. claim that ‘the use of infor-
mal and formal arguments is helpful to domain experts’ [25].
They do not elaborate, and cite for support a ‘case study’
described without the detail required to assess it, e.g., what
data they gathered and how these support the claim [38].

L. Matsuno and Taguchi: Formalised GSN (Patterns)

Matsuno and Taguchi propose formalising GSN patterns
[17], [18]. They define both a formal syntax and a means of
replacing placeholder text during instantiation.

1) Uses of the formalised argument: In his 2011 paper,
Matsuno presents ‘a proposal towards [formalised] param-
eterisation of patterns in GSN’ [17]. He gives a formal
syntax for the pattern’s structure and a formal mechanism for
replacing placeholder text. Annotations record instantiation
values. For example, ‘[2/x, ε/y, “hello”/z] represents that
x and z are instantiated with 2 and “hello”, respectively,
whereas y is not instantiated’. Parameters might be integers,
strings, or user-defined sets. The authors discuss placing



further limits on parameter values, giving the example of
restricting a claimed CPU utilisation to the range 0–100%.

In their 2014 paper, Matsuno and Taguchi claim to ‘give
a formal definition and the semantics for GSN and its
extensions’ [18]. Despite this claim, the paper does not
define what an argument means (i.e., its ‘semantics’). The
authors present essentially the same formal syntax and
pattern mechanism given in the earlier paper.

2) Relationship to informal argument: The proposal for-
malises the syntax of GSN and gives a mechanism for re-
placing placeholder text [17], [18]. Non-placeholder content
in patterns is given informally as natural language text.

3) Effect on argument structure: The proposed formalism
does not seem to encode any more restrictions on argument
structure than are given in the GSN standard [17], [18], [30].

4) Noted benefits and drawbacks: In his 2011 paper, Mat-
suno claims that his parameterised and typed expressions and
scoping rules ‘provide the safeguard to misuses of patterns
. . . and the means to automate checking [instantiations’]
type consistency’ [17]. In their 2014 paper, Mastuno and
Taguchi claim that machine checking of formalised patterns
‘will help to avoid misuses of parameterized expressions and
to detect errors in early stages. . . . If a user instantiates
[a placeholder reading ‘System X’] with e.g., “Railway
hazards”, then the argument does not make sense. It is
fairly obvious that type checking prevents such a mis-
placement’. Neither paper presents evidence of widespread
or problematic misuse of patterns that could be caught by the
proposed checks. Neither paper mentions any drawbacks.

M. Rushby: Partial Formalisation Into Proofs

Rushby proposes formalising as much as possible of the
safety argument into deductive, symbolic logic that can be
checked by a proof checker [19], [20].

1) Uses of the formalised argument: In his 2010 paper,
Rushby recognises that some parts of a safety argument
cannot be formalised into symbolic, deductive logic [19]:

Although a safety case is an argument, it will
generally contain elements that are not simple
logical deductions: some elements of the argument
will be probabilistic, some will enumerate over a
set that is imperfectly known (e.g., “all hazards
are adequately handled”), and others will appeal
to expert judgement or historical experience.

He proposes formalising the parts of the argument
that ‘lend themselves to this process’ in symbolic
logic such as ‘good_doc(approp_claim_doc) IMPLIES

appropriate(claim, system, context)’. In his 2013
paper, Rushby endorses the same formalism [20].

2) Relationship to informal argument: In both papers,
Rushby proposes encoding the formalisable portions of the
argument in symbolic logic that will be manipulated using
theorem proving and proof checking tools [19], [20]. In the
2010 paper, he mentions that existing informal techniques

might serve as the means of developing the argument:
‘my aim is not to supplant GSN or other methods for
developing and documenting safety cases in a systematic
and reader-friendly manner: rather, it is to provide a means
for mechanically checking the logical soundness of cases de-
veloped through these or any other methods’. While it is not
clear whether the formalised argument would replace or be
maintained in parallel with its informal source, the remaining
informal part establishes the truth of formal premises. For
example, after reviewing approp_claim_doc and finding it
appropriate for some unspecified purpose, ‘reviewers can in-
dicate their assent by adding good_doc(approp_claim_doc)

as an axiom’. It is not clear whether every axiom would
require support from a structured informal argument.

3) Effect on argument structure: It not clear whether the
proposed formal argument should have the structure of an
informal argument. In his 2013 paper, Rushby suggests use
of tool support that might, in his view, obviate the need for
human readability [20]. Specifically, he suggests real-time
interaction with proof tools as a means of understanding
how premises affect an argument [20]: ‘Evaluators . . . could
actively probe the argument using “what-if” exploration
(e.g., temporarily remove or change an assumption and
observe how the proof fails, or inspect a counterexample)’.

4) Noted benefits and drawbacks: In his 2010 paper,
Rushby suggests that mechanical verification might replace
human scrutiny of the formalised parts of the argument [19]:
‘By formalizing the elements that do lend themselves to this
process, we may be able to reduce some of the analysis
to mechanized calculation, thereby preserving the precious
resource of expert human review for those elements that
truly do require it’. However, he notes what whether formal
argument verification is worthwhile ‘depends on whether
unsoundness is a significant hazard to real safety cases’.
He suggests that it might be, noting that theorem provers
have found subtle flaws in his formal verification proofs. He
concludes, ‘the most important tasks for the future . . . are
experiments to determine whether formalization does deliver
benefit in the development and assessment of safety cases’.

In his 2013 paper, Rushby proposes that [19]
evaluation of a safety case argument can – and
should – largely be reduced to calculation. . . .
[My] basic claim is that evaluation of large safety
cases will benefit from – indeed, requires – auto-
mated assistance. . . . Formal verification systems
provide tools that can be adapted to represent,
analyze, and explore the logic of our case, thereby
largely eliminating logic doubt.

Rushby presents no empirical evidence that evaluation of
safety arguments either benefits from or requires the assis-
tance of formal tools. Instead, he concludes that ‘the diag-
nosis and proposals in this paper are deliberately speculative
and, perhaps, provocative. . . . Suggested research directions
are simple: try this out and see if it works’.



N. Sokolsky, Lee, and Heimdahl: First-Order Logic

Sokolsky et al. mention in passing that they are ‘exploring
the use of multi-sorted first-order logic for . . . formalization
[of safety arguments]’ for medical devices [39].

1) Uses of the formalised argument: They note that a for-
malism that ‘does not capture the meaning of the argument,
but only its logical structure, might be possible’ [39].

2) Relationship to informal argument: The authors do not
elaborate on the proposal in this paper [39].

3) Effect on argument structure: While the authors do
not elaborate, the use of a symbolic, deductive logic would
likely have an effect on the argument’s structure.

4) Noted benefits and drawbacks: The authors claim that
‘logical fallacies are common in assurance cases,’ citing
Greenwell et al. [39], [40]. They claim that the proposed
formalisation ‘will be able to capture logical fallacies, that is,
inconsistent arguments that cannot be true regardless of what
is being argued’. (However, as we show in subsection V-B,
the fallacies that can be detected by formal verification alone
are not the sort that Greenwell et al. found.)

O. Tolchinsky, Modgil, Atkinson, McBurney, and Cortés:
Decision Support

Tolchinsky et al. propose using non-monotonic logic as an
on-line decision-making tool for humans performing safety-
critical tasks [23]. Safety arguments are not typically used
this way, but have broadly similar scope and content.

1) Uses of the formalised argument: Tolchinsky et al.
describe using a non-monotonic logic and associated tools
to implement an on-line aid for making safety-critical de-
cisions [23]. Claims are expressed using symbolic predi-
cates (e.g., treat(r,penicillin)) and stored in the tool’s
database. Using dialogue games, the argument is updated
with the details relevant to the safety of a proposed action
(e.g., transplanting a given organ into a given patient) and
used to explore factors that might make that action unsafe.

2) Relationship to informal argument: Tolchinsky et al.
do not relate their work to traditional safety arguments [23].

3) Effect on argument structure: Tolchinsky et al. do not
relate their work to traditional safety arguments [23].

4) Noted benefits and drawbacks: Tolchinsky et al. dis-
cuss some of the limits and challenges of the non-monotonic
logic tools in question but not the pros and cons of formal-
isation as opposed to informal logic presentation [23].

P. Tun, Bandara, Price, Yu, Haley, Omoronyia, and Nu-
seibeh: Policy checking

Tun et al. ‘propos[e] an extended argumentation language
for . . . selective disclosure requirements’ [22].

1) Uses of the formalised argument: Tun et al. propose
formalising arguments about privacy into the Event Calcu-
lus [41]. The authors give the following example:

[time,user,subject,loc]
(HoldsAt(SamePF(user,subject),time) |
HoldsAt(Friends(user,subject),time)) &

(Happens(Tap(user,subject),time) ->
(Happens(Query(subject,loc),time+1) &
Happens(At(subject,loc),time+2))).

The formalised arguments are input into a reasoning tool ‘so
that requirement satisfaction can be reasoned about’.

2) Relationship to informal argument: The arguments
might be initially formulated in extended Toulmin form, but
are ultimately formalised [22].

3) Effect on argument structure: It is not clear whether
the formalisation process imposes any limits on the structure
of the original informal arguments [22].

4) Noted benefits and drawbacks: Tun et al. claim that
‘formalization of privacy norms and arguments are [sic]
useful because they can be used to check some important
privacy properties in the system. These properties include:
(1) information availability . . . , (2) denial . . . , and (3)
explanation’. The authors mention no potential drawbacks.

IV. ASSURANCE ARGUMENT FALLACIES

Six of the twenty papers make or imply claims that
mechanical validation will justify greater confidence in the
argument’s conclusions [9], [11], [16]–[18], [39]. None
provide substantial evidence for this claim. We cannot know
why authors did not hypothesise specific benefits or provide
appropriate evidence. However, some readers might assume
that formality reduces the risk of human error. In this section,
we explore the errors that formality might help to catch.

The philosophy community has long been concerned with
the ways in which arguments might be defective. Whole
books have been written on the subject [42]. Philosophers
and safety researchers have even collaborated to define a
taxonomy of fallacies specific to safety argumentation [40].
Understanding the potential of formalism to detect and pre-
vent faulty reasoning requires understanding the difference
between formal fallacies and informal fallacies.

A. The Formal Fallacies

A formal fallacy is a flaw in the form of an argument [42].
If we replaced an argument’s identifiers with meaningless
symbols, the flaws we could identify in the relationships
between those symbols are formal fallacies. Names and
definitions of fallacies vary, but one textbook lists eight:
(1) begging the question, (2) incompatible premises, (3) con-
tradiction between premise and conclusion, (4) denying the
antecedent, (5) affirming the consequent, (6) false conver-
sion, (7) undistributed middle term, and (8) illicit distribu-
tion of an end term [42]. Formal fallacies are often defined
in terms of symbols. For example, an argument in which C
is both the conclusion and a premise begs the question.

B. The Informal Fallacies

An informal fallacy cannot be detected through examina-
tion of argument form alone. Philosophers have been cata-
loguing informal fallacies for millennia: Aristotle identified
what we now call the equivocation fallacy – in which one



identifier represents different meanings in different parts of
the argument – in 350 BCE [43]. There are many modern
catalogues of fallacies (e.g., [42]). As with formal fallacies,
lists differ: some include fallacies that others omit, and
different lists might define the same fallacy differently.

Care is needed to identify informal fallacies. For example,
arguing from ignorance is defined as ‘arguing for the truth
(or falsity) of a claim, because there is no evidence or
proof to the contrary’ [42]. Such arguments look very like
legitimate arguments for the absence of something. For
example, suppose that a suburban householder argues the
that there is no car in her garage because she has opened
it, looked inside, and seen no car. Her argument is sound
even though it claims the absence of a car based on the lack
of a counterexample. We should accept her conclusion to a
degree limited by the adequacy of her search procedure.

C. What Formalism Can’t Help With

Computers process the form of arguments but not their
real-world meaning. Thus, mechanical verification might
identify formal fallacies but cannot show the absence of
informal fallacies. For example, consider the formalised
argument about the fictional Desert Bank given in Figure 1.
Banks are adjacent to rivers and syllogisms are valid deduc-
tive arguments. Given these (true) premises, Prolog falsely
concludes that the Desert Bank is adjacent to a river. The
equivocation is obvious to a human: ‘bank’ refers to two
different real-world entities. But because equivocation is an
informal fallacy, automatic verification cannot catch it.

Merely rendering an argument into a symbolic, deductive
form and subjecting it to proof checking cannot show that
the conclusion is trustworthy. Submitting only the informal
parts of a partially-formalised argument to human review is
also insufficient. In a full-sized software safety argument,
there will be seemingly-problematic formal premises such
as claims about execution times measured under the false
assumption that tasks are never interrupted. Only by ex-
amining how such premises are used in the argument can
humans determine whether the argument is sound.

V. WHAT WE KNOW SO FAR

Given the role argumentation now plays in system de-
velopment and certification (e.g., [1], [3]), the potential to
increase confidence in safety conclusions or solve practical
problems is of interest. But it is not clear that the problems
that formalisation could solve are unacceptably prevalent in
practice. In this section, we explore what is presently known
and how this relates to claimed benefits of formalisation.

A. Do Writers Instantiating Patterns Make Syntax Errors?

Four of the selected papers suggest formalising the syn-
tax of graphical arguments whose elements contain natural
language text [11], [12], [17], [18]. These papers offer no
evidence that writers of assurance arguments routinely err in

From these premises:
is_a(desert_bank, bank).
adjacent(bank, river).
adjacent(X, Y) :- is_a(X, Z), adjacent(Z, Y).

We can ‘prove’ that:
adjacent(desert_bank, river).

Figure 1. A flawed argument (in Prolog) that would pass formal validation

ways that formal verification could detect, e.g., by omitting
claims from pattern instantiations or replacing placeholders
standing for the same concept with incompatible text. We
know neither of such evidence nor of evidence that such
errors would not be caught by a simple manual review of
the argument. If formality solves a rare problem, the side
effects of the cure might be worse than the disease.

B. Are Formal Fallacies Prevalent in Practice?

Eleven of the selected papers suggest formalising all or
part of the content of arguments into symbolic, deductive
logic [8], [9], [14]–[16], [19], [20], [22], [24], [25], [39].
Four of these explicitly mention mechanical verification of
the formalised argument [9], [19], [20], [22]. Mechanical
verification is an obvious reason to use a symbolic, deductive
logic. However, only one paper makes any effort to show
that the problem mechanical checking could solve actually
exists [39]. That paper claims that a review of three safety
arguments [40] showed that ‘logical fallacies’ are common
in safety arguments and that formalisation will allow tools
to identify these. But this line of reasoning requires showing
that formal fallacies, not informal fallacies, are common. In
the three arguments, Greenwell et al. actually found seven
kinds of fallacies [40]: (a) 3 instances of drawing the wrong
conclusion, (b) 10 instances of fallacious use of language,
(c) 2 instances of fallacy of composition, (d) 4 instances of
hasty inductive generalisation, (e) 5 instances of omission
of key evidence, (f) 5 instances of red herring, and (g) 16
instances of using the wrong reasons. Greenwell’s fallacy
taxonomy for safety arguments does not divide fallacies into
formal and informal categories [44]. But none of seven kinds
of fallacies found is strictly formal, and it is not clear that
formalisation would help to identify or avoid these.

A proof checker can prevent drawing the wrong conclu-
sion from symbolic premises using deductive logic. How-
ever, one can still assert a formal premise on the basis
of evidence that doesn’t support it (e.g., wcet(task_1,

250) because of ‘unit test results’). One might also assert
that a conclusion follows from formal premises that don’t
support it (e.g., code_reviewed ∧ unit_tests_passed ⇒
meets_deadlines). Human review of the asserted premises
is needed to detect this fallacy.

The identified fallacious uses of language were ambiguity.
Symbols might be unambiguous, but the natural language
that binds them to a real-world meaning can be ambiguous.



In a hasty inductive generalisation, the arguer claims
that because a proposition is true for some set members,
it is true for all. Formalisation into deductive logic might
drive such reasoning into the informal part of the argument.
Alternatively, the arguer might simply assert the inductive
generalisation as a deductive rule. A proof checker cannot
know whether a set used in a formal, deductive argument is
complete with respect to the real world entity it models.

A fallacious composition is an argument that erroneously
concludes that something has a property because each of its
components does. But the fallacy exists only where the parts
can interact to affect the property. A theorem prover cannot
know how elements in the real world can interact.

Detecting omission of key evidence requires understand-
ing what evidence is key to a given argument. Formalisation
might force arguers to assert that a conclusion can be drawn
from certain premises, but cannot validate such assertions.

Red herrings are a little different. Proof checkers are not
distracted by (formally) irrelevant premises. But red herrings
are just one form of non sequitur; an arguer might assert a
rule that allows them to draw a conclusion from an irrelevant
premise (amongst others). If argument confidence is assessed
mechanically (e.g., through BBN modelling [34]), asserting
such a rule would artificially raise the assessed confidence.
Symbol names raise a separate issue: while names are
meaningless to machines, arguers might choose names that
mislead human readers.

An arguer uses the wrong reasons when the premises are
not ‘appropriate to the claim’ [42]. This is similar to drawing
the wrong conclusions and could be missed in the same way.

Human review is needed to catch such informal fallacies.
Formalisation might move such errors to the informal part of
the argument or encode them as false premises, but machine
checking alone cannot eliminate them.

C. Do Human Reviewers Miss Formal Fallacies?

Human reviewers can fail to spot fallacies: Greenwell et
al. report results from two different reviewers that show that
each overlooked some fallacies that the other flagged [44].
(Perfect agreement between reviewers is not expected: a sin-
gle bad reasoning step might plausibly satisfy the definitions
of more than one informal fallacy.) But it is the efficacy of
humans at spotting formal fallacies that is at issue in the
argument for formalisation, and this remains unknown.

VI. HOW WE COULD ANSWER THE QUESTION OF
COST-EFFECTIVENESS

A sound assessment of formalisation of assurance ar-
guments must consider whether the benefits outweigh the
costs, including the costs of side effects. If making it harder
for some readers to understand the argument leads to more
safety-related errors than formal verification finds, formali-
sation might make systems less safe. Direct, timely, holisitic
assessment of the overall benefit of formalisation would be

difficult to provide. But we could assess specific benefits,
costs, and side effects that might affect the overall benefit
of arguments playing the roles discussed in subsection II-A.
In this section, we propose assessments of five such factors:
(1) the ability to automatically identify formal fallacies,
(2) the effort of formalisation, (3) restriction of the reading
audience, (4) more reliably correct pattern instantiation, and
(5) complication of evidence sufficiency judgments.

A. The Ability to Automatically Identify Formal Fallacies

Even if informal fallacies necessitate human review of
assurance arguments, automatic detection of formal fallacies
might yield faster reviews, more reliable identification of
formal fallacies, or both. We could measure the effect on
effort experimentally: one group of volunteers reviews an
argument for informal fallacies only, the other for both
informal and formal fallacies, and the experimenters measure
time taken. The number of formal fallacies missed in manual
review can be counted. The results might vary from system
to system, but even data from one or two systems would be
better than having no assurance-argument-specific data.

B. The Effort of Formalisation

Three of our selected papers proposed constructing argu-
ments first in informal form and then formalising them [9],
[19], [22]. In these cases, formalisation poses a cost that
must be compared to any benefits. This cost could be mea-
sured by observing volunteers performing the formalisation
task and measuring the time needed. (The study design
would have to account for learning effects and for the impact
of formal methods expertise.) Comparing this cost to an
operational risk benefit might be difficult, but theories of
risk acceptability [45] address this standard challenge.

C. Restriction of the Reading Audience

Assurance arguments serve several purposes, including
communicating concepts such as how the system will man-
age risk to a wide variety of stakeholders (see subsec-
tion II-A). But while software engineers learn symbolic,
deductive logics at university, this is not necessarily true
of managers, mechanical engineers, or safety assessors. We
should know the degree to which a proposed formalism will
hinder the argument’s communication purpose. To assess
this, we could experimentally measure reading speed and
comprehension, using an informal version of the specimen
argument as a control. Subjects should be selected from the
backgrounds that might be expected of an argument reader.
A questionnaire should be used to collect information about
each subject’s background and training to explore how these
factors affect reading ability.

D. More Reliably Correct Pattern Instantiation

Three of our selected papers proposed formalising argu-
ment pattern structure [11], [17], [18]. Two also propose



formalising pattern parameters [17], [18]. But, as discussed
in subsection V-A, we do not know whether the errors that
such formalisation might prevent are prevalent in practice.
We could measure this. Even better, we could measure and
compare defect rates between volunteers who instantiate
informal patterns and review them and volunteers that use a
formalised pattern instantiation tool with parameter check-
ing. We could also measure whether the proposed mecha-
nism speeds up or slows down argument creation. Again,
the effect of formalisation might vary from practitioner to
practitioner and argument to argument. But even a few
measurements would be better than no data at all.

E. Complication of Evidence Sufficiency Judgments

As Rushby and others have noted, judging evidence
sufficiency requires determining whether evidence is good
enough for a given purpose [19], [34]. Because the meaning
of ‘good enough’ depends on the consequence of drawing
a false conclusion from the evidence, an assessor making
this judgement must consider the claims that the evidence
directly and indirectly supports. Graphical argument nota-
tions such as GSN and CAE are thought to ease this task
by reducing it to tracing a path in a graph. Rushby proposes
instead that developers should assess impact by eliminating
the corresponding formal premise and rerunning the proof
checker to assess the impact on the safety argument [20]. (He
does not explain how evidence sufficiency should be judged
in cases where an error is likely to be a matter of degree,
e.g., execution time evidence.) We can measure the impact
of formalisation on both the time needed to make evidence
sufficiency judgments and the reliability of those judgments
by experimentally assessing the performance of volunteers.
We are unlikely to know the ground truth but could measure
inter-assessor agreement: if many assessors report similar
values, they might be right or wrong, but if they report very
different values, at least some must be wrong.

VII. CONCLUSION

Several researchers have proposed formalising assurance
arguments. In this paper, we have surveyed twenty such
papers. Readers of papers proposing a technique or method
need to know how mature that proposal is and what is known
about its cost, side effects, and efficacy. (Such information
both underpins cost-benefit decisions and informs other
researchers.) A proposal is mature when its benefits are
clearly defined and evidence shows that benefits outweigh
costs and side effects. But while several of the selected
papers claim or speculate on some benefit of formalism,
none supplies substantial empirical evidence to support such
claims. None supplies even substantial evidence that there
is a problem that formalisation could solve.

Preliminary work on immature ideas is necessary. How-
ever, such work should be clearly identified as preliminary
lest naı̈ve readers (e.g., some practitioners new to safety

arguments) be misled. The work’s assumptions should be
stated and the proposed future development sketched for
the reader’s benefit. Yet in the surveyed work, only Rushby
correctly and candidly acknowledges that any benefit of
formal assurance argumentation is a hypothesis that requires
substantiation through empirical assessment [19], [20].

Safety and security assurance is important; we urgently
need to know whether the proposals will yield overall
benefit. (We hope they do.) To that end, we have surveyed
what is presently known and how this relates to argument
formalisation. Where evidence is lacking, we have sketched
empirical studies that could provide it.
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