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Abstract—Priority-based wormhole-switching has been pro-
posed as a solution to handle real-time traffic in on-chip networks.
In order to support real-time traffic, the predictability of end-to-
end delays need to be guaranteed. Several deterministic schedula-
bility analysis approaches for wormhole-switched networks have
been proposed. These approaches calculate a single upper-bound
of the response time of each Network-on-Chip (NoC) flow, which
is suitable for hard real-time applications. However, for many
soft real-time applications, the performance does not depend on
the worst-case scenario, which means that the calculated single
upper-bounds are not sufficient to represent the performance.
Therefore, in this paper, we present a stochastic Response Time
Analysis (RTA) which can calculate a distribution of the response
times of a real-time NoC flow. The estimated distributions can
be utilized for multiple purposes, such as calculating deadline
miss ratios, and computing upper-bounds regarding different
probabilities. A number of simulation-based experiments are
generated in order to investigate the pessimism involved in
the analysis. Moreover, the processing time of the analysis is
also measured from the experiments in order to examine the
scalability of the proposed approach.

I. INTRODUCTION

Many-core platforms are gaining attention in industry due
to its high computing capability along with limited hardware
sizes. On such a platform, many components are integrated
into a single chip. The chip with its components is known as
a system-on-chip. The communication between different com-
ponents in such systems is typically achieved by an on-chip
network (also called Network-on-Chip (NoC)). Wormhole-
switching (also known as wormhole-routing) is a technique
widely used in most of the existing NoCs. Using wormhole-
switching, each router in the network requires much less
buffer size compared to the store-and-forward mechanism.
This fulfills an important requirement of a NoC that the
hardware size needs to be limited.

During the past decades, many research works have been
done regarding running real-time applications on many-core
platforms. In addition to the requirement of functional correct-
ness, timeliness is one of the most important nonfunctional
properties of a real-time application. The timing behavior
of real-time applications should be predictable, so that the
system designers can verify if the timing requirements can
be satisfied or not. For a hard real-time application, all the
timing requirements must be strictly fulfilled, otherwise the
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system may face catastrophic consequences (e.g. the brake-
by-wire system or the airbag system in a car would fail).
For a soft real-time system, some violations of the timing
requirements are acceptable, which may only degrade the
system performance without causing serious problems (e.g.
a multimedia entertainment system would temporally deliver
less than perfect pictures or sounds).

Therefore, several schedulability analysis approaches have
been proposed for on-chip networks (e.g. [1][2][3]). Most
of the approaches aim to calculate the worst-case end-to-
end delay (also called Worst-Case Response Time (WCRT)
hereinafter) of each NoC flow. Such analyses are more suitable
for hard real-time applications, since the worst-case behavior
affects the reliability of the system even though it may
potentially only happen in very rare occasions. However, for
soft real-time applications, it is often the case that the worst-
case scenario is not sufficient to represent the performance [4].
For example, Active Safety functions in automotive systems
(such as Lane Keeping, Lane Departure Warning, etc.) rely on
the average response times which need to be controlled and
minimized [5]. Therefore, most of the existing deterministic
analyses cannot be directly utilized for such soft real-time
applications.

In this paper, we present a stochastic Response Time
Analysis (RTA) for wormhole-switched on-chip networks. The
analysis computes a distribution of response times of each flow
instead of a single upper-bound.

A. Contributions

This paper contains the following contributions:
• We present a stochastic RTA for wormhole-switched on-

chip communications. The analysis calculates a distribu-
tion of response times of each NoC flow. The computed
distribution can provide much more information com-
pared to the Worst-Case Response Time (WCRT) calcu-
lated by a deterministic analysis, such as upper-bounds of
response times regarding different probabilities, average
response times, and Deadline Miss Ratio (DMR).

• A number of simulation-based evaluations are imple-
mented in order to investigate the level of pessimism
involved in the stochastic analysis. Moreover, the eval-
uation results also show the pessimism included in the
deterministic RTA presented in [1][2], which is a property
that has not been evaluated in these works.

• The processing time of the analysis during the experi-
ments is measured in order to examine the scalability of



the proposed approach.

B. Related Work

The wormhole switching technique was introduced in
academia more than 20 years ago [6]. Later on, this technique
was utilized in the Network-on-Chip architecture [7] because
of its high throughput along with a small buffer requirement
[8]. In order to use platforms equipped with on-chip networks
for real-time applications, the predictability of the timing
behavior of NoCs needs to be guaranteed. A number of
research works focusing on providing predictable NoCs have
been proposed in the literature, such as the Back Suction
flow-control scheme [9], the Time-Triggered Network-on-Chip
(TTNoC) [10], and the Æthereal NoC [11].

In order to verify if the timing requirements of a NoC
can be fulfilled, a schedulability test is necessary. In [12],
the authors present a Network Calculus [13] based analysis
approach along with a Recursive Calculus to compute the end-
to-end transmission delays of flows in a wormhole-switched
network using the Round-Robin arbitration policy. This work
is extended in [3] to a more general approach called Branch,
Prune and Collapse. In [1], the authors present a deterministic
Response Time Analysis (RTA) for priority-based on-chip
networks, which is based on the well-known response time
analysis for task scheduling [14]. The analysis proposed in
[1] assumes that each NoC flow is assigned a distinct virtual-
channel. However, more virtual-channels require more mem-
ory on each router, which makes the assumption unrealistic for
most of the existing commercial NoC implementations. There-
fore, the authors in [2] present an extended RTA to handle NoC
flows with shared priorities. In this work, one virtual-channel is
assigned to each priority level, and multiple flows can share the
same priority/virtual-channel. Most of these existing analyses
are deterministic approaches, which means that they are used
to compute a single upper-bound of the response times of each
NoC flow. This is suitable for hard real-time applications, since
the analysis results are guaranteed. However, for soft real-time
applications, the information of the WCRTs is not sufficient
to verify the fulfilment of requirements. Therefore, we present
a stochastic RTA for wormhole-switched on-chip networks,
which can compute a probability distribution of response times
of each NoC flow. Our work targets priority-based NoCs with
soft real-time constraints.

A number of stochastic timing analyses targeting real-time
task scheduling have been proposed in the literature. In [15],
the authors introduce a stochastic time demand analysis to
calculate a lower bound of the deadline meeting ratio of each
task in a system using fixed priority scheduling. Diaz et al.
present a probabilistic analysis in [16], which can be used
for both static and dynamic priority based scheduling. In this
work, the execution time of each task is represented by a
probability distribution instead of a single value. Later on, this
analysis is applied on Control Area Networks (CAN) in [4],
where the random sampling delays are taken into account in
addition to stochastic packet sizes. In [17], the authors propose
another extension of the analysis from [16] to support tasks
with multiple probabilistic parameters, where the inter-arrival

times between successive instances of the same task can also
be stochastic. The stochastic RTA proposed in this paper is
also based on the work presented in [16], where we take into
account the features of wormhole-switched NoCs.

The rest of this paper is organized as follows. In Section II,
we recapitulate the probabilistic RTA for tasks. In Section III,
we briefly describe the system model used in this paper. The
details of the proposed stochastic RTA for NoCs are explained
in Section IV. Results of simulation-based evaluations are
discussed in Section V. Finally, Section VI concludes the paper
along with thoughts about the future work.

II. STOCHASTIC RTA FOR TASKS

We first recall the stochastic time analysis for tasks pre-
sented in [16][18], which is the basis of our work. In this
analysis framework, the Worst-Case Execution Time (WCET)
of each task τi is described as a random variable with a discrete
probability distribution Ci

1.
The analysis in [16] assumes that all the tasks are periodic

with deterministic release times. Therefore, for a set of i−
level tasks (i.e. all the tasks with priority higher than or equal
to the priority of τi), the activation pattern of one hyperperiod
will be repeated in all the other hyperperiods. As a result, the
analysis mainly depends on the backlog (i.e. the workload from
tasks with higher or equal priority of τi which are generated
before a certain time instant ∆t and still not completed at ∆t)
at the beginning of each hyperperiod. Dı́az et al. show that
this backlog is a random variable with a certain distribution,
but the sequence of these random variables is a Markov chain.
Once the stationary i− level backlog distribution is computed,
the response time distribution of τi can be calculated.

If the total task utilization (i.e. the maximum system uti-
lization) is smaller than 1, the maximum generated workload
cannot exceed the length of a hyperperiod. As a result, the
backlog at the end of each hyperperiod can be bounded.
Moreover, we can also observe that if all the tasks have at
least one job released in the first hyperperiod, the backlog at
the end of this hyperperiod will be repeated at the end of all
the following hyperperiods. In this case, in order to obtain the
stationary backlog distribution, we only need to compute the
backlog at the end of the first hyperperiod where all the tasks
are released at least once.

Then the analysis computes the response time PMF for all
the jobs (i.e. task instances) of τi in one hyperperiod, where
the stationary i− level backlog is utilized at the beginning of
the hyperperiod. The response time PMF of a job τi, j ( j =
1,2,3, ...)2 is computed as

Ri, j = Bi, j(λi, j)⊗Ci⊗ Ii, j(λi, j) (1)

where Bi, j denotes the backlog of tasks with higher priorities
than τi which are released before time instant λi, j and still not
completed at λi, j. Ci represents the execution time PMF of

1In this paper, we use calligraphic letters to represent discrete probability
distributions. Moreover, we use a Probability Mass Function (PMF) to
represent each distribution hereinafter.

2We use the second subscript to represent the index of the job, i.e. τi, j
denotes the jth job of τi.



τi. Ii, j(λi, j) denotes the interference caused by higher priority
tasks which are released at or after time instant λi, j. Eq. 1 is
solved iteratively using two operations called convolution and
shrinking.

The convolution operation is denoted by ⊗, which is used
to sum up two distributions. An example of this operation is
shown in Example 1.

Example 1. (
1

0.5
2

0.5
)
⊗
(

2
0.3

3
0.7
)

=
(

1+2
0.5×0.3

1+3
0.5×0.7

2+2
0.5×0.3

2+3
0.5×0.7

)
=

(
3

0.15
4

0.5
5

0.35
)

The shrinking operation is used to simulate time progress,
and can be denoted by SHRINK(X , t). If X is the distribution
of a certain workload at the beginning of a time duration t,
the result of SHRINK(X , t) is a distribution of the remaining
workload at the end of t. The operation can be presented as

SHRINK(X , t)⇒ (
xk

Pr(X=xk)
) = (MAX(xk−t,0)

Pr(X=xk)
),

f or ∀( xk
Pr(X=xk)

) ∈ X
(2)

where Pr(X = xk) denotes the occurrence probability of X =
xk. An example is given in Example 2.

Example 2.

SHRINK(
(

1
0.5

2
0.2

3
0.2

4
0.1
)
, 2)

=
(

1−2
0.5

2−2
0.2

3−2
0.2

4−2
0.1

)
=

(
0

0.7
1

0.2
2

0.1
)

Apparently, the amount of workload cannot be negative. When
the amount of the workload is less than the time duration (e.g.
the first value of the PMF is 1, which is less than the time
duration 2), there will be no remaining workload at the end
of time duration t. Therefore, in the result of this example, the
remaining workload has a probability of 0.7 to be 0.

The calculation of Eq. 1 starts with the time instant that
is the beginning of a hyperperiod. In the case that task τi
is released with its critical instant [19] (i.e. τi, j is released
together with all the other tasks with higher or equal priority),
the initial backlog can be computed as Bi, j(0) =

⊗
p∈hp(i)

Cp.

Then the analysis will continuously check the workload at
the release times of the following jobs with higher or equal
priorities. Assume that a job of a higher priority task τp
is released at time tk (where k = 1,2, ...), Bi, j(tk) can be
computed by shrinking the workload PMF at tk−1 to tk. Then
the workload at tk can be calculated by the convolution of
Bi, j(tk) and Cp. By repeating the above step, the tail of the
distribution of Ri, j will be iteratively revised. The calculation
of Eq. 1 terminates (1) when the remaining workload becomes
0, which means that there is no more interference caused to
τi, j; or (2) when the release times of newly arrived interference
are later than the deadline.

The response time PMFs of all the jobs of τi in a hyper-
period need to be computed. Finally, the response time PMF
of τi equates to the average of all these PMFs. Unfortunately,
when the hyperperiod of a set of tasks is long, a large amount

of task instances may need to be taken into account during the
analysis. As a result, the complexity of the whole analysis can
become high. In order to reduce the time and memory cost of
the analysis, several approximation solutions are proposed.

First, we need to introduce the definition of the ’greater
than’ relationship between two probability distributions.

Definition 1. [18] Let X and X ′ be two random variables
with different distributions. We say that X is greater than X ′
(denoted by X � X ′), if Pr(X ≤ x)≤ Pr(X ′ ≤ x) for any x.

Fig. 1 visually illustrates the ’greater than’ relationship
between two distributions. If X is greater than X ′, the curve
showing the Cumulative Distribution Function (CDF) of X
should be below the curve of X ′. In this example, X and
X ′′ are not comparable. From the stochastic analysis point of
view, if X ′ represents the actual response time distribution of
a certain task, a greater distribution X can be considered as
a pessimistic response time distribution of the same task. For
example, given a specific value x, in the distribution of X , the
variable has a lower probability to exceed x. On other hand,
given a certain exceedance probability, the estimated bound in
X is larger than the one in X ′ (see the horizontal line at the
probability 0.5 in Fig. 1).
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Fig. 1. An example showing the ’greater than’ relationship between two
distributions.

When we use approximations to reduce the calculation
complexity, we need to guarantee that the analysis results are
safe (i.e. can be pessimistic but not optimistic). Therefore, in
this paper, we use a theorem proved in [17].

Theorem 1. We consider a task set with n tasks, where the
execution time of each task is characterized by a random
variable. The task set is scheduled preemptively on a single
processor. The response time distribution Ri,1 of the first job
of task τi (i.e. released at its critical instant [14] which can
result in the worst-case scenario) is greater than the response
time distribution of any other job of τi.

This theorem implies that if the response time distribution
of a task is constructed by analyzing the instance which is
released at the critical instant, the result is safe but pessimistic.

III. SYSTEM MODEL

Before presenting our stochastic time analysis for NoC, we
first describe the system model assumed in this paper. The
system under consideration is a many-core platform with a 2D-
meshed wormhole-switched on-chip network, which consists
of m×m tiles. In this paper, we assume that each tile (also
called node hereinafter) consists a single core and a router.
Each two adjacent nodes are connected by full-duplex links,
and each link can support multiple virtual-channels (the same



as assumed in [1][2]). The bandwidths of all the links are
assumed to be identical. An example is presented in Fig. 2,
where the platform consists of 16 cores connected by a 2D-
meshed NoC.

The network comprises a set S of n periodic or sporadic
real-time message-flows (i.e. S = ( f1, f2, ..., fn)). Each flow
consists of infinite instances (also called packet hereinafter),
and can be characterized as fi = (Li,Ti,Di,Pi,ℜi). Instead
of using a single upper-bound for the message size of each
flow as assumed in [1][2][20], we use a discrete probability
distribution Li to represent the possible message sizes3 Li of
each flow fi.

Li =
( li,1

Pr(Li=li,1)
li,2

Pr(Li=li,2)
...

li,Ni
Pr(Li=li,Ni )

)
(3)

where Ni ∈N+. In other words, Li comprises Ni random values
together with the corresponding probabilities. If we set the
probability Pr(Li = li,k) = 1, the message model will become
the same as the deterministic model with a single upper-
bound li,k. Ti denotes the period or minimum inter-arrival
time between two successive packets of flow fi. Di denotes
the relative deadline of each flow. In this paper, we assume
that each flow has a constrained deadline (i.e. Di ≤ Ti). Pi
represents the priority of fi. ℜi denotes the fixed path/route
of flow fi. Moreover, in this paper, we do not consider any
specific release offset of each flow.

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

Fig. 2. An example of a 4×4 many-core platform with meshed NoC.

The following notions are used in the rest of the paper.
• S: the flow set including all the flows in the network
• SD

i : the flow set including all the flows that can cause
direct interference to fi

• SI
i : the flow set including all the flows that can cause

indirect interference to fi
• SB

i : the flow set including all the flows that can cause
blocking to fi due to sharing of a virtual-channel

• L← a: adding an item a into a list L
• L→ a: removing an item a into a list L

IV. STOCHASTIC RTA FOR NOC

In this section, we present the stochastic RTA for on-
chip networks based on the approach discussed in Section II.
In fact, from the analysis point of view, scheduling tasks
and message flows are similar, which can both be modeled
as applications sharing certain resources (e.g. multiple tasks
sharing one processor or a number of messages sharing one
communication bus). When the access to a certain resource is

3The message size Li includes all the necessary packet segments such as
header, payload and tail flit.

limited, the applications have to wait in a queue for accessing
the resource.

In order to extend the stochastic RTA for tasks [16] to an
analysis of wormhole-switched NoCs, we need to consider the
main differences of the system behavior between these two
frameworks.
• The work in [16] is based on completely preemptive

scheduling. However, a wormhole-switched NoC uses a
flit-level preemptive mechanism. Therefore, the analysis
needs to take a blocking delay into account (details in
Section IV-B).

• In an on-chip network, even though a higher priority
flow f j does not share any link with the flow under
analysis fi, f j can still affect the response time of fi.
This is called the effect of indirect interference (more
details in Section IV-C). This behavior cannot occur in
the framework assumed in [16].

A. Basic Transmission Latency PMF

First, we compute the basic transmission latency (i.e. the
network latency without any interference or blocking from
other flows) for each flow. In fact, the basic transmission
latency of a NoC flow is similar to the concept of the execution
time of a task in the context of task scheduling. Since we use
a distribution Li to represent packet sizes, the corresponding
basic transmission latencies are also depicted by a probability
distribution Ci.

The transmission latency for a packet consists of the propa-
gation delay through the whole path and the processing delay
inside each passed router. Therefore, the basic network latency
for a packet of fi with the size of li,k (k ∈ [1,Ni]) can be
computed by

ci,k = d
li,k− fsize

fsize
e · fsize

Blink
+nhops(ℜi) · (ds +

fsize

Blink
) (4)

where fsize denotes the size of a single flit, Blink is the
bandwidth of the links, nhops(ℜi) represents the number of
hops of the route ℜi, and ds symbolises the processing delay
inside each router.

Since the computation of ci,k is based on a specific packet
size li,k, the occurrence probability of ci,k (i.e. Pr(Ci = ci,k))
equates to Pr(Li = li,k). Accordingly, by computing transmis-
sion time regarding all the values of Ci, we can get the PMF
of the basic transmission latency for flow fi as

Ci =
( ci,1

Pr(Ci=ci,1)
ci,2

Pr(Ci=ci,2)
...

ci,Ni
Pr(Ci=ci,Ni )

)
(5)

where Ni ∈ N+. The basic transmission latency PMF for each
task will be used in the stochastic RTA analysis.

B. Blocking Delay

Blocking delay of fi is caused by the non-preemptive
transmission of a flow with lower priority. As mentioned in
Section III, we assume that the network under analysis can
support flit-level preemptions. In other words, a preemption
cannot occur during the transmission of a single flit, but can
occur between flits. Therefore, a packet can at most experience
a blocking delay due to the transmission of one single flit from



a lower priority flow at each hop. The blocking delay of a flow
fi can then be upper-bounded by

bi = nhops(ℜi)× (
fsize

Blink
+ds) (6)

In order to reduce the analysis complexity, we use an upper-
bound instead of a probability distribution for the blocking
delay of each packet. This approximation can cause pessimism
in the results. However, for many applications, the pessimism
is quite small, because the small flit size results in a very low
blocking delay which is much less than the response time of a
packet. In many NoC products, the flit size matches the width
of the physical channel, which is typically less than 256 bits
(e.g. 160 bits in a Tilera chip [21], and 256 bits in the Intel
Sandy Bridge microprocessor [22]).

C. Indirect Interference

Apparently, two flows can affect the response times of each
other when they need to compete for the access of the same
links. However, as discussed in [1], a flow fm may affect the
response time of fi even if they do not share any links. In this
case, fm is considered to cause indirect interference to fi.

Fig. 3-a shows an example of the indirect interference
behavior. Assume that fi is the flow under analysis with the
lowest priority. f j and fi share links between Node-B and
Node-C, and f j has priority higher than that of fi. Therefore,
f j can cause interference to fi. This type of interference due to
competing for the same resource is called direct interference.
Assume that fm and f j share links between Node-A and Node-
B, and that fm has priority higher than that of f j. In this
case, f j can get direct interference from fm before f j reaches
Node-B. As a result, the arrival pattern of f j at Node-B is
no longer periodic. As shown in Fig. 3-b, the inter-arrival
time between two instances of f j can become smaller than
Tj. Therefore, when we calculate the response time of fi, we
cannot simply consider f j as a periodic flow with a fixed
period of Tj which can incur optimistic results. As discussed
in [1], while analyzing fi, the direct interference of f j before
Node-B can be considered as an extra jitter of f j which is
called interference jitter (i.e. JI

j).

𝑓𝑚

𝑓𝑗

𝑓𝑖

Node
A

Node
B

Node
C

𝑓𝑗

𝑓𝑖

time

time

𝑇𝑗 𝑇𝑗 𝑇𝑗

𝑇𝑖

𝐽𝑗
𝐼

Due to the 
transmission of 

𝑓𝑚

a b

Fig. 3. An example showing the indirect interference behavior.

If the interference jitter of f j is a random variable, the
arrival pattern of f j can also be considered as random while
computing a probabilistic response time of fi. However, this
consideration can lead to a fast growth of computation com-
plexity as the number of higher priority flows goes up. Assume
that there are n flows causing direct interference to fi, and
each of these flows contain k possible arrival patterns. Then
the arrival pattern considering all these flows can include kn

combinations. In order to reduce the analysis complexity, we

use an approximation based on a single upper-bound of the
interference jitter of each flow. In this case, the critical instant
of fi can be constructed as the time instant when fi arrives
at the shared path together with all the other higher priority
flows who share links with fi. The first instance of any of these
higher priority flows experiences its maximum interference
jitter and the following packets arrive as early as possible.

As discussed earlier in the example, the interference jitter
of f j is caused due to the transmission of fm. In other words,
JI

j is incurred by the direct interference that fm causes to f j.
Similarly, all the flows, which can cause direct interference
to f j, can contribute to JI

j . Therefore, the interference jitter
of f j can be upper-bounded by R j−C j [1], where R j and C j
respectively represent the worst-case response time and the
basic transmission delay of f j. In our analysis, R j and C j are
denoted by probability distributions. Accordingly, the upper-
bound of JI

j can be modified as Rmax
j −Cmin

j , where Rmax
j is the

maximum value of R j, and Cmin
j denotes the minimum value

of C j. Moreover, as discussed in [1], the interference jitter JI
j

exists if and only if SD
j
⋂

SI
i =∅. Therefore, we can compute

the interference jitter of f j as

JI
j =

{
Rmax

j −Cmin
j , i f SD

j
⋂

SI
i =∅

0 , else
(7)

D. Stochastic RTA of a NoC without Priority Sharing

In this section, we present the stochastic RTA of a NoC
without priority sharing, where we take into account the effects
caused by the system behaviors discussed in the previous
sections.

Algorithm 1 presents the stochastic RTA, which can cal-
culate a probability distribution of the response times of
each NoC flow as results. Similar to the approach presented
in Section II, the analysis starts from time instant 0, and
iteratively takes into account the new arrivals of all the packets
which can contribute to the response time of the flow under
analysis (i.e. fi).

First of all, we need to create a list of check-points CPi
(line 2, Alg. 1) for fi. Each check-point represents a time
instant when a new packet arrives. The creation process of
CPi is presented in Alg. 2. Because of the use of a priority-
based arbitration mechanism, we only need to consider the
new arrivals of higher priority flows who share links with
fi (line 2, Alg. 2). We assume that the network employs an
abort on deadline policy, which means that the packet will
be discarded once it misses its deadline. From the scheduling
point of view, this policy can ensure that one deadline miss of a
packet will not cause multiple deadline misses of the following
packets. From the perspective of applications, this policy can
prevent misuse of expired data. Under this mechanism, we
need to consider the arrivals of a higher priority flow f j within
the time window of [0,Di]. As discussed in Section IV-C,
the indirect interference can affect the response time of fi
by decreasing the packet inter-arrival times of flow f j which
can cause direct interference to fi. The effect of the indirect
interference is transformed to an extra jitter of f j, and the
upper-bound of this jitter JI

j can be computed by Eq. 7. Similar



to the solution discussed in Section II, it is safe to perform
the analysis focusing on the flow instance which is released
with its critical instant. As discussed earlier, the critical instant
of fi is the time instant when fi is released together with a
packet of f j with its maximum interference jitter. Based on
the above discussion, the total number of arrivals of f j can be

computed as bDi+JI
j

Tj
c+1 (line 4, Alg. 2). Then we iteratively

add the deterministic arrival time of each instance of f j into
the check-point list (line 5 - 7, Alg. 2). Each item of the check-
point list CP contains two elements: a time instant ∆t and the
index of the flow who has a new arrival at ∆t. At the end,
the check-point list is resorted regarding an ascending order
of ∆t.

Once the check-point list is created, we can iteratively
compute the response time distribution of fi based on Eq. 1.
We use Ri to represent the distribution of the response time of
fi, and we use Wi to denote the distribution of the cumulative
workload considered during the analysis. The initial workload
at time 0 consists of the transmission of fi itself and the
blocking caused by lower priority flits (line 4, Alg. 1). As
discussed in Section IV-B, the upper-bound of the blocking
delay for each packet can be computed by Eq. 6. Then we
need to take into account the interference arrived at and after
time 0 (line 5 - 17, Alg. 1). This is achieved by continuously
adding interference at each deterministic check-point, since
interference can only occur at the check-points.

Alg. 1 Calculation of response time distributions
1: for all fi ∈ S, in a descending order of priorities do
2: CPi =CreateCP( fi)
3: bi = Eq. 6( fi)
4: Wi = Ci +bi
5: for all p in CP do
6: for all wk in Wi do
7: if wk < p.∆t then
8: Ri ← (wk,Pr(Wi = wk))
9: Wi → (wk,Pr(Wi = wk))

10: end if
11: end for
12: if Wi =∅ then
13: break
14: else
15: Wi = Wi⊗Cp.index
16: end if
17: end for
18: for all wk in Wi do
19: Ri ← (wk,Pr(Wi = wk))
20: end for
21: Rmax

i = MIN(MAX(Ri),Di)
22: JI

i = Rmax
i −Cmin

i
23: end for

At each check-point p, we first need to check if the
cumulative workload can reach the time instant p.∆t. The
NoC transmission uses a work-conserving scheduling policy,
which means that once there are packets pending, the network
will always transmit them. Therefore, for the cases where the
workload cannot reach p.∆t (i.e. wk < p.∆t), we do not need
to consider these cases in the following analysis, because all
the workload (including fi itself) has been completed before

p.∆t. Accordingly, we remove these values of wk (wk < p.∆t)
from the distribution of the cumulative workload Wi together
with their probabilities (line 9, Alg. 1). At the same time,
these values will be added into the response time distribution
Ri (line 8, Alg. 1). An example is given in Fig. 4 showing
how the distribution of Wi is split. In the example, Wi has 5
possible values (i.e. 1, 3, 5, 7 and 9). Assume that the next
check-point is at time 4, then we can remove the values of 1
and 3 from Wi. Because in these two cases, fi already finishes
its transmission before time 4, and it is impossible for fi to
get interference from packets arriving at or later than time 4.
The remaining distribution of Wi is used during the further
analysis.

Alg. 2 CreateCP( fi) /*create check-point list*/
1: CP = [ ] /*each item is formatted as < ∆t, index >*/
2: for all f j ∈ SD

i do
3: CP←< 0, j >
4: n = bDi+JI

j
Tj
c+1

5: for all k in [1,n−1] do
6: CP←< k ·Tj− JI

j , j >
7: end for
8: end for
9: sort CP regarding an ascending order of ∆t

10: return CP
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Fig. 4. An example showing how a distribution is split during the analysis.

The interference is added into the workload distribution by
the convolution operation (line 15, Alg. 1). As the algorithm
goes through more check-points, the algorithm will iteratively
revise the upper tail of the workload distribution. On the
other hand, as the cumulative probability in Wi decreases, the
cumulative probability in Ri will increase accordingly. When
the cumulative probability in Ri becomes 1, we get a complete
distribution of the response times of fi.

The analysis can be terminated by two conditions: (1) the
remaining workload becomes 0 at a certain check-point (line
12-13, Alg. 1), which means that the upcoming interference
cannot affect the response time of the packet under analysis at
all; (2) the calculation has covered all the check-points, which
means that all the possible higher priority packets arriving
before the deadline Di have been taken into account. When
the first condition happens, the flow under analysis fi will
always meet its deadline. When the analysis terminates with
the second condition, fi is possible to miss its deadline.

As discussed earlier, while creating the check-point list of
fi, we need to take into account the interference jitter JI

i of a
higher priority flow f j ( f j ∈ SD

i ). The calculation of JI
i (Eq. 7)

requires an upper-bound of the response time of f j. Therefore,



we need to start the analysis with the flow who has the highest
priority (line 1, Alg. 1).

The calculated response time distribution Ri can be utilized
in different ways. If an application has requirements on the
average response time, the expected value of the distribution
can be used. The expected value of Ri can be computed as

ER
i =

Ni

∑
k=1

rk ·Pr(Ri = rk) (8)

where ER
i denotes the expected response time of fi, and Ri

contains Ni values.
From the computed distribution, the Deadline Miss Ratio

(DMR) of each flow can also be calculated by

DMRi = ∑
∀rk>Di

Pr(Ri = rk) (9)

where DMRi represents the deadline miss ratio of fi, and rk
denotes a possible value of Ri.

Moreover, using the Cumulative Distribution Function
(CDF) of Ri, we can obtain an upper-bound of the response
time regarding a given probability. For example, assume that
we get an upper-bound rx from the CDF of Ri regarding a
probability of 0.95. This result means that the response time of
fi has 0.95 probability to be lower than rx. In other words, 95%
of the packets of fi have response times smaller than rx. When
the given probability is set to 1, the obtained upper-bound will
be the same as the computed WCRT using the deterministic
RTA. In general, stochastic RTA is more informative than the
deterministic RTA.

E. Stochastic RTA of a NoC with Priority Sharing

Unfortunately, using a distinct priority for each flow can
result in a large number of virtual-channels. Consequently, the
required buffer size also increases, since each virtual-channel
needs a certain amount of memory to buffer its packets. Due to
the limited size of memory in most of the existing NoC routers,
it is difficult to support a large amount of virtual-channels
(e.g. the Intel Single Chip Cloud Computer only supports 8
virtual-channels). Therefore, it is necessary to employ certain
mechanisms to handle a large amount of NoC flows with
limited virtual channels. In this paper, we focus on the priority
sharing policy [2]. Using this mechanism, multiple flows can
have the same priority, which means that these flows can share
the same virtual channel. In this case, the total number of
virtual channels can be reduced.

Under the priority sharing policy, the flit-level preemptions
only happen between different priority levels. In other words,
one flow can only be preempted by a flow with higher priority.
Within one priority level, the flows are scheduled based on
a First-In-First-Out (FIFO) mechanism. In [2], the authors
present a deterministic RTA for NoC flows with a priority
sharing policy. The flows with the same priority level are
analyzed based on the following theorem.

Theorem 2. For a set of NoC flows with constrained deadlines
(Di ≤ Ti for any fi), if they are schedulable while sharing the
same priority, one flow can block any other flow at most once.

Proof: This theorem can be proved by contradiction that if
a flow can block another flow more than once, the condition of
constrained deadline will be violated. More details have been
explained in [2].

Accordingly, the WCRT of a flow fi happens when fi is
released together with all the flows which can cause direct
interference to fi (i.e. flows in SD

i ), and all the flows which
share the same virtual-channel with fi (i.e. flows in SB

i ) are
released slightly earlier than fi (i.e. the packets of all these
flows are queued ahead of fi).

Moreover, a flow fp ( fp ∈ SB
i ) which is queued ahead of fi

may get interference from another flow fq ( fq ∈ SD
p ). When

the transmission of fp is delayed by fq, the response time of
fi will also be affected because fp is blocking fi at the same
time. Therefore, even if fq /∈ SD

i , fq can still cause interference
to fi.

Similar to the analysis presented in Section IV-D, we need to
first create a check-point list CP′i , where the above blocking
and interference factors need to be taken into account. The
creation of CP′i is presented in Alg. 3. As discussed earlier,
while analyzing the response time of fi, we only need to
consider one instance of each flow which shares the same
virtual-channel with fi (line 2-4, Alg. 3). All the flows which
can cause direct interference to a flow fp ( fp ∈ SB

i ) are
approximately treated the same as the flows in SD

i (line 5-
11, Alg. 3). Once the new check-point list is generated, we
can use Alg. 1 to compute the Ri of fi.

Alg. 3 CreateCP′( fi)
1: CP = [ ] /*each item is formatted as < ∆t, index >*/
2: for all fp ∈ SB

i do
3: CP←< 0, p >
4: end for
5: for all f j ∈ SD

i ∪ (
⋃

∀ fp∈SB
i

SD
p ) do

6: CP←< 0, j >
7: n = bDi+JI

j
Tj
c+1

8: for all k in [1,n−1] do
9: CP←< k ·Tj− JI

j , j >
10: end for
11: end for
12: sort CP regarding the ascending order of ∆t
13: return CP

V. EVALUATION

In this section, we present two sets of evaluation of our
stochastic RTA. In the first set of evaluation, we focus on
the pessimism included in the RTA. In the second set of
evaluation, we aim to measure the processing time of the
analysis in order to examine the scalability of the proposed
approach.

A. Evaluation of Pessimism

As discussed in Section IV, in order to reduce the complex-
ity of the analysis, approximations are utilized. In the first
set of evaluation, we generate a number of experiments to
investigate how much pessimism that can be involved. The
pessimism is measured from the difference between the results



computed by the analysis and the samples obtained from
simulations. The simulation result of each flow is observed
from at least 1000 randomly collected samples. In this section,
we use the pessimism percentage to show the evaluation
results, which is calculated as

Pmi =
V RTA

i −V SIM
i

V RTA
i

(10)

where Pmi represents the pessimism percentage of the analysis
result of fi, V RTA

i and V SIM
i denote the analysis result and the

simulation observation respectively.
We investigate the pessimism from three aspects: (1) the

maximum response time of each flow (i.e. this will be the
same as the result computed by a deterministic RTA); (2) the
upper-bounds of response times with given probabilities of
0.98 and 0.95; (3) the average response time of each flow.

The on-chip network considered in our evaluation includes
4× 4 cores, and it uses the X-Y routing algorithm. The
flows are generated with random sources and destinations. The
period of each flow is randomly generated from [100, 10000].
The total network utilization is selected from [0.2, 1.6]. Given
the total network utilization, we use the UUnifast algorithm
[23] to randomly generate the maximum utilization of each
flow (i.e. Umax

i ). The maximum transmission time of each flow
Cmax

i can then be computed by Ti ·Umax
i . The distribution of

the transmission time of each flow contains 100 values where
the values are randomly generated with the maximum value
of Cmax

i , and the corresponding occurrence probabilities are
generated also using the UUnifast algorithm with the total
probability of 1.

1) Evaluation of a NoC without Priority Sharing:
In this section, we present the results of the experiments

where each flow uses a distinct priority.
First, we generate a number of experiments to investigate

the relations between the total network utilization and the
pessimism incurred in the analysis. In these experiments, the
total number of flows is fixed to 100, and the total network
utilization varies from set to set. The results are shown in
Fig. 5. We separate the results into two groups. The first group
contains flows which can get direct interference from at least
one flow. As shown in Fig. 5-a, the pessimism percentages
of the maximum response times are all around 15%, and the
pessimism of the average response times are around 50%. As
the total network utilization increases, there is no obvious
trend of a change in the pessimism percentage. The second
experiment group includes flows which do not experience any
interference. As shown in Fig. 5-b, the pessimism percentages
of both maximum and average response times are very low
(i.e. less than 1.6%), which are much smaller compared to the
first group. According to these results, we can observe that
most of the pessimism is caused due to the approximations
utilized in the calculation of interference.

Then, we generate another set of experiments to examine
how the total number of flows in the network can affect
the pessimism of the analysis. As shown in Fig. 6, when
the total number of flows is small, the pessimism included
in the results is low. As the number of flows increases, an

increasing trend of the pessimism can be clearly observed.
When the total number of flows increases from 10 to 300,
the pessimism of the average response time goes up from
8% to 51%, and the pessimism of the maximum response
time increases from 1% to 30%. The same trend can also be
observed from the computed upper-bounds of response times
with given probabilities of 0.95 and 0.98, where the pessimism
increases from 8% to 50% and 6% to 46% respectively. As
discussed earlier, the pessimism is mainly involved during
the computation of the interference. While the number of
flows goes up, a flow in the network has a higher chance
to get interference from more flows, which results in more
pessimism.
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Fig. 5. The pessimism percentage regarding the total network utilization.
Each value shown in this and the following figures represents the average
result of 1000 flows.
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Fig. 6. The pessimism percentage regarding the total number of flows.

2) Evaluation of a NoC with Priority Sharing:
Similar experiments are also generated for the on-chip net-

works using a priority sharing policy. We generate two groups
of experiments with different settings of virtual-channels.
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Fig. 7. The pessimism percentage regarding the number of flows, where the
network contains 4 virtual-channels.

In the first group of experiments, the network is configured
with 4 virtual-channels, and the results are presented in Fig. 7.
As shown in the results, when the total number of flows
increases from 10 to 300, the pessimism of the average
response time goes up from 9% to 65%, and the pessimism
of the maximum response time increases from 2% to 38%.



The pessimism included in the computed upper-bound with a
probability of 0.95 is closer to the calculated average response
time, which goes from 9% to 61%. The pessimism involved
in the upper-bound with a given probability of 0.98 is slightly
lower, which increases from 7% to 57%.
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Fig. 8. The pessimism percentage regarding the number of flows, where the
network contains 8 virtual-channels.

In the second group of experiments, the number of virtual-
channels in the network is set to 8. As shown in Fig. 8,
the pessimism percentage is slightly lower than the results
with the configuration of 4 virtual-channels. Comparing to the
results presented in Section V-A1, we can observe that the
fewer virtual-channels a network uses, the more pessimism the
analysis may involve. This is mainly because when we create
the check-point list for fi using Alg. 3, all the flows which
can cause direct interference to fp ( fp ∈ SB

i ) are considered as
the direct interference flow of fi. When the number of flows
in SB

i goes up, the number of flows in SD
i will also increase.

As a result, when fi shares a virtual-channel with more flows,
more flows need to be considered in SD

i which results in more
pessimism.

In general, we notice that the pessimism percentage re-
garding the maximum response time is much lower than
the pessimism regarding the average response time, and the
pessimism in the computed upper-bounds with probabilities
of 0.98 and 0.95 is in between. As discussed earlier, the
approximation during the calculation of interference can cause
pessimism to all the above analysis results. However, compar-
ing to the analysis of the maximum response time, the com-
putation of the response time distribution includes additional
pessimism. Because the calculation of the distribution uses the
critical instant of each flow without taking into account the
occurrence probability of the critical instant. In other words,
while analyzing fi, the analysis only uses the release patterns
of all the other flows which can cause the worst-case situation
to fi. However, the occurrence probability of the critical instant
is lower in reality. As a result, the peak of the calculated
distribution will be shifted towards the upper tail (i.e. in
the analysis results, larger values have higher probabilities
than the reality, and lower values have lower probabilities
than the reality). When we check the cumulative distribution
functions (similar to Fig. 1), we can observe that the computed
distribution of each flow is always greater than the distribution
formed by the simulation results.

B. Evaluation of Processing Time
The time complexity of the stochastic RTA can be larger

than the deterministic analysis due to the convolution opera-
tion. When we simply sum up two values in the deterministic

RTA, we need to convolute two distributions in the stochastic
RTA. As shown earlier in Example 1, a convolution of two
variables involves much more computation than summing up
two values. Apparently, the processing time of an analysis can
directly affect its applicability. Therefore, in this section, we
use measurements to investigate the scalability of the proposed
stochastic RTA. The processing time is measured in true time
from an analyzer developed using Python. The analyzer is
executed in a system using Windows 7, equipped with an Intel
Core(TM) i5-3320M CPU @2.60GHz and 8GB RAM.

The more values that a distribution has, the more represen-
tative it will be. However, using a large amount of values to
represent each distribution will also cause a long processing
time of the analysis. Therefore, we need to use re-sampling
techniques to reduce the values included in each distribution
while still providing acceptable analysis results. In this paper,
we used the Uniform Spacing Re-sampling technique proposed
in [24]. According to the experiments presented in [24],
the Uniform Spacing Re-sampling technique requires fewer
convolutions, and it can still provide representative results.
In our experiments, we set the number of values in each
distribution (i.e. Ni) to be 50 and 100.

In these experiments, networks with and without a priority
sharing policy are both taken into account. The results are
listed in Table I. As shown in the results of networks without
priority sharing (i.e. the first 7 columns), when the total
number of flows increases from 10 to 300, the maximum
processing time using Ni = 50 increases from 1.96s to 29.077s,
while the maximum processing time with Ni = 100 goes from
5.17s up to 60.813s. Together with results of networks with
priority sharing (i.e. the last 6 columns), we can observe that
setting Ni = 100 can cause much more processing time than the
configuration of Ni = 50 (i.e. more than 2 times longer in any
set of experiments). However, when we check the accuracy of
these two settings, using Ni = 100 is just slightly better than
the setting of Ni = 50. As shown in Fig. 9-a, when the total
number of flows in the network is 50, the pessimism involved
in the analysis using Ni = 100 is lower compared to using
Ni = 50 with around 5% difference. However, when the total
number of flows is 100 (Fig. 9-b), the pessimism included in
the analyses with both setting is quite close (i.e. with around
2% difference). In summary, using Ni = 50 in the analysis
can cause relatively lower processing time, while still provide
acceptable accuracy.

On the other hand, we also notice that the analysis of net-
works using priority sharing obviously needs more processing
time than the analysis of networks without priority sharing.
Because given the same set of flows in the network, the SD

i
of a flow fi under the configuration with priority sharing can
include more flows compared to the setting without priority
sharing.

In general, the processing time of the analysis can be
acceptable in reality. When the total number of flows in the
network is 300, the largest processing time observed from all
these experiments is around 120s.



without Priority Sharing with Priority Sharing (4 VCs)
Ni = 50 Ni = 100 Ni = 50 Ni = 100

Ntotal MEAN MAX ST D MEAN MAX ST D MEAN MAX ST D MEAN MAX ST D
10 0.333 1.96 0.37 1.112 5.17 1.207 0.29 1.989 0.375 1.465 11.167 1.877
30 1.068 3.851 0.674 4.099 13.86 2.366 1.227 4.697 0.738 4.223 13.173 2.642
50 1.848 4.531 0.816 6.515 23.179 3.977 2.526 8.074 1.274 7.751 23.445 4.617
100 4.336 10.492 1.447 11.645 37.795 5.277 7.986 24.13 3.354 18.658 50.367 8.237
200 9.044 16.184 2.311 21.516 42.92 7.629 17.688 39.927 5.773 38.806 85.484 13.782
300 18.738 29.077 3.361 35.997 60.813 10.71 30.674 47.407 6.614 67.158 120.08 17.861

TABLE I
THE RESULTS SHOWING THE PROCESSING TIMES (IN s) OF THE ANALYSIS. NOTE THAT THE RESULTS CAN INCLUDE SLIGHT INACCURACY DUE TO THE

OPERATING SYSTEM ENVIRONMENT.
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Fig. 9. The pessimism percentage regarding the number of values in each
distribution.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a stochastic response time analysis
for wormhole-switched on-chip networks. The proposed anal-
ysis calculates a probability distribution of response times of
each NoC flow as results. The computed distribution can be
used to obtain upper-bounds regarding different probabilities,
average response times, or deadline miss ratios. Therefore,
this approach can provide more informative results compared
to the existing deterministic RTA. A number of simulation-
based evaluations are also implemented in order to investigate
the pessimism involved in the analysis. The evaluation results
show that the pessimism increases as the total number of flows
in the network goes up. When the total number of flows is
300 in a network without priority sharing, the pessimism of
the computed maximum response time is around 30%, and the
pessimism in the estimated average response time is around
50%. When we decrease the number of virtual-channels in
the network (i.e. using priority sharing), the involved pes-
simism increases. The processing time of the analysis during
the experiments is also measured in order to examine the
scalability of the proposed approach. According to the results,
the processing time of the analysis can be acceptable in reality.

One of the most important future works is to reduce the
pessimism involved in the analysis, since pessimism can lead
to waste of system resources and it limits the applicability
of the analysis. On the other hand, in this paper, we assume
that the packet size is the only probabilistic parameter of each
flow. We will extend the analysis to handle NoC flows with
multiple stochastic parameters in order to support more general
applications. Moreover, the proposed analysis assumes that
the priority of each flow is already given. It is necessary to
investigate how to assign priorities of flows in the context of
NoCs with probabilistic real-time constraints.
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