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—— Abstract

Constructing the control-flow graph (CFG) of machine code is made difficult by dynamic transfers
of control (DTC), where the address of the next instruction is computed at run-time. Switch-
case statements make compilers generate a large variety of machine-code forms with DTC. Two
analysis approaches are commonly used: pattern-matching methods identify predefined instruc-
tion patterns to extract the target addresses, while analytical methods try to compute the set of
target addresses using a general value-analysis. We tested the abstract execution method of the
SWEET tool as a value analysis for switch-case code. SWEET is here used as a plugin to the
Bound-T tool: thus our work can also be seen as an experiment in modular tool design, where a
general value-analysis tool is used to aid the CFG construction in a WCET analysis tool. We find
that the abstract-execution analysis works at least as well as the switch-case analyses in Bound-T
itself, which are mostly based on pattern-matching. However, there are still some weaknesses:
the abstract domains available in SWEET are not well suited to representing sets of DTC target
addresses, which are small but sparse and irregular. Also, in some cases the abstract-execution
analysis fails because the used domain is not relational, that is, does not model arithmetic re-
lationships between the values of different variables. Future work will be directed towards the
design of abstract domains eliminating these weaknesses.
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1 Introduction

Static analysis of the worst-case execution time (WCET) of a program usually begins by
building the control-flow graphs (CFG) of all subprograms, and the call-graph connecting the
subprograms. On the machine-code level, where most conventional WCET tools work, the tool
has to find the possible successor instructions of each instruction under analysis. This is easy
when the instruction defines its successors statically but hard for control-transfer instructions
with dynamic target addresses, for example register-indirect jumps. Such dynamic transfer of
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control (DTC) instructions often result from switch-case statements. Other reasons for DTC
include function pointers, virtual function calls in object-oriented languages, and closures in
functional languages.

This paper focuses on DTC from switch-case statements. This analysis is typically
local and intra-procedural, while function-pointer analysis is a global value analysis and
assumes that the CFGs of all procedures are already known. The switch-case statement in
languages such as C or Ada is a very flexible control structure. The programmer can choose
the type of the switch index, for example an 8-bit or a 32-bit number; whether the cases
are numbered densely 1 .. n or are a sparse subset of a large range; whether each case is
reached by a unique index value or by a set or range of values; and whether there is a default
case or not. Compilers often generate quite different kinds of code to implement different
kinds of switch-case statements. Moreover, hand-written assembly code (still often found
in run-time libraries) can have quite tricky switch-like structures. Switch-case statements
are also common in real programs and a failure to analyse even one of them can prevent
the analysis of the whole program. Of course, the compiler knows all the targets of each
switch-case DTC, and in principle could make this information available to a WCET analyzer,
but in practice we cannot expect to get this information from all the industrial compilers,
and especially not for manually coded assembler subprograms — even debugging information
is sometimes unavailable for those.

On the surface, analysing a DTC instruction is just value-analysis: we need to know
the possible run-time values of the variable or register that holds the final target address.
However, in practice we have more requirements — the analysis of the DTC generated from a
switch-case statement should:

produce the precise value-set, because any over-estimation will introduce false execution

paths, which can make a mess of the rest of the analysis,

produce the sequence of instructions that leads to each case, so that later steps in the

analysis can find an accurate WCET for each case,

connect each case with the corresponding values of the switch index, again for use in

later analysis steps (for example to find bounds for a loop that is nested in a case and

depends on the switch index),

apply uniformly to most types of code for most kinds of switch-case statements, and be

robust to changes in the code as the compilers evolve or manually written code is revised.

Adding new patterns or other special cases for every new version of every compiler for

every supported processor is cumbersome and expensive.

The more general analysis-based methods have a larger chance of satisfying the last point,
while more specialized pattern-based methods will suit the first three points better.

How can a value-analysis method meet these requirements, in particular a method
using abstract interpretation? Firstly, for high precision a very suitable and accurate
abstract domain must be used, and imprecision induced by merging abstract values must be
limited. Secondly, because switch-case code is often optimized and quirky, the “smooth” and
theoretically appealing abstract domains such as intervals or polyhedra may not work well.
Thirdly, this code often uses memory-resident tables, so the analysis must model memory
values as well as registers. However, these tables usually contain constants, so a model of
indexed access to constant memory data may be enough, and mutable memory data need
not be modelled.

Here, we apply the abstract-ezecution method of the SWEET tool to switch-case code, and
compare it to the switch-case analyses in the Bound-T tool, which are in part pattern-based.
This is also an experiment in modular tool design where a general value analysis tool is used



N. Holsti, J. Gustafsson, L. Killberg, and B. Lisper

as a plugin to a WCET analysis tool. Indeed, this scheme should also be applicable to other
value- and WCET analysis tools if they are provided with suitable interfaces.

SWEET requires ALF code [5] as input, not machine code. Thus, we needed a front-end
to translate machine-code into ALF. We implemented this function in Bound-T, which in
the future will let users of Bound-T benefit also from other SWEET analysis results like
loop bounds and other flow-facts. However, so far we have implemented the link between
Bound-T and SWEET only for DTC analysis.

The rest of this paper is organized as follows. Section 2 introduces our tools and methods:
abstract execution, SWEET, Bound-T, and the coupling of Bound-T and SWEET to use
abstract execution for DTC analysis. Section 3 describes the test programs we used, in
particular the machine-code form of their switch-case statements. Section 4 discusses the
results of the analysis of the test programs, tracing the reasons for successes and failures.
Section 5 briefly surveys some related work on analysing DTC. Section 6 draws some
conclusions for future development of SWEET and Bound-T.

2 Tools and methods

2.1 SWEET and Abstract Execution

SWEET [10] was originally aimed at WCET analysis. The current version of SWEET
focuses on value-analysis and control-flow analysis. SWEET analyses programs represented
in the ALF language [5]. ALF is a textual language, similar to a compiler’s intermediate
representation, and is designed to represent code on both low- and high level (like machine
code, or C) faithfully. An ALF program consists of global data declarations and functions.
A function consists of local data declarations and a sequence of assignment statements
interleaved with branch statements, where any statement can be labelled for use as branch
target.

In addition to the conventional value analyses based on abstract interpretation with
widening, SWEET provides Abstract Ezecution (AE) [6]. This can be seen as a very
context-sensitive value analysis without widening, where different loop iterations are analysed
separately. This makes the analysis resemble a symbolic execution where the program is
executed with abstract states, in the abstract domain, rather than in the concrete domain.
This yields a more precise value-analysis, but has the draw-back that it may not terminate.

During the AE, several abstract states may appear. When the AE reaches a control-
flow join, it may or may not merge the abstract states from the incoming paths using the
least upper bound operator in the abstract domain. The merging is controlled by several
command-line options and can even be completely shut off. Disabling merging has the effect
that the abstract states that provide the result of the value analysis are not merged, which
effectively turns the abstract domain into its powerset domain. This makes it possible to
obtain sparse value sets from the AE even when a regular abstract domain such as intervals
is used. This matters because DTC target addresses often form sparse sets.

The current version of SWEET supports both intervals and Circular Linear Progressions
(CLP) [13] as abstract domains. CLP combines the well-known intervals with congruences [4]:
the latter can represent non-unit address strides, which is important for DTC analysis.

Our aim is to use AE, with no merging, to compute the possible values of the target
addresses of the DTC instructions in the machine-language program under analysis. The
question then arises how DTC instructions can be represented in an ALF program.
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2.2 Dynamic control flow in ALF

ALF statements can have labels which have a symbolic part and a numeric offset part. Such
statement references are first-class ALF values and can be computed dynamically by selecting
a value for the symbolic part from those existing in the program, and/or by numerically
computing a value for the offset part. The computed statement reference can then be used
in a jump statement — an ALF DTC. SWEET’s analysis can produce a safe (i.e. possibly
over-estimated) set of possible DTC targets, as ALF statement references.

However, when the ALF code is generated from machine code, modelling a DTC with
ALF statement references would require the ALF code to include all the ALF statements
representing the instructions that may be the targets of the DTC. Therefore these instructions
would have to be found and translated into ALF, before the ALF representation of the DTC
could be subjected to analysis. In effect, this would require the ALF generator itself to
resolve the DTC, before generating the ALF program.

The reader may ask, why not translate all of the machine code, as found in the code-
memory image, into ALF statements? Then all possible DTC targets would be present in the
ALF program. However, the presence of data intermixed with the code, and the existence of
variable-length instructions and the consequent ambiguity of where instructions start, and
the possible presence of more than one instruction set or encoding in the same program
mean that this approach could generate a very large ALF program, much of which would be
nonsense because it would not represent real instructions. Furthermore, an ALF program is
syntactically divided into functions (subprograms), and an ALF DTC jump is permitted only
within an ALF function, not across functions. A translation of the whole program into ALF
would have to group the instructions into functions, which is impossible without resolving the
DTCs in the machine code, or without some meta-information on function boundaries in the
machine code. Similar reasons prompted Theiling’s use of bottom-up CFG reconstruction
[14] as opposed to the top-down, decode-all-the-image approch used by some earlier work.

Therefore, we allow ALF programs to be incomplete. We make the ALF program end at
the point of an unresolved DTC, and analyse the incomplete program to discover the values
of the numerical variables on which the DTC target depends. The analysis results are then
used to compute the DTC target addresses. These addresses are passed back to Bound-T,
which in turn generates a new ALF program that includes code reachable from the resolved
DTC’s. This iteration goes on until all DTC’s are resolved — see Section 2.4.

2.3 Bound-T and its analyses of dynamic control flow

Bound-T is a WCET and stack-usage analyser using pure static analysis of linked, executable
machine-code programs [11]. Bound-T’s DTC analyses are always implemented or initiated by
processor-specific and sometimes compiler-specific analysis procedures, triggered by specific
code patterns. Still, the specific DTC analyses build on and use the general analyses in
Bound-T. The DTC analyses fall into two groups:
Abstraction-based analyses. Here, the target-specific part of the analysis models the DTC
in a form that is amenable to one of the abstraction-based analyses in Bound-T: constant
propagation, value-origin (def—use) analysis, and Presburger-arithmetic analysis. The
latter is incidentally described in [8] and is based on the Omega Calculator [16].
Partial-evaluation analyses [7]. Here, the target-specific part of the analysis is responsible
for starting, stopping and parametrizing the partial evaluation.

The main limitation of the abstraction-based analyses is that the Presburger-arithmetic
analysis cannot model dynamically addressed memories, only statically identified variables.
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Figure 1 Overall analysis flow.

If the DTC involves a table of some form, the Presburger-arithmetic analysis must be focused
on the addresses of the table elements, while the reading and interpretation of the data in
the table must be done separely and depends on the DTC type.

The main limitation of the partial-evaluation analyses is the need to detect where and
how the evaluation should be started — typically on entry to specific library functions (“switch
handlers”). Some manual reverse engineering of these functions is needed, to understand
how they access the “switch-tables” encoding the switch-case statements.

2.4 Coupling SWEET and Bound-T

To evaluate abstract execution for DTC analysis, we extended Bound-T to export its internal
program model into ALF and to run SWEET on that ALF program, asking for AE using
either the interval domain (which is sensitive to variable bit-widths and wrap-arounds) or the
CLP domain, no merging, and output of the abstract values of the variables which determine
the targets of the DTC’s. (However, when merging is disabled, the values produced are sets
of concrete values rather than abstract values.) Bound-T then reads the SWEET output,
computes the corresponding DTC target addresses, and adds those instructions and their
static successors to its internal program model, if necessary fetching and decoding more
code from the executable under analysis. The extended program model may contain new
DTC’s. This process (ALF generation — SWEET analysis — completion of program model)
is iterated until it stabilizes. Fig. 1 illustrates the data flow in this process. The iterative
construction and extension of program models involving DTC was already implemented
in Bound-T for its own DTC analyses, so essentially we only added SWEET as a further
method of DTC analysis. For technical details see [9].
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We implemented this coupling for the Atmel AVR 8-bit processor architecture, a widely
used microcontroller family [1]. The AVR is a difficult subject for DTC analysis because
it implements mostly 8-bit operations and no general base + indexr addressing. The AVR,
has a Harvard architecture with separate instructions for reading data from code memory.
Code addresses are 16 or 22 bits wide (depending on the AVR device) and are manipulated
as pairs or triples of 8-bit data. Some of the 32 general 8-bit registers can be paired and
used as 16-bit registers, but the set of 16-bit operations is quite limited. The AVR machine
code generated for switch-case DTC is complex and varied. This makes pattern-matching
analyses unreliable and favours semantically based analyses, such as AE.

3 Test programs

We selected 6 programs from the Bound-T test suite and added one new program to the
suite, giving a total of 7 test programs (P1 — P7 below). The programs can be provided on
request without IP restrictions. The goal was to include many different forms of switch-case
code using DTC. Note that it is the machine-code form of the DTC that is important, not
the source-code form. We did not use the well-known MRTC benchmarks because their
switch-case statements produce simple or no DTC code with the compilers we have tried.
The switch-case structures in our test programs are either extracted from real programs, or
written to be similar to switch-case statements in real programs. The DTC machine codes
are representative of Tidorum’s experience with real programs and several different compilers.
The chosen programs are small, because the prototype implementation of ALF export in
Bound-T cannot yet handle complex parameter-passing confidently. However, analysis of
switch-case code is for the most part local and intra-procedural so the program size is not
important.

P1 A bottom-test loop, which contains a dense switch-case statement implemented by an
indexed dynamic jump into a table which, in turn, contains static jumps to the code
for each case. The loop counter is 8 bits, running from 15 to 19, and the cases are also
numbered 15 to 19 with no default case.

P2 A dense switch-case statement with an 8-bit index, implemented by loading the 16-bit
jump target address from a table in code memory, in two 8-bit parts, and executing an
indirect jump to that address. The cases are numbered 0 to 9 plus a default case.

P3 A sparse switch-case statement with an 8-bit index, four cases plus a default, implemented
by a switch-table and the corresponding switch-handler subprogram. This is a simplified,
artificial switch-table structure from the example in [7].

P4 A sparse switch-case with an 8-bit index, four cases plus a default, implemented with
the real switch-table structure (sparse variant) and real switch handler used in the IAR
Systems C compiler.

P5 A dense switch-case statement with an 8-bit index, ten cases plus a default, implemented
with the real switch-table structure (dense variant) and real switch handler used in the
TAR Systems C compiler.

P6 A 16-case switch, implemented by an indexed jump into a dense table of jumps, in which
the 4-bit index is assembled from two 2-bit pieces using “rotate” followed by “or”. In
effect, this is a 2-dimensional switch-case with two indices of 2 bits each. Jump-table
elements are two addressing units long.

P7 A variant of P6 in which the “rotate” instruction is replaced by a “left shift” instruction
and jump-table elements are one addressing unit long.
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Table 1 Analysis results.

Program Bound-T result SWEET (interval) result SWEET (CLP) result

P1 Ezact result, but see note. | Ezact result. Ezact result.

P2 Fails. Fails. Fails.

P3 Fails. Ezact result. Ezact result.

P4 Ezact result. Ezact result, but see note. | Fxact result, but see note.
P5 Ezact result. Fails. Fails.

P6 Fails. Fails. Ezact result.

P7 Ezact result. Ezact result. Ezact result.

We know of some forms of switch-case code that are not represented in this test set:
tables of code offsets, instead of code addresses, and address (or offset) tables accessed by
hashing the case index, instead of using the case index itself (minus some lower bound) as an
offset into the table. There are probably more strange forms lurking in the code jungle.

4  Analysis results

We compiled the test programs into AVR executables (choosing either the gec or the TAR
compiler, to generate the desired kind of DTC machine code) and analysed them with
Bound-T alone (disabling the use of SWEET) and with the Bound-T + SWEET combination
(disabling Bound-T’s own DTC analyses) using either the interval domain or the CLP domain,
with no merging over paths. For these small programs, no analysis lasts over 10 seconds on a
MacBook Air with a 2.13 GHz Intel Core 2 Duo processor. Table 1 shows the results. For a
detailed discussion of each success and failure, refer to [9].

For P1, Bound-T alone needs a manual assertion that the switch-case index is non-negative.
The SWEET domains have better models of signedness and wrap-around.

For P2, Bound-T alone fails because the arithmetic analysis cannot model general
addressable memories, and because a specific pattern for this “load-address-from-table” idiom
is not implemented. The interval domain fails because lack of congruence information leads
to over-estimation of the octet pointer into the address table, which causes such huge over-
estimation of the DTC targets that Bound-T rejects the solution. The CLP domain gives
the exact set of strided octet pointers into the address table, but the set of address values
cannot be exactly merged into a single CLP value (such merging of table values cannot be
disabled in SWEET). This causes significant over-estimation of the DTC targets, which in
the third iteration leads to such an over-estimated CFG that SWEET’s AE fails to terminate
in a reasonable time, probably because a spurious eternal loop was introduced.

For P3, Bound-T alone fails because this switch handler is an artificial one for which
Bound-T has no detector. Otherwise the partial evaluation method would work here.

For P4, SWEET with either domain gives the exact result for the DTC, but the WCET
is overestimated. Bound-T’s partial-evaluation method fully unrolls the search loop in the
switch-handler, letting Bound-T find the exact worst-case path. The analysis with SWEET
retains the loop and Bound-T then calculates the WCET under the normal assumption that
all loop iterations use the worst-case path through the loop body. This WCET overestimation
could be avoided either by transporting more flow-facts from SWEET to Bound-T, or by
letting SWEET compute the WCET as a program variable [8].

For P5, the interval domain fails because it is not relational and does not include
congruence. The CLP domain fails because it, too, is not relational, and because it does not
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see repeated additions of the same value (for example x + x) as equivalent to multiplication
(22) and therefore loses congruence information.

For P6, Bound-T alone fails because the carry-out from the “rotate” operation is not
well modelled in the arithmetic analysis. SWEET with the interval domain fails because
lack of congruence leads to over-estimation of the pointer into the jump table, leading
to over-estimation of the DTC targets. However, in this contrived and simple case, the
over-estimation only doubles the set of targets, so Bound-T accepts the result, leading to an
apparently successful analysis but an over-estimated CFG and WCET. The CLP domain
succeeds because the jump instructions in the jump table lie at regularly spaced addresses,
which can be represented exactly in a single CLP value.

For P7, the exact result from Bound-T alone depends on some unsound assumptions in
modelling left-shifts. SWEET succeeds with the interval domain because the unit stride of
the jump-table elements makes congruence analysis unnecessary.

In total, Bound-T alone succeeds on 4 and fails on 3 programs. SWEET’s analyses
succeed on 5 and fail on 2 programs. If the analyses are combined, only P2 is left as a failure.
Further patterns and special cases could easily be added to Bound-T to correct the failures,
including P2, but that would just be one more step on the endless trail of special cases.

The results show that the abstract-execution method is very promising, working in essence
as well as and in some cases better than the set of processor- and compiler-specific and
manually constructed pattern-based methods in Bound-T. Comparing the two numerical
abstract domains, the CLP domain succeeds in one case (P6) where the interval domain
fails. We expected that CLP would yield a larger improvement, but its benefits are often
masked by the direct translation from machine instruction semantics into ALF code, which
hides congruence information when, for example, a C source instruction such as y=2*x
is translated into two AVR instructions that do y=x; y=y+x. The Presburger-arithmetic
analysis in Bound-T, being relational, is able to combine the two instructions and conclude
that y = 2z. When Sen and Srikant introduced the CLP domain [13], they combined it with
the domain of affine equalities, perhaps to counter this sort of problem.

Some of Bound-T’s failures are due to poor modelling of signedness and wrap-arounds.
The Presburger-arithmetic formalism considers all variables to be signed, unbounded integers.
Wrap-around can be modelled with conditional (disjunctive) formulae, but if that is done
systematically the time and space requirements explode. In contrast, SWEET’s interval and
CLP domains handle wrap-around gracefully (but not always exactly). However, because we
disable merges in SWEET, it may also run into scalability problems for large programs.

The failure of SWEET on P5 is interesting. P5 computes the address of the table element
for the DTC target address in three steps. Step 1 computes an intermediate value from
the switch index. Step 2 compares the switch index to the range of case numbers. If the
switch index is in range, step 3 computes the final address using the switch index and the
intermediate value. Because the intermediate value is computed before the switch index is
known to be in range, and because the domains are not relational, SWEET can put no useful
bounds on the intermediate value, and so the final address is also unbounded.

5 Related work

Our work follows the “bottom-up” CFG reconstruction approach as also described by
Theiling [14]. However, it seems that Theiling does not expect strong value-analysis to be
used for switch-case code, saying that the “decoders may use pattern matching and code
slicing to detect switch tables”. Cifuentes and Van Emmerik [3] use slicing and symbolic
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expression substitution to simplify switch-case code so that it can be matched to a library
of “normal forms”, an advanced and flexible form of code-pattern matching. However, their
experiments use wide-word, powerful processors of the SPARC and Pentium class, avoiding
the complications of 8-bit microcontrollers such as the AVR.

The CodeSurfer/x86 tool described by Balakrishnan and Reps [2] has many similarities
with SWEET and some with Bound-T. CodeSurfer/x86 analyses Intel-x86 machine code.
The initial control-flow and call-graphs are generated by the commercial IDAPro disassembler
[12], which may leave some switch-case DTCs unresolved. A value-analysis based on abstract
interpretation, using a domain of intervals with strides (congruence), provides possible DTC
targets for an iterative extension of the CFG, as in our method. However, CodeSurfer/x86 is
at present limited to the Intel-x86 instruction set and some of the decisions made during the
analysis seem specific to this architecture. The value-analysis uses only 32-bit quantities,
and it is not clear how well it models unsigned computation. The basic model is signed.

Balakrishnan and Reps [2] agree with two of our conclusions: that a domain modelling
non-unit strides is necessary for this analysis, and that non-relational domains can cause
important loss of precision. However, as we have seen, quite many DTCs have sets of target
addresses which cannot be represented exactly as strided intervals. When merging is disabled,
AEFE can produce more precise results.

6 Summary and conclusions

Focusing on the analysis of switch-case code using DTC, we compared SWEET’s AE (with
no merging) to the set of special, pattern-based analyses in Bound-T, on seven programs
expressed in Atmel AVR machine code. AE won, on average, but failed for some programs
because the numerical domain we used (CLP) is not relational. Other failures are due to the
inability of intervals, even with congruence, to model sparse integer sets precisely.

Tidorum Ltd aims to make the SWEET-based DTC analysis a standard feature of
Bound-T. This will also let Bound-T use other SWEET results such as flow facts. The main
challenge is to make Bound-T’s data-memory model, and its translation to ALF, sound
with respect to aliasing. We also found weaknesses in Bound-T’s handling of signedness and
wrap-around. Tidorum aims to improve this, but the problem is complex if the model should
be relational (as the current Presburger-arithmetic model is).

This work was partly responsible for prompting the implementation of the CLP domain
in SWEET. Future work on SWEET, to better support the analysis of DTC’s, includes
the design of light-weight relational domains that can capture enough of the dependencies
between variable values to gain the necessary precision. It also seems interesting for this
purpose to have an abstract domain that can represent sparse sets of integers up to some
predefined size of the set.

A more general question is whether it is possible and desirable to perform abstract

interpretation with different domains, for different variables or different parts of the program.

The DTC problem requires high precision, but usually deals with small sets of values, so the
optimal domain for DTC analysis is different from that for problems which can do with less
precision but cover huge ranges or sets of values. For maximal precision, one possibility is to
convert abstract states into sets of concrete states, compute with transfer functions on these
sets formed by applying the concrete transfer functions elementwise, and converting back to
the original abstract domain when suitable. If the sets of concrete states do not grow too
big, then this is tractable. Cofibered domains [15] provide a theoretical framework for this
kind of use of multiple abstract domains.
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