
Improved Priority Assignment for Real-Time
Communications in On-Chip Networks ∗

Meng Liu, Matthias Becker, Moris Behnam, Thomas Nolte
Mälardalen University, Västerås, Sweden

Email: {meng.liu, matthias.becker, moris.behnam, thomas.nolte}@mdh.se

ABSTRACT
The Network-on-Chip is the on-chip interconnection medium of
choice for modern massively parallel processors and System-on-
Chip in general. Fixed-priority based preemptive scheduling using
virtual-channels is a solution to support real-time communications
in on-chip networks. However, the different characteristics of the
Network-on-Chip compared to the single processor scheduling
problem prevents the usage of known optimal algorithms (e.g. the
Audsley’s algorithm) to assign priorities to messages. A heuristic
search algorithm based approach (called the HSA) focusing on
the priority assignment for on-chip communications has been
presented in the literature. The HSA is much faster than an
exhaustive search based solution, with a price of missing certain
schedulable cases (i.e. non-optimal). In this paper, we present
two undirected-graph based priority assignment algorithms, the
GESA and the GHSA. In contrast to the previous work, we can
decrease the search space significantly by taking the interference
dependencies of different messages on the network into account.
A number of experiments are generated, in order to evaluate the
proposed algorithms. The results show that the GESA can always
achieve higher schedulability ratios than the HSA, but may require
longer processing time. On the other hand, the GHSA has the
same performance as the HSA regarding the schedulability, but
can significantly improve the efficiency.

1. INTRODUCTION
The Network-on-Chip (NoC) is the preferred interconnection

medium for massively parallel platforms as well as for System-
on-Chip (SoC). In contrast to bus-based interconnection mediums,
the NoC is scalable up to a large number of elements. It connects
multiple Intellectual Property (IP) cores, where each IP core can
provide different functionalities, possibly from different vendors.
In order to function correctly, those IP cores exchange data through
the NoC. Thus the NoC is crucial in order to guarantee correct
functionality of each IP core and the system in general. Addition-
ally, timeliness of the messages (also called flows hereinafter) sent
∗This work has been supported by the Swedish Knowledge Foun-
dation via the research project PREMISE.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RTNS 2015, November 04-06, 2015, Lille, France
c© 2015 ACM. ISBN 978-1-4503-3591-1/15/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2834848.2834867

physical channel

router router

P1

P2

P3

P4

P1

P2

P3

P4

virtual channel

buffer buffer

Figure 1: Virtual channels on the NoC router.

on the NoC becomes more and more important if such platforms
are intended for real-time applications. Here each message needs
to be delivered within a certain deadline.

The NoC itself consists of different architectural elements [1].
Routers are used to route the messages through the network, and
unidirectional channels are used to connect the routers. While dif-
ferent network topologies are possible, the 2-dimensional mesh-
based NoC is the most common [2, 3]. Here the IP cores are ar-
ranged on a 2-dimensional grid. Each IP core connects to a router
and the router in turn connects to its neighbors in the cardinal di-
rections.

Different NoC designs exist for different requirements. In this
work we focus on wormhole switched NoC with virtual channels.
In wormhole switched networks [4], a message is divided into so
called flits, where a flit represents the data size which can be trans-
mitted between two routers during one cycle. The header flit con-
tains most of the routing information such as the path, the flit count,
etc.. Once the header flit proceeds from one router to the next, the
channel is reserved until the last flit passes, hence the name worm-
hole routing.

On the router, each channel connects to a buffer, see Figure 1.
In order to reduce the footprint on the die and to limit the costs,
those buffers are generally small and can not hold complete mes-
sages. In other words, a message can span over multiple routers
during transmission, giving the impression of a worm traversing
through the network. Once a channel is reserved by a message,
other messages, competing for the same channel, are blocked. This
can lead to long blocking times. Virtual-Channels (VC) [5] have
been proposed to overcome this challenge. A VC is an additional
buffer connected to the channel. Messages can now use separate
buffers and, while one message is blocked, a second message with
the same path can still proceed, since the channel is idle and the
buffers are not shared. The dotted line in Figure 1 depicts such
a virtual channel. However, the channel itself is still an exclusive
resource. Switching between virtual-channels can be achieved in
different ways (e.g. round-robin, fixed-priority based, etc.). In this
paper, we focus on fixed priority based arbitration. The buffers are
thus related to different priority levels and each message is assigned

a priority respective to the used buffer. If two messages simultane-
ously arrive at a router, the message which uses the higher prior-
ity is allowed to transmit. Only if the message becomes blocked
or transmits all its flits through the link, a message with a lower
priority gets access to the channel. On the same way a flow can
be preempted, if a higher priority flow arrives at a router compet-
ing for the same channel. The priority assignment of the messages
therefore becomes crucial for the schedulability of flow sets. Even
though one channel has similar characteristics like single proces-
sor scheduling, the complete network cannot directly be related to
the results from scheduling theory. In specific, Audsley’s priority
assignment algorithm is not optimal for NoC [6, 7].
The contributions presented in this paper are:

1. We present two algorithms (called the GESA and the GHSA)
for priority assignment of NoC messages. The proposed al-
gorithms use an undirected-graph based search algorithm,
which can significantly improve the efficiency of priority as-
signment process.

2. We identify, with illustrative examples, the limitations of the
current state-of-the-art alternative priority assignment algo-
rithm for wormhole switched NoC, called the HSA.

3. We perform an extensive evaluation of the priority assign-
ment algorithms regarding their performance in terms of
schedulability and computational complexity. The results
of this evaluation clearly show that the proposed algorithm
GHSA can be much faster than the HSA while achieving
the same schedulability ratio. On other hand, the GESA,
which can achieve higher schedulability ratios compared to
the HSA, is slower than the HSA but much faster than an
exhaustive search solution.

The remainder of this paper is organized as follows. In Sec-
tion 2 we present the related work. The system model assumed in
this paper is shown in Section 3. In Section 4 we revisit the ex-
isting priority assignment algorithm for on-chip communications,
along with several motivating examples. Section 5 presents the new
undirected-graph based priority assignment algorithm. The evalu-
ation of the proposed algorithms is presented in Section 6. Finally,
in Section 7 we conclude the paper.

2. RELATED WORK
The NoC is implemented as interconnection medium on several

massively parallel processors in order to cope with the increased
message volume [8, 2, 3]. As many platforms target the embedded
industry, an increased interest lies on the real-time requirements for
messages on NoCs [9, 10].

Wormhole switching/routing is not a new technology [4]. Re-
cently it becomes more and more popular for on-chip networks due
to its low buffer requirements and high scalability.

Wormhole switched networks with virtual-channels are first pre-
sented by Dally in [5]. Later Song et al. examined such networks
and their applicability for real-time traffic by introducing preemp-
tion to the fixed-priority flows [11].

Priority assignment for single processor systems is a widely stud-
ied problem. In [12], Liu and Layland presented the Rate Mono-
tonic (RM) priority assignment, and Leung and Whitehead later
presented the Deadline Monotonic (DM) priority assignment to fit
more general task models [13]. Audsley’s optimal priority assign-
ment algorithm [6, 14] guarantees to find a priority assignment in a
polynomial number of schedulability tests, if one exists.

In the context of fixed-priority preemptive NoC, Mutka was the
first to develop priority assignment algorithms [15]. Lu et al. [16]
use contention trees to separate directly and indirectly interfering
flows to decide the feasibility of the message set on a NoC. The
major work on priority assignment for fixed-priority preemptive
NoC was done by Shi and Burns in [7]. They present a branch and
bound based algorithm (HSA) to assign priorities to flows. In order
to decrease the search space, they introduce heuristic functions to
guide the selection of flows. As mentioned in [17], this approach
is heuristic but not optimal in the sense that it cannot guarantee to
find a valid priority assignment if one exists.

The drawback of most of the works is the assumption that an
exclusive priority, i.e. VC, is needed for each message. This means
that each router requires enough VCs to accommodate all priority
levels. In [18] Nicolić et al. show that this assumption does not
hold, and they present an algorithm to reduce the number of needed
virtual channels without affecting the schedulability of the systems.
Shi and Burns also extend their work [7] to support NoCs with
limited virtual-channels by using a priority sharing policy [19].

While fixed-priority preemptive scheduling is well researched,
EDF arbitration for wormhole switched NoC was proposed as
well [20]. When flows only traverse single hops, EDF is opti-
mal as for single processor scheduling and dominates the other
approaches. Similar to fixed-priority preemptive scheduling, the
single processor results do not hold anymore when longer message
paths are considered. In their experiments it is shown that for flows
with multi-hop paths, the HSA assignment by Shi and Burns [7]
always performs better.

3. SYSTEM MODEL
The on-chip network considered in this work uses the wormhole-

switching technique. The network contains a set of n periodic or
sporadic real-time message flows F = { f1, f2, ... fn} (n ∈ N+).
Each flow fi can be characterized by (Ci,Ti,Di,Ri). Ci represents
the basic transmission latency of fi which is the transmission time
without any blocking or interference. Ti denotes the minimum
inter-arrival time between two successive instances for sporadic
flows, or the period for periodic flows. Di is the relative deadline
of fi. A flow is schedulable only if its transmission can meet the
deadline (i.e. the response time is no larger than the relative dead-
line). In this paper, we assume that all the flows have constrained
deadlines (i.e. Di ≤ Ti). Each flow has a fixed transmission route
which is denoted as Ri. Moreover, the NoC uses a priority-based
preemptive scheduling. We assume that each flow has a unique pri-
ority, and a single virtual-channel is assigned to each priority level.
In other words, the NoC considered in this work does not use any
priority sharing policy.

4. RECAPITULATE THE HEURISTICS-
BASED PRIORITY ASSIGNMENT AL-
GORITHM

4.1 Lower and Upper Bound Analysis
During the priority assignment, two functions are used to assess

the degree of schedulability for a partial priority assignment, those
functions compute the lower and upper bounds of the worst-case
response times. This notion is introduced in [7]. There are two
types of interference which can occur on a NoC, direct and indirect
interference. Assume that fi and f j share at least one link, and
f j has higher priority than fi. The transmission of f j can cause
direct interference to fi. On the other hand, assume that fi and f j
do not share any links, they can still affect each other, if flow fm

shares links with both fi and f j. Assume that f j has higher priority
than fm, and fm has higher priority than fi. Then f j can cause
direct interference to fm, which can decrease the minimum inter-
arrival times between successive packets of fm. As a result, fi can
experience extra delay due to the transmission of f j. In this case, f j
causes indirect interference to fi. The lower bound only considers
the direct interfering flows to compute the worst case traversal time
RLOW

i of a flow fi. For the upper bound, RUPP
i , it is thus assumed

that all unassigned flows can possibly interfere with fi (i.e. both
direct and indirect interferences are taken into account).

The computed upper-bounds are needed during the assignment
of flows to priority levels. When we try to assign a flow fi to a pri-
ority level we have a number of flows which are already assigned
with priorities and a number of unassigned flows. For the lower
bound, it is assumed that all unassigned flows which directly inter-
fere with fi are in the set SD

i , and indirect interference is ignored in
this case. Equation 1 can then be used to compute the lower bound.

RLOW
i = ∑

∀ f j∈SD
i

d
RLOW

i
Tj
e ·C j +Ci (1)

where Ti represents the period of fi, and Ci and C j denote the basic
transmission latency of fi and f j , respectively. If a flow fi can meet
its deadline according to the lower bound (i.e. RLOW

i ≤ Di), fi is
potentially schedulable with the current priority.

The computation for the upper bound is shown in Equation 2.
In addition to the directly interfering flows, all unassigned flows
which can cause indirect interference to fi are also considered. As-
sume that fi gets indirect interference through f j. The indirect in-
terference is captured by an extra jitter (called interference jitter) of
f j, which can have a worst case of D j−C j.

RUPP
i = ∑

∀ f j∈SD
i

d
RUPP

i +D j−C j

Tj
e ·C j +Ci (2)

If a flow fi can meet its deadline according to the upper bound (i.e.
RUPP

i ≤ Di), fi is guaranteed to be schedulable with the current
priority.

4.2 The Heuristic Search Algorithm
The response time of a NoC flow is dependent on the flows with

higher priorities as well as their relative priority ordering [7]. As a
result, the well-known optimal priority assignment algorithms for
tasks [6][14] cannot be directly applied on NoC flows. Therefore,
Shi et al. propose a heuristic priority assignment algorithm for NoC
flows [7] (called the Heuristic Search Algorithm (HSA)).

The HSA starts from the lowest priority level. At each priority
level, the algorithm uses the UpperBoundAnalysis and the Lower-
BoundAnalysis to check the unassigned flows. If a flow fi can pass
the UpperBoundAnalysis at priority level Pk, fi is guaranteed to be
schedulable with Pk. If fi can pass the LowerBoundAnalysis at pri-
ority level Pk, fi is potential but not guaranteed to be schedulable
with Pk. At a certain priority level Pk, the HSA first checks the
unassigned flows using the UpperBoundAnalysis. If there exists a
flow fi which can pass the test, this flow will be directly assigned
to the current priority level. Then the algorithm stops checking the
remaining unassigned flows, and continues with the next priority
level1 (i.e. Pk+1). However, if no flow can pass the UpperBound-
Analysis at Pk, the algorithm will check the unassigned flows using
the LowerBoundAnalysis. All the flows which can pass the test are
potentially schedulable, and they will be added into a candidate list

1The priority level increases as the subscript goes up (i.e. P1 repre-
sents the lowest priority level).

(denoted by CLk). The algorithm uses a heuristic function to select
a suitable candidate, and assigns the selected flow to Pk. Then the
HSA continues with Pk+1. The above process is repeated until all
the flows are assigned with priorities. Then a general schedulability
test is applied, in order to check if the current priority assignments
are correct. If the test fails, the HSA starts a backtracking process.
The algorithm backtracks the priority levels which have multiple
candidates (i.e. there are more than one items in the candidate list).
When HSA backtracks to a certain priority Pk, all the flows which
are assigned to priorities higher than or equal to Pk will be unas-
signed. Then the algorithm assigns another candidate from CLk to
Pk, and reassigns the remaining unassigned flows using the same
procedures as before. If all the priority levels with multiple candi-
dates are checked and the network still fails in the schedulability
test, the HSA returns a result of unschedulable.

In [7], it is claimed that if a schedulable priority order for a set
of flows exists, the HSA is assured to find it, because the algorithm
searches all the possible priority orders. However, this is not true,
since the current HSA does miss certain cases. On the other hand,
even though the HSA uses heuristic functions and a branch pruning
policy to reduce the search space, the algorithm is still not very
efficient. The efficiency of the algorithm can be further improved
by taking the relations between flows into account. In the following
subsections, we present examples to illustrate the above problems
of the HSA.

4.3 Missing Cases of The HSA
First, we use a simple example to show that the HSA [7] is not

optimal, in the sense that the algorithm may miss certain schedula-
ble cases. In other words, the HSA cannot assure to find a schedu-
lable priority order of a set of NoC flows if it exists.

Node-A Node-B Node-C

𝑓1

𝑓3

𝑓2

𝑓𝑘 : {𝐶𝑘, 𝑇𝑘 =𝐷𝑘, ℜ𝑘 }
𝑓1 : {5, 10, (A->C) }
𝑓2 : {3, 10, (B->C) }
𝑓3 : {4, 10, (A->B) }

Figure 2: An example showing the missing schedulable cases of
the HSA.

Example 1. Assume that there are three flows in an on-chip net-
work, whose parameters are shown in Figure 2. Now we use the
existing HSA to assign priorities to this set of flows.

P1:
RUPP

1 = ∞ > D1
RUPP

2 = 13 > D2
RUPP

3 = 14 > D3
Since no flow can pass the UpperBoundAnalysis, the HSA
will apply the LowerBoundAnalysis.
RLOW

1 = ∞ > D1
RLOW

2 = 8 < D2
RLOW

3 = 9 < D3
f2 and f3 can be added into the candidate list of priority level
1 (i.e. CL1 = { f2, f3}). Then the algorithm assigns priority
P1 to f2, and increases the priority level.

P2:
RUPP

1 = 7 < D1
Since f1 can pass the UpperBoundAnalysis, the algorithm
directly assigns P2 to f1.

P3:
The algorithm directly assigns P3 to f3.

Schedulability Test:
R1 = 7 < D1
R2 = 13 > D2
R3 = 4 < D3
Since f2 misses its deadline, the algorithm needs to do the
backtracking process.

Backtracking:
The HSA checks the candidate list at each priority level, and
tries to reassign the priority to other candidates. In this ex-
ample, only priority level 1 has other candidates (i.e. f3).
Therefore, the algorithm will unassign f3, f1 and f2 step by
step, and then reassign P1 to f3. Similar to the earlier steps,
the algorithm will assign P2 to f1 and P3 to f2.

Schedulability Test:
R1 = 8 < D1
R2 = 3 < D2
R3 = 14 > D3
f3 misses its deadline in this case. Since there is no other
candidate at any priority level now, the algorithm will return
a result of unschedulable.

However, this result is not correct. The network can be schedulable
if we assign P1 to f2, P2 to f3 and P3 to f1 (or switch f2 and f3).

The main reason of missing schedulable cases is that the HSA
only constructs candidate lists of flows which cannot pass the Up-
perBoundAnalysis. At a certain priority level Pk, if a flow is found
to be able to pass the UpperBoundAnalysis (e.g. f1 at priority level
2 in Example 1), the algorithm will continue to check the next pri-
ority level Pk+1 without creating a candidate list of Pk. As a result,
during the backtracking process of the HSA, the priority level of
Pk will be skipped because there is no item in the candidate list
(e.g. there is no other candidate at priority level 2 in Example 1).
However, if we switch the priorities between f1 and f3 during the
backtracking process in Example 1, a schedulable priority order can
be found. In summary, the incomplete creation of the candidate list
in the HSA results in missing of schedulable cases.

In fact, the backtracking process aims to find a schedulable prior-
ity ordering by checking other possible assignments at each priority
level. Therefore, the candidate list at a certain priority level of Pk
should contain all the flows which are potentially schedulable at
Pk (i.e. all the flows which can pass the UpperBoundAnalysis and
LowerBoundAnalysis need to be taken into account).

4.4 Inefficient Backtracking under The HSA
In this section, we use an example to show that the HSA lacks

of efficiency. In other words, the HSA contains unnecessary oper-
ations which can be avoided directly.

Example 2. As shown in Figure 3, assume that there are 7 flows in
the network. We apply HSA on this set of flows.

P1: P1 is assigned to f1, since f1 can pass the UpperBoundAnaly-
sis.

P2: No flow can pass the UpperBoundAnalysis. After applying
the LowerBoundAnalysis, a candidate list is created CL2 =
{ f2, f4, f7}, then P2 is assigned to f2.

P3: P3 is assigned to f3, because f3 can pass the UpperBound-
Analysis.

Node
A

Node
B

Node
C

Node
D

Node
E

Node
F

Node
G

𝑓6
𝑓3

𝑓2
𝑓1

𝑓4
𝑓5
𝑓7

𝑓𝑘 : {𝐶𝑘, 𝑇𝑘 =𝐷𝑘, ℜ𝑘 } 𝑓1 : {1, 100, (C->E) }
𝑓2 : {5, 10, (B->D) } 𝑓3 : {3, 10, (A->C) }
𝑓4 : {4, 10, (D->F) } 𝑓5 : {4, 10, (E->G) }
𝑓6 : {5, 10, (A->B) } 𝑓7 : {5, 10, (F->G) }

Figure 3: An example showing the unnecessary operations in
the HSA.

P4: P4 is assigned to f6, because f6 can pass the UpperBound-
Analysis.

P5: No flow can pass the UpperBoundAnalysis. A candidate list is
created CL5 = { f4, f7}, then P5 is assigned to f4.

P6. P6 is assigned to f7, because f7 can pass the UpperBound-
Analysis.

P7. P7 is assigned to f5.

Schedulability Test:
After applying the schedulability test, R2 = 11 > D2.

Backtracking:
HSA backtracks from the highest priority. The algorithm will
unassign f5 and f7, and goes back to priority level of P5
which has a nonempty candidate list. Then the algorithm will
reassign P5 to another candidate f7, and reassign P6 and P7
as well.

However, the reassignment of P4 to f7 is unnecessary, because this
reassignment cannot affect the response time of f2 at all. As shown
in Figure 3, f4, f5 and f7 do not share any links with f2, so they
cannot cause direct interference to f2. Since f1 has the lowest pri-
ority, f4, f5 and f7 will not cause any indirect interference to f2
either. As a result, no matter how we change the priority orders of
f4, f5 and f7, R2 will not be affected. Therefore, the backtracking
process of the HSA includes unnecessary operations, which makes
the algorithm less efficient.

The problem is mainly due to that the HSA does not take the ac-
tual relations between flows into account. Since after the schedu-
lability test, we already know which flow misses its deadline, the
algorithm can skip the operations which do not reduce the response
time of the deadline-missed flow. In summary, the pruning branch
policy used in the HSA can be further improved by taking the rela-
tions between involved flows into account.

5. IMPROVED PRIORITY ASSIGNMENT
OF NOC FLOWS

In this section, we present our undirected-graph based search al-
gorithms for priority assignment of NoC flows (called GESA and
GHSA). The GESA is basically an exhaustive search based solution
where we use our undirected-graph based algorithm to decrease
the search space by safely pruning branches. Using the GESA,
the cases that the HSA misses can be covered. However, the com-
plexity of GESA can be larger than the HSA. Alternatively, in the
GHSA, we add the undirected-graph based search algorithm on top
of the HSA, in order to further safely decrease the search space.
Using the GHSA may not improve the schedulability compared to
the HSA, but can improve the efficiency. The main procedure of the

GESA and the GHSA are quite similar. The only difference is the
creation of the candidate list which is also the main difference be-
tween the HSA and a complete exhaustive search (called the ESA).
We will present more details later in this section.

In the beginning, we construct an undirected-dependency-graph
including all the related flows. A dependency-graph consists of a
number of vertices which are connected by undirected edges (e.g.
Figure 4). Each vertex represents a NoC flow, and the edges show
the relations between flows. Each pair of connected flows share at
least one link in the network. The search algorithm used in our ap-
proach is based on such constructed dependency-graphs. For exam-
ple, the dependency-graph of the flow set presented in Example 2
can be constructed as Figure 4.

𝑓2𝑓5

𝑓1

𝑓4

𝑓6𝑓7

𝑓3

Figure 4: The dependency-graph of the flows described in Ex-
ample 2.

All the flows are initially marked as unassigned. Once a flow is
assigned to a certain priority level, this flow will be marked as as-
signed. This flow and its connected links will also be removed from
the original dependency-graph, and a set of independent subgraphs
can then be created.

Theorem 1. At a certain priority level P, if we assign a flow fi to
P, the sub-dependency-graphs (denoted by Gi = {G1

i ,G
2
i , ...,G

n
i })

created by removing fi and fi-connected links from the original
dependency-graph, are independent from each other.

Proof. Once we assign fi to a certain priority level, the remaining
flows are still marked as unassigned. Since we always assign pri-
orities in an ascending order, the remaining flows will be assigned
with higher priorities than fi. As a result, fi cannot cause any direct
interference to the remaining unassigned flows.

Assume that fm is a flow in one of the created sub-dependency-
graphs Gp

i (p ∈ [1,n]). No matter how we assign priorities of flows
in another sub-dependency-graph Gq

i (q ∈ [1,n]), the flows in Gq
i

will not cause any direct interference to fm, because these flows do
not share any link with fm. Moreover, these flows in Gq

i cannot
cause indirect interference to fm either, since these flows are only
related to fm through fi while fi has a lower priority than fm. There-
fore, the priority assignment of flows in Gq

i does not affect fm. The
above proof can be applied on any flow in any sub-dependency-
graph in the same manner. This proves that the priority assignment
of flows within one sub-dependency-graph is independent from any
other sub-dependency-graphs.

Definition 1. When the algorithm assigns a flow fi to the current
priority level, fi is removed from the dependency-graph and a set of
children subgraphs Gi are created. fi is called the parent of Gi and
all the flows in Gi. The subgraphs in Gi are called sibling-graphs
of each other.

Theorem 1 implies that when we assign priorities of flows in
one dependency-graph, the flows from other sibling-graphs can be
ignored. For example, if we assign f1 in Example 2 to a certain
priority, f1 will be removed from the current dependency-graph (as
shown in Figure 5). Accordingly, two subgraphs G1

1 and G2
1 whose

parent is f1 are created. G1
1 and G2

1 are sibling-graphs, and they can
be processed independently.

𝑓2𝑓5

𝑓1

𝑓4

𝑓6𝑓7

𝑓3
𝑓2𝑓5 𝑓4

𝑓6𝑓7

𝑓3

𝐺1
1 𝐺1

2

Figure 5: An example of independent subgraphs.

Similar to the HSA, our approach also starts from the lowest pri-
ority level. At each priority level, the algorithm needs to create a
candidate list, and tries to select a suitable candidate to be assigned.
As mentioned earlier, the GESA and the GHSA apply different cre-
ation processes of candidate lists.

In GESA: At each priority level, the algorithm (i.e. Alg. 1) first
checks each flow in the current dependency-graph using the Up-
perBoundAnalysis2. If a flow can pass the UpperBoundAnalysis,
this flow will be added into a candidate-list of this priority level
CLU

P (line 12-13, Alg. 1). For the flows which cannot pass the
UpperBoundAnalysis, the algorithm checks them using the Lower-
BoundAnalysis. If a flow can pass the LowerBoundAnalysis, it
will be added into another candidate-list of this priority level CLL

P
(line 14-15, Alg. 1). The GESA checks all the flows in the current
dependency-graph at each priority level (line 11, Alg. 1).

In GHSA: At each priority level, the algorithm checks each
flow in the current dependency-graph using the UpperBoundAnal-
ysis. Once a flow passes the UpperBoundAnalysis, this flow will
be added into the candidate list CLU

P ((line 20-21). The algorithm
then stops checking other flows even if they may also potentially
schedulable with the current priority level. In other words, the can-
didate list CLU

P only contains one flow which is the first flow pass-
ing the UpperBoundAnalysis. This process is the same as used in
the HSA. On the other hand, if no flow can pass the UpperBound-
Analysis, the algorithm starts to check all the unassigned flows in
the current dependency-graph using the LowerBoundAnalysis. The
same as the GESA, all the flows which can pass the LowerBoun-
dAnalysis will be added into the candidate list CLL

P ((line 27-28).

Once the candidate-lists (i.e. CLU
P and CLL

P) are created at a cer-
tain priority level P, a suitable candidate will be selected to be as-
signed to P. If CLU

P is not empty (i.e. at least one flow can pass the
UpperBoundAnalysis), the algorithm will select a candidate from
CLU

P (line 34-35, Alg. 1). A flow which can pass the UpperBound-
Analysis is guaranteed to be schedulable, no matter how the flows
with higher priorities are assigned. While choosing a suitable can-
didate (line 1-5, Alg. 2), we first select the flow with the most con-
nections. This is because removing such a flow from the current
dependency-graph can create more subgraphs. As implied from
Theorem 1, sibling subgraphs are independent from each other.
Therefore, by creating more subgraphs, the search space of the al-
gorithm can be reduced. If several flows have the most connections,
a candidate will be selected based on a heuristic function. In [7], the
authors present a number of heuristic functions, and an experiment-
based comparison is also provided. Once the best candidate fi is
selected, fi will be removed from the candidate-list. fi is then as-

2The UpperBoundAnalysis can be replaced by any schedulability
tests where the effects of indirect interference are deterministically
bounded in advance, and the LowerBoundAnalysis can be replaced
by any schedulability tests where the effects of indirect interference
are ignored. In order to make fair comparison with the HSA, we use
the analysis presented in Section 4.1.

Alg. 1 GHSA and GESA
1: function main
2: P← 1;Pp← 1;backtracking← False
3: current_graph←Groot
4: while True do
5: while P≤ n do
6: if backtracking = False then
7: if P is assigned then
8: break
9: end if

10: if doing an exhaustive search (i.e. f or GESA) then
11: for fi ∈ current_graph do
12: if UpperBoundAnalysis(fi) then
13: add fi into CLU

P
14: else if LowerBoundAnalysis(fi) then
15: add fi into CLL

P
16: end if
17: end for
18: else if doing a heuristic search (i.e. f or GHSA) then
19: for fi ∈ current_graph do
20: if UpperBoundAnalysis(fi) then
21: add fi into CLU

P
22: break
23: end if
24: end for
25: if CLU

P =∅ then
26: for fi ∈ current_graph do
27: if LowerBoundAnalysis(fi) then
28: add fi into CLL

P
29: end if
30: end for
31: end if
32: end if
33: end if
34: if CLU

P 6=∅ then
35: fp←SelectBestCandidate(CLU

P)
36: else if CLL

P 6=∅ then
37: fp←SelectBestCandidate(CLL

P)
38: else
39: P←Backtrack(P,Pp)
40: unassign priority level P
41: backtracking← True
42: continue
43: end if
44: assign fp to P
45: backtracking← False
46: fp.inter f erenceRegion← size o f current_graph−1
47: current_graph←CreateSubgraph(fp,current_graph)
48: P++
49: end while
50: if SchedulabilityTest() then
51: return SUCCESS
52: else
53: fm← get the unschedulable f low
54: Pp← get the priority o f fm
55: P← P+ fm.inter f erenceRegion
56: backtracking← True
57: end if
58: end while
59: end function

signed to the current priority level, and marked as assigned. At the
same time, fi will also be removed from the current dependency-
graph (i.e. all the related connections are removed as well), and a
number of sub-graphs whose parent is fi are created accordingly
(line 9-10, Alg. 2). Then the algorithm will try to assign the next
priority level to a flow in one of the subgraphs (line 13-16, Alg. 2).
However, if fi is the last flow in the current dependency-graph,
no subgraph can be created. Then the algorithm will try to assign
the next priority level to a flow in one of the sibling subgraphs of
the current dependency-graph (line 11-12, Alg. 2). For example,
in Figure 5, after assigning f1, the algorithm will assign the next
priority level to a flow in one of the subgraphs. Assume that the
algorithm assigns flows in G1

1 first. After assigning priorities to f4,
f5 and f7, the algorithm then starts to assign priorities to the flows
in G2

1.
On the other hand, if CLU

P is empty, the algorithm tries to find
a candidate from CLL

P (line 36-37, Alg. 1). A flow in CLL
P is po-

tentially schedulable, since it can pass the LowerBoundAnalysis.
However, the actual schedulability depends on the order of flows
with higher priorities. The candidate selection and assignment pro-
cesses are the same as processing flows in CLU

P .
Once a flow is assigned to the current priority P, the algorithm

will move to the next priority level P + 1. However, if both
candidate-lists of priority P are empty, we can stop the current pri-
ority assignment process, because no flow is able to be schedulable
at this priority level. In this case, we need to apply a backtrack
process, which means that we need to modify the priority assign-
ment of the assigned flows. The algorithm backtracks from the
closest lower priority level P− 1 (line 39, Alg. 1), and tries to
assign another candidate. If a candidate is found, the algorithm
continues the assignment process as discussed above. However,
if no candidate can be found at P− 1, the algorithm will try to
reassign priority P− 2. When the backtrack process reaches the
lowest priority level, and no available candidates can be found, the
algorithm returns UNSCHEDULABLE which means that no valid
priority assignment can be found (line 21-22, Alg. 2).

The above assignment process is repeated until all the flows have
been assigned. Then a general schedulability test is applied in order
to check if all the flows can meet their deadlines (line 50, Alg.1).
If all the flows pass the test, the algorithm terminates and a valid
priority assignment has been found (line 51, Alg. 1). Otherwise,
we need to apply the backtrack process.

Theorem 2. Assume that flow fi misses its deadline after the gen-
eral schedulability test. If a flow f j with higher priority than fi
does not belong to any subgraphs whose parent is fi, changing the
priority of f j cannot affect the response time of fi at all.

Proof.
Case 1- f j and fi are in the same dependency-graph
In this case, f j and fi must be related through other flows. Other-
wise, f j can directly interfere fi, which means that f j must be in
one of the children subgraphs of fi. This contradicts to the condi-
tion in the theorem.

Assume that f j and fi are related through fp. If fp has higher
priority than fi, f j must be in one of the children subgraphs of fi
which conflicts with the condition as well. Therefore, fp can only
have lower priority than fi. In this case, f j can cause neither direct
nor indirect interference to fi, which means that f j cannot affect
the response time of fi.
Case 2- f j and fi are not in the same dependency-graph
Theorem 1 has already proved that if two flows are not in the same
dependency-graph, they can be processed independently.

Alg. 2 Utilized Functions
1: function SelectBestCandidate(CL)
2: F ← f ind f lows with most connections
3: select f ∈ F based on a heuristic f unction
4: remove f f rom CL
5: return f
6: end function
7:
8: function CreateSubgraph(fp,current_graph)
9: remove fi f rom current_graph

10: G ← identi f y remaining independent subgraphs
11: if G =∅ then
12: current_graph← the last graph in unassigned_graphs
13: else
14: current_graph← select the largest graph f rom G
15: unassigned_graphs← add remaining graphs f rom G
16: end if
17: return currentgraph
18: end function
19:
20: function Backtrack(P,Pp)
21: if P−1 < 1 then
22: return UNSCHEDULABLE
23: else if P == Pp then
24: P← FindParent(P)
25: else
26: P← P−1
27: end if
28: return P
29: end function
30:
31: function FindParent(P)
32: tmpP = P
33: while tmpP > 0 do
34: fp← get f low at tmpP
35: if fp.inter f erenceRegion+ tmpP≥ P then
36: return tmpP
37: else
38: tmpP = tmpP−1
39: end if
40: end while
41: end function

According to Theorem 2, given a certain flow fi which misses
its deadline, the algorithm first needs to check the order of higher
priority flows which only belong to the subgraphs whose parent is
fi (line 53-55, Alg.1). The same as the previous backtrack process,
at each priority level, the algorithm tries to reassign to other candi-
dates. If there is no available candidate at a certain priority level,
the algorithm will backtrack to a lower priority level. The process
is repeated until a valid priority level is found, or the algorithm
reaches the priority level of fi. After checking other candidates at
the priority level of fi, if no valid priority order is found, the algo-
rithm will directly continue to check the priority level of the parent
of fi (line 23-24, Alg.2). This is because the priority levels between
fi and its parent must belong to sibling-graphs of fi. According to
Theorem 1, the flows from other sibling-graphs of fi cannot affect
the response time of fi. Therefore, the priority levels between fi
and its parent can be skipped. An example is given in Figure 6.
First, assume that all the priorities have been assigned to the given
flows, the schedulability test shows that f4 misses its deadline. As
shown in Figure 6-a, the backtrack process can skip the priority

𝑓2

𝑓5

𝑓1

𝑓4

𝑓6

𝑓7

𝑓3

𝑃1

𝑃2

𝑃3

𝑃4

𝑃5

𝑃6

𝑃7

𝐺1
2

𝐺1
1

Can be skipped!

Need to be checked!

𝑓2

𝑓5

𝑓1

𝑓4

𝑓6

𝑓7

𝑓3

𝑃1

𝑃2

𝑃3

𝑃4

𝑃5

𝑃6

𝑃7

𝐺1
2

𝐺1
1

Can be skipped!

Need to be checked!

Need to be checked! Need to be checked!

a. b.

Figure 6: Examples of the backtrack process.

levels of f2, f3 and f6, because they belong to the sibling-graph of
G1

1, which means that they cannot affect the response time of f4.
On the other hand, assume that the schedulability test shows that
f2 misses its deadline. As shown in Figure 6-b, the backtrack pro-
cess first needs to check the priority levels in G2

1, and then directly
move to the priority level of the parent of f2. In other words, the
priority levels between f2 and its parent f1 (i.e. P2, P3 and P4) can
be skipped.

If no valid priority order can be found after checking the priority
level of the parent of fi, the algorithm needs to check all the lower
priority levels, until a suitable priority order is found or the algo-
rithm reaches the lowest priority level which means that no valid
priority order exists.

6. EVALUATION
In order to evaluate the performance of our undirected-graph

based search algorithm for priority assignment of NoC flows, we
have generated a number of experiments. The experiments focus
on the schedulability ratio using our algorithm as well as on the
required number of operations3. We compare our algorithms (i.e.
GESA and GHSA) with the HSA [7] and the exhaustive search so-
lution (denoted as the ESA).

In these experiments, the system uses a 4×4 2D-meshed on-chip
network. The flows are transmitted using the XY-routing mecha-
nism, where the sources and destinations are randomly generated.
The number of flows is generated from (10, 20, 30), and the average
traffic utilization per link is controlled within the range of [0.2,1].
The basic transmission time of each flow is randomly generated
from [1, 1000] time unit. The utilization of each flow is randomly
generated using the UUnifast-Discard algorithm [21]. Given the
basic transmission time Ci and the utilization Ui of each flow, the
period is computed as Ci/Ui.

6.1 Experiment Result: Schedulability Ratio
In this section, we present the evaluation results of our algo-

rithms regarding the schedulability ratio for different link utiliza-
tions, Ulink, in the NoC. The experiments are categorized into three
groups according to the number of flows in the whole network.

Table 1 shows the experimental results with the setting of 10
flows. The first half of the table presents the results of all the col-
lected samples (more than 4000 samples). The results show that
3An operation refers to a unique potential priority order, which
should to be checked using a complete schedulability test.

the high and low utilization range yields to similar performance for
all four algorithms. Thus, we highlight the intermediate utilization
range in smaller granularity in the second halve of Table 1. Here
we further show the explicit difference between the evaluated algo-
rithms. It can be observed that, as the average utilization per link
goes up, the schedulability ratios of all the the algorithms decrease.
The GHSA and the HSA always achieve the same schedulability
ratio, while the GESA has the same performance as the ESA. In
general, the GESA and the ESA always achieve higher schedula-
bility ratios than the GHSA and the HSA. When the average utiliza-
tion per link is (0.9-1.0), the GESA and the ESA are around 20%4

better than GHSA and the HSA.

Table 1: Results regarding the schedulability ratio with the set-
ting of 10 flows. The first column represents the average uti-
lization per link.

Ulink GHSA HSA GESA ESA GESA
v.s.HSA

GESA
v.s.ESA

0.2-0.5 99.7% 99.7% 99.7 % 99.7% 0 0

0.5-0.8 61.65% 61.65% 62.28% 62.28% 1.03% 0

0.8-1 6.28% 6.28% 7.16% 7.16% 14.06% 0

0.5-0.6 93.89% 93.89% 93.89% 93.89% 0 0

0.6-0.7 60% 60% 60.65% 60.65% 1.08% 0

0.7-0.8 36.03% 36.03% 37.18% 37.18% 3.21% 0

0.8-0.9 11.51% 11.51% 13.01% 13.01% 12.96% 0

0.9-1 2.61% 2.61% 3.14% 3.14% 20.31% 0

In the second group of the experiments, the network contains 20
flows. As shown in Table 2, the GHSA and the HSA still have
the same results, but the improvement of the GESA becomes more
obvious. When the average utilization per link goes up from 0.6
to 0.9, the improvement (GESA v.s. HSA) increases from 6.97%
to 21.84%. Moreover, the GESA also performs slightly better (i.e.
around 1%) than the ESA. This is mainly because we set an upper-
bound (which is 1000) of the number of operations for the evalu-
ated algorithms. In other words, when the algorithm already fin-
ishes 1000 operations, it will terminate and return a result of UN-
SCHEDULABLE. This upper-bound is randomly selected which is
just used to limit the time cost of the experiments, since the GESA
and the ESA may take long processing time for certain cases. Theo-
retically, if we do not constrain the number of operations, the GESA
and the ESA will achieve the same schedulability ratio. According
to the results, the GESA can achieve higher schedulability ratio
compared to the ESA, which means that our algorithm can find
valid priority orders faster than the ESA.

In the third group of experiments, the total number of flows is 30.
As shown in Table 3, the GESA still performs better than the GHSA
and the HSA. However, the improvements are not as obvious as the
other two groups of experiments. The largest observed improve-
ment is 6.52%. This is because when the total number of flows
goes up, the number of possible priority orders also increases dra-
matically. As a result, for some cases, the GESA reaches the given
upper-bound of the number of operations before finding a valid pri-
ority order. On the other hand, the improvement of the GESA com-
pared to the ESA becomes more obvious (i.e. the largest observed
improvement is 4.26%), because the ESA reaches the upper-bound
of the number of operations more frequently.

According to the above experimental results, the GHSA always

4The improvement presented in this section is calculated as

(X v.s. Y)
de f
== VX−VY

VY
, where VX and VY represents the results ob-

tained from the algorithm X and Y respectively.

Table 2: Results regarding the schedulability ratio with the set-
ting of 20 flows. The first column represents the average uti-
lization per link.

Ulink GHSA HSA GESA ESA GESA
v.s.HSA

GESA
v.s.ESA

0.2-0.5 99.98% 99.98% 99.98% 99.98% 0 0

0.5-0.8 50.59% 50.59% 54.76% 54.49% 8.23% 0.51%

0.8-1 5.02% 5.02% 6.10% 6.05% 21.53% 0.79%

0.5-0.6 90% 90% 90.81% 90.81% 0.9% 0

0.6-0.7 61.49% 61.49% 65.78% 65.62% 6.97% 0.25%

0.7-0.8 35.58% 35.58% 40.37% 39.97% 13.46% 1.01%

0.8-0.9 8.81% 8.81% 10.74% 10.65% 21.84% 0.8%

0.9-1 0.28% 0.28% 0.28% 0.28% 0 0

Table 3: Results regarding the schedulability ratio with the set-
ting of 30 flows. The first column represents the average uti-
lization per link.

Ulink GHSA HSA GESA ESA GESA
v.s.HSA

GESA
v.s.ESA

0.2-0.5 100% 100% 100% 99.95% 0 0.05%

0.5-0.8 51.61% 51.61% 52.31% 52.06% 1.37% 0.49%

0.8-1 2.33% 2.33% 2.48% 2.38% 6.52% 4.25%

0.5-0.6 90.14% 90.14% 93.66% 93.66% 3.91% 0

0.6-0.7 67.86% 67.86% 68.37% 67.86% 0.75% 0.75%

0.7-0.8 33.41% 33.41% 33.78% 33.66% 1.09% 0.36%

0.8-0.9 8.35% 8.35% 8.89% 8.53% 6.52% 4.26%

achieves the same schedulability ratio as the HSA. Using the GESA
can result in higher schedulability ratios, because the GESA can
cover the missing cases of the HSA. However, the GHSA requires
a larger number of operations as a price. In order to limit the pro-
cessing time of the algorithm, we set an upper-bound of the number
of operations. The selection of such upper-bound is a trade-off be-
tween the schedulability ratio and the required time cost. A smaller
upper-bound can result in shorter processing time but lower schedu-
lability ratio.

6.2 Experiment Result: Number of Assign-
ments

In this section, we present the evaluation results regarding the
number of operations required by the evaluated algorithms.

Figure 7 shows the experimental results with the setting of 30
flows. When the network utilization is low (e.g. 0.2−0.5), all the
algorithms process quite fast, because valid priority orders can be
easily found in the first try without backtracking steps. As the uti-
lization goes up, the algorithms have higher probability to require
more backtracking processes. Therefore, the required number of
operations increase for all the algorithms. However, we notice that
the numbers of operations of the GHSA and the GESA at utilization
[0.8,1.1] are lower than the numbers at utilization [0.5,0.8]. This is
mainly because the network has very low schedulability ratio with
utilization [0.8,1.1]. In this case, the GHSA and the GESA can
determine that the network is unschedulable using a lower num-
ber of backtracking steps compared to the cases with utilization
[0.5,0.8]. As shown in the results, the GHSA only has a slight
variation, which is much smaller than the other three algorithms.
The HSA is slower than the GHSA, but still much faster than the
GESA and the ESA. Moreover, even though the GESA is based on
an exhaustive search, it is still much faster than the ESA. By com-

paring the GHSA with the HSA, and the GESA and the ESA, we
can observe that our undirected-graph based solution can obviously
decrease the search space.

0

200

400

600

800

1000

0.2-0.5 0.5-0.8 0.8-1.1

GHSA HSA GESA ESA

A
ve

ra
ge

N
u

m
b

er
o

f
O

p
er

at
io

n
s

Average Utilization Per Link

Figure 7: Number of operations with the setting of 30 flows.

We generate another set of experiments to further evaluate the
GHSA compared to the HSA regarding the processing efficiency.
In this set of experiments, the network is changed to an 8× 8 2-D
meshed NoC. The number of flows in the network increases to 50
and 80. The rest of experimental settings are the same as earlier.

0

100

200

300

400

500

600

700

0.4 0.45 0.5 0.55 0.6 0.65

GHSA HSA

0

50

100

150

0.4 0.45 0.5 0.55 0.6 0.65

GHSA HSA

Average Utilization Per LinkAverage Utilization Per Link

A
ve

ra
ge

N
u

m
er

 o
f

O
p

er
at

io
n

s

A
ve

ra
ge

N
u

m
er

 o
f

O
p

er
at

io
n

s

(a) 50 flows (b) 80 flows

Figure 8: Number of operations with the setting of 50 & 80
flows.

As shown in Figure 8-a (the number of flows is 50), as the net-
work utilization goes up, the required number of operations of the
GHSA only gains a slight increase. However, the required opera-
tions of the HSA increases much faster. When the network utiliza-
tion is above 0.6, the difference between the GHSA and the HSA
becomes very obvious. In Table 4, we further show the details of
the improvement. The improvement of each experiment is repre-
sented as VHSA/VGHSA, which shows how much faster the GHSA
is compared to the HSA. When the link utilization is [0.4-0.45),
the HSA requires 1.34 times more operations than the GHSA on
average, while for certain cases the HSA requires 8.8 times more
operations. When the link utilization is [0.6-0.65), the GHSA be-
comes 3.73 times faster than the HSA on average.

The results of the experiments with the setting of 80 flows are
shown in Figure 8-b. By comparing Figure 8-a and Figure 8-b, we
can observe that as the number of flows in the network increases,
both the GHSA and the HSA require more operations, since the
search space becomes much larger. In this set of experiments, the
GHSA is still much faster than the HSA. As presented in Table 4,
as the link utilization increases from 0.4 to 0.65, the improvement
of the GHSA increases from 1.06 to 2.6 on average. However, we
also notice that the improvement in the experiments with 80 flows
are not as obvious as the experiments with 50 flows. This is mainly

Table 4: Results showing the improvements of the GHSA com-
pared to the HSA regarding the efficiency.

50 flows 80 flows

Ulink MEAN MAX Ulink MEAN MAX

0.4-0.45 1.34 8.8 0.4-0.45 1.06 5.67

0.45-0.5 1.44 6.83 0.45-0.5 1.17 11

0.5-0.55 1.89 14.33 0.5-0.55 1.57 26.34

0.55-0.6 2.53 30.53 0.55-0.6 2.33 32.29

0.6-0.65 3.73 66.73 0.6-0.65 2.60 29.44

caused by the setting of the upper-bound of operations (i.e. 1000).
When the number of flows increases to 80, the search space be-
comes much larger. In this case, both the GHSA and the HSA have
high probability to reach the specified upper-bound, which results
in equal performance (i.e. the improvement is 1). Such cases occur
less frequent in the experiments with 50 flows, due to the smaller
search space.

According to the above experiment, the GESA and the ESA can
achieve higher schedulability ratio than the GHSA and the HSA.
However, the GESA and the ESA require much more operations
as a price. Even though the GESA already becomes much faster
than the ESA due to the use of the undirect-graph based search
algorithm, the large number of operations may still limit its appli-
cability in reality. On the other hand, the GHSA and the HSA have
much better scalability with little sacrifice of the schedulability. As
the undirect-graph based algorithm can significantly decrease the
search space, the GHSA can be much more efficient compared to
the HSA. In general, we can conclude that the GHSA is faster than
the HSA while achieving the same schedulability ratios.

7. CONCLUSION AND FUTURE WORKS
In this paper, we present two algorithms (the GHSA and the

GESA) for priority assignment of messages in wormhole switched
NoC. Moreover we point out the drawbacks of the existing heuristic
priority assignment algorithm for on-chip communications (called
HSA): missing cases and inefficiency. In the proposed algorithms,
we introduce an undirected-graph based search solution, where we
take the dependencies between messages into account. Such so-
lution can safely decrease the search space thus improve the ef-
ficiency of the algorithms. A number of experiments have been
generated. The results show that our proposed algorithm GHSA
can be much faster than the HSA while achieving the same schedu-
lability ratio. On other hand, the GESA, which can achieve higher
schedulability compared to the HSA, is slower than the HSA but
much faster than the ESA.

Looking at future work, the proposed algorithms assume dis-
tinct priorities, which means that each flow has a unique prior-
ity. Priority-based preemptions are achieved by virtual-channels,
and each priority level requires a single virtual-channel. However,
most of the existing NoC implementations have a limited number
of virtual-channels. As a result, in order to afford more flows in
an on-chip network, multiple flows need to share the same priority
level. Therefore, we need to extend our algorithm to take priority
sharing policies into account (e.g. [18][19]) as well.

8. REFERENCES
[1] L. Benini and G. De Micheli, “Networks on chips: a new

SoC paradigm,” IEEE Computer, vol. 35, no. 1, pp. 70–78,
2002.

[2] Epiphany Architecture Reference, Adapteva Inc., Adapteva
Inc. 1666 Massachusetts Ave, Suite 14 Lexington, MA
02420 USA, 2012.

[3] Tilera, Tile processor: user architecture manual, 2011.
[Online]. Available: www.tilera.com/scm/docs/
UG101-User-Architecture-Reference.pdf

[4] L. Ni and P. McKinley, “A survey of wormhole routing
techniques in direct networks,” IEEE Computer, vol. 26,
no. 2, pp. 62–76, 1993.

[5] W. Dally, “Virtual-channel flow control,” IEEE Transactions
on Parallel and Distributed Systems, vol. 3, no. 2, pp.
194–205, 1992.

[6] N. Audsley and Y. Dd, “Optimal priority assignment and
feasibility of static priority tasks with arbitrary start times,”
YCS164, Dept. Computer Science, University of York, 1991.

[7] Z. Shi and A. Burns, “Priority assignment for real-time
wormhole communication in on-chip networks,” in 29th
IEEE Real-Time Systems Symposium (RTSS), 2008, pp.
421–430.

[8] B. D. de Dinechin, Y. Durand, D. van Amstel, and A. Ghiti,
“Guaranteed services of the NoC of a manycore processor,”
in International Workshop on Network on Chip Architectures
(NoCArc), 2014, pp. 11–16.

[9] B. D. de Dinechin, D. van Amstel, M. Poulhiès, and
G. Lager, “Time-critical computing on a single-chip
massively parallel processor,” in Conference on Design,
Automation & Test in Europe (DATE), 2014.

[10] V. Nélis, P. M. Yomsi, L. M. Pinho, J. C. Fonseca,
M. Bertogna, E. Quiñones, R. Vargas, and A. Marongiu,
“The Challenge of Time-Predictability in Modern
Many-Core Architectures,” in 14th International Workshop
on Worst-Case Execution Time Analysis, ser. OpenAccess
Series in Informatics (OASIcs), vol. 39, 2014, pp. 63–72.

[11] H. Song, B. Kwon, and H. Yoon, “Throttle and preempt: a
new flow control for real-time communications in wormhole
networks,” in International Conference on Parallel
Processing, 1997, pp. 198–202.

[12] C. L. Liu and J. W. Layland, “Scheduling algorithms for

multiprogramming in a hard-real-time environment,” Journal
of the ACM, vol. 20, no. 1, pp. 46–61, January 1973.

[13] J. Y.-T. Leung and J. Whitehead, “On the complexity of
fixed-priority scheduling of periodic, real-time tasks,”
Performance Evaluation, vol. 2, no. 4, pp. 237 – 250, 1982.

[14] N. C. Audsley, “On priority assignment in fixed priority
scheduling,” Information Processing Letters, vol. 79, no. 1,
pp. 39–44, 2001.

[15] M. W. Mutka, “Using rate monotonic scheduling technology
for real-time communications in a wormhole network,” in
2nd Workshop on Parallel and Distributed Real-Time
Systems, 1994, pp. 194–199.

[16] Z. Lu, A. Jantsch, and I. Sander, “Feasibility analysis of
messages for on-chip networks using wormhole routing,” in
Asia and South Pacific Design Automation Conference
(ASP-DAC), 2005.

[17] R. I. Davis and A. Burns, “On optimal priority assignment
for response time analysis of global fixed priority
pre-emptive scheduling in multiprocessor hard real-time
systems,” University of York, UK, Tech. Rep YCS-2010-451,
2010.

[18] B. Nikolić, H. I. Ali, S. M. Petters, and L. M. Pinho, “Are
virtual channels the bottleneck of priority-aware
wormhole-switched NoC-based many-cores?” in 21st
International Conference on Real-Time Networks and
Systems (RTNS), 2013.

[19] Z. Shi and A. Burns, “Real-time communication analysis
with a priority share policy in on-chip networks,” in 21st
Euromicro Conference on Real-Time Systems (ECRTS).
IEEE, 2009, pp. 3–12.

[20] B. Nikolić and S. M. Petters, “EDF as an arbitration policy
for wormhole-switched priority-preemptive NoCs: Myth or
fact?” in 14th International Conference on Embedded
Software (EMSOFT), 2014, pp. 28:1–28:10.

[21] R. I. Davis and A. Burns, “Priority assignment for global
fixed priority pre-emptive scheduling in multiprocessor
real-time systems,” in 30th IEEE Real-Time Systems
Symposium (RTSS). IEEE Computer Society, 2009, pp.
398–409.

