
Towards a deep metamodelling based formalization
of component models

Antonio Cicchetti
School of Innovation, Design and Engineering (IDT)

Mälardalen University, Västerås, Sweden
email: antonio.cicchetti@mdh.se

Abstract—Component-based software engineering (CBSE) is
based on the fundamental concepts of components and bindings,
i.e. units of decomposition and their interconnections. By adopt-
ing CBSE, a system is built-up by means of a set of re-usable
parts. This entails that system’s functionalities are appropriately
identified so that implementing components can be accordingly
selected. In turn, this means that each component-based design
is at least made-up of two different instantiation levels, i) one
for designing the system in terms of components and their
interconnections, ii) and one for linking possible implementation
alternatives for each of the existing components. In general, this
twofold instantiation is managed at the same metamodelling
level through the use of relationships. Despite such solutions
are expressive enough to model a component-based system, they
cannot represent the instantiation relationship between, e.g., a
component and its implementations. As a consequence, validity
checks have to be hard-coded in a tool, while the interconnection
between component and implementation have to be managed by
the user.

In this paper we propose to exploit deep metamodelling tech-
niques for implementing CBSE mechanisms. We revisit CBSE
main concepts through this new vision by showing their counter-
parts in a deep metamodelling based environment. Interestingly,
multiple instantiation levels enhance the expressive power of
CBSE approaches, thus enabling a more precise system design.

Index Terms—model-driven engineering; component-based
software engineering; component models; deep metamodeling;
instantiation level;

I. INTRODUCTION

The increasing complexity of contemporary software sys-
tems and the growing pressures to deliver products faster while
still keeping high quality attributes demands appropriate de-
velopment solutions. Component-based software engineering
CBSE [1] is a well-established methodology that proposes
to alleviate software development intricacy by studying the
target application as an assembly of composable units (indeed,
software components), each one addressing a particular aspect
of the system. In this way, the complexity of the initial problem
can be reduced through its partitioning into smaller sub-
problems. Moreover, time devoted to development and testing
can be narrowed by promoting the reuse of already existing
components across several software development projects [2].

Component-based system (CBS) specifications are intrinsi-
cally hierarchical: i) on the one hand, a component might be
realised as the composition of several nested components; ii)
on the other hand, a component might have multiple imple-
mentations distinguished by quality attributes, target platform,

and so forth. Usually, modelling languages support such hierar-
chical structure in terms of relationships between a component
and its sub-components, or between a component and its
realisations, respectively. Despite this approach is powerful
enough to represent complex CBSs from the expressiveness
point-of-view, it requires a careful management of system
validation. Notably, type correctness checking, that is verifying
whether a component realisation is a valid instance of the
component specification, has to be hard-coded in the tool.
Moreover, this check should be re-executed each time changes
were performed in the component specification and/or in its
realisation. Besides, the relationship solution becomes quickly
intricate with the growth of hierarchical decomposition levels.
Practically, supporting more than two levels of component
nesting poses relevant representation issues, as distinguishing
the quality attributes of a parent component from the ones of
its nested children.

Deep metamodelling [3] is a recent technique introduced in
the model-driven engineering (MDE) research field to cope
with multiple instantiation levels. It enhances the usual 4-
layered metamodelling architecture [4] (also known as two-
level metamodelling) by providing a recursive language ex-
tension/instantiation structure. In this respect, the deep meta-
modelling vision fits perfectly with CBSE methodology and
its hierarchical decomposition of software systems [3]. In
fact, deep metamodelling allows to represent a system and its
components by means of arbitrary decomposition/instantiation
levels.

This paper investigates the implementation of a component
model by means of deep metamodelling mechanisms with
the aim of verifying the feasibility of such a solution. The
initial results illustrated in this work confirm the feasibility
of the approach and meet the expectations of exploiting deep
metamodelling mechanisms. Notably, hierarchical component
structures can be represented in an easier way, while the
conformance check of a component instance against a com-
ponent specification is obtained by-construction. Despite both
the component model and the deep metamodelling solution
are specific, the discussion is kept generic enough to be repro-
ducible with other component models and deep metamodelling
approaches.

The paper is organised as follows: next section introduces
CBSE together with a running example, which will be ex-
ploited in Section III to clarify the issues raising in considering

multiple instantiation levels. Section IV discusses the proposed
formalisation of CBSE concepts through a deep metamod-
elling framework. Eventually, related works are discussed and
conclusions are drawn in Sections VI and VII, respectively.

II. INSTANTIATION RELATIONSHIPS IN CBSE

CBSE methodology relies on the notion of component, that
is “a unit of composition with contractually specified interfaces
and explicit context dependencies only. A software component
can be deployed independently and is subject to composition
by third party.” [5]. Depending on the application domain,
technological platform, and so on, the concept of component
might include disparate characteristics, which are typically
defined in a corresponding component model [6]. Therefore,
a CBS is specified by adhering to a well-defined component
model, that prescribes how components, their interconnections,
and their deployment, look like.

For example, let us consider a simple Personal Navigation
Assistant (PNA)1 CBS as depicted in Figure 1: it includes
GPS Receiver, Power Management, Navigation
System, and UI components (represented as boxes with
names). For the purpose of this paper, it is sufficient to know
that the Navigation System retrieves geo-positioning
information from a GPS Receiver and delivers naviga-
tion data to a user interface (UI component). These inter-
connections are represented by means of named relation-
ships linking component ports. More precisely, a triangle
shaped port represents an (provided) output of a certain
component, while a square represents an (required) input.
Therefore, Navigation System gets Position infor-
mation from GPS Receiver and, after computing relevant
Navigation Data, it delivers them to the UI.

1The example has been taken from [7] and readapted for the purpose of
this paper.

Fig. 1. A simple Personal Navigation System.

Fig. 2. A simple GPS receiver component.

Fig. 3. Two (excerpts of) possible implementations for the PNA system.

In general, a component can include nested sub-
components, referred to as composite components [6]. This
is the case of the GPS Receiver, which has a complex
internal structure. As shown in Figure 2, GPS antennas
(Parallel Receiver) have to coordinate their tasks with
Clock and Almanac Store. In particular, satellite avail-
abilities depend on the current time and are stored in an
almanac.

Eventually, components are attached with one or more
implementations, which can be distinguished by quality at-
tributes, supported platforms, and so forth. Notably, for the
PNA one might want to prioritise power consumption versus
precision in a mobile phone while doing the opposite for a
rescue device. Figure 3 illustrates two implementation alter-
natives for the PNA system: in the one shown on the top
half of the picture, a single Database is shared between the
implementations of Almanac and UI components, whereas
the realisation shown on the bottom half exploits separate
databases.

It becomes quickly evident that CBSE methodologies are
intrinsically hierarchical: the generic notion of component
assembly is instantiated by means of a specific component
model (e.g., the simple one used in the example), which in
turn is instantiated into a particular CBS (the PNA system).
Even further, components can be realised in terms of other
components and/or through implementations (as shown in
Figure 2 and 3, respectively). In this respect, it is expectable
that each CBS specification is made-up of only valid in-
stances for the component model, the components defined
in the system together with their implementations. Some of
these instantiation relationships are managed by-construction:
notably, a CBSE tool is built-up on a well-defined component
model, hence the tool will support the design of CBSs by
means of all and only the concepts offered by the selected
component model (i.e. there is no need to verify that a CBS
specification conforms to the component model).

A number of instantiation relationships however have to be
checked case-by-case, and this validation step has to be ad-
dressed either by the designer, through appropriate constraints
at modelling level (e.g. by means of OCL [8]), or hardcoded

Fig. 4. A comparison between 4-layered and deep metamodelling architec-
tures.

into the tool. For example, when specifying that the GPS
Receiver composite component in Figure 1 is decomposed
as in Figure 2, the tool should at least verify that input and out-
put ports of the latter component specification are compatible
with input and output ports of the former composite compo-
nent (e.g., matching types). A similar reasoning has to be done
when considering the interconnection between components
and corresponding implementations. More specifically, every
implementation of GPS Receiver should be compatible
with every implementation of Navigation System when
considering the exchange of Position and Output Mode
data (e.g., the implemented setter and getter methods should
match with their types). Regardless whether specified by the
designer or if hardcoded in the tool, keeping consistent and
up-to-date validity checks can be time-consuming and error-
prone, especially when considering complex CBSs. Notably,
if the system needed a more precise tracking of power status,
the Power Management component could be refined as
providing more details. In turn, these refinements should be
propagated at implementation level by choosing appropriate
component implementations for both Power Management
and Navigation System.

III. ON THE NEED OF A DEEP METAMODELLING SOLUTION

Current modelling techniques are usually based on a 4-
layered metamodelling architecture [4]: a software system is
represented by means of a model, that is an abstraction of
reality for a given purpose. The model is created by following
a set of well-formedness rules stated in a language definition,
referred to as the metamodel. In other words, a metamodel
defines the set of legal abstractions for a certain system. A
model is said to conform to a metamodel if it adheres to
the defined well-formedness rules. At the top of the 4-layered
architecture there is the meta-metamodel, i.e. a unique minimal
set of concepts needed to create all the possible languages. In
this respect, the specification for the example introduced in
Section II would be supported as shown on the left side of
Figure 4: the MMM layer would be exploited to define a CBSE
language based on a specific component model (at level MM),
while the PNA system, its (sub-)components, bindings, and

component implementations, would all be represented at the
modelling level (i.e., M).

The conformance validity issues mentioned in Section II
are due to the fact that a certain entity either pertains to the
metamodel or to one of the models conforming to it. Moreover,
at language level, realisation links defined between composite
components and sub-components, and analogously between
components and implementations, cannot guarantee confor-
mance (i.e., they cannot impose type instantiation constraints).
Technically, these relationships link concepts pertaining to
different metamodelling layers that however cannot be repre-
sented in the typical 4-layered metamodelling architecture [3].
More specifically, the PNA system in Figure 1 is an instance
of a certain component model, and at the same time the
implementations in Figure 3 are instances of PNA components.
In other words, a certain entity should play the role of a
concept definition (MM level in Figure 4) and instance (M level
in Figure 4) at the same time.

Multiple metamodelling layers allow to appropriately rep-
resent instantiation hierarchies, as depicted on the right side
of Figure 4: a model can be equally considered as an instance
conforming to the metamodel on the layer above and as
a language definition (i.e. as a metamodel itself), for the
layer below. In this way, it is be possible to define a com-
ponent model as a metamodel a certain CBS specification
conforms to, like it happens for CM and ProCom levels. In
turn, the CBS specification would constitute a metamodel
for which (sub-)component instances could be created (see
ProCom and PNASystem levels, respectively). Eventually,
implementations would be represented in a model conforming
to a metamodel including simple component definitions (i.e.,
PNAImpl).

IV. A DEEP METAMODELLING FORMALISATION FOR CBSE

This section illustrates the proposed formalisation of CBSE
methodologies into a deep metamodelling framework. The for-
malisation proceeds step-by-step, from higher abstraction level
concepts towards more and more concrete instantiations of
them. In particular, we leverage a specific component model,
namely ProCom [9], to implement the example presented in
Section II. Moreover, we exploit MetaDepth [10] as support
for concretising the formalisation proposal on a specific deep
metamodelling environment. It is worth noting that, despite
the component model and deep metamodelling solution are
specific, the discussion is kept generic to be extensible to
arbitrary component models and other deep metamodelling
solutions.

In order to develop a system through CBSE methodologies,
it is necessary to preliminarily adopt a specific component
model [6]. In the most generic terms, a component model is
made-up of components, bindings, and a platform. By adopting
MetaDepth syntax, these concepts are specified as shown in
Listing 1. In particular, Component nodes are bound by
means of directional Binding edges (the direction is iden-
tified through attributes bindingOut, bindingIn, respec-

tively). A similar reasoning can be done for the Deployment
relationship between Component and Platform nodes.

It is worth noting that, already at this stage it is possible to
put modelling constraints: the noSelfBinding expression
at line 18 prescribes that a component cannot be bound to
itself. Moreover, child multiplicity at line 9 establishes that
a Composite must have at list one nested component.

1Model ComponentModel@*{
2 ext Node Component@*{
3 bindingIn: Component[*];
4 bindingOut: Component[*];
5 deployment: Platform[0..1];
6 }
7
8 ext Node Composite@*: Component{
9 child: Component[1..*];

10 }
11
12 ext Node Platform{
13 in: Component[*];
14 }
15
16 Edge Binding(Component.bindingOut,Component.bindingIn) {}
17 Edge Deployment(Component.deployment,Platform.in) {}
18 noSelfBinding@* : $Component.allInstances()->forAll(src,tgt

| Binding(src.bindingOut,tgt.bindingIn) implies src!=
tgt)$

19}

Listing 1. Encoding of a generic component model.

The generic definition given in Listing 1 introduces the nec-
essary CBSE concepts to create a specific component model.
Notably, if we would like to define the ProCom component
model, we would need to refine the generic bindings as
ports, since ProCom adopts port-based interfaces. In particular,
we introduce data ports and trigger ports, as illustrated in
Listing 2, lines 4–7. Moreover, bindings have to be refined
correspondingly (lines 18–19). It is important to notice that
ProCom component model is defined in terms of, or better
instantiates, the generic component model defined in List-
ing 1. This ensures, for instance, that DataConnection
correctly binds a pair of ProComComponents through their
in_dataPort and out_dataPort, respectively. Other
alternatives, e.g. connecting a port with a child, would have
raised type mismatch issues at validation time due to the type
relationships defined before.

1ComponentModel ProCom{
2 Component ProComComponent{
3 name: String {id};
4 in_dataPort: ProComComponent[*] {bindingIn};
5 out_dataPort: ProComComponent[*] {bindingOut};
6 in_triggerPort: ProComComponent[*] {bindingIn};
7 out_triggerPort: ProComComponent[*] {bindingOut};
8 parent: ProComComposite[0..1];
9 }

10
11 Composite ProComComposite: ProComComponent{
12 child: ProComComponent[1..*];
13 }
14
15 Platform ProComPlatform{
16 }
17
18 Binding DataConnection(ProComComponent.out_dataPort,

ProComComponent.in_dataPort) { name: String {id}; }
19 Binding TriggerConnection(ProComComponent.out_triggerPort,

ProComComponent.in_triggerPort) { name: String {id};
}

20 Edge isChildOf(ProComComponent.parent, ProComComposite.
child) {}

21 Deployment ProComDeployment(ProComComponent.deployment,
ProComPlatform.in) {}

22}

Listing 2. Encoding of (a subset of) the ProCom component model.

Once the component model has been defined, it is possi-
ble to model a CBS. In our case, we specify the PNA
system introduced in Section II through ProCom, as shown
in Listing 32. In particular, the Navigation System, Power
Management, and UI components in Figure 1 are mod-
elled as ProComComponents, while the GPS receiver
as a ProComComposite (see lines 2–13). Moreover,
DataConnections are specified to bind the components
appropriately, and implicitly define data ports for the corre-
sponding components (lines 16–21).

Since GPS is defined as a composite, it is possible to define
it as an assembly of sub-components. In this respect, Listing 3
shows the definition of Almanac Store at lines 23–25
according to the description of the GPS receiver depicted
in Figure 2. Furthermore, by choosing the implementation
alternative at the bottom of Figure 3, the almanac is defined as
composite, thus allowing the introduction of a nested database
component together with its quality attributes (lines 29–34).
The nesting specification is completed with the definition
of isChildOf relationships, as visualised at lines 36–38.
Eventually, a platform is introduced to allow the deployment
of the PNA system, and component deployments are specified
accordingly (lines 41–47).

1ProCom PNAModel{
2 ProComComposite GPS{
3 name = "GPS Receiver";
4 }
5
6 ProComComponent NS{
7 name = "Navigation System";
8 }
9 ProComComponent UI{

10 name = "UI";
11 }
12 ProComComponent PM{
13 name = "Power Management";
14 }
15
16 DataConnection(GPS.out_dataPort,NS.in_dataPort){name="

Position";}
17 DataConnection(NS.out_dataPort,GPS.in_dataPort){name="

OutputMode";}
18 DataConnection(PM.out_dataPort,NS.in_dataPort){name="

PowerStatus";}
19 DataConnection(UI.out_dataPort,NS.in_dataPort){name="

UserInputs";}
20 DataConnection(NS.out_dataPort,UI.in_dataPort){name="

NavigationData";}
21 DataConnection(NS.out_dataPort,UI.in_dataPort){name="

Tracks";}
22
23 ProComComposite AS{
24 name = "Almanac Store";
25 }
26
27 ...
28
29 ProComComponent DB{
30 name = "DB";
31 encryption: String = "NotDefined";
32 queryLanguage: String = SQL;

2Due to space limitations, some portions of the specification are omitted.
The interested reader can download the full specification at http://www.es.
mdh.se/∼acicchetti/PNASystem.php .

33 WCET: int = 22;
34 }
35
36 isChildOf innerASDB(DB.parent,AS.child);
37 isChildOf innerAlmanac(AS.parent,GPS.child);
38 isChildOf innerUIDB(DB.parent,UI.child);
39 ...
40
41 ProComPlatform PNAPlatform{
42 name: String = "PNAPlatform";
43 CPU: String = "FPGA";
44 BUS: String = "EtherNet";
45 }
46
47 ProComDeployment GPSDeployment(GPS.deployment, PNAPlatform

.in) {}
48 ...
49}

Listing 3. Specification of the PNA system through ProCom.

An excerpt of the implementation of the PNA system is
specified as shown in Listing 4. In particular, it illustrates the
details for GPS, almanac, and database components (lines 2–
18), together with the ones for UI and its nested database (lines
20–21), consistently to the implementation choice depicted at
the bottom of Figure 3. Moreover, it shows the declaration of
a platform and corresponding deployments at lines 33–34.

1PNAModel pna{
2 GPS gpsImplementation{
3 name = "GPS1";
4 }
5
6 AS asImplementation{
7 name = "AS1";
8 }
9

10 DB dbImplementation1{
11 name = "DB1";
12 encryption = "none";
13 queryLanguage = "SQL";
14 WCET = 13;
15 }
16
17 innerDBAS(dbImplementation1,asImplementation);
18 innerAlmanac(asImplementation,gpsImplementation);
19
20 UI uiImplementation{
21 name = "UI1";
22 }
23
24 DB dbImplementation2{
25 name = "DB2";
26 encryption = "none";
27 queryLanguage = "SQL";
28 WCET = 22;
29 }
30
31 innerDBUI(dbImplementation2,uiImplementation);
32
33 PNAPlatform platform {}
34 GPSDeployment(gpsImplementation.deployment, platform.in);
35 ...
36}

Listing 4. An excerpt of the specification of the PNA system implementation.

V. DISCUSSION

At this point it is important to remark several relevant
aspects related to the PNA system specification. From an
instantiation procedure point-of-view, the deep metamodelling
framework introduces correctness by-construction. Notably,
once a system is defined as shown in Listing 3, it will
be only possible to introduce component implementations as
instances of the defined types (as in Listing 4). Even more

important, the implementations have to obey the constraints
set in the specification: innerAlmanac can only connect
an implementation for the almanac with an implementation of
a GPS (see line 18), while GPSDeployment can only be
instantiated with an implementation for the GPS (see line 34).
The check of such constraints comes “for free” by the system
specification itself, which acts as a metamodel for the system
implementation; on the contrary, the 4-layered metamodelling
techniques would require additional coding and/or correctness
rule definitions to check relationships consistency.

Another relevant aspect to notice is the ease of identifi-
cation of type instances, which allows to set properties by
component implementation, and link each of them to the
appropriate component types. In particular, the two different
implementations for the database are equipped with different
quality attributes and can be included into different composites
accordingly. Moreover, the deep metamodelling framework
naturally supports the extension of attributes, making it possi-
ble to provide additional implementation details for component
implementations (e.g. cost, size, and so forth) depending on
target platform sensitiveness.

From a higher level of abstraction perspective, the deep
metamodelling approach enables the definition of advanced
modelling constraints. Notably, the component model might
define modelling patterns/styles that later on will have to be
preserved by system specifications in order to be successfully
validated. This could include the number of components,
the kind/number of allowed bindings, and so on. It is im-
portant to notice, once again, that similar constraints could
be implemented also in the usual 4-layered metamodelling
architectures. However, such a need would require implicit
checks that in the long run can become time-consuming and
error-prone.

As a drawback, the hierarchical arrangement of CBSs
specification over multiple metamodelling levels could result
as less intuitive and become less usable when dealing with
complex systems. In this respect, it is very important to notice
that the formalisation is intended to be transparent to the
CBS designer, and should be considered as the underlying
infrastructure over which a CBS tool would be implemented.
MetaDepth is a text-based deep metamodelling environment,
and as a consequence this work adopts the same approach.
Nonetheless, other existing deep metamodelling tools have
already demonstrated the implementability of diagrammatic
layers over a base deep metamodelling technology (notably
Melanee [11] and the DPF [12]).

The current description of this formalisation in inherently
top-down, whereas an ideal CBSE approach would promote
a bottom-up development, where useful pre-existing compo-
nents are identified and picked-up from a repository [13]. In
this respect, the component model can be still described as
including a repository, and a valid CBS as being a collection of
component repository elements. In this case, it would be up to
the CBSE tool to create an appropriate instantiation hierarchy
based on the selected components.

VI. RELATED WORKS

A preliminary choice in adopting a modelling language is
deciding whether opting for a general purpose or a domain-
specific language [14]. In general, the former solutions have
embedded extension mechanisms (like the prototyping mech-
anisms for the UML [15]), while the latter demand proper
language extensions through metamodelling activities. With
respect to this paper, the former mechanisms provide more
expressiveness through model instances (by inheritance), while
the latter ones act on the metamodel to provide appropriate
refinements. In both cases, the extensions are limited to the
4-layered metamodelling architecture that does not allow to
introduce multiple instantiation levels.

The general need for better addressing multiple instan-
tiation levels has been recognised in the last decade and
corresponding solutions have been identified under the name
of multilevel (or deep) modelling [10], [12], [16], [17]. In
some cases, multilevel modelling techniques have been even
used to implement domain-specific component-based systems,
notably robots [18] and cloud services [19]. Nonetheless, to
the best of our knowledge this is the first work that proposes a
general formalisation of CBSE concepts, and in particular of
component models, with the aim of enhancing current CBSE
techniques.

The problem of managing multiple instantiation levels in
CBSE has been already tackled by several works, as [7], [20],
[21]. In general these works adopt a 4-layered metamodelling
solution, that is, they typically exploit inheritance or other
recursive relationships to provide support for containmen-
t/refinement modelling [7]. Therefore, they leave open the
instantiation problems described throughout the paper.

VII. CONCLUSION AND FUTURE WORKS

This paper presents the first steps towards the formalisa-
tion of CBSE concepts in a deep metamodelling framework.
Component-based systems have an intrinsic hierarchical struc-
ture and frequently exploit the “type-instance” pattern [3].
These characteristics have been identified as problematic to
be implemented in the usual 4-layered metamodelling archi-
tecture and require better support. In this respect, the formali-
sation illustrated in this work shows promising improvements
and gains with regard to both expressiveness and correctness
checking.

Future investigation directions will include a more extensive
experimentation of deep metamodelling techniques, especially
focusing on the adoption of different component models, in
order to verify the malleability of deep metamodelling in com-
ponent adaptation/reconfiguration scenarios [13]. Moreover,
the formalisation will have to be embedded in a CBSE tool to
better evaluate the usability/scalability aspects related to both
modelling and analysis tasks.

ACKNOWLEDGEMENTS

The author would like to thank Jan Carlson and Severine
Sentilles for the interesting preliminary discussions around the
topic covered in this paper.

REFERENCES

[1] I. Crnkovic, “Component-Based Software Engineering for Embedded
Systems,” in LMO, 2006, p. 13.

[2] I. Crnkovic and M. Larsson, Building Reliable Component-Based Soft-
ware Systems. Artech House, Inc., 2002.

[3] J. D. Lara, E. Guerra, and J. S. Cuadrado, “When and how to use
multilevel modelling,” ACM Trans. Softw. Eng. Methodol., vol. 24, no. 2,
pp. 12:1–12:46, Dec. 2014.

[4] J. Bézivin, “On the Unification Power of Models,” Software and System
Modeling, vol. 4, pp. 171–188, 2005.

[5] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming, 2nd ed. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2002.

[6] I. Crnkovic, S. Sentilles, V. Aneta, and M. R. V. Chaudron, “A classifi-
cation framework for software component models,” IEEE Trans. Softw.
Eng., vol. 37, no. 5, pp. 593–615, Sep. 2011.

[7] T. Lévêque and S. Sentilles, “Refining extra-functional property val-
ues in hierarchical component models,” in Proceedings of the 14th
International ACM Sigsoft Symposium on Component Based Software
Engineering, ser. CBSE ’11. New York, NY, USA: ACM, 2011, pp.
83–92.

[8] Object Management Group (OMG), http://www.omg.org/spec/OCL/2.0/
PDF.

[9] S. Sentilles, A. Vulgarakis, T. Bureš, J. Carlson, and I. Crnković, “A
Component Model for Control-Intensive Distributed Embedded Sys-
tems,” in Proceedings of CBSE. Springer Berlin, 2008, pp. 310–317.

[10] J. de Lara and E. Guerra, “Deep meta-modelling with metadepth,” in
Proceedings of the 48th International Conference on Objects, Models,
Components, Patterns, ser. TOOLS’10. Berlin, Heidelberg: Springer-
Verlag, 2010, pp. 1–20.

[11] C. Atkinson and R. Gerbig, “Melanie: Multi-level modeling and ontol-
ogy engineering environment,” in Proceedings of the 2Nd International
Master Class on Model-Driven Engineering: Modeling Wizards, ser.
MW ’12. New York, NY, USA: ACM, 2012, pp. 7:1–7:2.

[12] Y. Lamo, X. Wang, F. Mantz, W. MacCaull, and A. Rutle, “Dpf work-
bench: A diagrammatic multi-layer domain specific (meta-)modelling
environment,” in Computer and Information Science 2012, ser. Studies
in Computational Intelligence, R. Lee, Ed. Springer Berlin Heidelberg,
2012, vol. 429, pp. 37–52.

[13] S. Becker, H. Koziolek, and R. Reussner, “The palladio component
model for model-driven performance prediction,” J. Syst. Softw., vol. 82,
no. 1, pp. 3–22, Jan. 2009.

[14] T. Kosar, N. Oliveira, M. Mernik, J. M. Pereira Varanda, M. Črepinšek,
D. Da Cruz, and P. Henriques Rangel, “Comparing general-purpose and
domain-specific languages: An empirical study,” Computer Science and
Information Systems, vol. 7, pp. 247–264, 2010.

[15] Object Management Group (OMG), “UML Superstructure Specifi-
cation V2.3,” http://www.omg.org/spec/UML/2.3/Superstructure/PDF/,
2011, [Online. Last access: 11/04/2012].

[16] C. Atkinson, M. Gutheil, and B. Kennel, “A flexible infrastructure for
multilevel language engineering,” IEEE Trans. Softw. Eng., vol. 35, no. 6,
pp. 742–755, Nov. 2009.

[17] B. Neumayr, K. Grün, and M. Schrefl, “Multi-level domain modeling
with m-objects and m-relationships,” in Proceedings of the Sixth Asia-
Pacific Conference on Conceptual Modeling - Volume 96, ser. APCCM
’09. Darlinghurst, Australia, Australia: Australian Computer Society,
Inc., 2009, pp. 107–116.

[18] C. Atkinson, R. Gerbig, K. Markert, M. Zrianina, A. Egurnov, and
F. Kajzar, “Towards a deep, domain specific modeling framework
for robot applications,” in Proceedings of the First Workshop on
Model-Driven Robot Software Engineering (MORSE). CEUR-WS,
2014. [Online]. Available: http://ceur-ws.org/Vol-1319/

[19] A. Rossini, J. de Lara, E. Guerra, and N. Nikolov, “A comparison of two-
level and multi-level modelling for cloud-based applications,” in Mod-
elling Foundations and Applications, ser. Lecture Notes in Computer
Science, G. Taentzer and F. Bordeleau, Eds. Springer International
Publishing, 2015, vol. 9153, pp. 18–32.

[20] J. Odell, “Power types,” JOOP, vol. 7, no. 2, pp. 8–12, 1994.
[21] R. C. Goldstein and V. C. Storey, “Materialization,” IEEE Trans. on

Knowl. and Data Eng., vol. 6, no. 5, pp. 835–842, Oct. 1994.

