
Resource Sharing Under Global Scheduling with
Partial Processor Bandwidth

Sara Afshar1, Moris Behnam1, Reinder J. Bril1,2, Thomas Nolte1
1Mälardalen University, Västerås, Sweden

2Technische Universiteit Eindhoven, Eindhoven, Netherlands
Email: {sara.afshar, moris.behnam, reinder.j.bril, thomas.nolte}@mdh.se, r.j.bril@tue.nl

Abstract—Resource efficient approaches are of great impor-
tance for resource constrained embedded systems. In this paper,
we present an approach targeting systems where tasks of a critical
application are partitioned on a multi-core platform and by
using resource reservation techniques, the remaining bandwidth
capacity on each core is utilized for one or a set of non-critical
application(s). To provide a resource efficient solution and to
exploit the potential parallelism of the extra applications on
the multi-core processor, global scheduling is used to schedule
the tasks of the non-critical applications. Recently a specific
instantiation of such a system has been studied where tasks do
not share resources other than the processor. In this paper, we
enable semaphore-based resource sharing among tasks within
critical and non-critical applications using a suspension-based
synchronization protocol. Tasks of non-critical applications have
partial access to the processor bandwidth. The paper provides the
systems schedulability analysis where blocking due to resource
sharing is bounded. Further, we perform experimental evalua-
tions under balanced and unbalanced allocation of tasks of a
critical application to cores.

I. INTRODUCTION

With a growing interest towards replacing traditional single
core1 processors with new multi-cores as the defacto pro-
cessors in embedded systems, a demand has emerged for
investigating proper scheduling techniques to allow for such a
migration. One major concern in this context is that embedded
systems typically have a constrained amount of resources.
Therefore, techniques that can enable an efficient usage of
processor bandwidths are of great importance.

In general two conventional scheduling approaches exist for
multiprocessor systems being partitioned and global schedul-
ing [7], [16]. In the partitioned approach, each task is assigned
to a processor at design time and it will be scheduled only
on its assigned processor during run-time. However, in global
scheduling, tasks are selected from one system wide unique
global queue at run time and they are scheduled on any
available processor (among the idle processors). In global
scheduling tasks may migrate among processors whereas in the
partitioned scheduling approach tasks are bound to processors.
Global scheduling approaches are privileged to partitioned
approaches due to their higher system utilization guarantees
since they allow a task to run whenever a processor becomes

This work is supported by the Swedish Foundation for Strategic Research
via the research program PRESS, the Swedish Knowledge Foundation and
ARTEMIS Joint Undertaking project EMC2 (grant agreement 621429).

1In this text we will use core and processor interchangeably.

available. However, global scheduling techniques introduce
more overhead to the system due to potential migrations of
tasks among processors.

From an industrial point of view, co-existence of multiple
real-time applications on a shared multi-core platform is
an efficient solution since it can provide re-usability of the
independently-developed applications besides decreasing the
system power consumption and costs. By transition to a multi-
core architecture, these subsystems/applications which may
share resources will eventually co-exist on a shared multi-core
platform. These applications, may have different criticality
levels. In this paper we consider two types of applications2:
critical and non-critical.

In practice, such as automotive industry [1], critical appli-
cations are partitioned in the multiprocessor system to achieve
a higher degree of predictability. Moreover, resource efficient
solutions for embedded systems suggest to further utilize the
remaining bandwidth from such applications on each core. To
provide temporal guarantees to the critical application, served-
based techniques can be applied [4], [22].

In this paper, we target a resource efficient structure where
a set of critical applications are partitioned on the multipro-
cessor platform and the remaining capacity on each core is
determined statically, and made available to a set of non-
critical applications through resource reservation techniques.
The critical application resides on the platform whereas other
non-critical applications can be added or removed dynami-
cally. In [4] global scheduling has been used for less critical
applications. Similarly and to exploit the potential parallelism,
we also use global scheduling to schedule the tasks of non-
critical applications.

A specific instantiation of such a platform has been studied
in [31]. However, this approach is based on a simplifying
assumption that tasks do not share resources with each other,
except the processor. In this work we enable semaphore-
based resource sharing assuming that each critical and non-
critical application uses a dedicated set of resources. We use
a suspension-based resource sharing approach i.e., a task sus-
pends whenever the resource is not available letting other tasks
to execute. Note that, our focus here is handling resources that
are protected by locks. We do not consider physical resources
such as a bus or memory as done in [25].

2Our main focus in this paper is to enable resource sharing and we do
not focus on the solutions for more complex mixed-criticality systems where
mode changing happens.

Contributions: In this paper, we enable intra-application
resource sharing within critical and non-critical applications.
We bound the blocking duration of tasks and derive the
schedulability analysis tailored to the proposed synchroniza-
tion protocol. Moreover, we perform experimental evaluations
where we investigate the system schedulability using two
partitioning techniques of the critical application: balanced and
unbalanced.

The rest of this paper is structured as follows: Section II
summarizes the existing related works in this context. Sec-
tion III defines our system and resource sharing model as
well as the scheduling and resource sharing rules. Section IV
presents a recap of the existing analysis. Sections V and VI
presents the blocking bounds and our new response time
analysis based on the resource sharing parameters. Section VII
presents evaluation and experimental results. Finally, Sec-
tion VIII concludes.

II. RELATED WORKS

Hierarchical scheduling for multiprocessor platforms has
been studied [15], [28], [21], [31]. However, these works have
used the simplifying assumption that tasks are independent and
that they do not share any resources other than the CPU in the
system. In the context of semaphore-based resource manage-
ment protocols for non-hierarchical multiprocessor schemes,
a significant amount of work has been presented over the
years. In the following we will briefly present the most related
synchronization protocols for multiprocessor systems.

The Multiprocessor Priority Ceiling Protocol (MPCP) was
introduced for partitioned systems [26]. MPCP is a variant
of the Priority Ceiling Protocol (PCP) [27] for multi-core
platforms. MPCP is a suspension-based protocol. The Mul-
tiprocessor Stack Resource Policy (MSRP) was introduced
in [20] for partitioned systems. MSRP is an extension of the
Stack Resource Policy (SRP) [6] for multiprocessors and it
is a spin-based approach (i.e., a task requesting a resource
busy waits and does not leave the processor until the resource
becomes available).

The Flexible Multiprocessor Locking Protocol (FMLP) has
been introduced in [9] under two variants for partitioned and
global scheduling respectively. Later in [10] the partitioned
FMLP was extended for fixed priority scheduling. A synchro-
nization protocol called O(m) Locking Protocol (OMLP) was
proposed in [11] under both partitioned and global scheduling.

The Multiprocessor Synchronization Protocol for Open
Systems (MSOS) is a suspension-based preemptive synchro-
nization protocol developed for compositional independently-
developed real-time applications introduced in [24]. Later
in [3] MSOS was extended to applications that are assigned
priority to improve the schedulability performance. In [29],
different types of queue strategies have been investigated
for spin-based multiprocessor systems where mixed-integer
linear program (ILP) has been used to bound the maximum
cumulative blocking incurred to a task.

In [12], resource sharing for cluster-based scheduling has
been investigated. This approach uses a partitioning technique

to bound tasks to clusters of processors and schedule tasks
globally inside each cluster.

In [19], two new schedulability tests for PIP and Parallel-
PCP synchronization protocols which are suspension-based
approaches have been proposed. In this work, a response
time schedulability analysis for both approaches which are
developed under fixed-priority global scheduling has been
proposed.

Unlike the system we are investigating in this paper, all
aforementioned synchronization protocols assume full access
to the processor bandwidth.

III. SYSTEM MODEL

A. Task Model

The system consists of a set of applications where each
application consists of a set of tasks. We denote each task
τi by < Ci, Di, Ti >, where Ci denotes the worst-case
execution time, Di denotes the relative deadline and Ti is the
minimum inter-arrival time. We assume a constrained-deadline
task model, i.e., Di ≤ Ti. We denote the priority of a task τi
by ρi, where we assume ρi > ρj if i > j. We use ai, di and
fi as arrival time, the absolute deadline and the finishing time
of any job instant of a task τi.

B. Architecture and Scheduling Strategy

Our platform model consists of m identical unit capacity
processors. The system contains two types of applications, one
critical application and one (or more) additional non-critical
application(s). For ease of presentation, we only consider a
single non-critical application. The tasks of the critical appli-
cation are partitioned and also called non-migrating tasks. The
tasks of the non-critical application are globally scheduled, and
also called migrating tasks.

Migrating tasks are globally scheduled within a set of
synchronized deferrable servers that are allocated to a set of
m′ processors, where m′ ≤ m (similar to [31]). First, non-
migrating tasks are partitioned across the platform and the
remaining bandwidth on each core is made available for a set
of migrating tasks through the use of real time server-based
scheduling techniques. For the sake of presentation simplicity
we assume that each core accommodates one server with
the highest priority on the core similar to [31]. However, in
case some tasks related to the set of partitioned tasks have
tight finalization jitter constraints as they belong to a critical
application, the model and accompanying analysis can simply
be generalized to the case where server may have any arbitrary
priority (in this case a priority lower than that of such tasks
on the same core) as in [30], to remove the effects of induced
jitter by the server. Moreover, similar to [30], the analysis can
be extended to accommodate multiple servers per core.

A server dedicated to a processor Pk is denoted by SPk
.

The budget of a server SPk
is denoted by CPk

. The server SPk

executes the pending workload of migrating tasks whenever it
obtains Pk. SPk

can execute the pending workload up to its
allocated execution capacity CPk

in each of its replenishment
periods. For ease of presentation, a common replenishment

period Ts is assumed for all servers, however each application
can have a different replenishment period.

The priority of the non-migrating tasks are assigned accord-
ing to a fixed priority algorithm (e.g. the deadline monotonic
(DM) technique) on a processor. The priority of the server SPk

is denoted by ρPk
which is assigned as the highest priority on

Pk. The set of migrating and non-migrating tasks in the system
are denoted by T m and T nm, respectively. T nm

Pk
denotes the

set of non-migrating tasks allocated to a processor Pk.
The allocation technique used for partitioning of non-

migrating tasks to processors is not the focus of this work.
Due to the complexity of the problem, for the first step, we
assume that there exist an allocation solution to partition the
non-migrating tasks . Later we can take the knowledge gained
from this step into consideration for partitioning as a future
optimization phase.

C. Resource Sharing Parameters

Local resources are the resources that are accessed by
jobs of tasks on the same processor only, whereas global
resources are accessed by tasks on more than one processor.
In this work we assume independent applications, i.e. we
look at intra-application resource sharing, only. Therefore, the
notions of local and global resources are meaningful within
each application. Non-migrating tasks may use both local and
global resources. We denote the set of local resources which
are accessed by tasks on a processor Pk by RL

Pk
. Similarly,

the set of local and global resources accessed by jobs of a task
τi are denoted as RSL

i and RSG
i , respectively. We use RSi

to denote the set of resources accessed by jobs of τi. Further,
the worst-case execution time among all requests of any job
of a task τi for a resource Rq is denoted by Csi,q . Finally,
nG
i and nG

i,q denotes task τi ∈ T nm
Pk

’s maximum number of
requests for any global resource and a specific global resource
Rq , respectively. By definition, we call the resources that are
accessed by migrating tasks also global resources since tasks
using those resources are scheduled globally. Nested access
of resources is not the focus of this paper, however it can be
supported by using group locks similar to the approach used
in [9].

In this paper we mean by a task that is granted access to
a resource that it has locked the resource. However, a task
that locks a resource may not be allowed to run. When a
task is allowed to run while holding a resource, then the task
will access the resource. Note that since nesting of resource
requests is not allowed here, therefore, deadlock is prevented.

We divide the delay that may be introduced to any task’s
execution due to resource sharing in two categories: Local
Blocking and Remote Blocking. We mean by local blocking
the priority inversion blocking [27] (pi-blocking) that may be
incurred to a task which happens when a low priority task
is scheduled while a higher priority task is ready. Remote
blocking is the acquisition delay incurred to a task when the
task wants to obtain a resource which is locked by a task
on a remote processor (i.e. a processor other than the task’s
assigned processor).

D. General Definitions

Definition 1. We denote the highest normal (original) priority
on a processor Pk by ρmax

Pk
.

Definition 2. The highest priority level among migrating tasks
is denoted by ρmax

T m and is presented as follows:
ρmax
T m = max

∀τi∈T m
ρi. (1)

Definition 3. Ceiling-based resource-access protocols (such
as SRP and PCP) assign a ceiling to any local resource
R` ∈ RL

Pk
, where ceilPk

(R`) = max{∀ρi| τi ∈ T nm
Pk
∧ R` ∈

RSL
i }. [6]

E. Scheduling and Resource Sharing Rules

This section presents the rules that are used to schedule
tasks in our platform. Since, according to our system model,
migrating tasks do not share resources with non-migrating
tasks, servers (that are used to schedule migrating tasks)
can be viewed as independent tasks from a uniprocessor
scheduling perspective. Therefore, we model a server SPk

as an independent task with execution CPk
and period Ts.

By means of such a view, we shall consider a two-level
hierarchical scheduling. In the top level, non-migrating tasks
along with the server on each core are scheduled using uni-
processor scheduling. In the second level, migrating tasks are
scheduled globally within servers.

We use FIFO-based queue ordering to serve the global
resource requests for both migrating and non-migrating tasks
to prevent lower priority tasks to starve due to probable
multiple release of higher priority tasks similar to approaches
in [9] and [24], respectively. Furthermore, resource holding
jobs benefit from priority boosting to hasten the release of the
resource.

1) Resource Sharing Among Non-Migrating Tasks: As
mentioned earlier in this section, servers can be viewed as
tasks with no resources. Therefore, handling resource sharing
among non-migrating tasks can be achieved by using existing
resource sharing approaches for partitioned scheduling. For the
sake of protocol completeness, next we briefly recapitulate the
resource sharing rules of such similar approaches [9], [24].

Rule 1. Local resources are handled by means of a unipro-
cessor synchronization protocol e.g. SRP or PCP.

Rule 2. For each global resource a FIFO-based queue is used
to enqueue the tasks waiting for the related resource.

Rule 3. Whenever a task τi ∈ T nm requests a global resource
that is used by a task on a remote processor, it is suspended
and it places its request in the related resource queue.

Rule 4. When a task τi ∈ T nm
Pk

is granted access to a global
resource, its priority is boosted in an atomic operation to:
ρmax
Pk

+ ρi. As a result, if multiple tasks are granted access
to global resources on Pk, they will access these resources
according to their priority order.

Rule 5. A task executes a global critical section non-
preemptively until it releases the resource.

Rule 6. The priority of the task is changed to its normal
(original) priority as soon as it finishes the global critical
section where it also becomes preemptable again.

Rule 7. When a global resource becomes available (i.e. it is
released), the task at the head of the related resource queue
(if any) resumes and locks the resource.

2) Migrating Tasks Scheduling: Next, we present the rules
for scheduling the migrating tasks. By incorporating resump-
tion we have adjusted Rule 8 to cover resource sharing as well.
Rule 9 summarizes the scheduling strategy introduced in [31].

Rule 8. Migrating tasks are scheduled among servers from a
unique global priority-ordered queue based on a fixed-priority
preemptive global scheduling. Migrating tasks are inserted to
the queue after they have been released, preempted or resumed
(since resource sharing is enabled here).

Rule 9. If multiple servers (belonging to the same application)
are available, i.e. the server is not preempted and it has re-
maining capacity, the highest priority (ready) task is scheduled
on the server with the largest capacity.

Note that a migrating task running within a server may
be preempted under three situations: (i) a higher priority
migrating task preempts the task, (ii) the capacity of the
server is depleted or (iii) the server gets preempted by a non-
migrating task which is granted access to a global resource
on the same core (Rule 4). In all these situations the task
which is preempted may also be holding a resource. In all three
aforementioned situations, the task that is been preempted, is
rescheduled among the available servers according to Rule 8.

3) Intra-application Resource Sharing: Handling resource
requests of the tasks within an application is similar to global
resource sharing of non-migrating tasks. This implies that,
Rules 2, 3, 5, 6 and 7 are valid here as well. We adjust Rule 4
for intra-application resource augmentation as follows:

Rule 10. When a task τi ∈ T m is granted access to a resource
(all resources used by migrating tasks are by definition global),
its priority is boosted in an atomic operation to: ρmax

T m + ρi.
As a result, if multiple tasks are granted access to global re-
sources inside an application, they will access these resources
according to their priority order.

The intuition behind the priority boosting as a function of
task’s original priority in this rule is that if only one server
is available to execute the tasks (e.g., all servers except one
is preempted or their capacity is depleted), and multiple tasks
are granted access to (different) global resources, then they
will be served based on their original priority order (similar
to the idea as in Rule 4).

Note that, the conclusion from Rule 4, and the fact that
servers are seen as independent tasks from the non-migrating
tasks point of view, result in servers to be fully preemptive
by non-migrating tasks that are granted access to a global
resource.

IV. EXISTING APPROACHES RECAP

In this section we briefly present a recap of the server-based
scheduling analysis without resource sharing presented in [31]
and resource sharing for non-migrating tasks.

A. Response Time of Tasks Processed by Servers

The response time analysis for server-based scheduling
assuming that tasks are independent (i.e. without any resource
sharing) has been studied in [31]. According to this analysis,
a job’s scheduling window (i.e. when the job is released until
it finishes which is the response time interval of the job) is
divided into two intervals called head and body. The head
of a job is the interval between the arrival of the job and
the first server replenishment, and the body is the rest of
the interval. Later in Section VI we revisit these notions to
address intra-application resource sharing where we use a new
concept for body which incorporates an extra delay due to
resource sharing. Moreover, a new concept called starvation
period is introduced which includes the previous head interval
introduced in [31]. The worst-case response time of a task τi is
specified by the response time of τi’s critical instant. Following
this, the head and body of the critical instant of τi are called
the critical head and the critical body denoted by HC

i and
BC
i (t), respectively. However, finding the exact critical instant

is a challenge in multiprocessor systems, therefore calculation
of the exact HC

i and BC
i (t) is not possible. Following this, a

notion of upper bound on the critical head and critical body has
been introduced and identified by ĤC

i and B̂C
i , respectively.

As a result, the worst-case response time of a task τi ∈ TAa

which we denote as WRm
i has been bounded in [31] by the

smallest solution to (2). τi is schedulable if WRm
i ≤ Di.

t ≤ ĤC
i + B̂C

i (t), (2)

where, ĤC
i , B̂C

i (t) is calculated as follows:
ĤC
i = Ts − Cmin

s . (3)

where, Cmin
s = min∀k:1≤k≤m CPk

is the lowest capacity
among servers.

B̂C
i (t) = RHL/i(t) +Ri/HL(t), (4)

RHL/i(t) denotes the time needed to process the workload of
tasks with higher and lower priority than that of task τi and
Ri/HL(t) is the time needed to process τi [31].

Calculation of RHL/i(t) and Ri/HL(t) has been presented
in [31] and also can be viewed in Appendix C and are
calculated according to (27) and (30).

B. Partitioned Synchronization Approach

Since the servers are viewed as independent tasks from non-
migrating tasks perspective, they will not add additional block-
ing to the non-migrating tasks. Therefore, well known existing
resource sharing approaches that are suitable for partitioned
scheduling can be used for handling resource sharing among
non-migrating tasks such as partitioned static priority FMLP
for long resources (P-SP FMLP) [9], [10] and MSOS [24],
[3]. In the following, we will present the pi-blocking terms
that are relevant for partitioned scheduling.

Pi-blocking that is incurred to a task τi ∈ T nm
Pk

due to
locking local resources is denoted by BL

i and is upper bounded
by:

BL
i = NL

i (t) × max
∀j,`:ρj<ρi∧ τi,τj∈T nm

Pk

∧ R`∈RSL
j ∧ ρi≤ceilPk

(R`)

{Csj,`}, (5)

where NL
i (t) is the maximum number of such pi-blocking

incurred to τi which is upper bounded as follows:

NL
i = min {nG

i + 1,
∑

∀j:ρj<ρi
∧τi,τj∈T nm

Pk

(
(

⌈
Ti
Tj

⌉
+ 1)×nL

j (τi)
)
},

(6)

where nL
j (τi) denotes the number of requests of a task τj with

priority lower than that of τi on Pk for any local resource
R` ∈ RSL

j with ρi ≤ ceilPk
(R`).

Pi-blocking that is incurred to a task τi ∈ T nm
Pk

due to
locking global resources is denoted by BG

i and is upper
bounded by:

BG
i =

∑
∀j:ρj<ρi
∧τi,τj∈T nm

Pk

(
NG
i,j ×max
∀Rq∈RSG

j

{Csj,q}
)
,

(7)

where NG
i,j is the maximum number of such pi-blocking that

τi may experience from a lower priority task τj on Pk and is
upper bounded as follows:

NG
i,j = min {nG

i + 1,
(
(
⌈
Ti

Tj

⌉
+ 1)×nG

j

)
}. (8)

The duration of time that any task on a processor Pk may
wait to lock a global resource Rq which is locked by tasks on
remote processors is denoted as RWTPk,q (resource waiting
time) and is upper bounded as follows:

RWTPk,q =
∑
∀Pr 6=Pk

∑
∀τj∈T nm

Pr

∧Rq∈RSG
j

RHTj,r,q,
(9)

where, RHTj,r,q denotes the maximum resource holding time
of a task τj on a remote processor Pr for Rq which is
calculated from the time that τj is granted access to Rq and
is upper bounded as below.
RHTj,r,q = Csj,q +HPIj,r,q + max

∀t,s:ρt<ρj∧τt∈T nm
Pr

∧Rs∈RSG
t ∧Rs 6=Rq

Csl,s,

(10)
where, HPIj,r,q denotes the interference of higher priority
tasks introduced to a task τj ∈ TPr

due to been granted global
resources other than Rq and is calculated as follows:

HPIj,r,q =
∑

∀h:ρh>ρj
∧τh∈T nm

Pr

max
∀s:Rs∈RSG

h
∧Rs 6=Rq

Csh,s. (11)

Note that, RHTj,r,q accounts for the global critical section
of τj on Rq , the interference from higher priority tasks’ global
critical sections and one lower priority task’s that access its
global critical section (and become non-preemptive according
to Rule 5) when τj is granted access to Rq .

The maximum amount of time that a task τi ∈ T nm
Pk

has to
wait in total for all its global resource requests is denoted by
RWTi and is calculated as follows:

RWTi =
∑

∀q:Rq∈RSG
i

∧τi∈T nm
Pk

nG
i,q ×RWTPk,q. (12)

The total delay that is incurred to a task τi ∈ T nm
Pk

due to
resource sharing is calculated as follows:

Bi = BL
i +BG

i +RWTi, (13)

V. BLOCKING TERMS

In this section we investigate the effect of resource sharing
by non-migrating tasks to the server on a core. Moreover,
we provide blocking bounds of migrating tasks due to intra-
application resource sharing.

A. Server Blocking
As mentioned in our system model, servers can be viewed as

independent tasks that are scheduled along with non-migrating
tasks on each core. According to Rule 4, a non-migrating task
that is granted access to a global resource will get a priority
higher than any task or server on the related core, and as a
result it can preempt the server. By viewing a server as a task,
the maximum delay to a server can be calculated using the
blocking bounds presented in Section IV.

In the following, we will derive the effect of resource
sharing of non-migrating tasks to the server on the same core.
By viewing a server as a task with the highest priority on the
core that do not share any resource with non-migrating tasks,
the maximum delay incurred to a server can be calculated
according to the following two lemmas.

Lemma 1. No delay can be incurred to a server from non-
migrating tasks due to local resource access.

Proof: This is inferred from the fact that each server has
the highest priority on each core and is viewed as a task that
share no resources with non-migrating tasks. Thus, according
to Definition 3 no local resource access by non-migrating tasks
can increase the priority of a non-migrating task higher than
the priority of a server on the related core.

Lemma 2. We denote the maximum blocking incurred to any
server SPk

due to non-migrating tasks on Pk accessing global
resources as BG

SPk
which is calculated as follows:

BG
SPk

=
∑
∀j

∧τj∈T nm
Pk

(
NG
SPk

,j ×max
∀Rq∈RSG

j

{Csj,q}
)
,

(14)

where NG
SPk

,j is the maximum number of such pi-blocking
that SPk

may experience from a lower priority task τj on Pk
and is upper bounded as follows:

NG
SPk

,j = (
⌈
Ts

Tj

⌉
+ 1)×nG

j . (15)

Proof: (14) is similar to (7). However, the blocking that
is incurred to a task τi by lower priority tasks global resource
access is due to the fact that τi gives opportunity to lower
priority tasks (on the same core) to lock global resources when
τi is blocked on a global resource and is suspended, and once
before the task arrives. However, a (deferrable) server may

leave the processor for more reasons. A server, may release
the processor whenever there is no pending workload to be
processed, or when the capacity of the server is depleted.
Thus, server gives such opportunity to (lower priority) non-
migrating tasks where they can contribute in delaying the
server by preempting the server when they are granted access
to the global resource (Rule 4). However, NG

SPk
,j is still upper

bounded by the maximum number of times that each (lower
priority) non-migrating task can request global resources. This
leads the upper bound of NG

SPk
,j to be the second term of the

minimum function in (8).

Total Server Delay. Followed by Lemmas 1 and 2, the
maximum incurred delay to a server SPk

on a processor Pk
which has the highest priority compared to any non-migrating
task on Pk is calculated as follows.

δSPk
= BG

SPk
. (16)

B. Global Synchronization Approach

In this section we provide the blocking analysis under our
proposed protocol for migrating tasks which share resources
by other migrating tasks scheduled within the same set of
servers. Later in Section VI we show how these blocking terms
are incorporated in the response time analysis of migrating
tasks. A migrating task that is scheduled globally within a
set of servers, may experience two types of blocking due to
other migrating tasks requesting resources: (i) direct blocking
on a resource that is hold by another migrating task, and (ii)
blocking incurred by a lower priority migrating task when its
priority is boosted due to a resource request (Rule 5 which
holds also for migrating tasks). To calculate the maximum
incurred blocking to a task due to case (i) and case (ii), we
present Lemmas 3 and 4, respectively.

Lemma 3. The maximum amount of time that a task τi ∈ T m

has to wait to lock a global resource Rq is denoted by DBi,q
(direct blocking) and is calculated as follows:

DBi =
∑

∀q:Rq∈RSG
i

∧τi∈T m

(nG
i,q ×DBi,q), (17)

where,
DBi,q =

∑
∀j:τj 6=τi∧τi,τj∈T m

∧Rq∈(RSj∩RSi)

Csj,q. (18)

Proof: Under the worst-case scenario, every time that τi
requests a resource Rq , all other migrating tasks that use the
same resource have requested it earlier and are placed ahead of
τi in Rq’s related FIFO queue. The worst-case scenario under
which all tasks that request Rq may get blocked is imaginable
where one task in the server is using Rq while these requests
are issued one by one by tasks on other servers located on
other core(s) and are not satisfied. Therefore all the tasks that
have been placed ahead of τi in the resource FIFO queue will
access the resource and delay τi. This scenario may happen
every time τi requests a resource. As a result, τi is delayed, in
the worst-case, for all its resource requests, by critical sections

of all other tasks that have requested the same resource. This
maximum delay is formulated in (17).

In Section VI we show how this blocking term is incorpo-
rated in the response time of a task τi based on the analysis
described in Section IV-A.

Lemma 4. Pi-blocking that is incurred to a task τi ∈ T m

due to non-preemptable execution of lower priority migrating
tasks is denoted by NPBi and is upper bounded as follows:

NPBi =
∑

∀j,q:ρj<ρi,Rq∈RSj

∧Rq /∈RSi∧τi,τj∈T m

(
(

⌈
Ti
Tj

⌉
+ 1)×nG

j,q×Csj,q
)
.

(19)

Proof: This term is in fact the maximum amount of
time that tasks with priority lower than that of τi execute
critical sections non-preemptively, (Rule 5) and interfere with
τi’s execution. Let us assume that τi is executing within a
server SPk

. Under a worst-case scenario, as soon as migrating
tasks with priority lower than that of τi which are executing
in servers on cores other than Pk, are granted access to
a resource, the servers on those cores may get preempted
(by non-migrating tasks that are granted access to a global
resource). Remember that, servers are fully preemptive by
resource access of non-migrating tasks (see Rule 5). As a
result, those tasks with lower priority than τi will preempt
τi in SPk

and will execute their critical sections on that only
available server (assuming that SPk

on this core has not been
preempted). In the worst-case, all tasks with priority lower than
τi may arrive and run in the servers on cores other than Pk
while τi is executing in SPk

and in the same way contribute
in delaying τi when they are granted access to a resource.
This scenario may happen for every resource access of tasks
with lower priority than τi. Therefore, the maximum amount
of such delay that τi may experience is the summation of all
critical sections of tasks with lower priority than τi. For a
lower priority task τj , this amount for a specific resource Rq ,
is calculated by the maximum release time of τj during τi’s
period and accounting for τj’s maximum number of requests
on Rq . This term for a lower priority task τj is calculated
for all τj’s requests. Note that, the critical sections that are
also used by τi are not considered in this term, since they are
considered in DBi term (Lemma 3).

VI. RESPONSE TIME ANALYSIS

We denote the worst-case response time of a non-migrating
task τi ∈ T nm

Pk
by WRnm

i which is calculated based on
the classical response time analysis [14]. τi is schedulable
if WRnm

i ≤ Di. The execution of non-migrating tasks with
higher priority than that of a task τi ∈ T nm can be delayed
due to waiting for a global resource which can increase the
interference to τi. This is addressed by incorporating RWTj ,
which is the delay incurred to a non-migrating higher priority
task τj due to resource waiting time, in (20) similar as done
in [5], [13]. WRnm

i is the smallest solution to the equation
below.

t = Ci +Bi +
∑
∀ρj>ρi

τi,τj∈T nm
Pk

d(t+RWTj)/TjeCj

+(d(t− CPk
)/Tse+ 1)CPk

.

(20)

Note that, RWTj and Bi are calculated according to (12)
and (13), respectively. Further, the last term in (20) accounts
the interference of the server on the same core as τi (if
any) [14]. In [19] a response time analysis has been presented
for tasks scheduling under a fixed priority global scheduling
on a multiprocessor platform. In this analysis tasks have full
access to the processor bandwidth. However, since in our
system model tasks that are globally scheduled have partial
access to the processor bandwidth on a core (by means of
servers), we shall use the response time analysis that has been
developed in [31] (see Section IV-A) which is suitable for such
a system model. Next, we extend the response time analysis
in [31] to account for resource sharing parameters. Since on
each core, a server can be viewed as a task which share no
resources with the non-migrating tasks on that core, scheduling
the server along with non-migrating tasks on the core will lead
to the server experiences a delay from those tasks accessing
resources. This maximum delay to the server on a core has
been presented by (16). Moreover, due to resource sharing
among migrating tasks, a task τi ∈ T m may experience
an extra delay when it is processed within servers which is
presented by (17) and (19). As a result, in the worst-case, a
migrating task τi experiences the same delay that is incurred to
the server as well as the delay that is caused due to resource
sharing by migrating tasks. In the following we show how
these two different types of delays are incorporated in the
response time of a task τi ∈ T m.

For a migrating task that share resources in the system, we
introduce a new concept of head when resource sharing is
enabled in the system, which is more general compared to the
notion used in [31]. We call this new concept of head, the
starvation period, which is depicted in Figure 1. We refer to
starvation period as the interval that the job cannot have access
to any server capacity, which is constructed by two intervals:
(i) the interval between the activation of the job (arrival time
of the job) and the first server replenishment (which is similar
to the previous notion of head in [31] and we still call it
head) and (ii) the interval in which the task looses the server
capacity due to waiting for its resource requests, which we
refer to as capacity loss interval. The body is the rest of the
scheduling window interval, i.e., until the job finishes. It is
obvious that if the task inside the server does not use any
resource, the starvation period is similar to the previous notion
of head in [31]. The starvation period for a task τi ∈ T m is
denoted as follows:

ŜvC
i = ĤC

i + ̂Caploss
i . (21)

The capacity loss interval for a migrating task τi is the
time needed for the maximum execution workload of critical
sections related to other migrating tasks that request the same
resources as τi. This workload is in fact the DBi term
described in Lemma 3. Under the worst-case assumption, this

workload is executed in serial on one processor (since in
the worst-case all servers except one may get preempted by
non-migrating tasks on their cores, hence this workload is
executed on the only available server). Moreover, under the
worst-case assumptions, the only available server is the server
with minimum capacity, i.e., Cmin

s . Followed by the above
discussion, the maximum interval of capacity loss that τi may
experience due to its resource requests is denoted by ̂Caplossi

and is upper bounded as follows:

̂Caploss
i =

⌈
DBi

Cmin
s

⌉
× Ts. (22)

This interval has been shown in Figure 1 for a task τi. To
simplify the illustration of the capacity loss interval concept, in
this figure, we show an example for a task τi with one resource
request. However, the idea of the capacity loss interval is to
account for all τi’s resource requests.

higher, lower and

higher boosted

priority workload

server

Head

server replenishment

job’s arrival

request resource

lock resource

BodyStarvation period

job finishes

𝜏𝑖 execution

Capacity loss interval

delay (𝛿) to server

𝐷𝐵𝑖 workload

𝑎𝑖

𝐶𝑠
min

𝑇𝑠

𝑊𝑅𝑖
m

𝑓𝑖

Fig. 1. migrating task τi’s scheduling window.

As denoted in Section IV-A, the body constitutes of the
time needed to process the workload of tasks with higher,
lower priority and the task itself. Since for a task τi, NPBi
is the workload of tasks with higher boosted priority, it is
treated similar to the workload of the higher priority tasks. As
a result the body for task τi when resource sharing is enabled
is updated as follows:̂́

BC
i (t) = B̂C

i (t) +NPBi. (23)

As discussed before (in the early part of this section and also
Section V-A), a server, regardless of tasks executing inside it,
can be blocked by the non-migrating tasks on the same core.
This means that a task τi executing inside the server will also
experience this delay. However, such delay to τi should be
accounted once and only in the last server period where τi
finishes. This is due to the fact that non-migrating tasks do not
consume the server capacity and in the worst-case the delay
caused by these tasks will only defer the server execution.
Therefore, it is enough to add such delay once to the total
response time of τi. The delay incurred to the server on a
processor Pk has been presented in (16). Since a migrating
task τi is scheduled globally, it may be scheduled on any of
the servers. As a result, the maximum delay which τi may
experience due to the delay incurred to a server, is calculated

by finding the largest delay imposed to any server. This is
presented by the last term in (24). As a result, the response
time of a migrating task τi denoted as WRm

i (2) is updated
as follows, where, WRm

i is the smallest solution to (24).

t ≤ ŜvC
i +

̂́
BC
i (t) + max

∀Pk∧τi∈T m
δSPk

. (24)

Similar to the analysis of non-migrating tasks (in (20)), the
effect of resource waiting times of other tasks needs also to be
taken into account in the response time of migrating tasks. The
number of interference that a migrating task τj may incur to
another migrating task τi, may increase due to resource waiting
time of τj . It has been shown in [31] (Lemma 4.2) that the
response time of a task scheduled within a set of servers, is
upper bounded when execution of the task starts after all the
workload of tasks with higher and lower priority is completely
finished. This means that both tasks with higher and lower
priority incur interference to the execution of a task processed
within a server. Therefore, resource waiting times of both tasks
with higher and lower priority needs to be considered in the
response time of a task τi. In the following we show how this
delay is considered in the response time of a task τi.
RW i

j (L), as presented in [31], is denoted as the upper
bound of the requested workload of a task τj (τj 6= τi)
in the interval L, where L is the interval of τi’s response
time (see Appendix C). This term is part of the body of a
task τi, i.e., it has been included in ̂́

BC
i (t) in (24) ([31], see

also (Appendix C)). In order to account for extra released
workload of a migrating task τj (with priority either higher
or lower than τi) due to its resource waiting time when we
calculate the response time of τi, L should be extended to
include those resource waiting times . Further, in (22) we have
shown that how the resource waiting time of a task may be
further extended to several server periods in the worst-case.
Therefore, to account for the worst-case, L is extended bŷCaploss

j , i.e., L = L+ ̂Caploss
j as presented in (25).

Moreover, the execution related to critical sections of tasks
with priority higher and lower than a task τi has been once
considered in the response time of τi by the blocking terms
DBi,q : ∀Rq ∈ RSi and NPBi in (17) and (19), respectively
(see (22), (23)). Therefore, to make the analysis tighter, we
need to remove these executions from the worst-case execution
time of those tasks when we calculate the higher and lower
priority workload presented in (25). Therefore, we remove the
execution of critical sections that is considered in (17) and
(19)from the execution time of any task τj that interfere with
execution of τi. Thus, the execution time of τj is updated in
(25) according to (26).

∀j 6= i : RW i
j (L) = Nj(L)× Ćj+

min(Ćj , L+ ̂Caploss
j +Dj − Ćj −Nj(L)× Tj),

(25)

where Nj(L) =

⌊
L+ ̂Caplossj +Dj−Ćj

Tj

⌋
, and

Ćj =



Cj −
∑

∀q:Rq∈(RSj∩RSi)

nG
i,q × Csj,q if ρj > ρi

Cj −
∑

∀q:Rq∈(RSj∩RSi)

nG
i,q × Csj,q

−
∑

∀p:Rp∈RSj

∧Rp /∈RSi

(

⌈
Ti
Tj

⌉
+ 1)×nG

i,q × Csj,p if ρj < ρi

(26)

VII. EVALUATION

In this section we present the results of experiments, il-
lustrating the effect of system parameters, such as server
period, on the schedulability of a system with resource sharing.
In our experiments we make sure that the partitioned tasks
are schedulable, i.e., if it is not schedulable, we discard the
whole platform. The non-migrating tasks being schedulable,
we investigate the schedulability of the migrating tasks. In our
experiments, we have investigated two different heuristic al-
gorithms which results in balanced and unbalanced allocation
of non-migrating tasks on the platform. In the first approach
which we denote as B in the graphs, we use the worst-fit
allocation technique. Based on the worst-fit algorithm, for
assigning a task, the processor with the minimum utilization
of assigned tasks is chosen. In the second approach we use
the first-fit allocation technique. Under the first-fit algorithm,
the first processor from the processor list that can fit the task
is chosen for a task to be assigned to. After non-migrating
tasks are allocated to the cores, the slack on each core is
evaluated and is dedicated as the budget of the server allocated
to that core. The algorithm of finding the slack on each core
is similar to [23], where we have incorporated the blocking
terms in the demand bound function. This algorithm can be
seen in the Appendix B. We have investigated the use of
the first-fit algorithm under two cases: (1) we use first-fit
and allocate servers to all cores that can provide capacity for
server, this approach is denoted as UnB1 in the graphs, (2)
we don’t allocate server to the processor that provides a small
capacity, this approach is denoted as UnB2 in the graphs.
In the second case, if the server with the minimum capacity
provides a budget less than 15% of the server period, the server
is discarded, i.e., we don’t allocate any server to the related
core.

A. Experimental Setup

In each experiment 10000 task sets are randomly gener-
ated. In the experiments we have checked the schedulability
versus server replenishment period which varies in the range:
[500, 4100] with granularity 400. In each experiment, the
platform configuration selects: the number of processors m,
non-migrating task set cardinality denoted by nnm, migrating
task set cardinality denoted by nm, number of resources used
per task ResNum and resource usage rate ResUsage, i.e.
the percentage of the tasks in the task set that use resources.
ResNum and ResUsage are selected similar for both migrat-
ing and non-migrating tasks. The maximum length of critical

sections is randomly selected from the range [50, 300] in each
experiment. Number of resources used for both non-migrating
and migrating tasks is fixed to 10.

The results presented in this section are for: nnm = 10
and nm = 5, number of processors m = 4, number of
resources requested per task ResNum = 2, resource usage
rate ResUsage = 20% and maximum critical section length of
65. More results for task set cardinality of 5, 10, 15, m = 4, 8,
ResNum = 2, 3, 5 and ResUsage = 20%, 30%, 50% can be
seen in the longer version of this paper [2].

We have used the UUnifast-Discard algorithm [18] for
assigning tasks utilization of non-migrating tasks where the
total task set utilization is set to m/2. For the first-fit allocation
we have used a 0.7 per processor utilization cap which is a
processor capacity criterion to fill a processor up to this limit.
The inter-arrival time of the tasks of non-migrating tasks in
each experiment is selected randomly from the range [1000,
10000]. Further, the per task utilization of migrating tasks is
randomly selected from the range [0.01, 0.4] and the tasks
inter-arrival time is selected from the range [5000, 20000]
in each experiment. In the experiments, deadline of the tasks
equals to their inter-arrival time.

B. Results

As can be seen in Figure 2, in general, by increasing the
period of the server, the system schedulability decreases. This
is due to the fact that, in general, by increasing the server
period, the starvation period of a task which is scheduled
inside the server increases (see (22) and (21)) which leads
to an increase in the response time of the task. However,
increasing the server period may also lead to an increase in
the schedulability as can be observed in Figure 2 (Ts = 2900
in graph B). The reason is that increasing the server period
may lead to an increase in the server budget on a core (see
Appendix B, Algorithm 1, line 12). This in turn results in the
total server capacity increase as also illustrated in Figure 3.
On the other hand, when the total server capacity increases,
more workload can be processed during a server period, which
can lead to a decrease in the response time of the tasks, thus
an increase in the schedulability. Such an effect is explained
in more detail by an example shown in Figure 5 at the end of
this section.

0,0

10,0

20,0

30,0

40,0

50,0

60,0

500 900 1300 1700 2100 2500 2900 3300 3700 4100

Sc
he

du
la

bi
lit

y

Server Replenishment Period

B

UnB1

UnB2

Fig. 2. Schedulability versus server replenishment period. ResUsage =
30%, nnm = 10, nm = 5, m = 4, ResNum = 2.

The experiments show a better schedulability result for
when non-migrating tasks are partitioned unbalanced on the
cores of the platform (Figure 2). The reason is that the
total server capacity is larger under the unbalanced approach

0,00

500,00

1000,00

1500,00

2000,00

2500,00

3000,00

3500,00

4000,00

500 900 1300 1700 2100 2500 2900 3300 3700 4100

To
ta

l S
er

ve
r C

ap
ac

it
y

Server Replenishment Period

B

UnB1

UnB2

Fig. 3. Total server capacity versus server replenishment period. ResUsage
= 30%, nnm = 10, nm = 5, m = 4, ResNum = 2.

0

500

1000

1500

2000

2500

3000

3500

500 900 1300 1700 2100 2500 2900 3300 3700 4100

St
ar

va
ti

on
 P

er
io

d

Server Replenishment Period

B

UnB1

UnB2

Fig. 4. Starvation period vs. server replenishment period. ResUsage = 30%,
nnm = 10, nm = 5, m = 4, ResNum = 2.

compared to the balanced approach. The reason for the larger
total server capacity under the unbalanced approach is that
by using the first-fit allocation technique, usually no (non-
migrating) task is allocated to at least one processor since the
algorithm tries to fill the first processors as much as possible.
This means that the whole processor bandwidth is allocated
to the server under this approach. The experiments show that
in general, UnB2 has a higher schedulability compared to
UnB1. The reason is as follows. Under the first-fit algorithm
the minimum server capacity is usually smaller compared to
the balanced approach sine the algorithm tries to fill the first
cores as much as possible. The minimum server capacity
influences the starvation period (21) by both affecting the
head (3) and capacity loss intervals (22). A smaller minimum
server capacity results in a larger starvation period and hence
a larger response time. Therefore, by not allocating server to
the core with the smallest capacity (if the smallest capacity
has been smaller than a predefined range) under UnB2, we
could remove the effect of the small minimum server capacity.

Moreover, further results (in the longer version of this
paper [2]) show that increasing the number of resources used
per task, the task set’s resource usage rate and task set size lead
to a schedulability decrease which is not a surprising result
since the mentioned factors cause an increase in the blocking
delay incurred by tasks. Increasing the number of migrating
tasks, causes the workload of higher and lower priority tasks
that should be processed before a task τi increases which
results in increasing the body and consequently response time
of the task (23), (24).

The results show that in general, by increasing the server
period, the schedulability decreases. However, sometimes this
trend does not hold for some points (in Figure 2 at period 2900
under the B approach). As it can be seen in Figure 3, the total
server capacity increases sharply at this period, resulting in an

increase in the schedulability at this point. This behavior is
also related to task scheduling inside a server. To explain this
effect we use a simple example shown in Figure 5. In this
example we test the schedulability of a task inside the server
when selecting three different periods for the server. The server
periods are denoted as T1, T2 and T3, where T1 < T2 < T3.
The resulted total server capacities are denoted as Q1, Q2

and Q3 for each server period T1, T2 and T3, respectively.
Since by increasing the server period the total server capacity
increases therefore: Q1 < Q2 < Q3. Consider a task τi with
execution time Ci where Ci = Q2 + ε < 2Q1 ∧ Ci ≤ Q3.
Assuming the worst-case release scenario for τi, as shown
in Figure 5 denoted as ai and the absolute deadline of the
task denoted as di, by the assumption Ci < 2Q1 the task
can meet its deadline in case (a) since two server capacities
are provided. However, since Ci = Q2 + ε , τi will miss its
deadline in case (b) since only one server capacity is provided.
Finally, in case (c) the task is again schedulable since Ci ≤ Q3

and at least one server capacity is provided. This implies that
by increasing the period of the server, a task τi can change
its status from being schedulable to non-schedulable and vice
versa. This behavior is not related to the resource sharing
parameters and the same trend has also been seen in [31],
[30] where no resource sharing was provided.

t

(a)

(b)

(c)

t

t

server replenishmentjob’s arrivaldeadlinedelay (𝛿) to server

𝑎𝑖

𝑎𝑖

𝑎𝑖

𝑑𝑖

𝑑𝑖

𝑑𝑖

𝑇1

𝑇2

𝑇3

Fig. 5. Schedulability behavior vs. server period.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we enable resource sharing for platforms with
critical and non-critical applications where each application
has its own dedicated set of resources. Critical application is
partitioned over the platform and the additional non-critical
application is scheduled globally within a set of servers
by using the remaining capacity on each core. We provide
resource handling with the tailored blocking analysis for tasks
that are scheduled globally by means of a set of servers where
tasks have partial access to processors bandwidths. We present
the new response time analysis which takes into account the
provided blocking bounds. Further, we perform experimental
evaluations where we investigate the system schedulability
under balanced and unbalanced allocation of tasks of the
critical application(s) to cores. The results show that the
unbalanced approach has better schedulability compared to
the balanced approach. As future work we plan to enable
inter-application resource sharing for such a platform and

investigate other resource sharing alternatives such as a spin-
based approach.

REFERENCES

[1] AUTOSAR release 4.0. 2012, http://www.autosar.org.
[2] S. Afshar, M. Behnam, R. Bril, and T. Nolte. On resource

sharing under global scheduling with partial processor bandwidth.
In Mälardalen University, Tech. Rep., 2015 [Online]. Available:
http://www.es.mdh.se/publications?author=361.

[3] S. Afshar, N. M. Khalilzad, F. Nemati, and T. Nolte. Resource sharing
among prioritized real-time applications on multiprocessors. In 6th

International Workshop on Compositional Theory and Technology for
Real-Time Embedded Systems (CRTS), Dec. 2013.

[4] J. H. Anderson, S. K. Baruah, and B. B. Brandenburg. Multicore
operating-system support for mixed criticality, 2009.

[5] N. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard
real-time scheduling: The deadline-monotonic approach. In Proc. IEEE
Workshop on Real-Time Operating Systems and Software, pages 133–
137, 1991.

[6] T. Baker. Stack-based scheduling of real-time processes. Journal of
Real-Time Systems, 3(1):67–99, 1991.

[7] T. Baker. A comparison of global and partitioned EDF schedulability
tests for multiprocessors. Technical report, In International Conference
on Real-Time and Network Systems, 2005.

[8] M. Bertogna and M. Cirinei. Response-time analysis for globally sched-
uled symmetric multiprocessor platforms. In 28th IEEE International
Real-Time Systems Symposium (RTSS), pages 149–160, 2007.

[9] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible
real-time locking protocol for multiprocessors. In 13th IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), pages 47–56, Aug. 2007.

[10] B. Brandenburg and J. Anderson. An implementation of the PCP,
SRP, D-PCP, M-PCP, and FMLP real-time synchronization protocols
in LITMUSRT . In 14th IEEE Intl. Conf. on Embedded and Real-Time
Computing Sys. and Applications (RTCSA), pages 185–194, Aug. 2008.

[11] B. Brandenburg and J. Anderson. Optimality results for multiprocessor
real-time locking. In 31st IEEE Real-Time Systems Symposium (RTSS),
pages 49–60, Dec. 2010.

[12] B. Brandenburg and J. Anderson. Real-time resource-sharing under
clustered scheduling: mutex, reader-writer, and k-exclusion locks. In
9th IEEE/ACM Intl. Conference on Embedded Software (EMSOFT),
pages 69–78, Oct. 2011.

[13] B. B. Brandenburg. Scheduling and Locking in Multiprocessor Real-
Time Operating Systems. PhD thesis, The University of North Carolina
at Chapel Hill, 2011.

[14] G. C. Buttazzo. Hard Real-time Computing Systems: Predictable
Scheduling Algorithms And Applications (Real-Time Systems Series).
Springer-Verlag TELOS, Santa Clara, CA, USA, 2004.

[15] J. Calandrino, J. Anderson, and D. Baumberger. A hybrid real-time
scheduling approach for large-scale multicore platforms. In 19th

Euromicro Conference on Real-Time Systems (ECRTS), pages 247–258,
Jul. 2007.

[16] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and
S. Baruah. A categorization of real-time multiprocessor scheduling
problems and algorithms. In HANDBOOK ON SCHEDULING ALGO-
RITHMS, METHODS, AND MODELS. Chapman Hall/CRC, Boca, 2004.

[17] R. Davis and A. Burns. Hierarchical fixed priority pre-emptive schedul-
ing. In 26th IEEE International Real-Time Systems Symposium (RTSS),
pages 389–398, Dec. 2005.

[18] R. Davis and A. Burns. Priority assignment for global fixed priority
pre-emptive scheduling in multiprocessor real-time systems. In 30th

IEEE Real-Time Systems Symposium (RTSS), pages 398–409, 2009.
[19] A. Easwaran and B. Andersson. Resource sharing in global fixed-priority

preemptive multiprocessor scheduling. In 30th IEEE Real-Time Systems
Symposium (RTSS), pages 377–386, Dec. 2009.

[20] P. Gai, M. Di Natale, G. Lipari, A. Ferrari, C. Gabellini, and P. Marceca.
A comparison of MPCP and MSRP when sharing resources in the Janus
multiple-processor on a chip platform. In 9th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 189–
198, May 2003.

[21] G. Lipari and E. Bini. A framework for hierarchical scheduling on
multiprocessors: From application requirements to run-time allocation.
In 31st IEEE Real-Time Systems Symposium (RTSS), Nov 2010.

[22] G. Lipari and G. Buttazzo. Resource reservation for mixed criticality
systems. In 14th Workshop on Real-Time Systems: the past, the present,
and the future, York, UK, 2013.

[23] M. Liu, M. Behnam, S. Kato, and T. Nolte. A server-based approach
for overrun management in multi-core real-time systems. In The 19th
IEEE International Conference on Emerging Technologies and Factory
Automation, September 2014.

[24] F. Nemati, M. Behnam, and T. Nolte. Independently-developed real-
time systems on multi-cores with shared resources. In 23rd Euromicro
Conference on Real-Time Systems (ECRTS), pages 251–261, July 2011.

[25] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and
R. Kegley. A predictable execution model for cots-based embedded
systems. In 17th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 269–279, April 2011.

[26] R. Rajkumar. Synchronization in Real-Time Systems: A Priority Inher-
itance Approach. Kluwer Academic Publishers, Norwell, MA, USA,
1991.

[27] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols:
an approach to real-time synchronization. IEEE Transactions on Com-
puters, 39(9):1175–1185, Sep. 1990.

[28] I. Shin, A. Easwaran, and I. Lee. Hierarchical scheduling framework
for virtual clustering of multiprocessors. In 20th Euromicro Conference
on Real-Time Systems (ECRTS), pages 181 –190, July 2008.

[29] A. Wieder and B. Brandenburg. On spin locks in AUTOSAR: Blocking
analysis of FIFO, unordered, and priority-ordered spin locks. In 34th

IEEE Real-Time Systems Symposium (RTSS), pages 45–56, Dec. 2013.
[30] H. Zhu, S. Goddard, and M. Dwyer. Response time analysis of

hierarchical scheduling: The synchronized deferrable servers approach.
In University of Nebraska-Lincoln, Tech. Rep., 2011. [Online]. Avail-
able: http://ponca.unl.edu/facdb/csefacdb/TechReportArchive/TR-UNL-
CSE-2011-0006.pdf.

[31] H. Zhu, S. Goddard, and M. Dwyer. Response time analysis of
hierarchical scheduling: The synchronized deferrable servers approach.
In 32nd IEEE Real-Time Systems Symposium (RTSS), pages 239–248,
2011.

APPENDIX A
NOTATIONS

Here are the most used notations in this paper:
Pk: processor k.
τi: task i.
Ci: worst-case execution time of τi.
Ti: minimum inter-arrival time of τi.
Di: relative deadline of τi.
ai: arrival time of any job instance of τi.
di: absolute deadline of any job of τi.
fi: finishing time of any job of τi.
ρi: priority of τi.
T nm
Pk

: set of non-migrating tasks (tasks of the critical applica-
tion) assigned to Pk.
SPk

: server dedicated to core Pk.
CPk

: capacity of SPk
.

Cmin
s : minimum capacity among servers.

ρPk
: priority of SPk

.
Ts: server replenishment period.
T m: set of migrating tasks.
Rq: resource q.
RL
Pk

: set of local resources accessed by tasks on Pk.
RSL

i : set of local resources accessed by jobs of τi.
RSG

i : set of global resources accessed by jobs of τi.
Csi,q: worst-case execution time in all τi’s requests on Rq .
nG
i : maximum number of τi’s global requests.
nG
i,q: maximum number of requests of τi for global resource
Rq .
RSi: set of resources accessed by jobs of τi.

ni,q: number of τi’s requests on Rq .
WRnm

i : worst-case response time of a non-migrating task τi.
WRm

i : worst-case response time of a migrating task τi.

APPENDIX B
PROCESSOR SLACK

In this section, we describe how to assign server budget
based on the slack on a processor. In order to find the slack
on a processor Pk, the minimum slack among tasks with
priority lower than that of the server (for simplicity we assume
only one application per core) is found and not among the
higher priority tasks. This is due to the fact that the server
can only cause interference to tasks with lower priority than
itself. However, we still need to make sure that the server
itself is schedulable. For this purpose, we assume the server
as a task (denoted in the algorithm as τs with Cs = 0 with
priority ρs) where its inter-arrival time is equal to the server
period (lines 3 to 5 in Algorithm 1). Therefore, the minimum
slack among all lower priority tasks as well as τs, specifies
the slack on Pk (line 15 in Algorithm 1). Slack of a task is
specified according to Algorithm 2. The calculated slack of
the task is then divided by dTj/Tse + 1 to assign the budget
for one server period. Note that the plus 1 is to account for the
back-to-back execution anomaly [26] which happens in case
of self-suspensions which is applied for a deferrable server.
The final assigned server budget on processor Pk ,i.e., Cs, is
determined in line 14 by finding the smallest calculated budget
value.

Algorithm 1 Processor Pk Budget Assigning Algorithm
1: Initialize TaskList ← �
2: Initialize τs:{Cs, Ts}
3: Cs ← 0
4: for all τi ∈ T nm

Pk
do

5: if ρi < ρs then
6: τi added to TaskList
7: end if
8: end for
9: τs added to TaskList

10: for all τi ∈ TaskList do
11: slacki = FindSlack(τi)

dTi/Tse+1
12: end for
13: Cs = min

∀τi∈TaskList
slacki

To find the slack of a task τj ∈ T nm
Pk

, the difference between
the incurred load to τj and the processor supply is calculated
at a set of check points in time (line 31 in Algorithm 2). The
check points are multiplications of all higher priority tasks’
period considered until the task τj’s period (lines 10 to 19 in
Algorithm 2). The task τj’s slack is the maximum value for
differences between the check points and the incurred load in
that point in time (lines 32 to 34 in Algorithm 2).

APPENDIX C
HIGHER AND LOWER PRIORITY WORKLOAD RECAP

RHL/i(t) which is the upper bound of higher and lower
priority workload that is processed before a task τi ∈ T m is
calculated for t = WRm

i and is as follows:

RHL/i(t) = (d W i
HL(t)∑m

k=1 CPk
e − 1).Ts + tHL

res (t), (27)

Algorithm 2 FindSlack(τj)
1: Initialize checkPoint ← 0
2: Initialize checkPointList ← �
3: Initialize hpTaskList ← �
4: τi ∈ T nm

Pk
5: for all τh ∈ T nm

Pk
do

6: if ρh > ρi then
7: τh added to hpTaskList
8: end if
9: end for

10: for all τh ∈ hpTaskList do
11: k ← 1
12: checkPoint = k × Th
13: while checkPoint < Di do
14: if checkPoint /∈ checkPointList then
15: checkPoint added to checkPointList
16: end if
17: k ++
18: end while
19: end for
20: Di added to checkPointList
21: load ← 0
22: maxTaskSlack ← 0
23: for all t ∈ checkPointList do
24: hpInterference ← 0
25: slack ← 0
26: for all τh ∈ hpTaskList do
27: hpInterference + =

⌈
t
Th

⌉
× Ch

28: end for
29: load = Ci + hpInterference+Bi
30: slack = t− load
31: if slack > maxTaskSlack then
32: maxTaskSlack ← slack
33: end if
34: end for
35: if maxTaskSlack < 0 then
36: return −1
37: end if
38: return maxTaskSlack

where, W i
HL(WRm

i) is specified according to (33) and tHL
res

is calculated as below:

tHL
res =



WHL
res (t)

m
if WHL

res (t) ≤ δ(m)

CP(k+1)
+

WHL
res (t)− δ(k + 1)

k
if δ(k + 1) < WHL

res (t) ≤ δ(k),

∀k: 1 ≤ k ≤ m− 1

WHL
res (t) = W i

HL(t)− (d W i
HL(t)∑m

k=1 CPk
e − 1).

m∑
k=1

CPk
. (28)

∀k : 1 ≤ k ≤ m : δ(k) =

m∑
p=k

CPp + CPk
.(k − 1). (29)

Ri/HL which denotes the upper bound of the needed time
to process τi after the higher and lower priority workload is
finished is calculated as follows:

Ri/HL =


Ci if Crmn,i

s ≥ Ci
Ts − tHL

res (t) + CRPi.Ts + Ci−

CRPi(t).min(

m∑
k=1

CPk
, Ts) otherwise

(30)
where,

CRPi(t) = dCi−Crmn(t)∑m
k=1 CPk

e − 1, (31)

Crmn(t) = min(

m∑
k=1

CPk
−WHL

res (t), Ts − tHL
res)(t). (32)

W i
HL(t) = W i

HP(t) +W i
LP(t), (33)

where W i
HP (WRm

i) and W i
LP (WRm

i) presents the upper
bounds of the workload of lower and higher priority tasks
in the interval of WRm

i as follows.
Zhu et al. [31] showed that the workload of the tasks with

lower priority than that of task τi are also affected by the
response time of τi and is calculated as follows:

W i
LP(t) = min(

∑
j<i

RW i
j (t), CCLi(t)), (34)

where for t = WRm
i , CCLi(t) can be bounded from above

as CCLi(WRm
i) = (m − 1).Ci and RW k

j (t) is calculated
according to (36).

The workload of higher priority tasks than that of task τi
(W i

HP(WRm
i)) is calculated for t = WRm

i as follows:

W i
HP(t) =

∑
j>i

RW i
j (t), (35)

where RW i
j (WRm

i) denotes the upper bound of the requested
workload of a task τj in the interval of WRm

i and is calculated
similar to [8] presented in (36). However, due to resource
access waiting time of a higher priority task τj , more workload
related to τj may be released and contribute in RW i

j (t). As a
result, we update RW i

j (t) to account for such extra workload
according to (25).

∀j 6= i :
RW i

j (t) = Nj(t).Cj +min(Cj , t+Dj − Cj −Nj(t).Tj),
(36)

where Nj(t) =
⌊
t+Dj−Cj

Tj

⌋
.

Further, by assuming that a server SPk
can have an arbitrary

priority on its allocated core, it may experience interference
from other higher priority servers or non-migrating tasks
assigned to the same core. ISPk

, 1 ≤ k ≤ m, denotes the
maximum interference which a server SPk

could suffer on a
core Pk which can be calculated according to uniprocessor
scheduling [17]. Considering such interference to a server, the
maximum response time of a migrating task processed by the
server then is calculated as below [30]:
ISmax is is denoted as:

ISmax = max1≤k≤m{ISPk
} (37)

Zhu et. al has shown in [30] that the maximum response time
of a migrating task processed by the servers related to an
application is bounded from above by its WRm

i when each
server has the highest priority, plus 2× ISmax.

