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Abstract. Advanced Driver Assistance Systems (ADAS), like adaptive
cruise control, collision avoidance systems, and, ultimately, piloted and
autonomous driving are increasingly evolving into safety-critical systems.
These ADAS to a large degree rely on proper function of in-vehicle
Computer-Vision Systems (CVS), which is hard to assess in a timely
manner, due to their high sensitivity to the variety of illumination con-
ditions (e.g. different sun positions, weather conditions, light reflections
and glares, artificial light). On the other hand a diverse set of self-
awareness information is commonly available in the vehicle, such as maps
and localization data (e.g. GPS).
This paper, therefore, studies how the combination of diverse envi-
ronmental information can contribute to improving the overall vision-
based ADAS reliability. To this extent we present a novel concept of a
Computer-Vision Monitor (CVM) that regularly identifies checkpoints
(predefined landmarks) in the vehicles surrounding, based on digital
maps and localization data, and that checks whether the CVS correctly
identifies said landmarks. We formalize and assess the reliability improve-
ment of our solution by means of a Fault-Tree Analysis (FTA).

Keywords: Computer-vision system, computer-vision monitor, latent
failures, external environmental disturbances, fault tree analysis.

1 Introduction

With approximately 1.24 million deaths and another 20 to 50 million of non-
fatal injuries on the world’s road in 2010, road traffic injuries are estimated to
be the eighth leading cause of death nowadays [1]. Additionally to the human
tragedies, the cost of dealing with the consequences of these road traffic crashes
runs to billions of dollars.

Among the strategies which are proven to reduce road traffic injuries like
reducing the urban speed limits, reducing drunken driving and increasing seat-
belt use is the strategy of providing new passive and active vehicle safety systems.
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Today, there is a strong development focus on active safety systems ranging
from Anti-lock Breaking Systems (ABS), Electronic Stability Control (ESC),
Emergency Brake Assistant (EBA) to complex Advanced Driver Assistance Sys-
tems (ADAS) with accident prediction and avoidance capabilities [2]. Such sys-
tems are increasing the traffic safety either by informing the driver about the
current situation (e.g. night vision, traffic sign detection, pedestrian recogni-
tion), by warning the driver with regard to hazards (e.g. obstacle and collision
warning, lane departure warning, blind spot detection), or by selective control of
actuators (e.g. Adaptive Cruise Control (ACC), adaptive headlights, pedestrian
protection, collision avoidance) [3].

To perform functions, such as those listed above, ADAS rely heavily on en-
vironment perception. Examples for the most widely used sensors are ultrasonic
sensors, Long and Short Range Radars (LRR, SRR), Light Detection and Rang-
ing sensors (LiDAR) and video cameras (vision systems). Video cameras have an
important role in ADAS, because of their ability to give more detailed represen-
tation of the environment than the other sensors. Therefore, special attention
should be paid to vision systems which are used in safety-related and safety-
critical systems. Furthermore, an automotive vision system also integrates Elec-
tronic Controller Units (ECUs) and a communication subsystem connecting the
cameras to the ECUs and the ECUs to each other. Thus, automotive systems
in general and Computer-Vision Systems (CVSs) in particular become quite
complex. The safety standard ISO 26262 has been introduced for automotive
Electrical/Electronic (E/E) systems to address the potential risk of malfunction
for automotive systems [4], and ensuring correct functionality of ADAS becomes
mandatory from a qualification perspective.

One way to satisfy the safety standards is by designing systems to be de-
pendable. According to Laprie [5], dependability is the ability of the system to
deliver service that can justifiably be trusted. It encompasses the concept of re-
liability, availability, safety, maintainability, integrity and confidentiality which
are measures used to quantify the dependability [5][6]. Fault tolerance and fault
prevention are among the means capable of achieving dependable systems. While
fault prevention techniques prevent the occurrence of Hardware Failures (HF)
and Software Errors (SE) by selecting high-quality components, design rules,
etc., fault-tolerance techniques handle HF and SE, when they occur by fault
masking and reconfiguration techniques (fault detection, location, containment
and recovery). Fault masking simply “hides” the faults by using available re-
dundancy. In case a given redundant component fails, the failure is mitigated
by using majority voting. Therefore faults are contained or in other words the
effect of faults does not propagate throughout a system, and stays local [6]. A
drawback of this approach is that if faults are only “hidden” and fault detection
is not used, the faulty components will not be detected, the available redundancy
is going to decrease and the system will not be aware of that - a process called re-
dundancy attrition [7]. Thus in real fault-tolerant system, it is common to use a
combination of fault masking and fault detection. Fault detection can be accom-
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plished through dedicated hardware circuitry, software code and test methods.
Some of these various failure detection methods are referred as monitors [8].

One assumption is that the monitor provides 100% diagnostic coverage of the
item performing a given function and a monitor verification operation (“scrub”)
verifies (with 100% diagnostic coverage) that the monitor is fully operational.
Unfortunately, real life monitors, firstly (i) may fail before the component fails,
allowing the failure to spread and secondly (ii) may not provide 100% diagnostic
coverage. Both cases are known as latent failures - faults whose presence is neither
detected by a monitor, nor perceived by the driver within a time interval, after
which it will contribute to a failure ( [9] - part 1). The remainder of this paper
will use the terms monitor and internal monitor interchangeably, where in both
cases referring to monitors implemented locally in the CVS.

In this paper we are introducing a novel concept of Computer-Vision Moni-
tor (CVM), whose aim will be to detect latent failures (i) by verifying that the
internal monitors of the CVS are fully operational (“scrub”) and (ii) by detect-
ing failures which are not in the diagnostic coverage of the internal monitors.
Furthermore, the paper demonstrates in a step-by-step manner, how to perform
reliability analysis of ADAS with and without CVM and proposes a solution,
how to include the issue of detecting a special case of latent failures (leading
directly to a hazard in a very short time) to the fault tree analyses.

The paper is organized as follows. In section 2, the problem statement and the
chosen ADAS scenario are presented. The CVM concept is introduced in section
3, followed by section 4, where reliability analysis of the proposed solution will
be done. Conclusions and future work will be presented in section 5.

2 Problem Statement

In the field of vision-based ADAS, latent failures, resulting from not full diag-
nostic coverage, very often are consequences of External Environmental Distur-
bances (EED). A typical example in the automotive environment is the illumi-
nation, which can be barely controlled, due to weather conditions, different sun
position and brightness, and artificial light (headlights, street lamps). The situ-
ation, such as direct sun light for instance, highly affects the image acquisition
and processing, thereby, decreasing the abilities of computer vision algorithms
to interpret the environment correctly, which in turn might lead to wrong de-
cisions and actions of the system. A solution for that issue could be the fast
Automatic Exposure Control (AEC), which ensures, that the right amount of
light is perceived from the camera.

As regards to the effects of the bad weather conditions, various image en-
hancement methods are used to improve the dependability of CVS. Image de-
weathering is used in [10] to remove the weather effects from images. Image based
fog detection and visibility estimation is presented in [11]. Raindrop detection
and removal techniques can be seen in [12].

Furthermore, often used in ADAS is the competitive (redundant) sensor fu-
sion, where different types of sensors deliver measurements of the same property.
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An example for ACC where safe distance to the front vehicle is measured by four
different sensors (LRR, SRR, CVS, LiDAR) is given in [13]. The main idea of
using different types of sensors to measure the same property is that the sensors
will fail in different environmental conditions, but less likely in the same.

Even though, there are particular solutions, such as AEC for direct sunlight
and image enhancement methods against the effect of bad environmental condi-
tions, the diversity of EED scenarios are difficult to be covered exhaustively.

As far as to the competitive sensor fusion, it must be emphasized, however,
that this example is not the only way of realization of ACC or any other ADAS
functions. In case of pedestrian detection for instance LiDARs and vision sensors
are used collaboratively, where the first one is ensuring the detection and tracking
and the second one is responsible for the classification of the object in the ROI
(Region of Interest) [14]. In another example of ACC, active sensors (radar and
LiDARs) and vision sensors do not exchange information between each other,
but the data from each one is used for different functions of the ADAS. In that
case the active sensor is used to detect obstacles and to provide directly the
distance to the obstacle, while the camera is used to support the other ACC
related functions, such as lane detection and traffic sign recognition [15].

In this paper we are interested in improving the dependability (in particularly
the reliability attribute) of vision-based systems. Thus, the reminder of this
paper is focused on a scenario, where ADAS relies only on vision for given
functions, such as pedestrian detection and tracking, obstacle detection, lane and
traffic sign recognition, night vision - each of which can be used in autonomous
vehicles (Fig. 1).
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Fig. 1. High-level overview of vision-based ADAS.

Figure 1 depicts an exemplary control system of an autonomous vehicle.
The environment is captured by the camera and the information is transmitted
to the processing and interpretation subsystem. After processing the image and
extracting the useful data, the information is given to the evaluation and decision
subsystem. According to the features of the environment, as well as on the
implemented logic, the evaluation and decision subsystem generates the vehicle
control commands, which in turn are executed by the actuators.
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3 The Computer-Vision Monitor (CVM) Concept

Current research in the field of digital maps, GPS and intelligent vehicles is
focused on mainly two areas. On the one hand GPS-based systems combined
with data from laser scanners, cameras, on board sensors are used to localize the
precise position and orientation (especially in the urban areas, where the accu-
racy of the GPS alone is limited and unreliable) of the vehicle, using knowledge
regarding mapped landmarks (traffic signs, lanes, traffic lights, etc.) on a digital
map [16][17]. On the other hand data from digital maps and vehicle position,
direction and speed are fused in order to improve the success rate of vehicle
camera traffic sign recognition [18][19].

While the research shown above focus on a precise localization of vehicles and
improving success rate of traffic sign recognition using pre-mapped landmarks
and various sensory systems, we propose a complementary approach using the
same resources. Labeling the precise position of the traffic infrastructure objects,
such as traffic signs, road markings, traffic lights, etc. as checkpoints on a detailed
digital map can be used to identify the correct functionality of CVS (Fig. 2).
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Fig. 2. Conceptional view of vision-based ADAS with CVM.

Our approach is to place new landmarks to the road or use the already
implemented road infrastructure on the road, as landmarks in digital maps.
Knowing their exact position in the digital map, the ability of the vision system
to find a given traffic sign will be verified. According to the results from the CVS,
whether the traffic sign is found or not, the correct operation of the computer
vision system will be assessed.

The steps depicted in Fig. 2 are the following:

1. Receiving the vehicle coordinates via localization device (e.g. GPS),
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2. Gathering the landmarks from the digital map corresponding to the current
coordinates,

3. CVS checks for landmarks,
4. CVM receives the information for the landmarks, which CVS has detected,
5. CVM verifies and validates the correct operation of the CVS and sends that

information (reliability estimate) to the evaluation and decision unit.

According to the reliability estimate, the evaluation and decision block will
decide whether it can rely on CVS or to put the vehicle to a safe state.

4 Reliability Analysis

In this section, we use a simplified Functional Hazard Analysis (FHA) and Fault
Tree Analysis (FTA) in order to analyze the reliability of the vision-based ADAS
with and without the proposed CVM. Furthermore in the future, both, FHA and
FTA could be used in a safety assessment process.

4.1 Functional Hazard Analysis

FHA is an approach which identifies and classifies the failure conditions related
to a given function, according to their severity. An example of a system level
FHA, according to [8], for the vision-based ADAS is depicted in Table 1. The
columns in the table include the reference of the failure, function name and the
phase in which it is used, as well as its probable failure condition and effects,
followed by classification of the failure by its severity.

Table 1. Example System Level FHA.

Function
failure ref.

Function Phase Failure Condition Failure effect Classification

F1
Lane departure
warning

Highway
Inability to detect
the road lanes

Driver is not
informed upon
leaving the lane

S2

F2
Traffic sign
recognition

Highway/
Urban

Inability to detect
the traffic sign

Vehicle does not
stop on a “STOP”
sign

S3

F3
Blind spot
detection

Highway/
Urban

Inability to detect
the car in the blind
spot area

Driver is not
informed of
a car in the blind
spot area

S2

F4
Pedestrian
protection

Urban
Inability to detect
the pedestrian

Vehicle does not
decrease the speed
to protect the
pedestrian

S3

F5
Collision
avoidance

Highway/
Urban

Inability to detect
the obstacle

Vehicle does not
decrease the speed
in order to avoid
or mitigate the
collision

S3
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The classification of the failures was made according to ISO26262 standard
([9] - part 3), where the severity classes range from S0 to S3 (Table 2).

Table 2. ISO-26262 Severity classes [9].

Class S0 S1 S2 S3

Description No injuries
Light and

moderate injuries
Severe and life-threatening
injuries (survival probable)

Life-threatening injuries
(survival uncertain),

fatal injuries

In this example, we assume, that a failure of the CVS may lead to a life-
threatening or fatal injury. Therefore the reminder of the paper will assume that
each CVS failure not detected by the monitor might lead to high-level severity
class.

4.2 FTA for Vision-Based ADAS

FTA is a deductive (top down) approach, which is used to (i) determine what
single failures or combination of failures can exist at the lower levels, that might
cause each failure condition in the FHA and (ii) to evaluate qualitatively or
quantitatively the probability of the top-level event. The level of details of the
Fault Tree (FT) is dependent upon the overall knowledge and experience, and
requires consultation of numerous specialists. Figure 3 presents a high-level FT
of a vision-based ADAS, where the internal monitor has only 90% coverage of
the function Fi failures and the monitor might fail before the failure in Fi occurs.
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Fig. 3. High-level FT for vision-based ADAS.
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The variables depicted in the Fig. 3 are as follows:

– λf - Function Fi failure rate per hour,
– λm - Monitor failure rate per hour,
– travel time - time of travel of the vehicle,
– tf - Function Fi exposure time,
– tm - Monitor exposure time,
– Dλf

- percentage of function Fi failures detectable by the monitor,
– Lλf

- percentage of function Fi failures not detectable by the monitor.

The FT shown in Fig. 3 has the following main events:

– Event E1:
– The internal monitor has only 90% ( Dλf

) coverage of the function Fi
failures.

– The internal monitor might fail prior to the function Fi failure of the CVS
and there is no monitor verification. Thus, tm is equal to travel time,
addressing the need for “scrubbing”.

– Event E2:
– Presents the rest of the failures which are not detectable from the monitor

(Lλf
= 10%). Thereby, addressing the latent failures, resulting from not

full diagnostic coverage (section 2).

Having the approximate failure rates and exposure times, the probability of
each primary event in the FT can be calculated according to equation 1:

Pf = 1 − eλf t (1)

In case when λf t < 0.1, the equation can be simplified to:

Pf = λf t (2)

Thus, the top level event failure probability can be calculated as:

PTopf = E1 + E2

where :

E1 =
1

2
E1.1E1.2 =

1

2
λmtmDλf

λf tf

E2 = Lλf
λf tf

(3)

The probability of elements failing in a certain sequence (monitor fails prior
to the function Fi failure) is included via multiplication by 1

2 . For illustration
purposes, we assume a failure rate of 10−6 per hour for both λf and λm, which
is about the best a component can be constructed and analyzed by means of
testing. Monitor exposure time tm and function exposure time tf are equal to
the travel time. Within this paper we assume maximum travel time of two hours.
Given the values, the top level event probability is PTopf = 2 × 10−7.
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4.3 FTA for Vision-Based ADAS with CVM

Figure 4, presents a high-level FT of vision-based ADAS with CVM, where CVM
is able to detect 5% out of 10% of the non-detectable by the internal monitor
function Fi failures and 95% of the monitor failures. The new variables depicted
in FT are as follows:

– TCVM - CVM diagnostic test interval,
– Pcvm - The probability, that CVM will fail to detect the function Fi latent

failures within the sufficient time, required to put the vehicle in a safe state,
– Dλf

- percentage of function Fi failures detectable by the monitor,
– Lλf1 - percentage of function Fi failures not detectable by the monitor, but

detectable by the CVM,
– Lλf2 - percentage of function Fi failures neither detectable by the monitor,

nor by CVM,
– Dλm

- percentage of monitor failures detectable by CVM,
– Lλm

- percentage of monitor failures not detectable by CVM.
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Fig. 4. High-level FT for vision-based ADAS with CVM.

The main events of the fault tree depicted in Fig. 4 are as follows:

– Event E1:

– The internal monitor has 90% (Dλf
) coverage of the function Fi failures,

but monitor fails prior to the function Fi failure.
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– CVM has 95% (Dλm) diagnostic coverage of the monitor failures. There-
fore, monitor exposure time (tm) for failures detectable by CVM is equal
to the time interval in which CVM diagnoses the monitor (TCVM ).

– Event E2:
– The internal monitor has 90% (Dλf

) coverage of the function Fi failures,
but monitor fails prior to the function Fi failure.

– CVM does not have coverage on 5% (Lλm
) of the monitor failures. There-

fore, monitor exposure time (tm) for failures not detectable by CVM is
equal to the travel time.

– Event E3:

– CVM is able to detect 5% (Lλf1) out of 10% of the function Fi failures,
which are not detectable from the internal monitor. This percentages
are taken as an example. Sensitivity analysis with different diagnostic
coverage will be performed later in the paper.

– Probability (Pcvm) that CVM will fail to detect function Fi latent failure
within the sufficient time, required to put the vehicle to a safe state, also
effects the event E3 probability. Pcvm will be estimated in Sect. 4.3.1.

– Event E4:

– Presents the rest 5% (Lλf2) of the failures which are neither detectable
by the internal monitor, nor by CVM.

4.3.1 CVM Failure Probability

Latent failures can persist for a time interval which is either greater or shorter
than the time of travel. Latent failure in CVS, used to keep the vehicle on the
road for instance, will lead directly to a hazard in short time. In that case, the
time interval in which a failure remains latent (not perceived) is comparable to
the time interval before the hazardous event can take place. In ISO26262, this
interval is referred as Fault Tolerant Time Interval (TFTTI), (Fig. 5).

Safe State

TDTI - Diagnostic Test 

Interval

TFRT - Fault Reaction 

Time

TFTTI-Fault Tolerant Time Interval

Normal

Operation

Time

Possible 

Hazard

Fault DetectionFault

Fig. 5. Fault reaction time and fault tolerant time interval (source: [9] - part 1).

The rest of the variables depicted in Fig. 5 are the diagnostic test interval
(TDTI), which is the amount of time between executions of diagnostic test by
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a safety mechanism (monitor) and the fault reaction time (TFRT ) which is the
time-span from the detection of fault to reaching to the safe state.

We assume that the diagnostic test interval (TDTI), for failures, not in the
diagnostic coverage of the internal monitor, but in the diagnostic coverage of
CVM, is equal to the time interval in which CVM diagnoses the system (TCVM ):

TDTI = TCVM (4)

If TCVM is greater than TFTTI , CVM might fail to detect the failure within
the sufficient time, required to put the vehicle to a safe state (TFRT ) or even
to miss the latent failure. Therefore to guarantee that the latent failure will be
detected and the vehicle will enter to a safe state, the difference between TFTTI
and TCVM should be less than TFRT :

TFTTI − TCVM < TFRT (5)

This is an essential issue for systems in which latent failures lead to hazards
in very short time. Because our system is such, the probability (Pcvm), that
the CVM will fail to detect function Fi latent failures within the sufficient time
required to put the vehicle to a safe state has to be estimated and included
properly in the FTA. This estimation is made according to ISO 26262 - part 3:

Pcvm = λfδT (6)

Where:

– δ - rate of occurrence of the hazardous event.
For non-autonomous vehicles this rate could vary from occurs less often than
once a year to occurs during almost every travel. For the scenario we have
chosen, the rate occurrence for fully autonomous vehicle is considered as each
time when the system does not get correct information from CVS about the
environment for 10ms. Thus, δ = 10ms.

– T - the duration of time that the failure is not perceived.
Failure might be perceived in two ways - (i) by leading to a hazard and (ii)
by being detected from a safety mechanism. Therefore T could be taken from
one of the two cases:
1. T is equal to the time between latent failure occurs and leads to possible

hazard. This interval of time is also referred as Fault Tolerant Time
Interval (TFTTI).

2. T is equal to the time between latent failure occurs and its presence is
detected by a safety mechanism. Also referred as Diagnostic Test Interval
(TDTI), (Fig. 5).

According to equations 4 and 6, the probability that CVM will fail to detect
function Fi failure within sufficient time is:

Pcvm = λfδTCVM (7)

Having λf = 10−6 and δ = 10ms as constant values, the only variable is
TCVM . Within this paper we assume a maximum travel time of two hours. Thus,
we consider TCVM to vary from 1ms to 7200sec.
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4.3.2 CVS Failure Probability

Top level event probability for the vision-based ADAS with CVM is equal to:

PTopf = E1 + E2 + E3 + E4

where :

E1 =
1

2
E1.1E1.2 =

1

2
Dλm

λmtmDλf
λf tf

E2 =
1

2
E2.1E2.2 =

1

2
Lλm

λmtmDλf
λf tf

E3 = E3.1E3.2 = Lλf1λf tfPcvm

E4 = Lλf2λf tf

(8)

Top level event probability for the current FT depends (i) on the diagnostic
test interval (TCVM ) and (ii) on the percentage of the latent failures CVM may
detect. Therefore sensitivity analysis on different diagnostic coverages Lλf1 will
be performed. Sensitivity analysis on Dλm is not done, due to the fact that its
weight on the top level event probability is very low.

Figure 6 depicts the top level event probability (PTopf ) results for differ-
ent diagnostic coverage percentages of CVM (Lλf1) and diagnostic test interval
(TCVM ) ranging from 1ms to 7200sec.

Fig. 6. Figure 6a): PTopf results for different Lλf1 and TCVM ranging from 1ms to

7200sec. Figure 6b): Logarithmic scale (log10) of PTopf .

Results from Fig.6 show that depending on the diagnostic coverage of CVM
and on the diagnostic test interval, the failure probability of top level event
(PTopf ) can be decreased up to 10−13 when the CVM has full coverage of the
latent failures (Lλf1 = 10%) and diagnostic test interval of 1ms.

However, diagnostic test interval of 1ms is difficult to be achieved. Therefore
Fig.7 presents top level event probability (PTopf ) results for different diagnostic
coverage percentages of CVM (Lλf1) and TCVM ranging from 1sec to 300sec.
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Fig. 7. Figure 7a): PTopf results for different Lλf1 and TCVM ranging from 1sec to

300sec. Figure 7b): Logarithmic scale (log10) of PTopf .

The results from Fig. 7 show that, when TCVM is under 50sec and Lλf1 =

10%, PTopf decreases to less than 10−9. In the case when the TCVM is 1sec
and CVM has full diagnostic coverage (Lλf1 = 10%), the top level event failure
probability is 2.01 × 10−11, which is sufficient for safety-critical functions.

5 Conclusions and Future Work

Autonomous vehicles are no longer a distant future goal. Top vehicle produc-
ers invest serious amount of resources in research, development and testing in
the said area. When it comes to the need of collecting detailed information for
the environment, vision systems are inevitable part of the autonomous vehicles.
Therefore, the vision-based systems have to be dependable enough in order to
be used for vehicle safety-critical functions.

In this paper we have proposed a concept of CVM which combines envi-
ronmental information to enhance the reliability of CVS in ADAS. Using FT
and sensitivity analysis, we have shown, that the proposed CVM can contribute
to improving the overall reliability of the in-vehicle computer-vision system, by
achieving top level event probability of failure of 2.01 × 10−11, given that the
diagnostic test interval is 1sec and full coverage of possible latent failures is
achieved. This is certainly optimistic and a consequence of idealized failure rates
and conditions, but gives us sufficient motivation to consider CVM as a realistic
candidate approach to making automobiles more safe. Last but not least we have
proposed a solution how to include the issue of detecting latent failures within
the required sufficient time, to the fault tree analysis.

Ongoing and future work is focused on modeling and simulations in the
Möbius software tool in order to validate the presented estimations.
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