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Abstract—Automotive systems are developed using multi-
leveled architectural abstractions in an attempt to manage the
increasing complexity and criticality of automotive functions.
Consequently, well-structured and unambiguously specified re-
quirements are needed on all levels of abstraction, in order to
enable early detection of possible design errors. However, automo-
tive industry often relies on requirements specified in ambiguous
natural language, sometimes in large and incomprehensible
documents. Semi-formal requirements specification approaches
(e.g., requirement boilerplates, pattern-based specifications, etc.)
aim to reduce requirements ambiguity, without altering their
readability and expressiveness. Nevertheless, such approaches do
not offer support for specifying requirements in terms of multi-
leveled architectural concepts, nor do they provide means for
early-stage rigorous analysis of the specified requirements.

In this paper, we propose a language, called ReSA, which
allows requirements specification at various levels of abstraction,
modeled in the architectural language of EAST-ADL. ReSA uses
an automotive systems’ ontology that offers typing and syntactic
axioms for the specification. Besides enforcing structure and more
rigor in specifying requirements, our approach enables checking
refinement as well as consistency of requirements, by proving
ordinary boolean implications. To illustrate ReSA’s applicability,
we show how to specify some requirements of the Adjustable
Speed Limiter, which is a complex, safety-critical Volvo Trucks
user function.

I. INTRODUCTION

Modern automotive systems rely on software that is rapidly
growing in complexity and criticality. The requirements spec-
ification phase of developing large automotive systems repre-
sents a decisive factor in achieving a dependable system within
demanding time-to-market constraints. Automotive systems
development typically uses natural language documents as
requirements artifacts that are exchanged between various
stakeholders [1]. The inherent ambiguity of natural language,
as well as the lack of rigor in using logical connectives
between textual terms, can give rise to imprecise requirements.
Moreover, complex requirements might suffer from lack of
structure, rendering them incomprehensible. These symptoms
imply poor requirements quality, which might negatively im-
pact the system’s verification and validation process.

Various researchers have proposed ways of structuring
requirements expressed textually, via software requirement pat-
terns [2][3], or the so-called requirements boilerplates [4][5].
Requirements boilerplates offer a more restricted grammar to

write more precise textual requirements, and yet should be
flexible enough to adapt new requirements structures. Accord-
ing to Hull et al. [6] a requirement boilerplate is a sequence
of attributes connected by fixed syntax elements. For in-
stance, If <event> then <system> shall be <act> is
a boilerplate in which event, system and act are attributes,
whereas If, then, shall be are fixed syntactic elements.
By using such templates, the generated requirements comply
to a predefined set of syntactic rules that guarantee that the
requirements are well-formed.

Software architectures (SAs) show how the system is
structured and how its components work together, representing
the earliest stage at which design decisions can be analyzed.
SAs are described in dedicated languages called architecture
description languages, out of which EAST-ADL, with its four
levels of abstraction, is one example already used in the auto-
motive industry [7]. In order for the analysis of architectural
models to be comprehensible, it is crucial that the system
and subsystem requirements support architectural elements,
such that the requirements are traceable across different layers
of abstraction. Specifying particular requirements in terms of
specific concepts valid for certain abstraction levels of the
architectural model enables proving facts like refinement and
consistency of requirements intra- as well as inter-abstraction
levels. Although much research has been devoted to formal and
semi-formal requirements specification (see section II), none
of the works addresses this issue.

Motivated by the above, in this paper we propose a
semi-formal requirements specification language, called ReSA
(Requirement Specification language for Automotive systems),
which provides support for defining requirements boilerplates
tailored to automotive systems. The language is based on
automotive systems ontology (introduced in section IV) that
specifies the needed concepts at the system level, as well as
the abstracted levels of the system’s software architecture,
thus providing a way of describing requirements in terms
of syntactic elements specific to each of these levels. In
section V, we apply ReSA on a subset of three representative
textual requirements of an automotive system called Adjustable
Speed Limiter, which we describe in section III. We show
that refinement and consistency analysis of the set of ReSA
requirements reduces to proving simple theorems over boolean
formulas, as presented in section VI. The result of our work
is a framework for specifying non-ambiguous, structured,
typed and architecture-aware requirements, via boilerplates.



Our ontology-based requirements specification language paves
the way towards analyzable and traceable sets of requirements,
across various levels of architectural descriptions of automotive
systems. Last but not least, we present related work in section
VII, before concluding the paper in section VIII.

II. REQUIREMENTS SPECIFICATION METHODS

A requirement can be defined as “A condition or capability
that must be met or possessed by a system or system com-
ponent to satisfy a contract, standard, specification, or other
formally imposed document” [8]. In this paper, we consider a
requirement specification as a way of describing requirements
in textual form. Concretely, a (countable) requirement specifi-
cation is a statement of the requirement in textual form. Several
proposed methods aim to improve requirements specification,
while maintaining some attributes of natural language, such
as readability, and expressive power [9]. In the following
subsections, we briefly discuss some relevant semi-formal, and
also formal requirements specification methods.

A. Semi-formal Specification Methods

A semi-formal specification has defined syntax, but usu-
ally lacks semantics. Requirements boilerplates, as illustrated
below (1), are semi-formal specifications originating from
CESAR boilerplates [10]. The specification method uses re-
stricted English grammar, but usually lacks formal semantics.
A requirement boilerplate is constructed from attributes (shown
in angle brackets), and fixed syntax elements, which are the
rest of the boilerplate syntax. A requirement engineer selects
boilerplates that suit the type of requirement to be specified,
and fills the attributes in order to complete the specification.

If 〈condition〉, . . . , 〈System〉 shall be able to 〈capability〉 (1)

As opposed to usual natural language, a requirement boiler-
plate constrains the structure and choice of words that an engi-
neer should use to construct a requirement. With this approach,
specification errors can be reduced when authoring require-
ments. In order to support automated analysis of requirements,
e.g., consistency checks, semi-formal specifications are often
transformed into formal specifications, sometimes via patterns,
e.g., the BOSCH Specification Pattern System (SPS) [2][3]
is used to express natural language requirements in temporal
logics.

B. Formal Specification Methods

Formal specifications are mathematical expressions of
properties that a system should satisfy [11]. They have formal
syntax that describes well-formed specifications, and also
formal semantics that interprets the specification [12], e.g., as Z
[13], LARCH [14], or four-variable models [15]. According to
a study carried out by Woodcock et al. [16], formal methods
can support a high-quality software development process in
practice, nowadays being mostly applied in the safety-critical
systems niche. Furthermore, the study reveals that the spec-
ification phase is time consuming and difficult. In this re-
spect, semi-formal specifications could facilitate requirements
formalization by first using restricted English grammar, and
then transforming such specifications into formal ones, hence,
alleviating the burden of complying to the mathematical rigor
required when using formal specification methods.

Limit vehicle speed 
to ASL set speed

Enable ASL

Deactivate ASL

Disable ASL

Activate ASL at a 
CURRENT vehicle speed

Fig. 1: ASL activation at current vehicle speed, main flow

III. USE-CASE: ADJUSTABLE SPEED LIMITER (ASL)

In this paper, we use an automotive function, that is, the
Adjustable Speed Limiter (ASL), as proof of concept for our
contribution. ASL is a vehicle speed control system that helps
the driver to not exceed a predefined speed (ASLSetSpeed).
This function is helpful especially in long highway drives,
when a driver enters a low speed area. The predefined speed is
configurable, according to the driver’s request, through buttons
located at the steering wheel level. ASL is a safety-critical user
function, which is operational in Volvo trucks, as an alternative
to other vehicle speed control functions, such as Cruise Control
(CC), and EcoCruise (an extension to CC).

A. ASL System Description

ASL consists of a Human Machine Interface (HMI) for
driver interaction, a main control subsystem that limits vehicle
speed, and a display subsystem that notifies the driver. Figure
1 shows the main flow for ASL activation at current vehicle
speed, that is, ASLSetSpeed is set to current vehicle speed.
ASL is enabled by selecting the ASL mode using a freewheel
located on the vehicle dashboard. If activation conditions are
met, e.g., the vehicle is in running mode, ASL is activated.
Next, the main control subsystem calculates the ultimate ve-
hicle speed, which is the minimum of ASLSetSpeed and legal
vehicle speed configured by the authority. The main control
subsystem limits the engine torque not to exceed the ultimate
vehicle speed. After activation, ASL can be deactivated, or
disabled at any moment during operation.

B. EAST-ADL Model of ASL

EAST-ADL [17] is an architectural description language
for automotive systems development. It is founded on levels
of abstraction at which an automotive system is perceived with
a certain detail. The levels of abstraction that are relevant to
our work in this paper are briefly described as follows:

• Vehicle-level is the uppermost abstraction level. At
this level an automotive system is realized through a
set of vehicle features, which are functional or extra-
functional traits of a vehicle. The vehicle features are
structured into Technical Feature Model (TFM) that
shows dependency between features, and realization
of a high-level requirement.

• Analysis-level: here, a vehicle feature is realized
through Functional Analysis Architecture (FAA),
without regard to implementation details. The FAA is
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composed of abstract functional blocks (a.k.a. Analy-
sis Functions).

• Design-level: analysis functions are further realized
through Functional Design Architecture (FDA) with
consideration of implementation issues, such as de-
sign constraints, and hardware resources. The FDA is
composed of abstract design functions that implement
application software, middleware, sensor/actuator han-
dlers.
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<<AFT>>
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<<DFT>>
ACT

<<DFT>>
RSLC

<<DFT>>
EMC

Fig. 2: Adjustable Speed Limiter (ASL) system in EAST-ADL
model

Figure 2 depicts the approach behind ASL function de-
composition, and refinement of requirements. ASL, which is a
Vehicle Feature (VF) in EAST-ADL, is decomposed into Road
Speed Limit Manager (RSLM), and Engine Manager Control
(EMC). RSLM is responsible for calculating the ultimate target
speed. EMC is responsible for generating proportional power
supply (a.k.a. mechanical torque) that matches the required
longitudinal motion by RSLM. Furthermore, the diagram
shows a specific case for RSLM decomposition into Activation
(ACT), and Road Speed Limit Controller (RSLC) function
blocks, which activate ASL, and calculate the ultimate target
speed (ulTargetSpd), respectively.

Lower-level requirements are refinements of upper-level
requirements, that is, ReqV ⇐ ReqA⇐ ReqD (a.k.a. vertical
refinement). Requirements at the same levels of abstraction can
also be refined, or decomposed, which is indicated through the
curved arrows. In order to guarantee integrity of requirements
amid development process, it is crucial to check the refinement
of requirements within, as well as across levels of abstraction.
In this regard, we represent requirements as boolean expres-
sions that allow us to check refinement, and consistency of
requirements. This is discussed in section VI.

C. Describing ASL Requirements in Natural Language: Issues

According to the current development status of ASL, there
are 17 use cases and 32 scenarios that are formulated to capture
functional and extra-functional requirements of ASL. There are
also 244 functional and extra-functional requirements associ-
ated to logical components, which basically are refinements of
the use cases and scenarios. The requirements are expressed in
unconstrained natural language, in English, using a company
specific software engineering tool. In this subsection, we share
some issues encountered in some relevant ASL requirements
described in natural language.

Req# 1. If ASL is active and the driver presses PAUSE button
or vehicle exits vehicle mode running, the ASL function stops to
limit the vehicle speed. The indication of the ASL active status
is replaced with the ASL enabled status. The ASL switches to
the enable state.

Req#1 describes the actions to take, notably deactivation
of ASL, if some conditions are met. Since no parentheses or
commas are used, and given the precedence of ’and/or’, the
conditional expression is ambiguous.

Req# 2. If RSL controller is determined to be faulty except if
ultTargetSpd is in the error or spare range, value Error shall
be used while the fault is present, Else if an external Road
Speed Limit request is active in signal ultTargetSpd and the
RSL controller is active, value active shall be used, Else value
inactive shall be used.

The above requirement is about determining RSL controller
status. Due to the intricate conditional’s structure, the require-
ment specification becomes hard to grasp. The requirement
is to return status (i.e., error, active, inactive) under different
conditions (e.g., RSL controller is faulty).

Req# 3. If the IncreaseRequest is active during more than a
configurable time (i.e., Speed control button long press time),
ASLSetSpeed shall be increased every 500 ms to the next
multiple of 5 km/h.

With Req#3, we intend to show a timing requirement spec-
ification, and assignment of values from function expression
in a generic form.

Our empirical study of ASL requirements suggests: 1) there
is a tendency to use very technical automotive concepts, 2) the
specifications tend to express requirements at different levels
of abstraction, e.g., Req 1 at high-level abstraction, and Req 2
at design-level abstraction, and 3) intricate specifications give
rise to ambiguous and complicated statements. In light of these
findings, we can observe that current specification methods
could be improved towards integrating features that address the
above issues. Hence, we rewrite the above requirements using
a specification language that we propose in the next section,
in an attempt to improve their quality.

IV. RESA: A REQUIREMENTS SPECIFICATION LANGUAGE

Here, we propose ReSA as a prototype of requirements
specification language, for the automotive domain. The lan-
guage uses human readable terms (words, phrases) to con-
struct functional and extra-functional requirements that re-
semble closely the requirements specified using plain English
language. ReSA consists of a grammar, and a requirement
specification ontology. The grammar provides syntactic rules
that enable the specification of well-formed requirements; the
ontology provides the language with types, and axiomatic
expressions for constructing typed terms into the requirement
specification.

A. Requirements Specification Ontology

The vernacular sense of an ontology is found in philosophy.
According to Stanford Encyclopedia of Philosophy dictionary,
it is a field that studies the existence of entities (or things) [18].
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In addition, it also studies entity features, and the relations that
exist between entities. In 1990s, Guber introduced the concept
of ontology to Artificial Intelligence in order to facilitate
knowledge sharing, and assist software development process
[19]. Since then, the application of ontology has been gaining
momentum in software engineering [20], and knowledge-based
engineering [21]. For terminological definitions and clarifica-
tion of ontology, we refer the reader to the work of Giaretta
et. al [22].

Definition 1. An ontology is a formal specification of a shared
conceptualization [23].

In the computer science community, there is no unique
definition of ontology [22]. However, the above definition
by Borst is sufficient for our needs. A conceptualization is
a way of viewing a system at some level of abstraction in
order to hide details and consequently, tame the system’s
complexity. Therefore, an ontology can be considered as means
of formally expressing a part of conceptualization. The form
of conceptualization that we are interested in this research
is requirement specification conceptualization, that is, an ab-
straction that allows engineers to describe a requirement at
a certain level of abstraction. An ontology can be used to
capture part of this conceptualization, that is, the syntactic
and semantic constructs of a requirement specification, which
support engineers to express clear, unambiguous requirements.

Structurally, an ontology contains concepts (a.k.a. classes
in object oriented vocabulary), conceptual relations (a.k.a.
properties), and instances of concepts (a.k.a. individuals). In
this paper, a concept refers to a class, or collection of entities
in an ontology; a conceptual relation relates concepts in an on-
tology to describe some property of the ontology. Concepts can
be abstract or concrete. If a concept is concrete, e.g., Driver, it
does not require instantiation [24]. In our quest for developing
ReSA, we identify the system-level ontology (short for system-
level requirement specification ontology), and abstraction-level
ontologies (short for abstract-level requirement specification
ontologies). This classification is on meta-level, at which our
specification language is constructed.

1) System-level Ontology: This ontology expresses a part
of the requirement specification that is generic to automotive
system development. The ontology describes specifications re-
lated to driver interaction with a system (e.g., a driver pressing
a button to activate an automotive function), specifications
related to main functionality of an automotive function (e.g.,
controlling a vehicle speed), and specifications related to driver
notification regarding a status of an automotive function.

In total, the system-level ontology is composed of 13
concepts (S), 24 conceptual relations, and 10 axiomatic ex-
pressions. The concepts act as types for terms in a requirement
specification. The conceptual relations describe the precedence
order of typed terms as they appear in a requirement specifi-
cation. The axiomatic expressions describe statements, which
are constraints on how requirements need to be specified.

Figure 3 shows graphically the system-level ontology for
describing the main functionality of an automotive function, by
a node-link diagram [25]. The entities having oval shape are
concepts of the ontology, except Driver, which is a concrete
concept. The concepts are described as follows:

State System

ActOnPara

Event

R4

R7

Driver InPara OutPara

ActOnSys

R5

R2

R8

R3

R1

ActOnDriver

R6

Fig. 3: Part of system-level ontology chart

• System - refers to any physical or logical entity
that can process an input and return an output, e.g.,
ASL (automotive function), RoadSpeedLimitManager
(a logical component of ASL).

• InPara - refers to input parameters, or proper-
ties of System. Usually, changing the value of
InPara affects the output value of System, e.g.,
ASLSetSpeed is an input parameter of ASL.

• OutPara - refers to output parameters of System,
e.g., ultTargetSpd is an output parameter of ASL.

• State - refers to operational modes of System, e.g.,
ASL is enabled or disabled, activated or
deactivated.

• Event - refers to internal or external occurrence that
needs to be handled by System, e.g., the occurrence
of internal fault in ASL (internal), driver request to
activate ASL (external).

• ActOnSys, ActOnPara, ActOnDriver -
refer to (action) verbs that precede System,
InPara/Outpara, Driver, respectively, in
a requirement specification. The main goal of
classifying the action verbs is to identify the right
semantics that matches a specific concept.

The edges shown in Figure 3 refer to conceptual relations.
The relations have type label, Is-fb (a short for Is followed
by). The type label has a signature (or stereotype) < S, S >,
and it describes the precedence order of two adjacent typed
terms, that is, a term with type S is followed by a term with
another type S.

Definition 2. According to the notion of subtyping (or subtype
polymorphism), if B is a subtype of A, relations (or operations)
that hold on instances of A also hold on instances of B. The
subtyping is expressed mathematically as B ≤ A. Further-
more, subtyping is closed under transitivity, that is, if B ≤ A
and C ≤ B, then C ≤ A is true [26].

Following the above definition, if S is a type associated to
the top level concept in system-level ontology, it is true that
the following subtyping relations hold for the trace R4->R7
(figure 3): (System ≤ S), (ActOnPara ≤ S), (InPara ≤
S). As a result, the conceptual relation, Is-fb, also holds
on the subtypes, e.g., <System, ActOnPara> is valid. The
following extended CGIF (Conceptual Graph Interchange For-
mat) encoding 1 shows a representation of the ontology for the
trace R4->R7. CGIF is a knowledge representation language,
based on first-order logic [27]. Therefore, CGIF notations can
be transformed into semantically equivalent notations, such as
first-order predicate logic [28]. The trace represents an ax-
iomatic expression for constructing a requirement boilerplate.
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We use a similar approach to encode the rest of the ontology.

CGIF encoding: 1 For trace R4-¿R7 of fig 3
1: [System *x1][ActOnPara *x2][InPara *x3]
2: (Is-fb ?x1 ?x2)(Is-fb ?x2 ?x3)

According to the semantics of CGIF language [29], the
concepts are represented in pairs of square bracket, as indicated
in line #1. Conceptual relations are represented in pairs of
parentheses, as indicated in line #2. The co-reference labels (or
variables, x1, x2, x3), which connect concepts and conceptual
relations, are defined by *, and referenced by ?.

2) Abstraction-level Ontologies: Abstraction-level ontolo-
gies refer to Vehicle-, Analysis-, and Design-level ontologies.
Each of these ontologies is a specialization of system-level on-
tology for EAST-ADL levels of abstractions, via subtyping re-
lations. These abstraction-level ontologies consist of concepts,
and conceptual relations that are pertinent to their specific ab-
straction levels. This approach allows consistent and proper use
of words and phrases at the right level of abstraction, to specify
requirements. For instance, logical components at Design-
levels are characterized by ports, signals, so it is not proper to
use such terms to define requirements at Vehicle-, or Analysis-
levels, as such a specification reduces comprehensibility of
the requirement for non-technical stakeholders. In this way,
type-checking can be enforced on requirements specifications,
thereby, minimizing typing errors. For that matter, system-level
ontology can be specialized to levels of abstraction found in
automotive development models other than EAST-ADL [30].

Vehicle-level

Analysis-level

Design-level

Instantiation

ReqV

ReqA

ReqD

<<
in
s>
>

System-level
ontology

Vehicle-level
ontology

Analysis-level
ontology

Design-level
ontology

<<
in
s>
>

<<
in
s>
>

<<import>>

<<import>>

<<import>>

Abstraction-level
Ontologies

EAST-ADL    
abstraction  levels

Fig. 4: ReSA language meta-level

EAST-ADL levels of abstraction not only provide sepa-
ration of concerns, but also top-down refinement of an au-
tomotive function. In this respect, an upper-level abstraction
is a basis for further refinement at a lower-level abstraction.
Therefore, upper-level ontologies should be accessible from
lower-level ontologies. This is indicated in Figure 4 by relation
<<import>>. The import allows lower-level ontologies to
access concepts and conceptual relations from upper-level

ontologies (referred to as ontology projection) [23]. ReqV,
ReqA, and ReqD designate instantiations of requirement boil-
erplates from Vehicle-, Analysis-, and Design-level ontologies,
respectively.

Table I shows system-level concepts, that is, System,
InPara, OutPara, and their subtypes from EAST-ADL
concepts. For instance, at Vehicle level,(VF ≤ System),
(Stimuli ≤ InPara); at Analysis level, (AFT ≤
System)(InSig ≤ InPara); at Design level, (DFT ≤
System)(InSig ≤ InPara). In this way, one can construct
a taxonomy of types that is later used to typeset terms
in a requirement specification. Figure 2 shows the CGIF
encoding for the trace R4->R7, specialized to the EAST-ADL
levels of abstraction at Vehicle-, Analysis-, and Design-level
ontologies.

CGIF encoding: 2 For trace R4-¿R7 of Fig 3
1: [VF *x1][ActOnPara *x2][Stimuli *x3]

Infer: (Is-fb ?x1 ?x2)(Is-fb ?x2 ?x3)
. Vehicle-level ontology

2: [AFT *x1][ActOnPara *x2][InSig *x3]
Infer: (Is-fb ?x1 ?x2)(Is-fb ?x2 ?x3)

. Analysis-level ontology
3: [DFT *x1][ActOnPara *x2][InSig *x3]

Infer: (Is-fb ?x1 ?x2)(Is-fb ?x2 ?x3)
. Design-level ontology

The encoding shows how precedence operations at
abstraction-level ontologies, e.g., Is-fb, can be inferred
from the system-level ontology. For instance, line#1 defines
concepts from Vehicle-level ontology, and the relation Is-fb
can be inferred from the system-level ontology according to the
transitivity property of subtyping: (System ≤ S), and (VF
≤ System), then (VF ≤ S). Line#2, line#3 use a similar
approach to line#1.

B. ReSA Context-Free Grammar

The ReSA grammar, G, is not only a set of syntactic
rules used to guarantee that a requirement specification is
well-formed. The grammar also encodes types, and operations
on typed terms inferred from the ontologies. This enables
type-checking of a requirement specification for detecting
and removing type errors during authoring requirements. The
grammar is a 6-tuple, as follows:

G = (N,Ns, Ta, T, S, P )

• N - is a finite set of non-terminal strings, and not part
of the ontology

• Ns - is a finite set of non-terminal strings that are
concepts of the system-level ontology. The strings start
with a capital letter

• Ta - is a finite set of terminal strings that are concepts
of the abstraction-level ontologies. The strings start
with a capital letter

• T - is a finite set of terminal strings that are fixed
terms of a requirement specification

• S - is a finite set of non-terminal strings, and marks
the start of a requirement specification. It is a subset
of the non-terminal strings, N
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System-level

concepts

EAST-ADL abstraction-level concepts

Vehicle-level Analysis-level Design-level

System VehicleFeature (VF)
AnalysisFunctionType (AFT)

FunctionalDevice (FD)

DesignFunctionType (DFT)

BasicSoftwareFunction (BSF)

LocalDeviceManager (LDM)

HardwareFunctionType (HFT)

InPara/OutPara Stimuli/Response
InSig/OutSig; Signal is a tuple <request, value>, and the fields are accessed through

the infix notation ‘.’, as <signal name>.request, <signal name>.value

TABLE I: Example: System-level, and abstraction-level concepts subtyping in an EAST-ADL specification [31]

• P - is a finite set of production rules used to derive
strings of the language.

In Backus-Naur Form (BNF) [32], the production rules appear
as follows:

〈non-terminal〉 ::= expression,

where ‘::=’ refers to a substitution of non-terminal string with
expression. The grammar is context-free; therefore, the left-
hand side of the production rules have a single non-terminal
string; at the right-hand side of the production rule, expression
could be terminal, or non-terminal string, in any order. While
non-terminal strings should be enclosed within pairs of angle
brackets, this is optional for terminal strings [33].

C. Sentential forms (Requirements Boilerplates)

The language, ReSA(G), is an infinite set of strings
recursively built from the production rules of the grammar,
P . In fact, the strings of the language are sentential-forms
(include variables, or place-holders), as opposed to strings
that are constructed from terminal strings only (without vari-
ables). Hereafter, the forms will be referred to as requirements
boilerplates. The constructs of a requirement boilerplate and
their syntax are discussed in this section. A syntax of these
constructs has arguments enclosed between square brackets:
[argument]. If the argument is optional, it is enclosed be-
tween braces: {argument}. The argument can be a typed
term, or untyped term. A typed term is enclosed in a pair
of angle brackets, <term:[type]>, where [type] refers to
concepts of the ontologies. The requirement boilerplate will
be referred to as boilerplate. Every boilerplate is prefixed by
[ReqV |ReqA |ReqD], to indicate that a boilerplate belongs to
a Vehicle-, Analysis-, or Design-level of an EAST-ADL model,
respectively.

1) Simple Boilerplates: These boilerplates are constructed
from a single main clause, and a single prepositional phrase
(abbreviated as prep phrase). The main clause is an inde-
pendent statement, and a prepositional phrase complements
the main clause with a constraint, or other information that
elaborates the main clause, e.g., reference to a standard, look-
up table, etc. A simple boilerplate is the smallest requirement
boilerplate that can be generated from the language.

〈simple〉 ::= 〈main〉 | 〈simple〉 〈prepositionphrase〉

Syntax :

[Subject] [Modal verb] [V erb] {Object}︸ ︷︷ ︸
main clause

{Prep phrase}

• Subject and Object refer to typed terms, <term:T>,
where T ≤ {System, InPara, OutPara}

• Modal verb refers to fixed syntax terms, e.g.,
{shall, may, shall be able to}

• V erb refers to typed terms, <term:T>, where T, ∈
{ActOnSys, ActOnPara, State}

An instantiation of the above syntax can be shown below:

Boilerplate 3 : Simple boilerplate
1: ReqV: <term:VF> shall <term:ActOnPara>

<term:Stimuli> . vehicle-level
2: ReqA: <term:AFT> shall <term:ActOnPara>

<term:InSig> . analysis-level
3: ReqD: <term:DFT> shall <term:ActOnPara>

<term:InSig> . design-level

2) Proposition Boilerplates: These boilerplates allow one
to define declarative statements that return true or false truth-
values. A declarative statement is used as a condition inside
a conditional statement, or to construct a complex sentence,
which we discuss later. Such boilerplates can capture internal
(2) internal or external events (3), operational states of a system
(4), vehicle modes (5), or comparison of quantitative values
(6).

〈proposition〉 ::= 〈event〉 | 〈operationalstate〉 | 〈vehiclemode〉
| 〈comparisonproposition〉

Syntax :

〈term : Event〉 occurs {Prep phrase} . . . (2)
〈Driver〉 [verb] [Object] {Prep phrase} . . . (3)

where V erb is <term:ActOnInDev|ActOnPara>, Object is
<term:InDevice|InPara>

[Subject] is [Object] {Prep phrase} . . . (4)
where Subject is <term:System>; Object is <term:State>

V ehicle is in [Object] {Prep phrase} . . . (5)
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where Object is <term:mode>

[Operand1] [Comp operator] [Operand2] . . . (6)
where Operand1, and Operand1 refer to a variable or a literal value.
Comp operator are operators, which are discussed later, IV-C3

Boilerplate 4 : Proposition boilerplate
1: <term:Event> occurs...
2: <Driver> <term:ActInDev> <term:InDevice>...
3: <term:VF> is <term:State>...
4: Vehicle is in <term:Mode>...
5: <variable> <is greater than> <constant>...

3) Operators: The logical operators (AND, OR) conjugate
two or more simple boilerplates, or proposition boilerplates
in order to create a compound boilerplate. The logical unary
operator (NOT) negates a simple or a proposition boilerplate.
The comparison operators compare quantitative values. The
operator AND has higher precedence than OR; however,
parentheses could be used in order to enforce a different order
of the boolean evaluation.

〈operator〉 ::= 〈logical〉 | 〈comparison〉
〈logical〉 ::= ‘AND’ | ‘OR’ | ‘NOT’

〈comparison〉 ::= ‘equals’ | ‘not equals’
| ‘less than’ | ‘greater than’
| ‘less than or equal to’
| ‘greater than or equal to’

4) Prepositional phrase Boilerplates: These boilerplates
allow one to build a prepositional phrase. A prepositional
phrase is constructed from a preposition followed by an object.
This type of prepositional phrase is mainly used to express
a constraint that is suffixed to a simple, or a propositional
boilerplate. The constraint could be timing, occurrence of
events, or assignment of values.

Syntax :

. . . [timing | event | assignment]︸ ︷︷ ︸
preposition

[Object] (7)

The preposition is represented by the non-terminal string
〈prepositionphrase〉. The objects of the prepositional phrase,
Object, are terminal strings following the prepositions indi-
cated by 〈timing〉, 〈occurrence〉, and 〈assignment〉.

〈prepositionphrase〉 ::= 〈timing〉 | 〈event〉 | 〈assignment〉
〈timing〉 ::= ‘at’ 〈time〉 | ‘after’ 〈time〉 | ‘until’ 〈time〉
| ‘within’ 〈time〉 | ‘for’ 〈time〉
| ‘between’ 〈time〉 ‘and’ 〈time〉 | ‘every’ 〈time〉
〈occurrence〉 ::= ‘after’ 〈event〉 | ‘before’ 〈event〉
| ‘between’ 〈event〉 ‘and’ 〈event〉
〈assignment〉 ::= ‘set to’ 〈value〉 | ‘set to less than’
〈value〉

| ‘set to greater than’ 〈value〉
| ‘set to less than or equal to’ 〈value〉
| ‘set to greater than or equal to’ 〈value〉
| ‘set to between’ 〈value〉 ‘and’ 〈value〉,

〈time〉, and 〈value〉 could be literal, or variable. Moreover,
they could represent a single value, list, multi-values expressed

with inequality, or a computed value, e.g., return value of a
function.

An instantiation of the above syntax is shown below:

Boilerplate 5 : Prepositional phrase boilerplate

1: <within> <quantity> <unit> . timing
2: <after> <term:Event> . event
3: <greater than> <quantity> <unit> .

assignment

5) Complex Boilerplates: These boilerplates capture com-
plex statements. A complex sentence is constructed from
a single simple statement, and a subordinate clause. The
subordinate clause is an independent clause, which cannot
describe a requirement by itself. Complex boilerplates allow
one to describe a requirement that is more complex than a
requirement that can be described with a simple boilerplate,
e.g., to limit requirement validity to a specific occasion using
a conjunctive, e.g., while.

〈complex〉 ::= 〈simple〉 〈subordinate〉
〈subordinate〉 ::= 〈conjunctive〉 〈proposition〉
〈conjuctive〉 ::= ‘while’ | ‘when’

Boilerplate 6 : Complex boilerplate

1: ReqV: [Boilerplate 3] <when> [Boilerplate 4]
2: ReqA: [Boilerplate 3] <when> [Boilerplate 4]
3: ReqD: [Boilerplate 3] <when> [Boilerplate 4]

6) Conditional Boilerplates: These boilerplates allow one
to create conditional statements. Each has condition and con-
sequent parts. The condition part is specified by a boolean
expression of one or more propositions connected using binary
operators (AND, OR). The consequent part is expressed by a
simple or a compound boilerplate. The compound boilerplate
is a composition of two or more simple boilerplates conjugated
using binary operators (AND, OR).

Syntax :
PRECONDITION : [condition] (8)

If conditional

IF [condition] THEN

[consequent]

ENDIF

If-else conditional

IF [condition] THEN

[consequent]

ELSE

[consequent]

ENDIF

If-elseif conditional

IF [condition] THEN

[consequent]

ELSEIF [condition] THEN

[consequent]

ENDIF

If-elseif-else conditional

IF [condition] THEN

[consequent]

ELSEIF [condition] THEN

[consequent]

ELSE

[consequent]

ENDIF

〈conditional〉 ::= 〈if 〉 | 〈ifelse〉 | 〈ifelseif 〉 | 〈ifelseifelse〉
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〈condition〉 ::= 〈proposition〉
| (〈proposition〉 〈binary〉 〈proposition〉)
〈consequent〉 ::= 〈simple〉 | (〈simple〉 〈binary〉 〈simple〉)
| 〈complex〉 | (〈complex〉 〈binary〉 〈complex〉
Boilerplate 7 : Conditional boilerplate

ReqV: . vehicle-level
IF <Driver> <term:ActOnInDev> <term:InDevice>
THEN

<term:VF> shall <term:ActOnPara>
<term:Stimuli>
ENDIF

D. Implementation

The language is implemented in xText [34], which is a
framework for developing domain-specific languages. xText
has rich runtime components, such as the parser, Type-Safe
Abstract Syntax Tree (AST), the serializer, allowing an end-to-
end development of a domain-specific language, that is, from
encoding the grammar of the language to a specifically tailored
IDE for the language.

V. APPLYING RESA TO ASL REQUIREMENTS

To illustrate its usefulness and validate our approach,
we have applied ReSA to specify the ASL’s functional and
timing requirements. The requirements range from end-to-
end functional requirements at Vehicle-level, to component
requirements at Design-level of EAST-ADL. Here, we show
the ReSA description of the ASL requirements introduced in
section III (see ReSA Req 1 to ReSA Req 3).

ReSA Req 1 : Rewriting Req1
ReqV: . Vehicle-level
IF (<ASL:VF> is <activated:State> AND
(<Driver> <presses:ActOnInDev> <PAUSE
button:InDevice> OR

vehicle is not in <running mode:Mode))
THEN
<ASL:VF> shall <stop to limit:ActOnPara>

<vehicle speed:Stimuli> AND
<ASL status:Response> shall be <set

to:ActOnPara> <enabled:State> AND
<ASL:VF> shall be <enabled:State>

ENDIF

ReSA Req 2 : Rewriting Req2
ReqD: . Design-level
IF <fault affecting RSL controller:Event>
occurs AND <ultTargetSpd.value> is not in
{<error>, <spare>} interval
THEN
Status <Error:Status> shall be displayed

<while> <the fault:Event > is <active:State>
ELSEIF <ultTargetSpd.request:InPara> is
<active:State> AND <RSL controller:DFT> is
<activated:State>
THEN
Status <active:Status> shall be displayed.

ELSE
Status <inactive:Status> shall be displayed.
ENDIF

ReSA Req 3 : Rewriting Req3
ReqV: . Vehicle-level
IF <IncreaseRequest:Stimuli> is
<active:State> <for> <greater than>
<SpeedCtrlBtnLongPressTime>
THEN
<ASLSetSpeed:Stimuli> shall be set to <next

multiple of> <5> <kmph> every <500> <ms>
<ASLSetSpeed:Stimuli> shall be <limited

to:ActOnPara> <Vmax>.
ENDIF

VI. REQUIREMENTS ANALYSIS

Figure 5 is a requirement relationship meta-model based
on the requirement relationship meta-model from EAST-ADL
specification. Classes and attributes that are relevant to our
discussion are indicated in the diagram. In this section, we
show how ReSA requirement specification complements re-
quirement modeling in EAST-ADL. Furthermore, we propose a
consistency check theorem that helps to identify contradictions
during requirement decomposition, or refinement process. The
meta-model consists of a requirement class, modeling elements
classes (EAElement, Identifiable), and requirement relations
(Refine, Satisfy, Derive). Every relation has a client and a
source modeling element.

• The Refine class indicates refinement of source (sup-
plier) requirement with one or more refining clients,
EAElement, which are either requirements, or model-
ing elements.

• The Satisfy class indicates satisfying a supplier re-
quirement with one or more satisfying clients, Identi-
fiable that are design/architectural elements.

• The DeriveRequirement class indicates derivation of
new client requirements from a supplier requirement.

• Requirement dependency is shown through the Re-
quirementsLink class. In order for a requirement to be
satisfied, it might require another requirement, which
is indicated through the type INCLUDES, or it might
be unsatisfiable in a presence of another requirement,
which is indicated through the type EXCLUDES.

Let us assume a set of ReSA requirements in form of condi-
tionals. In the following, we formalize such requirements as
conjunctions of implications, where A,B, ..., N are predicates
that are either antecedents (left-hand side of each implication),
or consequents (right-hand side of each implication), respec-
tively:

If conditional

A⇒ B

If-else conditional

C ⇒ D

∧
¬C ⇒ E

In our framework, one should be able to prove the re-
finement relationships described above, both intra- as well as
inter-abstraction levels of the software’s architectural model,
according to the abstraction-level ontology of ReSA, which
ensures the fact that the defined boilerplates are instantiated
with architectural elements valid for a specific level of ab-
straction. The definition below introduces formally the simple
notion of refinement:
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Satisfy

RequirementRequirementsLink
type : RelationType = 

DeriveRequirement

EAElement IdentifiableRefine

RelationType
INCLUDES
EXCLUDES

[0..*]osatisfiedRequirement

[1..*]osource

[1..*]otarget

[1..*]oderiveFrom

[1..*]oderived

[1..*]osatisfiedBy[1..*]orefinedRequirement[1..*]orefinedBy

Fig. 5: EAST-ADL Compatible Requirement Meta-model [31]

If-elseif conditional

F ⇒ G

∧
¬F ∧H ⇒ I

If-elseif-else conditional

J ⇒ K

∧
¬J ∧ L⇒M

∧
¬J ∧ ¬L⇒ N

Definition 3 (Requirement refinement). Consider ReSA re-
quirements Req 1 and Req 1’. The refinement of Req 1 by
Req 1’ is defined as follows:

Req 1′ Refine Req 1
∧
= Req 1′ ⇒ Req 1

Given a A⇒ B requirement, a refinement of such requirement
according to Definition 3 holds if the antecedent A is weak-
ened, or the consequent B is strengthened. That is A∨A′ ⇒ B
refines A⇒ B, and so does A⇒ B ∧B′.

Finding inconsistencies in early-stage ReSA requirements
reduces to finding contradictions in the set of boolean impli-
cations. We say that a set of ReSA requirements (of the form
assumed above) is inconsistent if the following implication
holds:

Theorem 1 (Inconsistency of requirements). Assuming
Ai,Bi, ..., Nl predicates of requirements Reqi, Reqj,
Reqk, Reql i, j, k, l ∈ [1..n], we say that the set of
requirements

∧
i Reqi ∧

∧
j Reqj ∧

∧
k Reqk ∧

∧
l Reql

is inconsistent if the following implication holds:

(
∧

i(¬Ai ∨Bi) ∧
∧

j((¬Cj ∨Dj) ∧ (Cj ∨ Ej))∧

∧
∧

k((¬Fk ∨Gk) ∧ (Fk ∨ ¬Hk ∨ Ik))

∧
∧

l((¬Jl ∨Kl) ∧ (Jl ∨ ¬Ll ∨Ml) ∧ (Jl ∨ Ll ∨Nl))

⇒ False

We know that an interpretation will satisfy the formula
above if and only if it satisfies the formula’s universal closure,
that is, for any i, and any variable value of Ai, ..., Ni the
negation of the whole left-hand side conjunct of Theorem
1 holds. In order to disprove the inconsistency theorem,
one needs to prove that its negation is true, that is, find a
counterexample that would satisfy the conjunction of all ReSA
requirements. Such problem can be easily solved by a SAT
solver or a theorem prover. Applying the consistency check
to the set of three ASL ReSA specified requirements renders
them consistent.

VII. RELATED WORK

There is a growing interest, and research in requirements
formalization in the realm of requirement engineering due to
compliance requirements in safety standards, and the benefits
that could be gained from formalization likewise. This is
predominantly common for safety-critical applications, e.g.,
in automotive, rail, and aerospace industries. This is justified
by the fact that safety-critical functions need be tested, and
verified at early stages of system development in order to detect
and reduce software errors. In this section, we discuss the
relevant state-of-the-art, and state-of-practice on requirement
specification approaches.

a) Requirement boilerplates: Requirement boiler-
plates have gained popularity in academic research as well as
industry, e.g., CESAR RSL [10], ontology-based requirement
boilerplates (DODT tool) [4], Requirement Authoring Tool
(RAT) [35], Easy Approach to Requirement Syntax (EARS)
[36]. Unlike these methods, ReSA is a specification language
intended for automotive systems. Besides, current requirement
boilerplates share the same set of attributes to express require-
ments at any level of abstraction. In order to improve precision
and type-checking of requirements, we treat each level of
abstraction as distinct, therefore, have distinct attributes (or
concepts in this paper). DODT tool supports domain-specific
ontology in order to guide and improve requirement specifi-
cation. In this paper, we propose instead an abstract ontology
that acts as an abstract type-system for requirement terms, and
guides engineers during specification.

b) Pattern-based requirement specifications: The
Specification Pattern System (SPS) [2] is based on a restricted
English grammar that has been recently extended to support
requirements specification for automotive systems [3][37].
Concerning readability, the requirements boilerplates syntax
appear close to natural language, and are more readable. To
our findings, there is no clear criterion that differentiates the
two specification methods. As compared to SPS, ReSA allows
specifications that render natural language. However, SPS has
semantically equivalent specifications in first-order-logic, CTL,
etc., which ReSA has not implemented yet.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a structured requirement spec-
ification language for automotive systems. The specification
language is human readable, and renders natural language
sentence construction. It uses the notion of ontology to capture
automotive concepts, and precedence order of typed terms and
axiomatic expressions that allow the construction of unam-
biguous requirements specifications. The language is extended
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to express requirements designated to EAST-ADL levels of
abstraction. However, the approach can also be applied to
support abstraction levels of industrial development process
models other than EAST-ADL (e.g., SysML). Moreover, we
show how refinement and consistency checks can be carried
out, to allow requirements analysis at early stages of system
development, prior to full formal verification. Finally, we have
applied the language to express a representative subset of ASL
requirements at different levels of abstraction.

The ReSA requirement specification language is one step
closer to formal specification. Future work includes complete
implementation of the language followed by its validation
on the ASL system that has to satisfy 244 functional and
extra-functional requirements. In addition, we plan to work
further on the automatic transformation of ReSA requirements
to formal TCTL requirements that could be fed to ViTAL [7],
our recently developed tool-chain for formal verification of
EAST-ADL models, which uses the UPPAAL model-checking
engine. Our ultimate goal is to be able to integrate formal ver-
ification of automotive architectural models into the industrial
system development.
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