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Abstract

Safety critical systems are those systems whose failure could result in loss of
life, significant property damage, or damage to the environment. These systems
must be dependable and of high quality. System safety is a major property that
should be adequately assured to avoid any severe outcomes. Many safety crit-
ical systems in different domains (e.g., avionics, railway, automotive, etc.) are
subject to certification. The certification processes are based on an evaluation
of whether the associated hazards to a system are mitigated to an acceptable
level.

Safety case is a proven technique to argue about systems safety. Safety
cases can provide evidential information about the safety aspect of a system
by which a regulatory body can reasonably conclude that the system is accept-
ably safe. The development of safety cases has become common practice in
many safety critical system domains. However, safety cases are costly since
they need significant amount of time and efforts to produce. This cost is dra-
matically increased (even for already certified systems) if the changes require
the safety case to be updated and submitted for re-certification. A reason for
increased cost is that safety cases document highly interdependent elements
(e.g., safety goals, evidence, assumptions, etc.) and seemingly-minor changes
may have a major impact. Anticipating potential changes is useful since it
could reveal traceable consequences that can reduce the maintenance efforts.
However, considering a complete list of anticipated changes is difficult.

Safety contracts have been proposed as a means for helping to manage
changes. There has been significant work that discuss how to represent and to
use them, but there has been little attention on how and where to derive them. In
this thesis, we focus on supporting the change impact analysis as a key factor
to enhance the maintainability of safety cases. We propose an approach that
shows how safety contracts can be associated with a safety case’s elements to
highlight them once they are impacted by changes. Moreover, we propose a
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safety case maintenance technique which applies sensitivity analysis in Fault
Tree Analysis (FTA) to determine a system’s ability to tolerate changes. The
technique is twofold: (1) it supports changes prediction and prioritisation, (2)
it derives safety contracts to record the information of changes with the aim to
advise the engineers what to consider and check when changes actually hap-
pen. We use hypothetical and real-world systems to demonstrate our proposed
approaches and technique.



Swedish Summary

Säkerhetskritiska system är system för vilka fel kan resultera i förlust av männi-
skoliv, betydande skada på egendom, eller skador på miljön. Dessa system
måste vara av tillförlitliga och av hög kvalitet. Systemsäkerhet är en cent-
ral egenskap som måste säkerställas för att reducera risken för allvarligare
konsekvenser. Säkerhetskritiska system inom områden som avionik, järnväg
och fordon är föremål för certifiering enligt certifieringsprocess bygger på en
utvärdering av huruvida de associerade riskerna för ett system har reducerats
till en acceptabel nivå. En sådan bevisning krävs för att tillsynsmyndigheten
skall kunna intyga att ett system är tillräckligt säkert. En säkerhetsbevisning är
dock kostsam, eftersom den kräver en betydande mängd tid och arbete. Denna
redan höga kostnaden kan öka dramatiskt vid systemförändringar, eftersom en
revidering av säkerhetsbevisningen då är nödvändig. För att kunna minska
dessa underhållskostnader är det vara intressant att kunna förutsäga eventuella
systemförändringar.

Att förutsäga alla möjliga systemförändringar är dock komplicerat. En enk-
lare metod är att bestämma systemegenskapernas flexibilitet mot förändringar.
Känslighetsanalys har föreslagits som ett användbart verktyg för att mäta denna
flexibilitet. Utöver detta har kontrakt föreslagits som ett medel för att un-
derlätta förändringshanteringsprocessen genom deras förmåga att fånga ber-
oenden mellan systemkomponenter. I denna avhandling använder vi käns-
lighetsanalys för att stödja förutsägelse av förändringar och dess prioriteringar.
Vi använder dessutom säkerhetskontrakt för att fånga information om förändri-
ngar. Denna information kan vägleda ingenjörerna i vad man bör tänka på och
kontrollera när förändringar sker.
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“O’ Lord! Increase me in knowledge”
Holy Quran (20:114)
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Bate, Patrick Graydon. Proceedings of the 16th IEEE Inter-
national Symposium on High Assurance Systems Engineer-
ing (HASE 2015), IEEE, USA, January 2015.

Paper D Using Sensitivity Analysis to Facilitate The Mainten-
ance of Safety Cases. Omar Jaradat, Iain Bate, Sasikumar
Punnekkat. Proceedings of the 20th International Confer-
ence on Reliable Software Technologies (Ada-Europe 2015),
Madrid, Spain, June 2015.

2The included articles have been reformatted to comply with the licentiate layout.

viii



ix

Paper E Deriving Hierarchical Safety Contracts. Omar Jaradat
and Iain Bate. Proceedings of the 21st IEEE Pacific Rim In-
ternational Symposium on Dependable Computing (PRDC
2015), IEEE, Zhangjiajie, China, November 2015.

Related Papers Not Included in the Licentiate Thesis

• Automated Verification of AADL-Specifications Using UP-
PAAL. Andreas Johnsen, Kristina Lundqvist, Paul Pettersson,
Omar Jaradat. Proceedings of the 14th IEEE International
Symposium on High Assurance Systems Engineering (HASE
2012), October 2012.

• Towards a Safety-oriented Process Line for Enabling Reuse
in Safety Critical Systems Development and Certification.
Barbara Gallina, Irfan Sljivo, Omar Jaradat. Proceedings
of the 35th Annual IEEE Software Engineering Workshop
(ISOLA workshop) (SEW 2012), IEEE, October 2012.

• The Role of Architectural Model Checking in Conducting
Preliminary Safety Assessment. Omar Jaradat, Patrick Gray-
don, Iain Bate. Proceedings of the 31st International System
Safety Conference (ISSC 13), Boston, USA, August 2013.





Contents

I Thesis 1

1 Introduction 3
1.1 Thesis Outline . . . . . . . . . . . . . . . . . . . 6

2 Background 11
2.1 Safety Critical Systems . . . . . . . . . . . . . . 11
2.2 Fault Tree Analysis (FTA) . . . . . . . . . . . . 14
2.3 Sensitivity Analysis . . . . . . . . . . . . . . . . 15
2.4 Safety Case and Safety Argument . . . . . . . . 17

2.4.1 Safety Case . . . . . . . . . . . . . . . . 17
2.4.2 Safety Case Definition . . . . . . . . . . 17
2.4.3 Safety Argument . . . . . . . . . . . . . 19

2.5 Safety Contracts . . . . . . . . . . . . . . . . . . 23

3 Problem Description and Research Goals 27
3.1 Problem Description . . . . . . . . . . . . . . . 27
3.2 Research Goals . . . . . . . . . . . . . . . . . . 30
3.3 Related Work . . . . . . . . . . . . . . . . . . . 31
3.4 Research Method . . . . . . . . . . . . . . . . . 32

4 Thesis Contributions 35
4.1 Contributions of the Included Papers . . . . . . . 35
4.2 Main Contributions . . . . . . . . . . . . . . . . 37

xi



xii Contents

4.2.1 An Approach to Facilitating Safety Case
Change Impact Analysis . . . . . . . . . 37

4.2.2 A New Safety Contract Notation . . . . . 38
4.2.3 Sensitivity Analysis for Enabling Safety

Argument Maintenance (SANESAM) . . 40
4.2.4 Support the Prediction of Potential Sys-

tem Changes . . . . . . . . . . . . . . . 42

5 Conclusions and Future Work 45
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . 45
5.2 Future Work . . . . . . . . . . . . . . . . . . . . 47

Bibliography 49

II Included Papers 55

6 Paper A:
An Approach to Maintaining Safety Case Evidence After
A System Change 57
6.1 Introduction . . . . . . . . . . . . . . . . . . . . 59
6.2 Our Proposal . . . . . . . . . . . . . . . . . . . 59
6.3 An Illustrative Example . . . . . . . . . . . . . . 60
6.4 Related Work . . . . . . . . . . . . . . . . . . . 61
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . 62
Bibliography . . . . . . . . . . . . . . . . . . . . . . 63

7 Paper B:
Facilitating the Maintenance of Safety Cases 65
7.1 Introduction . . . . . . . . . . . . . . . . . . . . 67
7.2 Background . . . . . . . . . . . . . . . . . . . . 69

7.2.1 The Safety Standard ISO 26262 . . . . . 69
7.2.2 The Goal Structuring Notation (GSN) . . 70



Contents xiii

7.2.3 Safety Case Maintenance and Current Chal-
lenges . . . . . . . . . . . . . . . . . . . 71

7.2.4 Maintaining Safety Case Evidence after a
System Change . . . . . . . . . . . . . . 73

7.3 Modular Software Safety Case (MSSC) Process . 75
7.4 Illustrative Example: Fuel Level Estimation Sys-

tem (FLES) . . . . . . . . . . . . . . . . . . . . 78
7.4.1 FLES Description . . . . . . . . . . . . 79
7.4.2 Applying the IAWG MSSC Process . . . 81

7.5 Conclusion and Future Work . . . . . . . . . . . 88
Bibliography . . . . . . . . . . . . . . . . . . . . . . 89

8 Paper C:
Deriving Safety Contracts to Support Architecture Design
of Safety Critical Systems 93
8.1 Introduction . . . . . . . . . . . . . . . . . . . . 95
8.2 Background and Motivation . . . . . . . . . . . 97

8.2.1 Related Work . . . . . . . . . . . . . . . 97
8.2.2 Overview of the Computer Assisted Brak-

ing System . . . . . . . . . . . . . . . . 99
8.3 Overall Development Approach . . . . . . . . . 100
8.4 Definition of Safety Contracts . . . . . . . . . . 101

8.4.1 Causal Analysis and Contracts for WBS . 102
8.4.2 Causal Analysis and Contracts on WBS

with Safety Kernels . . . . . . . . . . . . 105
8.4.3 Contract Derivation and Completeness Check-

ing Methods . . . . . . . . . . . . . . . 107
8.5 Safety Argument . . . . . . . . . . . . . . . . . 109

8.5.1 Overview of Goal Structuring Notation . 109
8.5.2 Wheel Braking System Safety Argument 110

8.6 Summary and Conclusions . . . . . . . . . . . . 112
Bibliography . . . . . . . . . . . . . . . . . . . . . . 113



xiv Contents

9 Paper D:
Using Sensitivity Analysis to Facilitate The Mainten-
ance of Safety Cases 117
9.1 Introduction . . . . . . . . . . . . . . . . . . . . 119
9.2 Background and Motivation . . . . . . . . . . . 121

9.2.1 The Goal Structuring Notation (GSN) . . 121
9.2.2 The Concept of Safety Contracts . . . . . 122
9.2.3 Safety Case Maintenance and Current Prac-

tices . . . . . . . . . . . . . . . . . . . . 122
9.2.4 Sensitivity Analysis . . . . . . . . . . . 123

9.3 Using Sensitivity Analysis To Facilitate The Main-
tenance of A Safety Case . . . . . . . . . . . . . 124

9.4 An Illustrative Example: The Wheel Braking Sys-
tem (WBS) . . . . . . . . . . . . . . . . . . . . 128
9.4.1 Wheel Braking System (WBS): System

Description . . . . . . . . . . . . . . . . 128
9.4.2 Applying the Technique . . . . . . . . . 129

9.5 Related Work . . . . . . . . . . . . . . . . . . . 134
9.6 Conclusion and Future Work . . . . . . . . . . . 134
Bibliography . . . . . . . . . . . . . . . . . . . . . . 135

10 Paper E:
Deriving Hierarchical Safety Contracts 139
10.1 Introduction . . . . . . . . . . . . . . . . . . . . 141
10.2 Background . . . . . . . . . . . . . . . . . . . . 143

10.2.1 Sensitivity Analysis . . . . . . . . . . . 143
10.2.2 Safety Contracts . . . . . . . . . . . . . 144
10.2.3 Safety Argumentation and Goal Structur-

ing Notations (GSN) . . . . . . . . . . . 145
10.2.4 Incremental Certification . . . . . . . . . 146
10.2.5 Wheel Braking System (WBS): System

Description . . . . . . . . . . . . . . . . 146



Contents xv

10.3 A Technique to Facilitate the Maintenance of Safety
Cases . . . . . . . . . . . . . . . . . . . . . . . 149
10.3.1 SANESAM Phase . . . . . . . . . . . . 149
10.3.2 SANESAM Limitations . . . . . . . . . 151

10.4 SANESAM Extension . . . . . . . . . . . . . . 154
10.4.1 SANESAM+ Application: An Example . 156
10.4.2 SANESAM+ For Predicted Changes . . . 160
10.4.3 SANESAM+ For Predicted Changes: An

Example . . . . . . . . . . . . . . . . . 162
10.5 Conclusions and Future Work . . . . . . . . . . . 164
Bibliography . . . . . . . . . . . . . . . . . . . . . . 164





I

Thesis

1





Chapter 1

Introduction

Safety critical systems are those systems whose failure could result in loss of
life, significant property damage, or damage to the environment [1]. These
systems must be dependable and of high quality. System safety is a major
property that should be adequately assured to avoid severe outcomes. Med-
ical devices, commercial aircraft, trains, nuclear plants, etc. are examples of
safety critical systems. Despite the awareness of the dependability levels as to
what these systems require to be acceptably safe, catastrophic accidents still
occur worldwide. The Clapham Junction accident of British Rail in 1988 is
an example of failures in safety critical systems that failure caused a collision
between two trains, 35 people died and nearly 500 were injured, 69 of them
seriously [2]. Each occurrence of harm are lessons learned that help not only
to ensure that similar failures do not happen again, but they also help making
the world collectively safer as time progresses. This, of course, does not mean
to wait for an accident to occur in order to prevent any similar future accidents
[3]. System safety is not assured by chance but rather it must be engineered and
evaluated in a systematic manners that might be mandated by safety standards,
best practices, experts’ recommendations. Hence, many safety critical systems
in different domains (e.g., avionics, railway, automotive, etc.) are subject to a
certification process, which is based on an evaluation of whether the associated
hazards to a system are mitigated to an acceptable level. Also, many coun-
tries and industries have authorities, inspector organisations and/or regulatory
bodies that are responsible to judge whether or not safety is adequately assured.

The size and complexity of safety critical systems are considerable. Without
a clear demonstration for the safety performance of a system, it is difficult for
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4 Chapter 1. Introduction

inspector organisations or system engineers themselves to build a confidence in
the safety performance of the system. System engineers of some safety critical
systems are required to demonstrate the safety performance of their systems
through a reasoned argument that justifies why the system in question is ac-
ceptably safe (or will be so). This argument is communicated via an artefact
that is known as a safety case. The safety case is the whole safety justifica-
tion that comprises every appropriate piece of evidence to make a convincing
argument to support the safety performance claims [3].

Several industries worldwide have legal obligations to produce a safety case
for their operation (e.g., rail, nuclear, petrochemical and some other chemical
facilities). There are even other industries that have made the creation and pro-
vision of a safety case a must (e.g., defence industry) [3]. Generally speaking,
the number of safety critical systems that are subject to a certification process
increases by time, where safety cases are often required for certification pro-
cesses to demonstrate how a regulatory body can reasonably conclude that a
system is acceptably safe from the evidence available. This usage of safety
cases might make their development a common practice in many safety critical
system domains.

When a safety case is not maintained, the safety case argument will remain
valid for a short while only because safety critical systems are expected to
operate for a long period of time and frequently subject to changes during
both development and operational phases. Changes can be due to changing
requirements and environmental conditions, operational experience, etc. [4].

Moreover, safety critical systems can be evolutionary as they are subject to
perfective, corrective or adaptive maintenance or through technology obsoles-
cence [5]. Changes to the system during or after development might invalidate
safety evidence or argument. Evidence might no longer support the developers’
claims because it reflects old development artefacts or old assumptions about
operation or the operating environment. Also, existing safety claims might be
nonsense, no longer reflect operational intent, or be contradicted by new data.
Eventually, the real system will have diverged so far from that represented by
the safety case argument and the latter is no longer valid or useful [3]. Hence,
it is almost inevitable that the safety case will require updating throughout
the operational lifetime of the system. An additional key reason to maintain
safety cases is that any change that might compromise system safety involves
repeating the certification process (i.e., re-certification) and repeating the cer-
tification process necessitates an updated and valid safety case that considers
the changes. For example, the UK Ministry of Defence Ship Safety Manage-
ment System Handbook JSP 430 requires that “the safety case will be updated
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... to reflect changes in the design and/or operational usage which impact on
safety, or to address newly identified hazards. The safety case will be a man-
agement tool for controlling safety through life including design and operation
role changes” [6, 7]. Similarly, the UK Health and Safety Executive (HSE) —
Railway safety case regulations 1994 — states in regulation 6(1) that “a safety
case to be revised whenever, appropriate that is whenever any of its contents
would otherwise become inaccurate or incomplete” [8, 7].

A safety case, therefore, is not built for one use, but rather it is built as a
living document that should always be maintained to justify the safety status
of the associated system and evolves as this system evolves. In addition to its
role in justifying system safety, a safety case should also identify and manage
the impact of changes. For example, in the Clapham Junction railway case, the
cause of the accident was a signal failure caused by an improper termination of
old wires after installing a new wiring during maintenance. British Rail staff
did not fully understand the importance of wire checks after the change. There
was no safety case built for the signaling system [9]. Possibly, the existence
of a safety case that describes the importance of wiring verification and how it
should be done could have helped avoiding the accident.

One of the biggest challenges that affects safety case revision and mainten-
ance is that a safety case documents a complex reality. A safety case comprises
a complex web of interdependent elements, such as, safety goals, evidence, ar-
gument, and assumptions about operating context. These elements are highly
interdependent and thus seemingly minor changes may have a major impact on
the contents and structure of the safety argument. As such, a single change to
a safety case may necessitate many other consequential changes — creating a
ripple effect [5].

Any improper maintenance in a safety argument might negatively impact
the system safety performance conveyed by the safety case. The improper
maintenance might (1) preclude the safety case to make that performance clear
to readers, or (2) change the status of that argument from sound to unsound
by changing the structure of that argument, changing the truth of its premises,
or both. Hence, a step to assess the impact of this change on the safety ar-
gument is crucial and highly needed prior to updating a safety argument after
a system change. Despite clear recommendations to adequately maintain and
review safety cases by safety standards, such as those quoted earlier, existing
standards offer little advice on how such operations can be carried out [5].

The concept of contract has been around for few decades in the system
development domain. There have been significant works that discuss how to
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represent and to use contracts [10, 11, 12]. For example, researchers have
used assume-guarantee contracts to propose techniques to lower the cost of de-
veloping software for safety critical systems. Moreover, contracts have been
exploited as a means for helping to manage system changes in the system do-
main or in its corresponding safety case [13, 14, 15]. However, using contracts
as a way of managing change is not a new notion since it has been discussed in
some works [16, 13], but deriving the contracts and their contents have received
little support yet [4].

Sensitivity analysis helps the experts to define the uncertainties involved
with a particular system change so that those experts can judge the potential
change based on how reliable the consequences are. The use sensitivity ana-
lysis to define the problematic parts of a system with respect to changes. More
specifically, we exploit the Fault Tree Analyses (FTAs), which developers of-
ten perform as part of safety analysis phase, and apply the sensitivity analysis
to those FTAs in order to identify the sensitive parts in them. We define a sens-
itive part as an event whose minimum changes have the maximal effect on the
FTA, where effect means exceeding reliability targets due to a change [4].

In this thesis, we combine sensitivity analysis together with the concept of
contracts to facilitate the accommodation of system changes in safety cases to
ultimately enhance the maintainability of safety cases. Our work focuses on:

1. how and where to derive safety contracts and their contents,

2. using the derived contracts to support the decision as to whether or not
apply changes, and

3. using the derived contracts to guide developers to the parts in the safety
case that might be affected after applying a change.

1.1 Thesis Outline
The thesis report is organized into two main parts. Part I includes six chapters.
Chapter 1 has provided an introduction to the thesis where an overview of the
research problem, motivation and the thesis contribution were presented. In
Chapter 2, we present background information about safety critical systems,
Fault Tree Analysis (FTA), safety cases and arguments, safety contracts, and
sensitivity analysis. In Chapter 3, we describe the research problems and derive
the research goals. We also describe the overall methodology that is adopted to
run the research. In Chapter 4, we present the contributions of the research and
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reflect on the research goals. In Chapter 3.3, we present the related work. We
draw the conclusion and describe the possible future work in Chapter 5. Part
II contains the research papers included in the thesis, as follows:

Paper A (Chapter 6): An Approach to Maintaining Safety Case Evidence
After A System Change, Omar Jaradat, Patrick Graydon, Iain Bate.

Abstract: “Developers of some safety critical systems construct a safety case.
Developers changing a system during development or after release must ana-
lyse the change’s impact on the safety case. Evidence might be invalidated by
changes to the system design, operation, or environmental context. Assump-
tions valid in one context might be invalid elsewhere. The impact of change
might not be obvious. This paper proposes a method to facilitate safety case
maintenance by highlighting the impact of changes.” [17]

Status: Published in Proceedings of the 10th European Dependable Comput-
ing Conference, EDCC 2014.

My contribution: I was the main contributor of the work under supervision of
the co-authors. My contributions include proposing a new approach to facilit-
ating safety case change impact analysis.

Paper B (Chapter 7): Facilitating the Maintenance of Safety Cases, Omar
Jaradat, Iain Bate, Sasikumar Punnekkat.

Abstract: “Developers of some safety critical systems construct a safety case
comprising both safety evidence, and a safety argument explaining that evid-
ence. Safety cases are costly to produce, maintain and manage. Modularity
has been introduced as a key to enable the reusability within safety cases and
thus reduces their costs. The Industrial Avionics Working Group (IAWG) has
proposed Modular Safety Cases as a means of containing the cost of change
by dividing the safety case into a set of argument modules. IAWG’s Modular
Software Safety Case (MSSC) process facilitates handling system changes as
a series of relatively small increments rather than occasional major updates.
However, the process does not provide detailed guidelines or a clear example
of how to handle the impact of these changes in the safety case. In this paper,
we apply the main steps of MSSC process to a real safety critical system from
industry. We show how the process can be aligned to ISO 26262 obligations
for decomposing safety requirements. As part of this, we propose extensions to
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MSSC process for identifying the potential consequences of a system change
(i.e., impact analysis), thus facilitating the maintenance of a safety case.” [18]

Status: Published in Proceedings of the 3rd International Conference on Reli-
ability, Safety and Hazard — Advances in Reliability, Maintenance and Safety,
ICRESH-ARMS 2015.

My contribution: I was the main contributor of the work under supervision
of the co-authors. My contributions include showing how to apply the MSSC
(Modular Software Safety Case) process to a real safety critical system to show
how system engineers can identify the elements in a safety argument that might
be impacted by a change.

Paper C (Chapter 8): Deriving Safety Contracts to Support Architec-
ture Design of Safety Critical Systems, Irfan Šljivo, Omar Jaradat, Iain Bate,
Patrick Graydon.

Abstract: “The use of contracts to enhance the maintainability of safety-
critical systems has received a significant amount of research effort in recent
years. However some key issues have been identified: the difficulty in dealing
with the wide range of properties of systems and deriving contracts to capture
those properties; and the challenge of dealing with the inevitable incomplete-
ness of the contracts. In this paper, we explore how the derivation of contracts
can be performed based on the results of failure analysis. We use the concept
of safety kernels to alleviate the issues. Firstly the safety kernel means that the
properties of the system that we may wish to manage can be dealt with at a
more abstract level, reducing the challenges of representation and complete-
ness of the “safety” contracts. Secondly the set of safety contracts is reduced
so it is possible to reason about their satisfaction in a more rigorous manner.”
[19]

Status: Published in Proceedings of the 16th IEEE International Symposium
on High Assurance Systems Engineering, HASE 2015.

Contributions: Irfan Šljivo, Iain Bate and I are the main contributors. Patrick
Graydon reviewed the paper and provided comments for improvement at the
paper. My contributions include building the safety argument before and after
introducing a change. Also, associating the derived safety contracts for parts
of the system design with the corresponding argument fragments as a means to
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establish a traceability mechanism between the system and its safety case.

Paper D (Chapter 9): Using Sensitivity Analysis to Facilitate The Main-
tenance of Safety Cases, Omar Jaradat, Iain Bate, Sasikumar Punnekkat.

Abstract: “A safety case contains safety arguments together with support-
ing evidence that together should demonstrate that a system is acceptably safe.
System changes pose a challenge to the soundness and cogency of the safety
case argument. Maintaining safety arguments is a painstaking process be-
cause it requires performing a change impact analysis through interdependent
elements. Changes are often performed years after the deployment of a sys-
tem making it harder for safety case developers to know which parts of the
argument are affected. Contracts have been proposed as a means for helping
to manage changes. There has been significant work that discusses how to
represent and to use them but there has been little on how to derive them. In
this paper, we propose a sensitivity analysis approach to derive contracts from
Fault Tree Analyses and use them to trace changes in the safety argument, thus
facilitating easier maintenance of the safety argument.” [4]

Status: Published in Proceedings of the 20th International Conference on Re-
liable Software Technologies, Ada-Europe 2015.

My contribution: I was the main contributor of the work under supervision of
the co-authors. My contributions include combining the results of sensitivity
analysis together with the concept of contracts to identify the sensitive parts
of a system and highlight these parts to help the experts to make an educated
decision as to whether or not apply changes.

Paper E (Chapter 10): Deriving Hierarchical Safety Contracts, Omar Jaradat,
Iain Bate, Sasikumar Punnekkat.

Abstract: “Safety cases are costly since they need significant amount of time
and efforts to produce. This cost can be dramatically increased (even for
already certified systems) due to system changes as they require maintaining
the safety case before it can be submitted for certification. Anticipating poten-
tial changes is useful since it reveals traceable consequences that will eventu-
ally reduce the maintenance efforts. However, considering a complete list of
anticipated changes is difficult. What can be easier though is to determine the
flexibility of system components to changes. Using sensitivity analysis is useful
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to measure the flexibility of the different system properties to changes. Fur-
thermore, contracts have been proposed as a means for facilitating the change
management process due to their ability to record the dependencies among sys-
tem’s components. In this paper, we extend a technique that uses a sensitivity
analysis to derive safety contracts from Fault Tree Analyses and uses these con-
tracts to trace changes in the safety argument. The extension aims to enabling
the derivation of hierarchical and correlated safety contracts. We motivate the
extension through an illustrative example within which we identify limitations
of the technique and discuss potential solutions to these limitations.”

Status: Accepted for publication in Proceedings of the 21st IEEE Pacific Rim
International Symposium on Dependable Computing, PRDC 2015.

Main contribution: I was the main contributor of the work under Bate’s super-
vision. My contribution comprises (1) identifying possible limitations for the
proposed technique in Paper D and (2) suggesting an extension to the technique
to resolve the identified limitations.



Chapter 2

Background

In this chapter, we provide background and overview of the most prominent
terms that appear frequently in this thesis.

2.1 Safety Critical Systems

The word ‘safety’ means: “The condition of being protected from or unlikely
to cause danger, risk, or injury” [20]. Safety critical “is a term applied to
a condition, event, operation, process or item that is essential to safe system
operation or use, e.g., safety critical function, safety critical path, and safety
critical component” [21]. Safety critical systems are those systems whose fail-
ure might endanger human life, lead to substantial economic loss, or cause
extensive environmental damage [1]. That is, the operation of safety critical
systems should be safe and, ideally, never cause severe consequences. How-
ever, developing absolutely safe system is unattainable even if the project has
an open budget. This is because severe consequences are typically linked to
system faults and we cannot be 100% certain that a system is fault free. How-
ever, this shall not discourage the efforts that aim at assuring systems’ safety.

The key to assuring safety is to eliminate hazards or to ensure that the con-
sequences of these hazards are minimal. The word hazard in English is defined
as: “a potential source of danger” [20]. In the context of safety critical sys-
tems, there are different suggestions to explain what the word hazard means.
Some definitions suggest that a hazard is simply a system state that could lead
to accidents. For example, Knight [22] indicates that the word hazard is an ab-

11
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breviation of hazard state and it means: “a system state that could lead to an
unplanned loss of life, loss of property, release of energy, or release of danger-
ous materials” [22]. Some other definitions suggest to consider the potential
environmental conditions in the definition to clarify the relationship between
hazards and accidents. For example, Leveson [23] define hazard as: “a state
or condition of a system that, combined with certain environmental conditions,
could lead to accidents”. Anyway, all definitions agree that a hazard is a sys-
tem state in which an accident might occur. An accident can be defined as:
“An unplanned event or sequence of events which results in human death or
injury, damage to property, or to the environment” [24]. The measure of the
probability that a system will cause an accident is referred to as risk. The
risk is assessed by considering the probability that someone/something will be
harmed if exposed to a hazard (also know as exposure) and hazard and the
severity of that hazard.

Hazards are caused by malfunctioning behaviours (i.e., failures) [25]. A
Failure is defined as: “an event that occurs when the delivered service deviates
from correct service” [26]. Failures are caused by errors. An error is defined
as: a part of the total state of the system that may lead to its subsequent service
failure [26]. Finally, errors are caused by faults. A fault is defined as: an
adjudged or hypothesized cause of an error [26].

Figure 2.1 illustrates some of the previous system safety concepts and how
they might relate to each other. The figure uses a scenario from an adaptive
cruise control system1 to give examples of these concepts.

Any process or activity that aims at assuring or improving systems’ safety
should identify and eliminate potential hazards of those systems. If the elim-
ination is not possible then they should be mitigated to an acceptable level.
Preliminary Hazard Analysis (PHA) is used to can be done with only a de-
scription of the system’s concept and functions. That is, PHA is typically used
in the early stages of the system’s lifecycle where no enough design detail is
available. PHA accomplishes four main tasks as follows [27]:

• Identify system hazards

• Translate system hazards into high-level system safety design constraints

• Assess hazards if required to do so

• Establish the hazard log

1Adaptive Cruise Control (ACC) system is an optional system for road vehicles that automat-
ically adjusts the vehicle speed to maintain a safe distance from vehicles ahead.
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System 
Fault

e.g., The image sensor sends 
faulty images. 
Note: The image sensor should 
capture images for the forward 
vehicle.

System 
Error

e.g., Subroutine SUB_DistCalc 
calculates the inter-vehicle 
distance based on faulty images 
and returns erroneous distance  

System 
Failure

e.g., The ACC controller calls 
SUB_DistCalc and suddenly 
overestimates the distance 
between the vehicle that uses 
the ACC and the forward vehicle   

Hazard 
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e . g . , i n a d v e r t e n t 
sudden drop in speed
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Conditions)
e.g., The following 
vehicle is not maintaining 
a safe distance  

Leads

Risk
e.g., A risk of collision 
at high speed 

Accident e.g., Unfortunate injury(s) 
or/and fatality(s)

Figure 2.1: Overview of some basic system safety concepts

Safety functions (also know as Safety Barriers) shall be identified, imple-
mented and verified to achieve or maintain the safe state of a system (with
respect to the identified hazards). These functions can be safeguards, counter-
measures, or protection layers, etc. (e.g., fire and gas detection system, pres-
sure relief system, emergency shutdown system, etc.). The reliability of such
functions are crucial to achieve safety. Reliability here means “the ability of
the item to perform a required function, under given environmental and opera-
tional conditions and for a stated period of time” [28]. However, safety should
not be confused with reliability. A reliable system can be unsafe and vice versa.
The software of a system may still behave in such a way that the resultant sys-
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tem behavior leads to an accident. The Lufthansa flight 2904 accident can be
an example of how a reliable system may be unsafe. The plane was landing
at Warsaw airport in Poland when the computer-controlled braking system did
not work. While landing, the braking system did not recognize that the plane
touched the ground and assumed that the aircraft was still airborne. A safety
feature on the aircraft had stopped the deployment of the reverse thrust system,
which slows down the aircraft. The plane ran off the end of the runway, hit an
earth bank, and caught fire [24]. The investigations revealed that the braking
system software was reliable and had operated according to its specification,
but this did not lead to a safe system [24].

The acceptable safety levels of a system should be defined and all identi-
fied risks should be eliminated or reduced to these levels. There are several
well-described quantitative and qualitative measures for safety functions in the
literature. The work in this thesis, however, depends on failure probabilities
derived from quantitative FTA as quantitative measures.

2.2 Fault Tree Analysis (FTA)

In 1962, Bell Telephone Laboratories introduced the fault tree technique as
a means to evaluate safety in the launching system of the intercontinental
Minuteman missile [29]. The Boeing Company improved the technique and
introduced computer programs for both qualitative and quantitative fault tree
analysis. Today FTA is the most commonly used technique for safety and reli-
ability studies.

FTA is a failure analysis method which focuses on one particular undesired
event and provides a method for determining causes of this event [30]. In
other words, FTA is used to specify the occurrence of critical states (from a
safety or reliability standpoint). These states might be associated with com-
ponent hardware failures, human errors, software errors, or any other pertinent
events. FTA helps safety engineers to identify plausible causes (i.e., faults) of
undesired events [31].

A fault tree illustrates the logical interrelationships of the system’s com-
ponents (Basic Events) that lead to the undesired event or the system’s state
(Top Event) [31, 29]. These logical interrelationships are called Logical Gates.
Figure 2.2 shows the most commonly used FTA symbols.

Moreover, FTA is used as a method to achieve Probabilistic Safety Ana-
lysis (PSA). More specifically, it is used to quantify system failure probabil-
ity. Quantitative FT evaluation techniques produce three types of results: (1)
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output event A occurs if any of 
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The AND-gate indicates that 
the output event A occurs only 
when all the input events Ei 
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causes  

The Undeveloped Event represents 
an event that is not examined further 
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or because its consequences are 
insignificant
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NO CURRENT THROUGH 
POWER DISTRIBUTION
CENTER
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POWER DISTRIBUTION 
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FROM BATTERY 
SOURCES

INSUFFICIENT
POWER OUTPUT
FROM BATTERY

CONTROLLER
FAILURE OFF

OXYGEN SENSOR
FAILS OFF

DONOR BATTERY 
SOURCE UNAVAILABLE

Basic Event

Undeveloped Event

Transfer
The Transfer symbol indicates 
a transfer to a sub tree or 
continuation to another location

Figure 2.2: The principal FTA symbols and an instantiation [29, 32]

numerical probabilities, (2) quantitative importance, and (3) sensitivity evalu-
ations [30]. In this thesis, we exploit the results obtained by sensitivity eval-
uations to measure how sensitive a system design is to a particular aspect of
individual event. More details about our sensitivity analysis is found in Sec-
tion 2.3.

2.3 Sensitivity Analysis

Sensitivity analysis can be defined as: “The study of how uncertainty in the out-
put of a model (numerical or otherwise) can be apportioned to different sources
of uncertainty in the model input” [33]. The analysis helps to establish reas-
onably acceptable confidence in the model by studying the uncertainties that
are often associated with variables in models. Many variables in system ana-
lysis or design models represent quantities that are very difficult, or even im-
possible to measure to a great deal of accuracy. In practice, system, developers
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are usually uncertain about variables in the different system models and they
estimate those variables. Sensitivity analysis allows system developers to de-
termine what level of accuracy is necessary for a parameter (variable) to make
the model sufficiently useful and valid [34].

There are different purposes for using sensitivity analysis. The analysis can
be used to provide insight into the robustness of model results when making
decisions [35]. Also, the analysis can be used to enhancing communication
from modelers to decision makers, for example, by making recommendations
more credible, understandable, compelling or persuasive [36]. In safety do-
mains, sensitivity analysis can be used in risk analysis models to determine the
most significant exposure or risk factors so to speak, and thus, it can support
the prioritisation of the risk mitigation. Sensitivity analysis methods can be
classified in different ways such as mathematical, graphical, statistical, etc. In
this paper we use the sensitivity analysis to identify the safety argument parts
(i.e., sensitive parts) that might require unneeded painstaking work to update
with respect to the benefit of a given change. The results of the analysis should
be presented in the safety argument so that it is always available up front to get
developers’ attention.

In this thesis, we apply the sensitivity analysis on FTAs to measure the
sensitivity of outcome A (e.g., a safety requirement being true) to a change in
a parameter B (e.g., the failure probability in a component). The sensitivity
is defined as ∆B/B, where ∆B is the smallest change in B that changes A
(e.g., the smallest increase in failure probability that makes safety requirement
A false). The failure probability values that are attached to FTA’s events are
considered input parameters to the sensitivity analysis. A sensitive part of a
FTA is defined as one or multiple FTA events whose minimum changes (i.e.,
the smallest increase in its failure probability due to a system change) have
the maximal effect on the FTA, where effect means exceeding failure probab-
ilities (reliability targets) to inadmissible levels. A sensitive event is an event
whose failure probability value can significantly influence the validity of the
FTA once it increases. In this this, system components whose failure rates
correspond to FTA’s events whose likelihoods are sensitive are referred to as
sensitive components. Hence, changes to a sensitive component cause a great
impact to system design [4].

We use the sensitivity analysis as a method to determine the range of fail-
ure probability parameter for each event. Hence, our work assumes the ex-
istence of a probabilistic FTA where each event in the tree is specified by
an actual (i.e., current) failure probability FPActual|event(x). In addition, our
work assumes the existence of the required failure probability for the top event
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FPRequired(Topevent), where the FTA is considered unreliable if:
FPActual(Topevent) > FPRequired(Topevent).

2.4 Safety Case and Safety Argument

2.4.1 Safety Case
In 1965, section 14 of the UK Nuclear Installations Act states:

“Without prejudice to any other requirements of the conditions attached to
this license the licensee shall make and implement adequate arrangements for
the production and assessment of safety cases consisting of documentation to
justify safety during the design, construction, manufacture, commissioning, op-
eration and decommissioning phases of the installation.” [37]

Hence, the notion of building safety cases to justify safety is not new and it
has been around for almost fifty years. In 1989, the British chemical industry
requested from nuclear sites (according to the Control of the Industrial Ma-
jor Accident Hazards (CIMAH) regulations) to generate a written report that
should contain (1) facts about the site, and (2) reasoned arguments about the
hazards and risks from the site [38]. This report was also known as a safety
case. The objective of the report was to demonstrate to the UK Health and
Safety Executive (HSE) that the site is satisfactory by listing the major hazards
and risks and shows how they are adequately mitigated.

The development of the safety case as a means of demonstrating accept-
able risk began in the nuclear industry but the application of this means was
uncommon in other industries. For example, in the Clapham junction accident
in Chapter 1, there was no safety case and although the transport system was
allegedly mature, regulated and safe, British Rail could not demonstrate why
their system was acceptably safe to operate [2]. From 1990s onwards the de-
velopment of safety cases spread across many other major hazard industries,
such as the railways, offshore oil, gas facilities, etc. [39].

2.4.2 Safety Case Definition
It is worth mentioning that in addition to the term ‘safety case’, there are dif-
ferent other terms such as ‘Assurance Case’ and ‘Safety Assurance Case’ that
are, sometimes, used interchangeably. An assurance case is defined as: “A
reasoned and compelling argument, supported by a body of evidence, that a
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system, service or organisation will operate as intended for a defined applica-
tion in a defined environment” [40]. It is also defined as: A collection of audit-
able claims, arguments, and evidence created to support the contention that
a defined system/service will satisfy the particular requirements [41]. As ob-
served from the former or latter definitions, the term ‘assurance case’ is generic
and does not necessarily indicate safety as the property to be assured. Hence,
the term ‘assurance case’ by its own has no particular focus, but if safety is
the intended property to be assured, then using terms such as ‘safety case’ or
‘safety assurance case’ is more precise where both can be thought of as an
instance of an assurance case.

Although the term ‘safety case’ has become popular today in many safety
critical system domains, but its precise meaning is dependent on the purpose
that the safety case is intended to satisfy [3]. This raises the question of: Why
do industries need a safety case? During this work, different purposes that
safety cases can satisfy are observed. A safety case is built as a tool:

• To manage residual risks [42]

• To record engineering practices [3]

• In a court of law to address and reduce legal liability [9, 3]

• For marketing

• Etc.

However, before any safety case is attempted, the rationale and purpose of
it must be clearly understood. This is vitally important, because if the specific
requirements for compiling a safety case are not clear, then the following safety
case will also be not clear [3].

There are different definitions of safety case [43, 3]. Most of the available
definitions indicate the consensus that a safety case is oriented to demonstrate
how a system reduces risk of specific losses to an acceptable level and thus
enable a regulator to assess whether the system is acceptably safe to operate.
It is worth pointing out that the definition of safety case by the UK Defence
Standard 00-56 [44] is the most common. The standard defines the safety case
as:

“A structured argument, supported by evidence, intended to justify that a
system is acceptably safe for a specific application in a specific operating en-
vironment”.

Safety Argument ∈ Safety Case
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The work presented in the two parts of this thesis assumes that the main pur-
pose of a safety case is to justify safety and it refers to the safety case definition
by the UK Defence Standard 00-56 wherever the term ‘safety case’ appears.

A safety case comprises elements as follows:

• Safety requirements or objectives that are mainly derived to eliminate or
mitigate hazards (also known as goals)

• Lifecycle artefacts (also know as work products) which are basically the
results of each development phase (e.g. safety analyses, software inspec-
tions, or functional tests)

• a Safety argument explaining how safety goals (in form of safety claims)
are supported by available artefacts ( in form of safety evidence)

• Context and Assumptions about the operating environment and usage

Figure 2.3 shows an overview of the safety case elements and the relation-
ships between them.

2.4.3 Safety Argument
The main purpose of a safety case is to communicate an argument. The ar-
gument demonstrates how someone can reasonably conclude that a system is
acceptably safe from the evidence available [45]. In English, the word ‘argu-
ment’ is defined as: “A reason or set of reasons that somebody uses to show
that something is true or correct” [20]. A more technical definition for the
word ‘argument’ is: A body of information presented with the intention to
establish one or more claims through the presentation of related supporting
claims, evidence, and contextual information. [41]. An argument in the safety
case definition is called a ‘safety argument’ or ‘safety case argument’ and it
can be defined as a hierarchically connected series of claims supported by evid-
ence. Safety arguments are intended to demonstrate to the reader that a system
is acceptably safe as an overall claim. The claim is defined as: A proposition
being asserted by the author or utterer that is a true or false statement [41].
The evidence is defined as: Information or objective artifacts being offered in
support of one or more claims [41].

In order for safety cases to be developed, discussed, challenged, presen-
ted and reviewed amongst stakeholders, as well as maintained throughout the
product lifecycle, it is necessary for the (1) argument to be clearly structured
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Figure 2.3: Overview of a safety case and its elements

and (2) items of evidence to be clearly asserted to support the argument [40].
There are several ways to represent safety arguments. Safety arguments might
be represented by:

• Prose: Safety arguments are typically communicated in existing safety
cases through free text [45]. Perhaps this is the easiest way to repres-
ent safety arguments but not necessarily the most efficient. There are
several problems observed while reviewing real safety cases written in
prose. We describe some of them. Noticeably, not all engineers who
are involved in writing a safety case can write clear and well-structured
English [45]. An instance of this problem is, probably, the unconscious
use of the ellipsis process in natural languages when authors, uncon-
sciously, leave some non-described crucial details in some statements
because they assume that the readers are aware of the context of these
statements. For example, the following text describes an evidence item
used to support some claims about a bug tracking system of software
failures:
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“Here we provide evidence of bug tracking for the software. ‘XXXXX’ is
the database that is used to track all issues regarding this system. It has
full visibility and is extremely detailed.” What does ‘all issues’ means?
Is it the safety, software or bug issues? How about ‘visibility’? Does
the writer mean the visibility of the software or the visibility of the bug
information? [3]

There are more problems in the description above but the idea is to give
an example of the text quality problem.

Another problem observed in safety cases written in prose is the cross-
references among texts. Multiple cross-references in texts can be awk-
ward and disrupt the flow of the main argument [45].

• Tabular notations: This way to demonstrate safety arguments is not
common. The idea, however, is to arrange an argument claim together
with its supportive items of evidence in rows and columns.

• Graphical notations: This way represents the individual elements of
safety arguments (e.g., safety goals, items of evidence, assumptions, etc.)
using graphical symbols (e.g., squares, circles, parallelograms, etc.). The
Goal Structuring Notation (GSN), as well as, the Claims Argument Evid-
ence (CAE) notation are two examples of this way.

Discussing the advantages and disadvantages of the three ways listed above
is not an objective of this thesis. We do not claim that a problem in one way
can not apply to other ways. However, we use the graphical notation since it
can clearly represent the elements of safety arguments and their relationships.
Moreover, almost all of the related works to this thesis use GSN thus adopting
GSN can make the discussions, comparisons and explanations of our work
more clear with respect to other works.

The Goal Structuring Notation (GSN)

GSN is a graphical argument notation which can be used to document expli-
citly the elements and structure of an argument and the argument’s relationship
to evidence [40]. GSN’s notations are used as a means for communicating
(1) safety argument elements, claims, argument logic, assumptions, context,
evidence and (2) the relationships between these elements [4].

A goal structure shows how goals are successively solved by sub-goals until
a point is reached where claims can be supported by direct reference to evid-
ence. Using GSN, it is also possible to clarify the argument strategies adopted
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(i.e., how the premises imply the conclusion), the rationale for the approach
(assumptions, justifications) and the context in which goals are stated [4].

In GSN, rectangles are used to present the argument’s claims (Goals in
GSN). Parallelograms is used to present the argument’s logic (Strategies in
GSN). Circles are used to present items of evidence (Solutions in GSN). Ovals
with the letter ‘J’ at the bottom-right are used to present a statement of rationale
(Justifications in GSN). Ovals with the letter ‘A’ at the bottom-right are used to
present an intentionally unsubstantiated statement (Assumptions in GSN) [40].
Squashed rectangles are used to present a reference to contextual information
or a statement (Context in GSN). Hollow diamonds are applied to the centre of
an element (e.g., goal, assumptions, context, etc.) to indicate that a line of argu-
ment has not been developed (Undeveloped <element name> in GSN) [40].
SupportedBy is an evidential relationship which declares the link between a
goal and the evidence used to substantiate it [40]. Permitted supported by con-
nections are: goal-to-goal, goal-to-strategy, goal-to-solution, strategy-to-goal.
InContextOf is a link that declares a contextual relationship [40]. Permit-
ted connections are: goal-to-context, goal-to-assumption, goal-to-justification,
strategy-to-context, strategy-to-assumption and strategy-to-justification [40].

Figure 2.4 shows the principal GSN elements, and Figure 2.5 shows an
example of a safety argument represented by those elements.

Goal

Context

Assumption
A Strategy 

InContextOf

SolvedBy

Away Goal

       <Module Name>

Requires further 
development

Justification
J

Solution

ContractAway Goal

Module

Figure 2.4: Overview of the GSN principal elements

GSN has been extended to enable modularity in a safety case (i.e., module-
based development of safety cases). Hence, modular GSN enables the parti-
tioning of a safety case into an interconnected set of modules [18].
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Figure 2.5: A safety argument example represented by GSN [46]

Figure 2.4 presents the principal notations of GSN after the extension in
gray. An Away Goal with a bisecting line in the lower half of it the repeats a
claim presented in another argument module which is used to support the ar-
gument in the local module [40]. The Module Identifier provides a reference
to the module that presents the original claim. A Module reference presents a
reference to a module containing an argument. A Contract module reference
presents a reference to a contract module containing definition of the relation-
ships between two modules, defining how a claim in one supports the argument
in the other [40].

2.5 Safety Contracts
The term ‘contract’ is defined in English as: “A written or spoken agreement,
especially one concerning employment, sales, or tenancy, that is intended to
be enforceable by law” [20]. A contract is intended to (1) establish a binding
relationship between one party’s offer and the acceptance of that offer by one
or more parties, and (2) set out the terms and conditions that constrain this rela-
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tionship. Using the contracts is familiar in software development. For instance,
Design by Contract (DbC) was introduced by Meyer [47, 48] to constrain the
interactions that occur between objects. Moreover, contract-based design is an
approach where the design process is seen as a successive assembly of com-
ponents where a component behaviour is represented in terms of assumptions
about its environment and guarantees about its behavior [49].

In 1969, Hoare introduced the pre- and postcondition technique to describe
the connection (dependency) between the execution results (R) of a program
(Q) and the values taken by the variables (P ) before that program is initiated
[50]. Hoare introduced a new notation to describe this connection, as follows:

P {Q} R.

This notation can be interpreted as: “If the assertion P is true before initiation
of a program Q, then the assertion R will be true on its completion” [50].

In the context of contract-based design, a contract is conceived as an exten-
sion to the specification of software component interfaces that specifies precon-
ditions and postconditions to describe what properties a component can offer
once the surrounding environment satisfies one or more related assumption(s).

A contract is said to be a safety contract if it guarantees a property that
is traceable to a hazard. There have been significant works that discuss how
to represent and to use contracts [10, 11, 12]. In the safety critical systems
domain, researchers have used, for example, assume-guarantee contracts to
propose techniques to lower the cost of developing software for safety critical
systems. Moreover, contracts have been exploited as a means for helping to
manage system changes in a system domain or in its corresponding safety case
[13, 14, 15].

The following is an example that depicts the most common used form of
contracts:

Guarantee: The WCET of task X is ≤ 10 milliseconds
Assumptions:
X is:

1. compiled using compiler [C],

2. executed on microcontroller [M ] at 1000 MHz with caches dis-
abled, and

3. not interrupted
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In this thesis, we distinguish between safety contracts within the system
domain and safety argument contracts in the safety case. The former type of
contracts captures the dependencies among the system’s components. How-
ever, a safety argument contract captures the dependencies among the safety
case modules. More specifically, a safety argument contract describes the con-
nection between a consumer goal in one safety case module and a provider
goal in another module [40].





Chapter 3

Problem Description and
Research Goals

3.1 Problem Description
Safety assurance and certification are amongst the most expensive and time-
consuming tasks in the development of safety-critical embedded systems [51].
A key reason behind for this is the increasing complexity and size of these
systems combined with their growing market demands. The cost of system
changes including the cost of the activities that will follow them, such as re-
gression testing, are another key reason that exacerbate the problems of cost
and time in safety certification. Changing regulatory requirements, additional
safety evidence and a changing design challenge the corresponding safety case
and make safety case maintenance a costly and time-consuming activity. Co-
herent strategies are required to reduce the cost and time of safety certification.

One of the biggest challenges that affects safety case revision and mainten-
ance is that a safety case documents a complex reality that comprises a complex
web of interdependent elements. That is, safety goals, evidence, argument, and
assumptions about operating context are highly interdependent. Hence, seem-
ingly minor changes may have a major impact on the contents and structure
of the safety argument. Basically, operational or environmental changes may
invalidate a safety case argument for two main reasons as follows:

1. Evidence is valid only in the operational and environmental context in
which it is obtained, or to which it applies. During or after a system
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change, evidence might no longer support the developers’ claims be-
cause it could reflect old development artefacts or old assumptions about
operation or the operating environment.

2. Safety claims, after introducing a change, might be nonsense, no longer
reflect operational intent, or be contradicted by new data. Changing
safety claims might change the argument structure.

In order to deal with problems that impede safety cases maintenance, we
start by identifying and describing these problems.

Main Problem: Maintaining safety cases after implementing a system change
is a painstaking process. This main problem is caused by three sub-problems.

Sub-problem (1): The lack of documentation of dependencies among the safety
cases contents.

Developers of safety cases are experiencing difficulties in identifying the
direct and indirect impact of change due to high level of dependency among
safety case elements. If developers do not understand the impact of change
then they have to be conservative and do wider verification (i.e., check more
elements than strictly necessary) and this increases the maintenance cost. The
Goal Structuring Notation (GSN) [40] was introduced to provide a graphical
means of communicating (1) safety argument elements: claims (goals), argu-
ment logic (strategies), assumptions, context, evidence (solutions), and (2) the
relationships between these elements. The use of a goal based structuring ap-
proach helped to produce well-structured arguments that clearly demonstrate
the relationships between the argument claims and evidence. However, GSN
has not solved the problem of documenting dependencies among the safety
cases contents. A well-structured argument helps the developers to mechan-
ically propagate the change through the goal structure. However, it does not
evaluate whether the suspect elements of the argument are still valid or not, but
rather it can bring these elements to the developers’ attention [52].

Safety is a system level property; assuring safety requires safety evidence
to be consistent and traceable to system safety goals [5]. Moreover, current
standards and analysis techniques assume a top-down development approach
to system design. One might suppose that a safety argument structure aligned
with the system design structure would make traceability clearer. It might,
but safety argument structures are influenced by four factors: (1) modularity of
evidence, (2) modularity of the system, (3) process demarcation (e.g., the scope
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of ISO 26262 items [25]), and (4) organisational structure (e.g., who is work-
ing on what) [16]. These factors often make argument structures aligned with
the system design structure impractical. However, the need to track changes
across the whole safety argument is still significant for maintaining the argu-
ment regardless of its structure.

As explained in Section 10.2.2, a contract is conceived as an extension to
the specification of software component interfaces that specifies preconditions
and postconditions to describe what properties a component can offer once the
surrounded environment satisfies one or more related assumption(s). Based
on this description, safety contracts can be used as a means to record the de-
pendencies among system components. If we assume a one-to-one mapping
between a system component and all the claims that are articulated about it,
dependencies among safety argument elements can be conceived through the
dependencies between components of the corresponding system that are recor-
ded in contracts. In practice, this notion is far from straightforward because
it is infeasible to be achieved and impossible to prove the completeness of the
generated contracts, and the expected number of contracts will be too large to
easily manage.

Sub-problem (2): The lack of traceability between a system and its safety case.

We refer to the ability to relate safety argument fragments to system design
components as component traceability (through a safety argument). We refer
to evidence across a system’s artefacts as evidence traceability.

System developers need both top-down and bottom-up impact analysis ap-
proaches to maintain safety cases. A top-down approach is dedicated for ana-
lysing the impacted artefacts from the system domain down to the safety argu-
ment. In contrast, a bottom-up approach is dedicated for analysing impacted
elements from the argument to the corresponding artefacts such as a safety ana-
lysis report, test results or requirements specification, etc. The lack of system-
atic and methodical approaches to analysing impact of change is a key reason
behind the maintenance difficulties. However, conducting any style of impact
analysis requires a traceability mechanism between the system domain and
safety arguments.

There has been significant work on how to use safety contracts as a means
to establish the required traceability [16]. The guaranteed properties in the
contracts can be mapped to safety argument goals. If the derived safety con-
tracts are associated with the corresponding argument elements, any broken
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contracts will reveal (i.e., highlight) the associated argument elements and thus
enabling easier identification for the impacted parts in the argument due to a
system change. However, this is not as simple as it first appears because we
still do not know which contracts were affected by the change. In other words,
how does a change lead to broken contracts?

Predicting system changes before building a safety argument can be useful
because it allows the safety argument to be structured to contain the impact of
these changes. Hence, anticipated changes may have predictable and traceable
consequences that will eventually reduce maintenance effort. Nevertheless,
planning the maintenance of a safety case still faces a key problem.

Sub-problem (3): System changes and their details cannot be fully pre-
dicted and made available up front

Modularity has been proposed as the key element of the ‘way forward’ in
developing systems [53]. For modular systems, it is claimed that the required
maintenance efforts to accommodate predicted changes can be less than the
required efforts to accommodate arbitrary changes. This is because having a
list of predicted changes during the system design phase allows system engin-
eers to contain the impact of each of those changes in a minimal number of
system’s modules. Furthermore, predicting system changes before building a
safety argument can be useful because it allows the safety argument to be struc-
tured to contain the impact of these changes. Hence, predicted changes may
also have predictable and traceable consequences that will eventually reduce
the maintenance efforts. Nevertheless, planning the maintenance of a safety
case still faces two key issues: (1) system changes and their details cannot be
fully predicted and made available up front, especially, the software aspects of
the safety case as software is highly changeable and harder to manage as they
are hard to contain and (2) those changes can be implemented years after the
development of a safety case [4].

3.2 Research Goals

In this section, we derive the research questions that should address the iden-
tified problems as described in Section 3.1. We first identify the goal of our
research and revisit it for each research question.
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Main Goal: Facilitating the accommodation of system changes in safety cases
to ultimately enhance safety case maintainability.

We refer to “Maintainability” as the ability to repair or replace the im-
pacted elements of a safety case argument, without having to replace still valid
elements, to preserve the validity of the argument. The maintainability degree
is said to be high whenever the following three activities are done efficiently:

1. Identifying the impacted elements and those that are not impacted.

2. Minimising the number of impacted elements.

3. Reducing the work needed to make the impacted elements valid again.

However, the work in this thesis does not aim to measure the efficiency of
achieving the three activities, but rather it strives to enable them and improve
on them. In order to achieve the main goal, we should resolve the problems that
affect the accommodation of system changes in safety cases in Subsection 3.1.
Hence, we have formulated a set of research questions that should be answered
by the thesis contributions.

Question 1: How can the parts in the safety case impacted by a given sys-
tem change be identified?

Question 2: How can traceability between the system domain and its safety
case be established to highlight the impacted parts in one side whenever the
other side changes?

Question 3: What role can safety contracts play in maintaining safety cases
and how to derive them?

Question 4: How can a system’s potential changes be predicted?

3.3 Related Work

A consortium of researchers and industrial practitioners called the Industrial
Avionics Working Group (IAWG) has proposed using modular safety cases as
a means of containing the cost of change. IAWG’s Modular Software Safety
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Case (MSSC) process facilitates handling system changes as a series of relat-
ively small increments rather than occasional major updates. The process pro-
poses to divide the system into a set of blocks [16, 13]. Each block may corres-
pond to one or more software components but it is associated with exactly one
dedicated safety case module. Engineers attempt to scope blocks so that an-
ticipated changes will be contained within argument module boundaries. The
process establishes component traceability between system blocks and their
safety argument modules using Dependency-Guarantee Relationships (DGRs)
and Dependency-Guarantee Contracts (DGCs). Part of the MSSC process is to
understand the impact of change so that this can be used as part of producing
an appropriate argument. The MSSC process, however, does not give details
of how to do this. Moreover, the MSSC process is dependent on a list of pre-
dicted change scenarios and it is not meant to handle arbitrary changes. The
lack of systematic ways to enable better changes prediction might lead to a big
limitation to the process. The work in this thesis addresses this issue.

Kelly [54] suggests identifying preventative measures that can be taken
when constructing the safety case to limit or reduce the propagation of changes
through a safety case expressed in goal-structure terms. For instance, de-
velopers can use broad goals (goals that are expressed in terms of a safety mar-
gin) so that the these goals might act as barriers to the propagation of change as
they permit a range of possible solutions. A safety case therefore, interspersed
with such goals at strategic positions in the goal structure could effectively
contain “firewalls” to change. Some of these initial ideas concerning change
and maintenance of safety cases have been presented in [52]. However, no
work was provided to show how these thoughts can facilitate the maintenance
of safety cases.

3.4 Research Method

Research is an investigation to find solutions to scientific and social problems
through objective and systematic analysis. Research methods are basically
all the methods (e.g., theoretical procedures, experimental studies, numerical
schemes, statistical approaches, etc.) that are used by a researcher during a
research study [55].

In this section, we demonstrate the process of our research and the followed
research method. Figure 3.1 describes the process step by step.

Our research work started with a generic problem definition. The main
goal was to support ‘composable’ certification of systems or subsystems based
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Figure 3.1: Overview of our research process

on reuse of already established arguments and properties of their parts. Even
though the idea was generic it formed an initial thought that suggested what
and where to look in the literature. Reviewing the literature revealed that the
maintenance of safety cases is significant but it seems that it received no or
little support yet. Since more clarity of ideas can be acquired through study of
literature, we started reviewing the literature with this more specific research
goal. To the best of our knowledge neither the state of the art nor the state of
the practice set out supporting processes or methods that provide detailed steps
of how to analyse the impact of change on safety cases using component or
evidence traceability. Subsequently, we started digging deeper and chasing the
challenges of safety cases maintenance. After many iterations of the literature
survey and problem formulation, we derived the main research goal and other
sub-goals. These derived goals motivate us to propose systematic approaches
and techniques aimed at reducing the current required efforts for safety cases
maintenance due to system changes.

The direct result of our proposed approaches and techniques is a series
of research papers that communicates our work to the research community.
We use hypothetical and real-world systems to demonstrate our proposed ap-
proaches and techniques. Using such systems helps us to find possible limita-
tions and refine our research questions accordingly. However, we have not yet
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validated our work based on empirical methods thus we did not refine the re-
search questions with respect to validation results. We consider this as a main
part of our future work.



Chapter 4

Thesis Contributions

In this section, we present the contributions of the included papers (in Part II).
We also show how the contribution of each paper contributes as an answer to
one ore more of the formulated research questions in Section 3.2.

4.1 Contributions of the Included Papers
• Paper A: An Approach to Maintaining Safety Case Evidence After a Sys-

tem Change

The paper proposes a new approach to facilitating safety case change im-
pact analysis. In the approach, automated analysis of information given
as annotations to the safety argument highlights suspect safety evidence
to bring it to engineers’ attention. The approach facilitates identifying
the evidence impacted by change by storing additional information in
the safety argument. The paper also proposes annotating each reference
to a development artefact (e.g. an architecture specification) in a goal or
context element with an artefact version number. Each solution element
will be also annotated with a set of other extra information.

• Paper B: Facilitating the Maintenance of Safety Cases

The paper shows how to apply the Modular Software Safety Case (MSSC)
process to a real safety critical system to show how system engineers
can identify the elements in a safety argument that might be impacted
by a change. The paper extends safety contracts that were proposed by
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the MSSC process to include the additional information (From Paper
A). The safety contracts were associated with the safety argument using
the GSN context notations. This association established a traceability
between the system design and its safety case and thus it provided a
starting point for the impact analysis in the safety argument. Moreover,
the paper shows how extending the safety contract helped to (1) high-
light the affected argument elements and (2) identify inadequacies in the
generated artefacts from the development lifecycle.

• Paper C: Deriving Safety Contracts to Support Architecture Design of
Safety Critical Systems

The paper includes building the safety argument before and after intro-
ducing a change. The paper also shows how the derived safety contracts
for parts of the system design can be associated with the corresponding
argument fragments to establish a traceability between the system and
its safety case.

• Paper D: Using Sensitivity Analysis to Facilitate The Maintenance of
Safety Cases

The paper combines sensitivity analysis together with the concept of
contracts to identify the sensitive parts of a system and highlight these
parts to help the experts to make an educated decision as to whether or
not apply changes. Also, since considering a complete list of anticipated
changes is difficult, the paper shows how to determine the flexibility (or
compliance) of each component to changes. This means that regardless
of the type of changes the latter will be seen as factors to increase or
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Figure 4.1: Process diagram of the proposed technique
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decrease a certain parameter value. Thus system developers can focus
more on predicting those changes that might make the parameter value
inadmissible. The paper proposes a technique to derive safety contracts
from Fault Tree Analysis (FTA) using sensitivity analysis, and a way
to map the derived safety contracts to a safety argument to improve the
change impact analysis on the safety argument and eventually facilitate
its maintenance.

• Paper E: Deriving Hierarchical Safety Contracts

The main contributions of the paper is to identify some limitations to
SANESAM technique which is introduced in Paper D, and suggest two
options as extensions to resolve these limitations. The first option is
SANESAM+, which is useful in the case of arbitrary changes because
it calculates the Failure Probability (FP ) for all events in the FTA re-
gardless of any change scenario. The second option is SANESAM+
For Predicted Changes, this option increases the FP for only the events
that are associated to a predicted change. A derived safety contract by
SANESAM+ For Predicted Changes can guarantee higher FP than the
guaranteed FP (for the same event and using the same set of assump-
tions) in a derived safety contract by SANESAM+. Hence, the derived
safety contracts by SANESAM+ For Predicted Changes are more toler-
ant and robust than those derived by SANESAM+.

4.2 Main Contributions

4.2.1 An Approach to Facilitating Safety Case Change Im-
pact Analysis

This contribution addresses the first research question “How can the parts in
the safety case impacted by a given system change be identified? In paper
A, we provide an approach to facilitate identifying the evidence impacted by
a given change. The approach assumes that safety arguments are recorded
in GSN and suggests to store additional information in the safety arguments.
More specifically, each reference to a development artefact (e.g. an architecture
specification) in a goal or context element should be annotated with an artefact
version number. In addition, each solution element should be annotated with:

1. An evidence version number
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2. An input manifest identifying the inputs (including version) from which
the evidence was produced

3. The lifecycle phase during which the evidence obtained (e.g. Software
Architecture Design)

4. A safety standard reference to the clause in the applicable standard (if
any) requiring the evidence (and setting out safety integrity level require-
ments)

With this data, we can perform a number of automated checks to identify
items of evidence impacted by a change. For example:

1. We can determine when two different versions of the same item of evid-
ence are cited in the same argument

2. We can identify out-of-date evidence by searching for input manifests
m = {(a1, v1) , ..., (an, vn)} and artefact versions (a, v) such that ∃i •
a = ai ∧ v > vi

3. Where we know a particular artefact has changed, we can search for
input manifests containing old versions

In paper B, we extend a state of the art work by this approach. More clearly,
we propose storing additional information in the Dependency-Guarantee Con-
tracts (DGCs) of the MSSC process (described in Section 3.3). This additional
information can highlight suspect safety evidence and brings it to engineers’
attention once it changes. Figure 4.2 shows an extended DGC where the exten-
sion is represented by the gray cells. Furthermore, in paper D we recommend
using the approach in the derived safety contracts.

4.2.2 A New Safety Contract Notation
This contribution addresses the second research question “How can traceabil-
ity between the system domain and its safety case be established to highlight
the impacted parts in one side whenever the other side changes?” We refer to
the ability to relate safety argument fragments to system design components
as component traceability (through a safety argument). We refer to evidence
across a system’s artefacts as evidence traceability. In papers A and B, we
propose new annotations to the safety argument to support the evidence trace-
ability. Through the annotations, readers of the argument can know the version
of an evidence’s item, its input manifest, the lifecycle phase in which it was
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Figure 4.2: An extended DGC

obtained, and the reference of the safety standard recommendations (if applic-
able). Using the annotations can be useful to identify the suspect goals, their
arguments, as well as, the supporting evidence.

In papers B and C, we derive safety contracts that contain guarantee and as-
sumptions about system design components. The guarantees and assumptions
are represented as GSN goals while arguing about those design components.
In order to enable efficient traceability between safety argument fragments and
system design components, we use the GSN context notation. We simply cre-
ate contexts that refer to a specific safety contract name and associate them to
appropriate GSN goals to indicate that these goals are part of the associated
contract. GSN’s standard [40] states that context notations are used to present
a reference to contextual information or a statement. However, the standard
offers no normative model of how context affects the meaning of arguments.
To not misuse GSN context elements and to avoid any confusion or misinter-
pretation, we propose a new notation to indicate safety contracts both in the
safety argument and in the system artefacts. Figure 4.3 show our proposed
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<<ContractID>>

Figure 4.3: A new safety contract notation

safety contract notation. It is worth noting that neither the annotations nor
the safety contract notation shall affect the way GSN is being produced but it
brings additional information for developers’ attention.

4.2.3 Sensitivity Analysis for Enabling Safety Argument Main-
tenance (SANESAM)

In papers D and E, we propose a technique the utilises sensitivity analysis to
identify the sensitive parts of a system and records informations about these
parts using safety contracts. The main objective of the technique is to help the
experts to make an educated decision as to whether or not apply changes. This
decision is in light of beforehand knowledge of the impact of these changes
on the system and its safety case. More clearly, using the technique helps to
(1) bring to developers’ attention the most sensitive parts of a system for a
particular change and (2) manage the change by guiding the developers to the
parts in the safety argument that might be affected after applying a change.
We do not claim that using safety contracts as a way of managing change is
a new notion since it has been discussed in some works, such as [16][13], but
deriving the contracts and their contents is one of the technique’s objectives.
Proposing the technique addresses our third research question: “What role can
safety contracts play in maintaining safety cases and how to derive them?”

The technique comprises 7 steps that are distributed between the Sensitiv-
ity ANalysis for Enabling Safety Argument Maintenance (SANESAM) phase
and the safety argument maintenance phases as shown in Figure 4.1. The
steps of SANESAM phase are represented along the upper path, whilst the
lower path represents the steps of the safety argument maintenance phase. The
SANESAM phase, however, is what is being discussed in this specific contri-
bution. The rationale of SANESAM is to determine, for each component, the
allowed range for a certain parameter within which a component may change
before it compromises a certain system property (e.g., safety, reliability, etc.).
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Figure 4.4: Illustration of the role of safety contracts in FTA and safety argu-
ments

To this end, we use sensitivity analysis as a method to determine the range of
failure probability parameter for each component. Hence, the technique as-
sumes the existence of a probabilistic FTA where each event in the tree is spe-
cified by an actual (i.e., current) failure probability FPActual|event(x). In addi-
tion, the technique assumes the existence of the required failure probability for
the top event FPRequired(Topevent), where the FTA is considered unacceptable
if: FPActual(Topevent) > FPRequired(Topevent).

The technique derives safety contracts for the identified sensitive parts. The
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main objective of the contracts is to (1) highlight the sensitive events to make
them visible up front for developers attention and (2) to record the dependen-
cies between the sensitive events and the other events in the FTA. Hence, if any
contracted event has received a change that necessitates increasing its failure
probability where the increment is still within the defined threshold in the con-
tract, then it can be said that the contract(s) in question still holds (intact) and
the change is containable with no further maintenance. The contract(s), how-
ever, should be updated to the latest failure probability value. On the contrary,
if the change causes a bigger increment in the failure probability value than
the contract can hold, then the contract is said to be broken and the guaranteed
event will no longer meet its reliability target.

Figure 4.4 shows how the technique derives safety contracts from FTA and
how these contracts are associated to the safety arguments’ fragments.

4.2.4 Support the Prediction of Potential System Changes

Expectedly, if we ask system engineers to anticipate the potential future changes
for a system they might brainstorm and come up with a list of changes. How-
ever, the list can be incomplete or contain unlikely changes that might influence
the system design to little or no avail. Instead, we propose providing system
developers a list of system parts that may be more problematic to change than
other parts and ask them to choose the parts that are most likely to change. Of
course our list can be augmented by additional changeable parts that may be
provided by the system developers. This contribution addresses our fourth re-
search question: “How can a system’s potential changes be predicted?” This
contribution can be represented by the first two steps of SANESAM as shown
in Figure 4.1, as follows:

• Step 1. Apply the sensitivity analysis to a probabilistic FTA: In this step
the sensitivity analysis is applied to a FTA to identify the sensitive events
whose minimum changes have the maximal effect on the FPTopevent.
Identifying those sensitive events requires the following steps to be per-
formed:

1. Find minimal cut set MC in the FTA.

2. Calculate the maximum possible increment in the failure probabil-
ity parameter of event x before the top event FPActual(Topevent) is
no longer met, where x ∈MC and
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(FPIncreased|event(x) − FPActual|event(x)) ;
FPActual(Topevent) > FPRequired(Topevent).

3. Rank the sensitive events from the most sensitive to the less sens-
itive. The most sensitive event is the event for which the following
equation is the minimum:

(FPIncreased|event(x) − FPActual|event(x))/FPActual|event(x)

• Step 2. Refine the identified sensitive parts with system developers: In
this step, the generated list from Step 1 should be discussed with system
developers (e.g., safety engineers) and ask them to choose the sensitive
events that are most likely to change. The list can be extended to add any
additional events by the developers. Moreover, it is envisaged that some
events may be removed from the list or the rank of some of them change.





Chapter 5

Conclusions and Future
Work

Evidence might be invalidated by changes to the system design, operation,
or environmental context. Assumptions valid in one context might be invalid
elsewhere. The impact of change might not be obvious. This thesis proposes
a new method to facilitate safety case maintenance by highlighting the impact
of changes. Moreover, changes are often only performed years after the initial
design of the system making it hard for the designers performing the changes
to know which parts of the argument are affected. Using contracts to manage
system changes is not a novel idea; there has been significant work discusses
how to represent contracts and how to use them. However, there has been little
work on how to derive them. In this thesis, we propose a technique that uses
sensitivity analysis to support the prediction of future changes and to derive
safety contracts. We also propose a way to map the derived safety contracts
to a safety argument to improve the change impact analysis on the safety ar-
gument and eventually facilitate its maintenance. In this chapter, we provide
the concrete contributions of this thesis as a conclusion and we also suggest
possible future research directions.

5.1 Conclusions
The main goal of this thesis is to facilitate the accommodation of system changes
in safety cases to ultimately enhance safety case maintainability. A complete
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approach to managing safety case change would include (a) a set of predicted
change scenarios, (b) mechanisms to structure the argument so as to contain the
impact of predicted changes, and (c) means of assessing the impact of change
on all parts of the argument. The main contributions of the thesis are:

1. The thesis proposes a technique that uses sensitivity analysis to facilitate
the maintenance of a safety case. The technique comprises 7 steps that
are distributed between the Sensitivity ANalysis for Enabling Safety Ar-
gument Maintenance (SANESAM) phase and the safety argument main-
tenance phases as shown in Figure 4.1. The steps of the SANESAM
phase are represented along the upper path, whilst the lower path rep-
resents the steps of the safety argument maintenance phase. SANESAM
(steps 1-4 in Figure 4.1) is the main focus of the thesis. We use sens-
itivity analysis to support change prediction and prioritisation. We also
use safety contracts to record the information about changes that will ul-
timately advise the engineers what to consider and check when changes
actually happen (Paper D and E).

2. The thesis proposes an extension to the safety contracts that were intro-
duced by the MSSC process to include additional information that fa-
cilitates impact analysis (Paper B). Additionally, The thesis proposes a
method to associate derived safety contracts of system components with
the corresponding parts in the safety arguments (Paper C).

3. The thesis proposes a new approach to facilitating safety case change
impact analysis. In (paper A and B), automated analysis of informa-
tion given as annotations to the safety argument highlights suspect safety
evidence to bring it to engineers’ attention. This contribution deals with
steps 5 and 6 in Figure 4.1.

The relationship between the included papers and the identified research
questions in Section 3.2 is summarised in Table 5.1.

Question 1 Question 2 Question 3 Question 4
Paper A X
Paper B X X
Paper C X
Paper D X X X
Paper E X X X

Table 5.1: Thesis contributions to research questions



5.2 Future Work 47

5.2 Future Work
In this section we present some possible future work as follows:

• Extend and automate our approach of facilitating safety case change
impact analysis: In Section 4.2.1, we discussed an approach to facilit-
ating safety case change impact analysis as a contribution to this thesis.
We have not considered the full range of properties that we could check
with automated analyses or the annotations necessary to support those
analyses. We have likewise not yet studied the feasibility or value of
such automated checks by implementing and applying them. We leave
these efforts to future work.

• Describe the second part of the sensitivity based technique: In Sec-
tion 4.2.3, we discussed the first part of the technique as a contribution
to this thesis. As a future plan, we want to describe the second part of the
technique (the last three steps of the technique as shown in Figure 4.1).
In addition, we plan to create a case study to validate both the feasibility
and efficacy of SANESAM and the second part of the technique.
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Abstract

Developers of some safety critical systems construct a safety case. Developers
changing a system during development or after release must analyse the change’s
impact on the safety case. Evidence might be invalidated by changes to the
system design, operation, or environmental context. Assumptions valid in one
context might be invalid elsewhere. The impact of change might not be ob-
vious. This paper proposes a method to facilitate safety case maintenance by
highlighting the impact of changes.
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6.1 Introduction
Developers of some safety critical systems construct a safety case comprising
both safety evidence (e.g. safety analyses, software inspections, or functional
tests) and a safety argument explaining that evidence. The safety argument
shows which claims the developer uses each item of evidence to support and
how those claims, in turn, support broader claims about system behaviour, haz-
ards addressed, and, ultimately, acceptable safety. Changes to the system dur-
ing or after development might invalidate safety evidence or argument. Evid-
ence might no longer support the developers’ claims because it reflects old
development artefacts or old assumptions about operation or the operating en-
vironment. In the updated system, existing safety claims might be nonsense,
no longer reflect operational intent, or be contradicted by new data. To main-
tain the safety case after the system is changed, developers must analyse the
change’s impact. This analysis is traditionally done by hand: developers de-
termine whether the evidence still supports the claims made of it, check to see
whether new or updated safety requirements are reflected in the argument, and
manually review the argument’s logic. In this paper, we propose a method
to facilitate safety case change impact analysis by automatically highlighting
some kinds of impacts.

For the sake of simplicity, we assume in this paper that safety arguments
are recorded in the Goal Structuring Notation (GSN) [1]. However, the method
we propose might (with suitable adaptations) be suitable for use with other
graphical assurance argument notations.

6.2 Our Proposal
A complete approach to managing safety case change would include both (a)
mechanisms to structure the argument so as to contain the impact of predicted
changes and (b) means of assessing the impact of change on all parts of the
argument. In this paper, we focus on identifying the evidence that must be
updated to reflect any given change.

To facilitate identifying the evidence impacted by change, we propose stor-
ing additional information in the safety argument. We propose annotating each
reference to a development artefact (e.g. an architecture specification) in a goal
or context element with an artefact version number. We also propose annotat-
ing each solution element with:

1. An evidence version number
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2. An input manifest identifying the inputs (including version) from which
the evidence was produced

3. The lifecycle phase during which the evidence obtained (e.g. Software
Architecture Design)

4. A safety standard reference to the clause in the applicable standard (if
any) requiring the evidence (and setting out safety integrity level require-
ments)

With this data, we can perform a number of automated checks to identify
items of evidence impacted by a change. For example:

1. We can determine when two different versions of the same item of evid-
ence are cited in the same argument

2. We can identify out-of-date evidence by searching for input manifests
m = {(a1, v1) , ..., (an, vn)} and artefact versions (a, v) such that ∃i •
a = ai ∧ v > vi

3. Where we know a particular artefact has changed, we can search for
input manifests containing old versions

If we had further information which inputs were used to produce each input
listed in each input manifest, each input that was used to produce those, and so
on, we could extend checks (2) and (3) above to indirect inputs. For example,
suppose that life testing is used to establish the reliability of a component,
that this component and its reliability appear in a Failure Modes and Effects
Analysis (FMEA), and that the FMEA results are used in a Fault Tree Analysis
(FTA). With the additional information, we could compute a closure of the
FTA’s input manifest that would include the life testing results.

Other analyses may be possible. For example, we suggest storing the safety
standard reference to facilitate analysis of impacts that change the safety integ-
rity level of a requirement. However, we have not yet thought these through.

6.3 An Illustrative Example
To illustrate our proposal, consider how the analysis might work on a sample
system. Figure 6.1 presents part of an assurance argument we built for a spe-
cimen safety critical system we built in prior work [2]. The Fuel Level Estim-
ation System (FLES) is meant to monitor fuel levels to prevent loss of engine
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power due to running out of fuel. (Running out of fuel is a serious problem in
heavy road vehicles because steering and braking mechanisms are powered by
the engine; loss of engine power while driving could result in an accident.)

The argument fragment concerns model checking analyses of the system
architecture [2]. The FLES architecture, specified in the Architecture Ana-
lysis and Design Language (AADL) [3], comprises five threads: SoftwareIN,
FuelEstimation, FuelLevelWarning, Other Functions and SoftwareOUT.
These threads run on a single-core microprocessor with non-preemptive schedul-
ing. Using the UPPAAL model checker, we verified that the system as specified
in the architecture is schedulable and free from livelock and deadlock. Rect-
angular goal element G:LivelocksFree represents the claim that the architecture
is free from livelock. G:LivelocksFree’s connection to round solution element
S:CtrlFloAn shows that this claim is supported by the control flow analysis done
using the model checker.

The green elements in Figure 6.1 represent the annotations described in
Section 6.2. (These need not necessarily be presented to the user in visual de-
pictions.) Let us consider an example change scenario to illustrate how this
information aids safety case change impact analysis. Suppose that the archi-
tecture was simplified by removing the FuelEstimation thread and moving
the tasks it contains to the FuelLevelWarning thread. Suppose that an engin-
eer making this change had updated the artefact version annotation(s) in part of
the argument referring to the functional behaviour of in those threads. An auto-
mated implementation of check (2) described in Section 6.2 could highlight the
need to re-run the control flow analysis as well. If the new version of the ar-
chitecture is version 1.1, analysis of the manifest associated with S:CtrlFloAn
would reveal evidence based on an older version of the architecture and tools
could flag S:CtrlFloAn as out of date and suspect.

Automated analysis might also highlight goal G:EstimatorArchFree because
its artefact version annotation refers to an out-of-date version of the AADL
architecture. The goal and its supporting argument are suspect because they
might refer to parts of the architecture that no longer exist or make claims
about the architecture that are no longer true.

6.4 Related Work

Weaver, McDermid, and Kelly proposed characterising safety evidence accord-
ing to, amongst other things, the type of technique that produced it (e.g., ana-
lysis, testing, inspection, etc.) [4]. Their characterisation was meant to fa-
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G:EstimatorArchFree:
Estimator architecture is 
free from common errors

G: DataAccess:
The architecture allows 
any component to access 
the data it needs

G:DeadlocksFree:
The architecture is free from 
deadlocks

S:DataFloAn:
Data flow 
Analysis

S:CtrlFloAn:
Control flow 
Analysis

G:LivelocksFree:
The architecture is free from 
livelocks

St: ClsOfCommErr
Argue over classes 
of common errors

......

Artefact Version: v.1.0 

Evidence Version: v.1.0 

Input manifest: {(Uppaal, 1.5), 
(Architecture, 1.0)}

Lifecycle phase: Software Architecture 
Design 

Safety standard reference: §7.4.5-b 
and Annex D.2.2 — ASIL "C" 

Figure 6.1: Model Checking Module — Argument Fragment [2].

cilitate judgment of the sufficiency of the evidence. We propose a different
characterisation of safety evidence with a different purpose.

Tracking version information and using it to determine when artefacts are
out of date is by no means new; make does this. Our contribution lies in
applying this idea to safety arguments and safety case change impact analysis.

6.5 Conclusion
Maintaining safety arguments after implementing a system change is painstak-
ing process. In this paper we propose a new approach to facilitating safety case
change impact analysis. In the approach, automated analysis of information
given as annotations to the safety argument highlights suspect safety evidence
to bring it to engineers’ attention. We illustrated the approach with an example
drawn from an automotive system.

We have not considered the full range of properties that we could check
with automated analyses or the annotations necessary to support those ana-
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lyses. We have likewise not yet studied the feasibility or value of such auto-
mated checks by implementing and applying them. We leave these efforts to
future work.
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Abstract

Developers of some safety critical systems construct a safety case com-
prising both safety evidence, and a safety argument explaining that evidence.
Safety cases are costly to produce, maintain and manage. Modularity has been
introduced as a key to enable the reusability within safety cases and thus re-
duces their costs. The Industrial Avionics Working Group (IAWG) has pro-
posed Modular Safety Cases as a means of containing the cost of change by
dividing the safety case into a set of argument modules. IAWG’s Modular
Software Safety Case (MSSC) process facilitates handling system changes as
a series of relatively small increments rather than occasional major updates.
However, the process does not provide detailed guidelines or a clear example
of how to handle the impact of these changes in the safety case. In this paper,
we apply the main steps of MSSC process to a real safety critical system from
industry. We show how the process can be aligned to ISO 26262 obligations
for decomposing safety requirements. As part of this, we propose extensions to
MSSC process for identifying the potential consequences of a system change
(i.e., impact analysis), thus facilitating the maintenance of a safety case.
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7.1 Introduction
Constructing safety cases receives significant industrial attention as it is re-
quired for the certification process of many safety critical system domains. A
safety case comprises both safety evidence (e.g. safety analyses, software in-
spections, or functional tests) and a safety argument explaining that evidence.
Safety arguments show how system developers use each item of evidence to
support claims, and how those claims, in turn, support broader claims about
system behaviour, hazards addressed, and, ultimately, acceptable safety [1].
The production, management and evaluation of safety cases are considered
difficult to achieve and time consuming. As an anecdotal example, the size of
the preliminary safety case for surveillance on airport surfaces with ADS-B [2]
is about 200 pages, and it is expected to grow as the operational safety case is
created [3]. It is worth noting that a safety case is a living document that grows
as the system grows. A safety case should be maintained as needed whenever
some aspect of the system, its operation, its operating context, or its operational
history changes.

Operational or environmental changes may invalidate a well-founded safety
argument for different reasons as follows:

1. Changing the argument structure.

2. Evidence is valid only in the operational and environmental context in
which it is obtained, or to which it applies. During or after a system
change, evidence might no longer support the developers’ claims be-
cause it could reflect old development artefacts or old assumptions about
operation or the operating environment.

3. In the updated system, existing safety claims might be nonsense, no
longer reflect operational intent, or they might be contradicted by new
data.

The certification process must be repeated after applying changes to an
already certified system (i.e., re-certification). In other words, the safety case
of the certified system should show that the system is acceptably safe to op-
erate in its intended context after applying the changes. In order to achieve
the re-certification, a safety argument should be maintained by determining
whether the item of evidence still supports the claims made about it, check
whether new or updated safety requirements are reflected in the argument, and
review the overall logic of the argument. The main problem though is that
the elements of the safety argument (i.e., safety goals, evidence, argument and



68 Paper B

the operating context) are highly interdependent so that what can be seen as a
minor change in the argument may have a major impact to the contents and the
structure of that argument [4]. Hence, maintaining a safety argument requires
high awareness of the dependencies among its contents and how a change to
one part may invalidate other parts. Without this vital awareness, a developer
performing impact analysis might not notice that a change has compromised
system safety. The Ariane 5 rocket which crashed forty seconds after take-off
in 1996 is a costly example of omitting affected parts of a system due to a
change. Ariane 5 inertial reference system (SRI) tried to stuff a 64-bit number
into a 16-bit space which led to a conversion error. This part of the system
was reused from an older version of the SRI that was implemented for Ariane
4 rocket. Seemingly, an assumption was made as since the code was success-
fully used in an older version of the system then it is suitable to be reused for
the newer version [5]. Hence, system developers focused on more complex
parts of the system and no attention was paid to the out-of-date code or to any
related assumption. A fundamental step prior to update a safety case due to a
change is to assess the impact of this change in the safety argument. This is
referred to as safety case impact analysis. It is probably clearer now how the
continuous maintenance efforts to keep the safety case always up-to-date add
more burden on top of the discussed difficulties above. Moreover, the cost of
change has become a major part of the cost of ownership of a system [6].

As a response to these challenges, an ambition emerged to modularize
safety cases by applying the principles of software architecture and design to
the safety case domain. The main idea of the modularity is to align boundar-
ies of safety case modules with design boundaries to contain changes. Having
done that, a change to a design element should then affect the corresponding
safety case module, and not impact the entire safety argument [6].

To this end, the Industrial Avionics Working Group (IAWG) represented
by a team of highly experienced engineers, experts in software development
and safety assurance, defined the Modular Software Safety Case (MSSC) pro-
cess [7] as a means for containing the cost of change by dividing the safety
case into a set of argument modules. The process has been refined through
experience gained from large-scale trial applications of the prototype process,
and further trials of the refined process. MSSC process establishes component
traceability mechanism between system design elements and safety argument
modules by using the concepts of Dependency-Guarantee Relationship (DGR)
and Dependency-Guarantee Contract (DGC). The former is to highlight, and
describe, safety-related properties and behaviour of a single design element. In
other words, DGRs capture the relationships between input and output ports for
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each design element. A DGC, however, is used to match one design element’s
dependencies with another design element’s guarantees [8].

The contributions of this paper are as follows: demonstrating how to ap-
ply the IAWG MSSC process. More specifically, apply the process to the Fuel
Level Estimation System (FLES), which is a real safety critical system that
was implemented by Scania AB (a major Swedish automotive industry manu-
facturer) to show (1) how the DGR and DGC concepts can be used to capture
the safety requirements of the FLES, (2) how these two concepts can be used to
build a safety case in conformance to the requisites of ISO 26262 for certific-
ation, and (3) extending IAWG’s DGC to improve the impact analysis process
thus facilitating the maintenance of safety cases. This paper is composed of
four further sections. In Section 2 we present background information. In Sec-
tion 3 we present the IAWG MSSC process. In Section 4 we use the FLES to
demonstrate the application of the IAWG MSSC process. Finally, in Section 5
we draw conclusions and identify future work.

7.2 Background

This section presents background information about the safety standard ISO
26262, the Goal Structuring Notation (GSN), safety case maintenance and cur-
rent challenges, and an approach to maintaining safety case evidence after a
system change.

7.2.1 The Safety Standard ISO 26262

The rationale behind the selection of this standard for this work is that it is func-
tional safety standard was adapted for automotive electric/electronic systems
that Scania is working to qualify for its certification stamp. Since FLES is one
of other systems in Scania’s trucks, it is very appropriate to consider ISO 26262
for the given example in this paper. ISO 26262 regulates the automotive do-
main, more specifically, the standard is intended to be applied to safety-related
systems that include one or more electrical and/or electronic systems and that
are installed in series production passenger cars with a maximum gross vehicle
mass up to 3500 kg [9]. In this subsection, however, we focus only on the
part of the standard that regulates the decomposition of safety requirements.
The following parts are summarized descriptions of the safety requirements
decomposition directly from ISO 26262 guidelines:
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1. Successively after identifying hazards, the standard recommends to for-
mulate the Safety Goals (SGs) related to the prevention or mitigation
of the hazardous events, in order to avoid unreasonable risk. Basically,
hazard analysis, risk assessment and Automotive Safety Integrity Level
(ASIL) are used to determine the safety goals such that an unreasonable
risk is avoided. The standard defines a safety goal as a top-level safety
requirement resultant of the hazard analysis and risk assessment. Safety
goals are not expressed in terms of technological solutions, but in terms
of functional objectives. [9]

2. Identification of safety goals leads to the functional safety concept. The
objective of the functional safety concept is to derive the Functional
Safety Requirements, from the safety goals, and to allocate them to the
preliminary architectural elements. To comply with the safety goals, the
functional safety concept contains safety measures, including the safety
mechanisms, to be implemented in the item’s architectural elements and
specified in the functional safety requirements. The standard defines
a functional safety requirement as a specification of implementation-
independent safety behaviour, or implementation-independent safety meas-
ure, including its safety-related attributes. [9]

3. Finally, both the functional concept and the preliminary architectural as-
sumptions lead to the technical safety concept. The first objective of this
concept is to specify the Technical Safety Requirements and their alloc-
ation to system elements for implementation by the system design. The
second objective is to verify through analysis that the technical safety re-
quirements comply with the functional safety requirements. The stand-
ard defines a technical safety requirement as a requirement derived for
implementation of associated functional safety requirements. [9]

7.2.2 The Goal Structuring Notation (GSN)

A safety argument organizes and communicates a safety case, showing how the
items of safety evidence are related and collectively demonstrate that a system
is acceptably safe to operate in a particular context. GSN [10] provides a graph-
ical means of communicating (1) safety argument elements, claims (goals), ar-
gument logic (strategies), assumptions, context, evidence (solutions), and (2)
the relationships between these elements. The principal symbols of the nota-
tion are shown in Figure 7.1 (with example instances of each concept).
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A goal structure shows how goals are successively broken down into (‘solved
by’) sub-goals until a point is reached where claims can be supported by direct
reference to evidence. Using GSN, it is also possible to clarify the argument
strategies adopted (i.e., how the premises imply the conclusion), the rationale
for the approach (assumptions, justifications) and the context in which goals
are stated. It is worth noting that GSN has been extended to enable modularity
in a safety case (i.e., module-based development of the safety case). Hence,
modular GSN enables the partitioning of a safety case into an interconnected
set of modules.

Goal

Context

Assumption
A Strategy 

InContextOf

SolvedBy

Away Goal

       <Module Name>

Requires further 
development

Justification
J

Solution

ContractAway Goal

Module

Figure 7.1: Overview of Goal Structuring Notation (GSN)

7.2.3 Safety Case Maintenance and Current Challenges

A safety case is a living document that should be maintained whenever some
aspect of the system, its operation, its operating context, or its operational his-
tory changes. In this paper, the process of updating the safety case after imple-
menting a system change is referred to as safety case maintenance.

Developers of safety critical systems experience difficulties in safety case
maintenance after implementing a system change. One of the main difficulties
is identifying the impacted parts in the safety argument. The traceability between
a system design and the corresponding safety argument contents, and the de-
pendency among the contents of safety argument are considered two main bur-
dens that encounter the identification of the impacted parts in an argument.
Moreover, individual systems tend to become more complex as they are de-
signed and constructed, this increasing complexity, as well as, the number
of evidence items in a safety argument can exacerbate the maintenance dif-
ficulties. Any approach intends to manage safety argument due to system
changes should consider:
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1. A means for clearly capturing the underlying rationale of the safety argu-
ment in order to assess the impact of change on all parts of the argument.

2. A traceability mechanism between a system domain and the safety ar-
gument to support the ability to track the changed part from the system
design down to the corresponding affected part in the safety argument.

3. Mechanisms to structure the argument so as to contain the impact of
changes.

The use of GSN approach helps to produce well-structured arguments that
clearly demonstrate the argument elements and their interdependencies (the re-
lationships between the argument claims and evidence) [11, 12, 4]. Using GSN
makes capturing the underlying rationale of the argument easier, which will in
turn, help to scope areas affected by a particular change and thus helps the
developers to mechanically propagate the change through the goal structure.
However, GSN does not tell if the suspect elements of the argument in ques-
tion are still valid. For example, having made a change to a model we must
ask whether goals articulated over that model are still valid. Expert judgment,
therefore, is still required in order to answer such questions. Hence, using GSN
does not directly help to maintain the argument after a change, but it can more
easily determine the questions to be asked to do so [12].

Current standards and analysis techniques assume a top-down development
approach to system design. For component-based systems, monolithic evid-
ence produced via these approaches is difficult to maintain those systems be-
cause it is hard to match a safety argument that has a different structure than
the system design structure. However, safety is a system level property and as-
suring this property requires every piece of evidence generated for each com-
ponent to be linked and compared to demonstrate consistency [7]. One may
think that the matching (i.e., optimal level of traceability) can be achieved by
designing a safety argument structure to be similar to the system design struc-
ture, where a clear one-to-one mapping of a system design component to a
safety argument module can be established (see Figure 7.2).

Theoretically, a one-to-one mapping may facilitate tracking down the com-
ponents of a system design to the safety argument, but it is impractical due to
four key factors: (1) modularity of evidence, (2) modularity of the system, (3)
process demarcation (e.g., ISO 26262 items [9]), and (4) organisational struc-
ture (e.g., who is working on what). These factors have a significant influence
when deciding upon the safety argument structure.

Enabling component and evidence traceability is very useful to analyse the
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Comp	X	

System	Design	 Safety	Argument	Fragment	For	A	Component	

Gn: Functional safety 
requirement [n] is 
fulfilled

E1 E2

Sub-compX1	

Sub-compX1	

SCX1	
(TSR)	

	

Sub-compy1	

SCy1	
(TSR)	

Sub-compz1	

SCz1	
(TSR)	

	

Context:	
Gn: is captured 
by DGCx	

DGCX		

(FSR)	
	

Sub-compY1	 Sub-compz1	

Argument	 Argument	 Argument	

E3

Figure 7.2: An illustration of the relationship between a system design and its
safety argument

impact of change on a safety argument, and eventually, facilitates the overall
maintenance of the safety case. This paper deals with two forms of traceabil-
ity: component (i.e. safety argument fragment to system design component)
and evidence (i.e. safety argument fragment to supporting evidence). How-
ever, to the best of our knowledge there are no supporting process or method
that provides detailed steps of how to analyse the impact of a change on a
safety case using component or evidence traceability. That said there are well-
regarded industry-lead initiatives that assume such methods exist. MSSC Pro-
cess is one such example.

In this paper, we use the word ‘traceability’ to indicate two different things.
Firstly, we refer to the ability to relate safety argument fragments to system
design components as component traceability mechanism (through a safety ar-
gument). Secondly, we refer to the ability to relate safety argument evidence
across system’s artefacts as evidence traceability.

7.2.4 Maintaining Safety Case Evidence after a System Change

In our previous work [1], we proposed a new approach to facilitating safety
case change impact analysis. In the approach, automated analysis of informa-
tion given as annotations to a safety argument (recorded in GSN) highlight sus-



74 Paper B

pect safety evidence to bring it to engineer’s attention. We proposed annotating
each reference to a development artefact (e.g. an architecture specification) in
a goal or context element with an artefact version number. We also proposed
annotating each solution element with:

1. An evidence version number.

2. An input manifest identifying the inputs (including version) from which
the evidence was produced.

3. The lifecycle phase during which the evidence obtained (e.g. Software
Architecture Design).

4. A safety standard reference to the clause in the applicable standard (if
any) requiring the evidence (and setting out safety integrity level require-
ments).

With this data, we can perform a number of automated checks to identify
items of evidence impacted by a change. For example:

1. We can determine when two different versions of the same item of evid-
ence are cited in the same argument.

2. We can identify out-of-date evidence by searching for input manifests
m = {(a1, v1) , ..., (an, vn)} and artefact versions (a, v) such that ∃i •
a = ai ∧ v > vi.

3. Where we know a particular artefact has changed, we can search for
input manifests containing old versions.

If we had further information which inputs were used to produce each in-
put listed in each input manifest, each input that was used to produce those,
and so on, we could extend checks (2) and (3) above to indirect inputs. For
example, suppose that life testing is used to establish the reliability of a com-
ponent, that this component and its reliability appear in a Failure Modes and
Effects Analysis (FMEA), and that the FMEA results are used in a Fault Tree
Analysis (FTA). With the additional information, we could compute a closure
of the FTA’s input manifest that would include the life testing results. Other
analyses may be possible. For example, we suggest storing the safety standard
reference to facilitate analysis of impacts that change the safety integrity level
of a requirement.
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7.3 Modular Software Safety Case (MSSC) Pro-
cess

IAWG has proposed Modular Safety Cases as a means of containing the cost
of change by dividing the safety case into a set of argument modules. IAWG’s
MSSC process facilitates handling system changes as a series of relatively
small increments rather than occasional major updates (i.e., incremental cer-
tification). MSSC process manages system changes by breaking down a sys-
tem into blocks. The process defines the block as an identifiable part (or group
of parts) of the Software implementation that is chosen by the safety case ar-
chitect to be the subject of a safety case module. Blocks cover all parts of a
system design where each block may correspond to a single or multiple soft-
ware component or unit of design, but it is subject to only one dedicated safety
case module. In other words, each system block has one-to-one relationship
with a safety argument module. [7]

The process establishes component traceability mechanism between sys-
tem blocks and safety argument modules by using the concepts of DGR and
DGC as shown in Figure 7.3 and 7.4, respectively. The former is to high-
light and describe safety-related properties and behaviour of a system block.
In other words, a DGR captures the relationships between input and output
ports for each design block. A DGC, however, is used to match one block’s
dependencies with another block’s guarantees [7, 13]. Creating DGCs leads to
the creation of a ‘daisy chain’ as a dependency in one block and a guarantee
offered by another, whose associated dependencies are supported by further
guarantees, and so on [13].

MSSC process is very dependent on the anticipated changes that should be
identified in the first step of the process. The anticipated change scenarios will
bring the highly likely changeable parts in the system to developer’s attention.

Figure 7.3: A DGR tabular representation
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Figure 7.4: A DGC tabular representation

These scenarios are considered by system developers so that they can man-
age the containment of the impact of these changes in the system blocks bound-
aries more efficiently. Having done this, the impact of a change in one safety ar-
gument module will hopefully not propagate into another module, but it might
impose one (or more) safety case contract update, and even if it is then the cost
of changes can be minimised.

It is very important to distinguish between a DGC and a safety case con-
tract. The former captures the required link between a dependency declared in
one DGR and a satisfying guarantee provided by another. Hence, DGCs are
created on the system design level. A safety case contract, however, is used to
describe the linkage between a consumer goal in one Safety Case Module and
a provider goal in another [7]. This is formed through the new GSN extension
for modularity.

Figure 7.5 shows an example to describe the relationships between system
blocks, DGR, DGC, safety case contract and the safety case architecture. It is
worth noting that DGCs may be linked to safety case contracts.

The following is a list summarises MSSC process’s steps [7]:

Step 1. Analyse the product lifecycle: It is important to predict the potential
change scenarios over the projected system lifetime. One reason for that
is because change scenarios will help assess the potential benefits that
may be achieved through modular certification. If as a result of the ana-
lysis there are no changes expected, then the full benefits of modular
certification may not be realised, and it may therefore be decided not to
adopt a modular approach. [13]

Step 2. Optimise software design and safety case architecture: Since each
system block is subject to safety case module. First, we need to di-
vide the system into blocks and form public interfaces for the block
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Figure 7.5: Linking blocks using DGRs and DGCs

safety case modules. All elements of the system are split into blocks
and each corresponding block safety case module should present an ar-
gument about the safety-related behaviour of that block. Second, other
necessary modules will be added, for example, software safety require-
ments, software system wide issues module, configuration data module,
safety case contract modules, etc. Finally, we should define safety case
integration modules — these provide the argument about the combined
behaviour of interdependent safety case modules. [7]

Step 3. Construct safety case modules: A hazard mitigation argument should
be formed and derived safety requirements are directed to SW blocks
safety case modules. The guaranteed behaviour offered by each block in
support of these is captured, along with dependencies on other blocks. A
Block Safety Case Module is constructed providing argument and evid-
ence for each Block based on the Guarantees and Dependencies. [7]

Step 4. Integrate safety case modules: The safety case modules are integ-
rated so that claims requiring support in one Safety Case Module are
linked to claims providing that support in others. This step of the pro-
cess results in a fully integrated Safety Case. [7]

Step 5. Assess/Improve change impact: When a system change is implemen-
ted, the impact on the design modules and associated Safety Case Mod-
ules is assessed. [7]
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Step 6. Reconstruct safety case modules

Step 7. Reintegrate safety case modules

Step 8. Appraise the safety case

The guidance of MSSC process [7] does not show detailed information
about how to follow some steps including the impact analysis part. The provided
example by the process abstracts the impact analysis step and shows its results
only. The main work in this paper is not to consider all parts of MSSC process
to give a full example on how to apply them but we rather focus on the impact
analysis part and necessary prerequisite steps only.

7.4 Illustrative Example: Fuel Level Estimation
System (FLES)

In our previous work [14, 15], we used FLES as a specimen system to illustrate
the contribution of the architectural model checking to conduct preliminary
safety assessment in line with the safety standard ISO 26262.

Thread System DataProcess
Data port

Data access

Event data port

RTDB

SoftwareIN SoftwareOUT

(Before change)
FuelLevelWarning

(After change)
DistanceCalc

DistanceCalcFuelEstimation

Estimator ECU
.

ConsumptionRate

Engine Manager ECU

CA
N 

BU
S

Dist2Emp

LowLed

Presenter ECU

Fuel_guage

AADL Key Notations:

Figure 7.6: An AADL representation of Estimator’s software architecture
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We used the Architecture Analysis and Design Language (AADL) to model
the system as shown in Figure 7.6. In our current work we reuse the description
as well as the AADL of FLES to partially apply MSSC process. We also pro-
pose a system change scenario and examine how the method helps to highlight
the affected safety argument elements.

7.4.1 FLES Description

FLES Technical details

FLES estimates the volume of fuel in a heavy road vehicle’s tank and presents
this information to the driver through a dashboard mounted fuel gauge. Ad-
ditionally, the system must warn the driver when this volume falls below a
predefined threshold. This system is considered safety critical because its fail-
ure could lead to loss of control of the vehicle. For example, if there is less fuel
remaining than the driver thinks, the vehicle might run out, bringing it to an
unexpected halt, which can be hazardous in certain contexts. As well as bring-
ing the vehicle to a halt, the power steering and braking mechanisms could also
fail. These failures would compromise vehicle controllability and could also
lead to a crash.

Fuel volume is estimated using a float sensor in the fuel tank. As the po-
sition of the float is affected by vehicle motion (negotiating steep hills, sharp
bends, or rough terrain), the system has some challenging issues to be tackled
within its design. The system must process this signal so that at all times the
gauge displays an accurate measurement of the total volume of fuel remain-
ing. The sensed value is sent to the Estimator ECU. An Analogue to Digital
Converter (ADC) is used to convert and then the SoftwareIN thread reads the
sensed fuel float position from the ADC and stores it in the real-time database
RTDB. FuelEstimation reads this sensor value and computes an estimate of the
current fuel volume in liters. When the vehicle might be moving (i.e., its park-
ing brake is not set), the FuelEstimation thread uses a Kalman filter algorithm
to reduce the noise introduced by vehicle motion. This algorithm requires the
recent history of fuel volume estimates to be stored. FuelEstimation outputs
a smoothed fuel volume estimate to the RTDB. FuelLevelWarning then reads
this estimate, compares it to the low-fuel warning threshold (i.e., < 7% of the
fuel tank capacity), and writes the low-fuel warning status to the RTDB. Soft-
wareOUT reads the fuel volume and low-fuel warning status from the RTDB
and sends these over the Controller Area Network (CAN) bus to the Presenter
ECU. The Presenter ECU adjusts the actuators (i.e., fuel gauge and low-fuel
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lamp) on the dashboard according to the received values.

FLES safety analysis

Hazard analysis and risk assessment made for FLES led to one hazard identific-
ation: “Unannunciated lack of fuel”. Unannunciated is interpreted as (1) fuel
estimates and low-fuel warning are not displayed at all, and (2) it is displayed
incorrectly since the estimates are not identical to the real amount of fuel in
the vehicle’s tank. The determined ASIL for the fuel level estimation system
is “C”. The derived safety requirements to mitigate the hazard are decomposed
as recommended by ISO 26262 as follows:

1. Safety goals: Two safety goals were derived:

(a) SG1.0ImplAssur: Vehicle’s driver shall be constantly aware of the
actual remaining fuel in the tank whenever the engine is in opera-
tion.

(b) SG2.0ImplAssur: Vehicle’s driver shall be warned when the fuel
level is low and the engine is in operation.

2. Functional Safety Requirements (FSR):

• Two functional safety requirements were identified to satisfy SG1.0ImplAssur:

(a) ConFSR1.0.1.0: A fuel gauge should promptly annunciate the
actual fuel amount in the tank whenever the engine is in oper-
ation.

(b) ConFSR1.0.2.0: The fuel gauge shall not display a fuel estim-
ate that deviates more that 5% from the actual fuel volume in
the tank.

• One functional safety requirement was identified to satisfy SG2.0ImplAssur:

(c) ConFSR2.0.1.0: A fuel-low warning lamp should be promptly
turned ON when the fuel level in the tank falls below a certain
level whenever the engine is in operation.

3. Technical Safety Requirements (TSR): There is a large set of technical
safety requirements that was identified to specify the functional safety re-
quirements. The work of the paper, however, considers the minimum set
of technical safety requirements that specify ConFSR1.0.1.0 and Con-
FSR2.0.1.0 as shown in Table 7.1.
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Table 7.1: A Subset of the identified TSRs for FLES

FSR ID TSR ID Description
FSR1.0.1.0 F1010TSR1 The FuelEstimation thread shall

provide the totalFuelLevel value
FSR1.0.1.0 F1010TSR2 The SoftwareOUT shall send

the totalFuelLevel value to the Presenter
FSR2.0.1.0 F2010TSR1 The FuelLevelWarning thread shall

provide lowFuelWarning
value

FSR2.0.1.0 F2010TSR2 The SoftwareOUT shall send
the lowFuelWarning value to the Presenter

7.4.2 Applying the IAWG MSSC Process

A list of anticipated change scenarios during FLES’s lifetime is required. This
list may help assessing the potential benefits that may be achieved through
modular certification. In this section, we present the details of the various
MSSC process steps with respect to FLES:

Analyse the product lifecycle and identify change scenarios

We assume one potential change for FLES. The Distance To Empty feature
might be added to FLES. The role of this anticipated change is to determine
the distance (Km) that a vehicle can drive before it runs out of fuel. This
new feature is dependent on (1) the estimation of the current fuel amount in
the tank (L), and (2) the fuel consumption rate (L/Km) in the engine. Tech-
nically, this intended feature will be added as a new thread in the Estimator
ECU. This thread should read the output of the FuelEstimation thread, as well
as, the output of the ConsumptionRate thread that is implemented in the En-
gineManager ECU. To avoid dealing with timing and memory budgets, FLES
engineers expect to remove the FuelLevelWarning thread and move the task it
contains to the FuelEstimation thread (i.e., merge the two threads into one).
Since the safety margin of the FuelEstimation thread allows adding a new task,
the timing and memory budget for the thread will remain the same even after
the merge. On the other hand, the new DistanceCalc thread will take the timing
and memory budget, and the priority of the removed FuelLevelWarning thread.
The same arrangements will be applied to the threads in the Presenter ECU.
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Optimise software design and safety case architecture (define the safety
case architecture)

For the sake of simplicity, we do not define a full set of the safety case modules,
but we rather define the basic modules that are sufficient to make the example.
We focus on the Estimator ECU in our example by dividing it into two software
blocks, namely, FuelEstimationBK and FuelLevelWarningBK. Each of them
represents a safety case module. Additionally, we construct Hazard Mitigation,
SW Safety Requirements and SW Integration test modules (as shown in Figure
7.7).

Hazard 
Mitigation

SW Safety 
Requirements

FuelEstimationBK

FuelLevelWarningBK

SW Integration test

Figure 7.7: FLES safety case architecture

Construct safety case modules and Integrate safety case modules

We merge these two steps for the sake of simplicity. We identify the required
DGRs of the FuelEstimationBK and FuelLevelWarningBK blocks. We also
construct the Hazard Mitigation, SW Safety requirements, FuelEstimationBK,
FuelLevelWarningBK, and Software Integration test safety case modules.

Table 7.2 shows one DGR for the software block FuelEstimationBK in
which the block (i.e., represented as thread) guarantees that it can provide the
estimated fuel level volume in the tank totalFuelLevel if the three dependen-
cies are met. Table 7.3 shows one DGR for the software block FuelLevelWarn-
ingBK in which the block (i.e., represented as thread) guarantees that it can tell
if the fuel is low or not (lowFuelLevelWarning is True if the fuel is below 7% of
the tank capacity and False if the fuel is not) once the four related dependencies
are met.

In Figure 7.8, we construct the hazard mitigation argument. Basically, Mit-
igationHazard1 goal is supported by implementing and assuring the two safety
goals that were derived to mitigate it. The safety goals are represented by the
two separated away goals SG1.0ImplAssur, and SG2.0ImplAssur. These goals
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Table 7.2: DGR FuelEstimationBK Table 7.3: DGR FuelLevelWarningBK

also represent the integration between Hazard Mitigation and SW Safety Re-
quirements safety case modules (see Figure 7.9).

In FuelLevelWarning.BK Safety case module (see Figure 7.10), we show
how arguing over the dependencies supports the guarantee that is represented
by FuelLevelWarningBK.G1. The argument module uses FuelEstimationBK.G5
as a dependency to support the guarantee. FuelEstimationBK.G5 also relies
on a set of dependencies to be guaranteed. Figure 7.11 shows an argument
fragment of the SW Integration test safety case module. The objective of the
module is to argue over the integration of the software elements within the Es-
timator ECU.
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MainSafe—
FLES is adequately safe to 
operate in its intended 
operating context

FLES—
Fuel Level 
Estimation System
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FLES failure 
probability ≤ 1.5E-3
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System hazards are 
adequately mitigated

MitigateStrat—
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hazards mitigation

HazardAnalysis—
Hazard Analysis is 
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List of 
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AllHazardIdentified—
All hazards have been 
identified
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...

Other non-SW 
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derived to mitigate 
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Figure 7.8: Hazard mitigation safety case module of FLES

The FuelLevelWarningBK.G1 DGR shows that in order for FuelLevelWarn-
ingBK being able to fulfill the TSR F2010TSR1 it requires the TSR F1010TSR1,
which is guaranteed by a different DGR (i.e., FuelEstimationBK.G5). Here lies
the importance of the DGC as it matches such dependencies. Table 7.4 shows
a DGC that matches F2010TSR1 to F1010TSR1. MSSC process requires per-
forming the integration of safety case modules by using a safety case contract
module. The latter uses a DGC to set out the matching between the DGRs of
the goals involved. However, since our work is more focused on facilitating
the impact analysis within the blocks, we do not use safety case contracts in
this example thus no goals are supported by contracts. The integration, in our
example, is done through public and away goals.

Assess/Improve change impact

In this step, we use our approach for maintaining safety cases (Section 7.2.4) to
extend IAWG’s DGC. We use the extended DGC in the FLES example to show
how the extension can help: (1) highlighting the affected argument elements,
and (2) identifying inadequacies in the generated artefacts from the develop-
ment lifecycle of FLES.

Table 7.4 shows an extended DGC of FuelLevelWarning.BK. The exten-
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FuelLevelWarningBK.G1—
FuelLevelWarningBK guarantees 
to provide the totalFuelLevel 
value  

FLWBK.G—
The list of guaranteed 
behaviors and properties is 
defined in 
FuelLevelWarningBK DGRs

ApplicabilityFLWBK.G —
The assumptions and 
restrictions relating to the 
guarantee are defined by 
FuelLevelWarningDGC

SArgDepnd—
Argument over 
related 
dependencies

             DGR Process

DependencyProcess—
An adequate dependency 
identification process has 
been used 

             FuelEstimationBK

FuelEstimationBK.G5—
FuelEstimationBK guarantees to 
provide the totalFuelLevel value  

...

NotPrevented—
There are no unwanted 
interactions that would 
interfere with 
FuelLevelWarningBK

Figure 7.10: An argument fragment of FuelLevelWarning.BK module

sion is represented by the cells in grey. Moreover, Figure 7.11 shows items of
evidence (i.e., GSN solution) that support claims about the consistency among
the ports of FLES blocks. The green elements in the figure represent the an-
notations described in Section 7.2.4.

Table 7.4: FuelLevelWarningDGC
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Table 7.5 shows the impacted elements of the safety case with a brief ex-
planation for each element.

Table 7.5: Results of change impact analysis

Now, let us consider the potential change scenario in Section 7.4.2 to il-
lustrate how the information contained within the annotations aids the change
impact analysis in safety arguments. Merging FuelEstimation and FuelLevel-
Warning into one thread will impact the consistency of the interfaces and con-
nections of FLES. Suppose that an engineer making this change had updated
the artefact version annotation(s) in part of the argument that refers to the inter-
faces of those threads. An automated implementation of the described checks
in Section 7.2.4 could highlight the need to re-run the interface consistency
check, as well as, the Estimator internal interfaces testing. If the new version
of the implementation is version 3.3, analysis of the manifest associated with
InConChk and TstInnInt would reveal evidence based on an older version of
the implementation and tools could flag InConChk and TstInnInt as out-of-date
and suspect. Automated analysis might also highlight goal EstimatorImpCorr
because its artefact version annotation refers to an out-of-date version of the
Estimator implementation. The goal and its supporting argument are suspect
because they might refer to parts of the implementation that no longer exist or
make claims about the implementation that are no longer true.

The principal difference between our work and the existing approach pro-
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EstimatorImpUnDSpec—
Estimator fulfills the software 
unit design specifications

EstimatorImplCorr—
Estimator system design is 
compliant with the functional and 
technical safety requirements 

EstimatorImoCon—
The implementation of 
Estimator's interfaces is 
consistent and correct

...

...

EstimaInnInter—
The implementation of 
Estimator's internal 
interfaces is consistent 
and correct

EstimatorImpFunTech—
implementation of functional 
safety and technical safety 
requirements is correct

EstimatorImpRobust—
implementation of functional 
safety and technical safety 
requirements

EstimatorExtInter—
The implementation of 
Estimator's external 
interfaces is consistent 
and correct

SInterfaces—
Argument over all 
specified interfaces

EstimaInnInter—
The implementation of 
FuelLevelWarnig 
thread interfaces is 
consistent and correct

EstimaInnInter—
The implementation of 
FuelEstimation thread 
interfaces is consistent 
and correct

...

TstInnInt
Test of 
internal 
interfaces

InConChk
Interface 
Consistency
check

Artefact 
Version: v.3.2 

Evidence Version: v.3.2
Input manifest: {(Inchecker,

1.5), (Code, 1.0)}
Lifecycle phase: Software dev. 
Safety standard reference: 

§ 8.4.2.2.4 — ASIL 
"C" 

Evidence Version: v.3.2
Input manifest: {(Con1,3.0), 

(Code, 3.2)}
Lifecycle phase: Software dev. 
Safety standard reference: 

§ 8.4.2.2.4 — ASIL 
"C" 

ApplicabilityFLWBK.G —
The assumptions and 
restrictions relating to the 
guarantee are defined by 
FuelLevelWarningDGC

Figure 7.11: An argument fragment of SW Integration test safety case module

posed by the IAWG MSSC is that the MSSC approach contains changes at
the level of a safety argument module and the corresponding system blocks.
In contrast, our approach provides the engineer to contain the changes at a
lower-level where they feel that a tighter control over change is needed. More
specifically, our approach means that changes can be contained within a safety
argument module and within specific system blocks. It could be argued that
this could have been handled in the existing approach by decomposing the sys-
tem and its safety argument differently, however in practice it is better not to
constrain system architects unnecessarily.

7.5 Conclusion and Future Work

Applying changes to systems during their lifetime is inevitable task. In safety
critical systems, system changes can be accompanied with changes to safety
arguments. Maintaining those arguments is painstaking process because of
the dependencies between their elements. The IAWG MSSC process was in-
troduced as a response to safety cases maintenance difficulties. The process
recommends applying changes as a series of relatively small increments rather
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than occasional major ones. However, the guidance of MSSC process does not
show detailed information about how to follow some steps including the impact
analysis part. In this paper, we applied the process to a real life safety critical
system to show how system engineers can identify the elements in a safety ar-
gument that might be impacted by a change. We showed that by extending the
proposed DGC by IAWG to include additional information as annotations that
is useful to highlight the impacted argument elements. Moreover, we provided
starting points to maintain the affected parts of the argument as we described
the reasons why they have become inadequate due to the change. The impact
check based on the additional information is still manual as we have not yet
studied the feasibility or value of developing a tool to automate the checks but
we leave this effort to future work.
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Abstract

The use of contracts to enhance the maintainability of safety-critical systems
has received a significant amount of research effort in recent years. However
some key issues have been identified: the difficulty in dealing with the wide
range of properties of systems and deriving contracts to capture those prop-
erties; and the challenge of dealing with the inevitable incompleteness of the
contracts. In this paper, we explore how the derivation of contracts can be per-
formed based on the results of failure analysis. We use the concept of safety
kernels to alleviate the issues. Firstly the safety kernel means that the prop-
erties of the system that we may wish to manage can be dealt with at a more
abstract level, reducing the challenges of representation and completeness of
the “safety” contracts. Secondly the set of safety contracts is reduced so it is
possible to reason about their satisfaction in a more rigorous manner.
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8.1 Introduction

Contract-based approaches aimed at decreasing certification costs and increas-
ing maintainability of safety-critical systems have been the topic of much re-
search recently. Many works focus on the underlying contract theory [1, 2, 3],
while not that many focus on the difficulty of specifying contracts and the
problem of their (in)completeness [4, 5]. A component contract is usually
defined as a pair of assumption/guarantee assertions such that the component
offers the guarantee if an environment in which the component is used satis-
fies the assumptions. The contracts can be characterised as either strong or
weak [6]. The strong contracts capture behaviours that should hold in all en-
vironments/contexts in which the component can be used, while the weak con-
tracts capture context specific behaviours. A “safety contract” is a contract that
specifically deals with behaviours of the system linked to hazard mitigation.

Developers of safety-critical systems are sometimes required to construct a
safety case to show that the system is acceptably safe to operate in a given con-
text, i.e., that the risks of hazards occurring are reduced to acceptable levels. As
a way of documenting the safety case, a safety argument is often used to show
how safety claims about the system are connected and supported by evidence.
While the argument presents the safety-relevant information about the system
in a comprehensible way, safety contracts capture the safety-relevant inform-
ation in a more rigorous manner. The fact that both, the safety argument and
safety contracts, deal with the same information makes the contracts an im-
portant aid in safety case maintenance [7].

As safety-critical systems are characterised by a wide-range of properties
that influence safety-relevant behaviour of components, it is challenging to de-
rive contracts with a complete set of relevant assumptions on the environment
that imply the guaranteed component behaviour. When dealing with complete-
ness of contracts without a reference point against which we can check if the
contracts are complete, then the contracts are inevitably incomplete, since we
cannot capture all assumptions. To talk about contract completeness we need
to identify the reference point against which we can check the contracts and
that we can use to derive the contracts as well. For example, safety contracts
describing failure behaviours of a component can be derived from a failure
analysis such as Fault Tree Analysis (FTA).

Not all failure behaviours obtained by failure analysis are relevant from the
perspective of hazard analysis results. Regardless of that, we still categorise
contracts capturing such behaviours as safety contracts, since the captured be-
haviours can be safety-relevant in case of change to the system or for other
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systems in which the component can be used. An approach to developing sys-
tems based on a “safety kernel” was first proposed by Rushby [8] and used by
Wika [9]. The basic principles of their work are that:

1. The safety kernel protects the system from key (higher criticality) haz-
ardous events by checking that data flowing out of a module of the sys-
tem would not violate Derived Safety Requirements (DSR) obtained via
hazard analysis.

2. The safety kernel itself is much simpler than the rest of the system.

The simplicity means that the safety kernel can be developed to the requis-
ite high integrity even if the rest of the system cannot be. Overall, the system
is at least as safe as without a safety kernel but costs may be reduced. In this
paper, we extend the original concept to include safety contracts being asso-
ciated with the safety kernel which to help facilitate incremental certification.
The simplicity of the safety kernel also means the aforementioned problems of
representing contracts and achieving completeness are eased.

Potential system changes during the system lifetime may impact some parts
of the safety case. These affected parts necessitate updating the safety case
with respect to those changes. We refer to the updating of the safety case
after implementing a system change as incremental certification. The intention
that change impact analysis can be performed by mainly assessing whether
the contracts still hold is slightly unrealistic as there are significant issues with
achieving complete contracts [5]. We deem that change impact analysis can be
guided by accessing the satisfaction and completeness of contracts with respect
to failure analyses.

In this paper, we focus on the safety contract derivation and the issue of
their (in)completeness, as these two steps form the basis for establishing safety
case maintenance techniques using the safety contracts. We judge that the con-
tract completeness can be established only with respect to a clearly identified
reference point such as failure analysis. Since failure analysis itself can be
incomplete, the derived safety contracts are at least as complete as the ana-
lysis itself. Although contract completeness cannot be established in general,
contracts can be used for guiding the designer to the key properties of the sys-
tem as part of de-risking incremental certification and making it more efficient.
This is supplemented by the designer being given scenario-specific guidance
on how to deal with certain likely changes. In general for safety-critical sys-
tems there is often a clear development roadmap that makes this form of guid-
ance practical. For instance it may be known that in N years time that the
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developers will want to change the processors used due to obsolescence or re-
move a hydro-mechanical backup due to weight. Maintainers updating or up-
grading a system might benefit from the original designers’ insight on planned
change scenarios[7].

The contribution and structure of the paper is as follows. In section 8.2,
we present the related work and an illustrative example used to demonstrate
the approach. An architecture and supporting development process, in section
8.3, that allows two types of contracts to be supported that should lead to a
reduction in the initial certification costs as well as making the system easier
to maintain. In section 8.4, we demonstrate an approach to deriving safety
contracts from FTA and present how the derived contracts completeness check
could be performed with respect to the fault trees. In section 8.5, we present
a safety argument based on the use of the safety kernel and contracts. Finally,
we present summary and conclusions in section 8.6.

8.2 Background and Motivation

In this section we present the state of the art related to contracts and modular
safety arguments. In the second part of the section we provide a brief descrip-
tion of the computer assisted braking system used to illustrate the approach.

8.2.1 Related Work

We group the related work into two areas: contract-based approaches for safety-
critical systems and approaches related to safety arguments for incremental
certification.

Use of Contracts in Safety-Critical Systems

An “informal” contract-based approach is proposed in [4]. The approach uses
dependency-guarantee relationships to capture dependencies between modules.
The captured dependencies are identified by considering predicted changes in
the system in order to best contain their impact. A difficulty that arises is that
usually not all dependencies can be captured if contracts are restricted to the
relationship between just two modules as dependency chains can span across
several modules. Furthermore, the issue of contract incompleteness is not fully
addressed.
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A more formal contract-based approach is shown in [10]. The work presents
a language for describing assumption/guarantee contracts used to capture ver-
tical dependencies between a software application and a hardware platform.
While the approach provides a benefit of automatic generation of parts of ar-
guments, it does not support capturing the broad range of assumptions needed
for a guarantee to be still valid when a change in the environment occurs.

A range of formal contract-based approaches based on contract algebra can
be found in [1, 2, 3]. The contract algebra includes definitions of contract re-
finement, composition, conjunction etc., making these approaches quite power-
ful when it comes to contract verification. The contract examples provided
in [2, 3] do not focus on failure behaviour, but rather on behaviour when no
failures occur. Moreover, the presented contracts on timing behaviour require
additional assumptions if they are to be used in the process of incremental or
modular certification [5]. In our work we propose that in addition to contracts
describing expected behaviour in a specific context captured within weak con-
tracts, we capture strong contracts describing how the faults in the system are
handled by the safety kernel. Due to the properties of the safety kernel, such
contracts are generally easier to satisfy due to fewer assumptions.

Safety Argumentation in Support of Incremental Certification

In safety critical systems, particularly those for which a safety case should be
provided, change management is a painstaking process. That is because ac-
commodating the changes in the system domain should be followed by updat-
ing the safety case (i.e., incremental certification) in a safe and efficient manner.
A process is proposed in [7] to facilitate the incremental change and evolving
system capability. One objective of the Modular Software Safety Case (MSSC)
process is to minimise the impact on the safety case of changes which might
be expected during the life of the system. Using the process may increase the
system flexibility to accept changes.

The structure of the argument has a significant role in accommodating
the changes. Well structured arguments clearly demonstrate the relationships
between the argument claims and evidence, therefore it is easier to understand
the impact of changes on them than poorly structured arguments. Moreover,
well structured arguments can be exploited to prioritise the handling of change,
identify the key areas of concern, and hence de-risk the change management
process. An approach is proposed in [11] to show how the safety argument
structure facilitates the systematic impact assessment of the safety case after
applying changes. More specifically, the proposed approach shows how it
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Figure 8.1: Wheel Braking System - High Level View

is possible to use the recorded dependencies of the goal structure to follow
through the impact of a change and recover from change.

Another approach is proposed in [12] to facilitating safety case change im-
pact analysis. In this approach, automated analysis of information given as
annotations to the safety argument highlights suspect safety evidence that may
need updating following a change to the system being performed.

8.2.2 Overview of the Computer Assisted Braking System
In this section we will present the computer assisted braking system of an air-
craft used in ARP4761 standard [13] to demonstrate the safety assessment pro-
cess. The standard describes a Wheel Braking System (WBS) that takes two
input brake pedal signals and outputs the braking command signal. The high
level architecture is shown in Fig. 8.1. For the purposes of this paper we con-
sider that all six components of the WBS shown in Fig. 8.1 are implemented in
software.

The system is composed of two subsystems: Brake System Control Unit
(BSCU) and Hydraulics. The brake pedal signals are forwarded to BSCU,
which generates braking commands and sends the commands via direct link
to Hydraulics subsystem that executes the braking commands. If the BSCU,
which makes the normal operation mode, fails then Hydraulics uses an altern-
ate mode to perform the braking. If both, normal and alternate mode fail,
emergency brake is used.

In order to address the availability and integrity requirements, BSCU is de-
signed with two redundant dual channel systems: subBSCU1 and subBSCU2.
Each of these subsystems consists of Monitor and Command components.
Monitor and Command take the same pedal position inputs, and both calculate
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the command value. The two values are compared within the Monitor compon-
ent and the result of the comparison is forwarded as true or false through Valid
signal. The SelectSwitch component forwards the results from subBSCU1 by
default. If subBSCU1 reports that fault occurred through Valid signal, then
SelectSwitch component forwards the results from subBSCU2 subsystem.

8.3 Overall Development Approach
In order to make the safety contracts more useful, i.e., applicable in more dif-
ferent contexts and less susceptible to changes, we use the concept of safety
kernels in the development process. Safety kernels are generally simple and
independent mechanisms which behaviour can be easily ensured. Due to their
simplicity and high independence, safety kernel behaviours can be specified
more abstractly, i.e., with fewer context-specific assumptions. A reduced num-
ber of required assumptions increases reusability of safety information cap-
tured by the contracts. This allows us to provide better support for incremental
certification through reuse of evidence and safety reasoning related to con-
tracts, and ease change management within safety arguments. Besides safety
kernels, other types of failure mitigation and recovery techniques can be imple-
mented and packaged together with components. We refer to such techniques
as component wrappers.

We build our development approaches that utilise the notions of safety ker-
nels and component wrappers on the well-established practices recommended
by safety standards. The proposed development approaches can be summarised
by the following steps:

1. Perform a hazard analysis as required by most standards.

2. Perform causal analysis (e.g., FTA) to understand how the hazards can
occur.

3. Create strong contracts for the fault handling behaviours that are offered
in all contexts. Such behaviours that are specified more abstractly can be
achieved with the use of safety kernels.

4. Create weak contracts for the fault handling behaviours that are context
specific. Such behaviours are usually achieved by failure mitigation and
recovery techniques (e.g., component wrappers) that are not developed
with high independence from the context.
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5. Create an architecture which includes:

(a) Features to enforce the separation between the safety kernel and
components. The safety kernel can only provide sufficient protec-
tion to allow it to provide fault tolerance if it can be argued that
failures of the components do not interfere with its operation.

(b) A design for the safety kernel that provides fault tolerance, princip-
ally fault detection and recovery, with respect to the mitigation of
the more critical hazards.

(c) A design for component wrappers that provides fault tolerance,
principally fault detection and recovery, with respect to the mit-
igation of the less critical hazards. This largely deals with signal
validation for data flowing in and out of the component. It is noted
that some signals will be protected by both a wrapper and a safety
kernel where used by multiple components.

6. Revise the fault tree to include the safety kernel and wrapper in the pos-
sible causes of hazards and judge whether the residual risks are accept-
able. If the risks are not acceptable, judge whether more complex wrap-
pers or more safety kernel functions would address the issues.

The development approach follows a typical set of stages except for the ad-
dition of contracts and the use of a safety kernel and wrappers. After deriving
the safety contracts, the development approach continues to revise the contracts
by checking if they are sufficiently complete and whether the described beha-
viours are sufficient to show that all identified hazards have been adequately
addressed. Additional evidence backing the contracts is provided during the
verification steps.

8.4 Definition of Safety Contracts
In this section we present part of the FTA performed on WBS with (section
8.4.2) and without (section 8.4.1) safety kernels. Later in section 8.4.3, we
show how the results of the analysis can be used to derive safety contracts
capturing corresponding safety behaviour of components addressed within the
fault trees. In the second part of section 8.4.3 we discuss the problem of incom-
pleteness of the safety contracts and propose how the contract completeness
checking could be addressed.
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Figure 8.2: Reduced responsiveness of all wheel braking Fault Tree

8.4.1 Causal Analysis and Contracts for WBS

This section reuses the existing safety assessment of WBS presented in Ap-
pendix L of the ARP4761 document. Building upon the existing hazard ana-
lysis from Appendix L, we identified failure condition reduced responsiveness
of wheel braking as hazardous, e.g., when it occurs during taxi phase it can
lead to low-speed vehicle collision.

In order to prevent the delayed response from the brakes, we specify a
timing safety requirement SR1 that the WBS response time (i.e., time from the
receipt of pedal brake signals to issuing the braking command) shall be no more
than 10 ms. The fault tree in Fig. 8.2 addresses the reduced responsiveness
failure condition. It shows that the delay in issuing the braking command can
be caused by either of the three modes. The fault tree focuses on the normal
mode and demonstrates that BSCU, Hydraulics or the communication channel
between the two can all contribute to causing a delay in normal mode.

After identifying the hazards and specifying the requirements, the safety
process continues to design the system to satisfy the specified requirements.
Consequently, the safety contracts are captured to show compliance with the
safety requirements. Strong safety contracts (denoted as a pair of strong as-
sumptions and guarantees 〈A,G〉) allow us to specify behaviours that always
must hold, i.e., strong assumptions (A) must be satisfied and strong guaran-
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tees (G) must be offered [6]. On the other hand, weak contracts (denoted as
a pair of weak assumptions and guarantees 〈B,H〉) allow us to capture prop-
erties that change depending on the context in which the component is used.
The weak guarantees (H) are offered only when all the strong contracts and
the corresponding weak assumptions (B) are satisfied. The benefit of using the
strong and weak contracts distinction is twofold: (1) it provides methodological
distinction between properties that must hold and those that may hold in cer-
tain cases (e.g., weak contracts are used to describe multiple context-specific
behaviours), and (2) when performing contract checking in a particular envir-
onment, violation of the strong assumptions is not tolerated, while violation of
the weak assumptions is allowed (since some of the weak contracts might not
be relevant for the particular context).

As the contracts need to be supported by evidence, we attach evidence in-
formation (E) with the contracts. We represent the contract/evidence pair as
“C: 〈A,G〉;E”, which can be read as follows: contract C, which under as-
sumptions A offers guarantees G, is supported by evidence E. The motiv-
ation for connecting the evidence with the contracts is not to argue contract
satisfaction (rationale description is needed for that), but to support change
management. Besides identifying which parts of safety case are affected by
change, safety contracts, when enriched by evidence information, can also be
used to identify which evidence should be revisited. The evidence can be asso-
ciated with a contract either directly, or indirectly through the associated con-
tracts. Since the underlying contract formalism assumes hierarchical structure
of components and contracts, all evidence needed to support a higher level con-
tract are not associated with that contract directly, but can support the contract
indirectly through the associated lower level contracts. The relation between
a contract and its supporting contracts is established through the dependency
assumptions.

Using component-based development notions, such as contracts, within
safety-critical systems has some difficulties. The out-of-context idea of safety
contracts causes difficulties that relate to both the nature of safety as a system
property and context dependent behaviours such as timing [5]. When it comes
to the nature of safety and contracts, it is difficult to capture all failure scenarios
that the component can contribute to since what is safety relevant in one system
might not be in another. For example, the difficulty with capturing timing prop-
erties within out-of-context contracts is not only that timing depends on many
factors, but that the timing analysis is usually calculated with incompatible or
simplified assumptions [14, 15, 16], which makes the timing information cap-
tured within contracts nearly impossible to reuse. While the inevitable solution
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WBS Weak 1:
〈 B1: Platform=x and Compiler=y AND Hydraulics delay ≤ 4 ms AND BSCU
delay≤ 4 ms AND communication delay≤ 0.1 ms AND emergency mode≤ 1 ms;
H1: WBS delay ≤ 10 ms 〉;
E1: WBS timing analysis under assumed conditions

Figure 8.3: WBS weak contract

WBS BSCU Weak 1:
〈B2: Platform=x and Compiler=y AND subBSCUx delay < 3 ms and SelectSwitch
delay < 1 ms AND scheduler policy does not cause delay;
H2: BSCU delay ≤ 4 ms 〉;
E2: BSCU timing analysis under assumed conditions

Figure 8.4: BSCU weak contract

in that case would be to re-run the timing analysis, the information captured
within contracts can still be useful in highlighting impact of the change on the
safety case.

Based on the causal analysis we specify the contract WBS Weak 1 (Fig. 8.3).
WBS Weak 1 contains dependency assumptions capturing connection between
WBS and its subcomponents, while the guaranteed property is the response
time of WBS. In order to guarantee timing properties, such as those noted
in [5], we need to include additional assumptions that are not provided in the
causal analysis. In case of WBS Weak 1 contract we included additional as-
sumptions on platform and compiler configuration, as such assumptions can
be easily omitted from the causal analysis, and any change or inconsistency
related to these properties may invalidate the corresponding contracts. We can
note that the causal analysis is useful for capturing dependency assumptions
within the safety contracts, but it is not sufficient as additional assumptions
need to be captured as well. The Ariane 5 rocket is an example of how causality
analysis does not cover some important assumptions. A piece of software that
should perform certain computations right before liftoff was reused from the
previous rocket version. Since restarting the software during liftoff might take
time, the engineers decided to leave it running even after liftoff. The software
then continued the unneeded computation during the flight time and caused an
exception due to a floating-point error which rebooted the processor [17].

The contracts in Fig. 8.3 and 8.4 focus on the behaviour of WBS when there
is no fault in the system. However the contracts don’t describe behaviour of the
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Figure 8.5: Reduced responsiveness of all wheel braking Fault Tree (updated)

system in situation when anomalous behaviours occur, e.g. when BSCU delay
is greater than 4 ms or the communication channel fails. As mentioned earlier,
it is difficult to describe behaviour of a component in all the failure scenarios,
e.g. in some cases it is reasonable to consider communication channel failure
in others it may not be the case. While the described behaviour in contracts
WBS Weak 1 and WBS BSCU Weak 1 can be useful to know in certain situ-
ations, it is very difficult to reuse such information in case of platform change
or moving the component from one system to another, as argued earlier. That
is why this behaviour is specified within a weak contract, as it cannot be guar-
anteed in all systems. Further on we investigate how these weak contracts can
be complemented with strong contracts capturing behaviour that prevents bad
things from happening that is guaranteed wherever the component is used.

8.4.2 Causal Analysis and Contracts on WBS with Safety
Kernels

In the current design, the reduced responsiveness of WBS can be caused by
either of the modes. In order to reduce the criticality of timing requirements in
the Normal and Alternate modes to an appropriate level, a design decision was
made to use a simple and sufficiently independent safety kernel. This safety
kernel acts as a last resort failure mechanism in case of failures that might pre-
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WBS Strong 1:
〈A1: sufficient independence of the safety kernel and emergency brake from normal
and alternate mode
G1: if braking command not received from normal or alternate mode before watch-
dog timer expiry then kernel activates the emergency brake 〉;
E3: Causal analysis; Contract completeness report
WBS Weak 1:
〈 B1: (Platform=x and Compiler=y AND Hydraulics delay ≤ 4 ms AND BSCU
delay ≤ 4 ms AND communication delay ≤ 0.1 ms) OR (watchdog timer expiry ≤
9 ms and emergency brake delay ≤1 ms);
H1: WBS delay ≤ 10 ms 〉;
E1: New WBS timing analysis under assumed conditions

Figure 8.6: WBS contracts

WBS SKC Strong 1:
〈 A2: -
G2: if the braking command signal not provided within 9 ms from the receipt of the
pedal signals, then activate emergency brake within 1 ms 〉;
E4: Formal verification report

Figure 8.7: Safety Kernel strong contract

vent Normal or Alternate mode from generating the braking command. The
safety kernel in form of a watchdog timer is installed within Hydraulics com-
ponent. Once WBS receives the pedal signals the watchdog timer is started.
Unless either Normal or Alternate mode does not provide the braking command
within the required time interval, the watchdog timer engages the emergency
brake.

With introduction of the safety kernel in the WBS architecture, the initial
FTA needs to be revisited to address both: changes to the criticality of Normal
and Alternate modes; and extension of the current fault tree to include possible
faults related to the kernel itself. The updated fault tree is shown in Fig. 8.5.
The changes in the fault tree consequently influence the contracts to be revis-
ited. More specifically, the WBS Weak 1 contract needs to be updated with the
new information relating to the watchdog timer and the emergency brake. The
updated WBS Weak 1 contract is shown in Fig. 8.6.

When using the safety kernels, we focus on capturing with the contracts
how the component handles faults in the system. Due to simplicity of the kernel
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and its high independence from the rest of the system, we can specify strong
safety contracts for the kernel that are easier to satisfy because of fewer as-
sumptions. The strong contracts in Fig. 8.6 and 8.7 complement the weak con-
tracts in Figures 8.3 and 8.4 by describing behaviour of the safety kernel when
the normal or alternate mode fail. The assumption of sufficient independence
in the contract WBS Strong 1 can be identified through the AND connection in
the fault tree in Fig. 8.5 between normal or alternate mode delays and kernel
and emergency mode delays. The corresponding guarantee describes the beha-
viour of the kernel in that situation. The WBS SKC Strong 1 contract on the
safety kernel addresses possible delay because of the kernel itself by guaran-
teeing its timing behaviour for all systems in which the kernel is used.

This example demonstrates that for the safety kernels we can specify the
strong safety contracts with fewer assumptions (due to the simplicity and inde-
pendence of the safety kernel). Fewer assumptions means that the correspond-
ing contracts are easier to satisfy. Moreover, by reducing criticality of require-
ments addressed by the weak contracts, the stringency of evidence required to
support the weak contracts is reduced. Consequently, overall less effort should
be required for producing evidence to support such weak contracts.

8.4.3 Contract Derivation and Completeness Checking Meth-
ods

To talk about completeness of contracts we need to identify with respect to
what should that completeness be checked. The safety contracts focus on fail-
ure behaviours of the system that can be obtained by failure analysis (e.g., FTA)
as these are most often the causes of hazards. In this work we use FTA, a well-
established method recommended by safety standards, for contract derivation
and completeness check. Deriving contracts from fault trees is performed as
follows:

1. Identify fault tree nodes directly related to the component for which the
contract is being derived such that the nodes do not belong to each others
sub-branches.

2. For each identified node:

(a) Create a safety contract that guarantees to prevent or minimise the
faulty state described by the node.

(b) Identify candidate nodes for stating dependency assumptions such
that the assumption node belongs to the same branch as the guaran-
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tee node, and that it refers to behaviour either of first level subcom-
ponent of the current component, other components in the envir-
onment that the current component is connected to or other system
properties.

3. The logical connection of the assumptions within the contract is switched
comparing to the connection in the fault tree (e.g., AND connections in
the fault trees become OR in the contracts), similarly as the guarantees
can be regarded as negations of the corresponding nodes (e.g., a node
“delay in execution” in a fault tree becomes a guarantee “does not cause
delay in execution”).

The assumptions on the first-level subcomponents are included to capture
dependencies between the two layers identified by FTA, and in that way facilit-
ate independent development and change management. For example, BSCU is
independently developed by a contractor. Based on the specified dependency
assumptions we can identify if the provided (or replaced) component offers re-
quired behaviour to achieve the WBS behaviour. This can be done by checking
if the WBS dependency assumptions are satisfied by BSCU contracts.

Once the change occurs in the system or the component is moved to another
system, the completeness of the contracts needs to be checked with respect to
the fault trees. In our case, the contract WBS Weak 1 had to be changed after
introducing the safety kernel as the contract was not complete with respect to
the new fault tree in Fig. 8.5. Consequently, the evidence required to support
this contract had to be updated.

Completeness with respect to a specific failure analysis does not imply con-
tract completeness in general, but only with respect to the analysis. Confidence
in the completeness check stems from the confidence in the failure analysis
against which the check is performed. In our work we use FTA for complete-
ness check under assumptions that producing fault trees is well-established and
that the resulting fault trees are reasonably complete. It must be emphasised
that the approach does not rely on the fault trees actually being complete, as
the aim is to de-risk change rather than have a change process where only con-
tracts have to be checked following a change. The derived contracts usually
require additional assumptions that can be derived from different analyses and
used to enrich the contracts, hence increase their overall completeness. The
contracts completeness check with respect to a specific analysis is performed
to ensure that there are no inconsistencies between the dependencies captured
within the contracts and those identified by the analysis. The results of such
check can indicate that the contracts are incomplete with respect to the analysis
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(in case of changes to the system, and to the analysis), or the analysis can be
incomplete with respect to the contracts (if we have enriched the contracts us-
ing other types of analyses). The contract completeness check with respect to
the fault trees is performed as follows:

1. Identify nodes in the fault tree that correspond to the contract guarantees.

2. Identify nodes in the fault tree corresponding to the assumptions.

3. For the identified assumptions within the fault tree, check whether they
belong to the branch corresponding to the identified node related to the
guarantee.

4. Identify the following inconsistencies:

(a) Nodes that are included in the assumptions but do not belong to the
same branch as the guarantee node.

(b) Nodes within the same branch as the guaranteed node that are not
covered by the assumptions (not all nodes of the branch should
be captured by assumptions but all should be covered, i.e., if the
node itself is not included, then its sub-nodes or leaves of its branch
should be included for the node to be covered).

5. If assumptions cover all nodes within the guarantees node branch then
the contract is complete with respect to the fault tree, but if there are
additional nodes that are assumed but do not belong to the same branch,
the inconsistency should be reported as either fault tree is not complete,
or the contract should be revised.

8.5 Safety Argument
In this section we present an overview of the graphical notation (section 8.5.1)
used to construct our arguments. The WBS safety argument is presented in
section 8.5.2.

8.5.1 Overview of Goal Structuring Notation
The Goal Structuring Notation (GSN) [18] – a graphical argumentation nota-
tion – explicitly represents the individual elements of any safety argument (re-
quirements, claims, evidence and context) and (perhaps more significantly) the
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Figure 8.8: Overview of the Goal Structuring Notation (GSN)

relationships that exist between these elements (i.e. how individual require-
ments are supported by specific claims, how claims are supported by evidence
and the assumed context that is defined for the argument). The principal sym-
bols of the notation are shown in Fig. 8.8 (with example instances of each
concept).

The principal purpose of a goal structure is to show how goals (claims
about the system) are successively broken down into (“solved by”) sub-goals
until a point is reached where claims can be supported by direct reference to
available evidence. As part of this decomposition, using the GSN it is also
possible to make clear the argument strategies adopted (e.g. adopting a quant-
itative or qualitative approach), the rationale for the approach (assumptions,
justifications) and the context in which goals are stated (e.g. the system scope
or the assumed operational role). For further details on GSN see [18]. GSN has
been widely adopted by safety-critical industries for the presentation of safety
arguments within safety cases. While GSN is mainly used to record monolithic
safety arguments, an extension facilitates the creation of modular arguments.
As a part of the modularised form of GSN, an away goal statement can be used
to support the local claim by referring to a claim developed in another module.
In this paper the modularised form of GSN, as first introduced in [19, 20], is
used.

8.5.2 Wheel Braking System Safety Argument

Fig. 8.9 shows the safety argument fragment for WBS represented using GSN.
The argument focuses on the timing requirement SR1: “WBS response time
shall be no more than 10 ms”, specified in Section 8.4 and represented by
the goal WBSSafetyExeTime within the argument. We base the argument that
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SWCommandFailure—
Software fails to command braking when required is acceptably managed

ASSRCommandFailure—
Argument over software safety requirements

WBSSafetyExeTime—
WBS calculates braking force and 
outputs braking command within 10 ms 

...WBSSafetyContract1—
WBS should calculate braking force and output 
braking command on receipt of brake pedal position

SWSafetyContracts—
All defined safety contracts for WBS are 
consistent, and correct with respect to the 
safety requirements
          SW Safety Requirements 

WBSWeakContract1.1—
BSCU delay is ≤ 4 ms

CxtBSCU—
Ref: BSCU software description

CxtCommunication—
The Communication is the bus connects BSCU 
and Hydraulics [Ref: WBS software description]

CxtSubBSCUx—
SubBSCUx is a subcomponent of the 
BSCU [Ref: BSCU software description]

CxtSelectSwitch—
SelectSwitch is a subcomponent of the 
BSCU [Ref: BSCU software description]

BSCUWeakContract1—
SubBSCUx delay is < 3 ms

BSCUWeakContract2—
SelectSwitch delay < 1 ms

WBSHydraulicsDelay1.2—
Hydraulics delay is ≤ 4 ms

WBSWeakContract1.3—
Communication delay is ≤ 0.1 ms

CxtContractWBSLink1—
WBSSafetyExeTime goal is the 
guarantee of the [WBS_Weak_1] contract 

CxtContractWBSLink1.3—
WBSWeakContract1.3 goal is the guarantee 
of the [WBS_Comm_Weak_1] contract

CxtContractWBSLink1.1—
WBSWeakContract1.1 goal is 
the guarantee of the 
[WBS_BSCU_Weak_1] contract
CxtContractBSCULink1—
BSCUWeakContract1 goal is the guarantee 
of the [BSCU_SUB_Weak_1] contract

CxtContractBSCULink2—
BSCUWeakContract2 goal is the guarantee 
of the [BSCU_SUB_Weak_2] contract

CxtContractWBSLink1.2—
WBSHydraulicsDelay1.2 goal is 
the guarantee of the [WBS_ 
Hydraulics _Weak_1] contract

CxtWBS—
Ref: WBS system description

Figure 8.9: WBS safety argument before introducing the safety kernel

SR1 is satisfied on the WBSSWSafetyReq justification that the software safety
requirements are addressed by the safety contracts. Moreover we provide
an away goal SWSafetyContracts presenting the required evidence to support
safety contract consistency, their correctness with respect to the associated
safety requirements and completeness with respect to the failure analysis. In
the presented argument we focus on the product rather than the process by
which we ensure that these contract properties are achieved.

Based on the WBSSWSafetyReq justification we address the WBSSafetyExe-
Time goal by the WBS weak 1 contract that supports the SR1 requirement. In
order to clarify the WBSSafetyExeTime goal, we create a context statement to
identify the WBS weak 1 contract that addresses the goal, and to provide a ref-
erence to WBS system description. To further develop the WBSSafetyExeTime
goal, we use the dependency assumptions of the associated contract WBS weak 1
to identify the supporting sub-goals: WBSWeakContract1.1, WBSHydraulic-
sDelay1.2 and WBSWeakContract1.3. The context statements for these sub-
goals are provided in the same way as for the WBSSafetyExeTime goal. Further
development of the sub-goals follows the same procedure as for the WBSSafetyExe-
Time goal, i.e. by identifying dependency assumptions of the associated con-
tract to the particular goal, we derive sub-goals until we reach the lowest level
component, i.e. where we have directly relevant evidence that supports the
goal.

As WBS architecture changed with addition of the safety kernel, the cor-
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WBSSafetyExeTime—
WBS calculates braking force and outputs 
braking command within 10 ms 

CxtContractWBSLink1—
WBSSafetyExeTime goal is the guarantee 
of the  [WBS_Weak_1] contract

CxtWBS—
Ref: WBS system description

WBSSafetyKernel—
Safety kernel activates the emergency 
brake If braking command not received 
from normal or alternate modes before 
exceeding the watchdog timer

CxtKernelContractWBS—
WBSSafetyKernel goal is the guarantee 
of the [WBS_Strong_1] contract

CxtSafetykernel—
[Ref: WBS system description]

CxtEmergencyMode—
Emergency brake [Ref: WBS 
system description]

WBSDelaysWDogEmerg—
Safety kernel activates emergency 
brake within 1 ms

CxtContractWatchDog—
This claim is addressed by 
contract [WBS_SKC_Strong_1]

CxtWatchDogTimer—
Watchdog timer is 9 ms

WBSSafetyKernelReliability—
Safety Kernel has been developed to meet the 
required reliability level

          Reliability Assurance

The other sub claims 
are shown in Figure 9 

Figure 8.10: The updated WBSSafetyExeTime goal after introducing the safety
kernel

responding safety argument needs to be updated as well. Based on the de-
rived safety contracts for the safety kernel provided in Figures 8.6 and 8.7, we
extend the safety argument from Fig. 8.9 with an additional supporting goal
WBSSafetyKernel to the WBSSafetyExeTime claim, as shown in Fig. 8.10. The
goal WBSSafetyKernel is clarified with context statements by referring to the
corresponding contract WBS Strong 1 (Fig. 8.6), and providing definitions of
the timer interval of 9 ms, and notions of emergency brake and safety ker-
nel definition. The WBSSafetyKernel goal is further supported by an away
goal WBSSafetyKernelReliability claiming that the kernel has been developed
to meet the required reliability level, and a sub-goal WBSDelaysWDogEmerg
based on the WBS SKC Strong 1 contract.

paperC

8.6 Summary and Conclusions
Means to capture failure behaviour within safety contracts have received little
attention in contract-based approaches for safety-critical systems. Moreover,
handling of inevitable contract incompleteness, implied by a great number of
assumptions that need to be captured, is not sufficient for showing that the
system is acceptably safe. We have presented a method for deriving safety
contracts from fault tree analysis and demonstrated it on an example. Once the
initial contracts have been derived, we introduced a safety kernel to the sys-
tem architecture to reduce the criticality of the rest of the system. To handle
the change in the system, we have proposed that completeness of the contracts
derived from failure analysis is re-evaluated with respect to that analysis after
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the change has been introduced and the analysis updated. The proposed com-
pleteness check method identifies inconsistencies between the contracts and the
failure analysis and acts as guidance for change management. We have used
the notion of safety kernels to show how strong safety contracts can be derived
with fewer assumptions due to kernel’s simplicity and high independence from
the rest of the system. Deriving contracts from failure analysis results in at
least as complete contracts as the analysis itself. While particular analysis it-
self can be incomplete, different analyses can be used to enrich the contracts
and increase their completeness.

Future work will focus on developing safety contract-based change man-
agement techniques, which should cover both the safety argument and associ-
ated evidence. Furthermore, we plan to investigate techniques for identifying
additional assumptions needed to enrich the contracts derived from failure ana-
lysis.
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Abstract

A safety case contains safety arguments together with supporting evidence that
together should demonstrate that a system is acceptably safe. System changes
pose a challenge to the soundness and cogency of the safety case argument.
Maintaining safety arguments is a painstaking process because it requires per-
forming a change impact analysis through interdependent elements. Changes
are often performed years after the deployment of a system making it harder for
safety case developers to know which parts of the argument are affected. Con-
tracts have been proposed as a means for helping to manage changes. There has
been significant work that discusses how to represent and to use them but there
has been little on how to derive them. In this paper, we propose a sensitivity
analysis approach to derive contracts from Fault Tree Analyses and use them
to trace changes in the safety argument, thus facilitating easier maintenance of
the safety argument.
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9.1 Introduction

Building a safety case is an increasingly common practice in many safety crit-
ical domains [1]. A safety case comprises both safety evidence and a safety
argument that explains that evidence. The safety evidence is collected through-
out the development and operational phases, for example from analysis, test,
inspection, and in-service monitoring activities. The safety argument shows
how this evidence demonstrates that the system satisfies the applicable opera-
tional definition of acceptably safe to operate in its intended operating context.

A safety case should always justify the safety status of the associated sys-
tem, therefore it is described as a living document that should be maintained as
needed whenever some aspect of the system, its operation, its operating con-
text, or its operational history changes. However, safety goals, evidence, ar-
gument, and assumptions about operating context are interdependent and thus,
seemingly-minor changes may have a major impact on the contents and struc-
ture of the safety argument. Any improper maintenance in a safety argument
has a potential for a tremendous negative impact on the conveyed system safety
status by the safety case. Hence, a step to assess the impact of this change on
the safety argument is crucial and highly needed prior to updating a safety ar-
gument after a system change.

Changes to the system during or after development might invalidate safety
evidence or argument. Evidence might no longer support the developers’ claims
because it reflects old development artefacts or old assumptions about oper-
ation or the operating environment. In the updated system, existing safety
claims might not make any sense, no longer reflect operational intent, or be
contradicted by new data. Analysing the impact of a change in a safety argu-
ment is not trivial: doing so requires awareness of the dependencies among the
argument’s contents and how changes to one part might invalidate others. In
other words, if a change was applied to any element of a set of interdepend-
ent elements, then the associated effects on the rest of the elements might go
unnoticed. Without this vital awareness, a developer performing impact ana-
lysis might not notice that a change has compromised system safety. Implicit
dependencies thus pose a major challenge. Moreover, evidence is valid only
in the operational and environmental contexts in which it was obtained or to
which it applies. Operational or environmental changes might therefore affect
the relevance of evidence and, indirectly, the validity and strength of the safety
argument.

Predicting system changes before building a safety argument can be useful
because it allows the safety argument to be structured to contain the impact of
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these changes. Hence, anticipated changes may have predictable and traceable
consequences that will eventually reduce the maintenance efforts. Neverthe-
less, planning the maintenance of a safety case still faces two key issues: (1)
system changes and their details cannot be fully predicted and made available
up front, especially, the software aspects of the safety case as software is highly
changeable and harder to manage as they are hard to contain, and (2) those
changes can be implemented years after the development of a safety case. Part
of what we aim for in this work is to provide system developers a list of system
parts that may be more problematic to change than other parts and ask them
to choose the parts that are most likely to change. Of course our list can be
augmented by additional changeable parts that may be provided by the system
developers.

Sensitivity analysis helps the experts to define the uncertainties involved
with a particular system change so that those experts can judge on the potential
change based on how reliable they feel the consequences are. The analysis can
deal with what aim for since it allows us to define the problematic changes.
More specifically, we exploit the Fault Tree Analyses (FTAs) which are sup-
posed to have been done by developers through the safety analysis phase and
apply the sensitivity analysis to those FTAs in order to identify the sensitive
parts in them. We define a sensitive part as one or multiple events whose
minimum changes have the maximal effect on the FTA, where effect means
exceeding reliability targets due to a change.

In spite of the assumption we make that the safety argument’s logic is based
on the causal pathways described in the FTAs, tracking the changes from the
FTAs of a system down to its safety argument still requires a traceability mech-
anism between the two. To this end, we use the concept of contract to highlight
the sensitive parts in FTAs, and to establish a traceability between those parts
and the corresponding safety argument. In our work, we assume that safety
arguments are recorded in the Goal Structuring Notation (GSN) [2]. However,
the approach we propose might (with suitable adaptations) be compatible for
use with other graphical assurance argument notations.

Combining the sensitivity analysis together with the concept of contracts to
identify the sensitive parts of a system and highlight these parts may help the
experts to make an educated decision as to whether or not apply changes. This
decision is in light of beforehand knowledge of the impact of these changes on
the system and its safety case. Our hypothesis in this work is that it is pos-
sible to use the sensitivity analysis together with safety contracts to (1) bring
to developers’ attention the most sensitive parts of a system for a particular
change, and (2) manage the change by guiding the developers to the parts in
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the safety argument that might be affected after applying a change. However,
using contracts as a way of managing change is not a new notion since it has
been discussed in some works, such as [3][4], but deriving the contracts and
their contents have received little or even no support yet. The main contribution
of this paper is to propose a safety case maintenance technique. However, we
focus on the first phase of the technique and explain how to apply the sensitivity
analysis to FTAs and derive the contracts and their contents. We also explain
how to associate the derived arguments with safety argument goals. The paper
illustrates the technique and its key concepts using the a hypothetical aircraft
Wheel Braking System (WBS).

The paper is structured as follows: in Section 9.2 we present background
information. In Section 9.3 we propose a technique for maintaining safety
cases using sensitivity analysis. In Section 9.4 we use the WBS example to
illustrate the technique. In Section 9.5 we present the related work. Finally, we
conclude and derive future works in Section 9.6.

9.2 Background and Motivation

This section gives background information about (1) the GSN, (2) the concept
of contract, (3) some of the current challenges that are facing safety case main-
tenance including a brief review of the state-of-the-art, and (4) the sensitivity
analysis including some possible applications.

9.2.1 The Goal Structuring Notation (GSN)

A safety argument organizes and communicates a safety case, showing how the
items of safety evidence are related and collectively demonstrate that a system
is acceptably safe to operate in a particular context. GSN [2] provides a graph-
ical means of communicating (1) safety argument elements, claims (goals),
argument logic (strategies), assumptions, context, evidence (solutions), and (2)
the relationships between these elements. The principal symbols of the nota-
tion are shown in Figure 9.1 (with example instances of each concept).

A goal structure shows how goals are successively broken down into (‘solved
by’) sub-goals until eventually supported by direct reference to evidence. Us-
ing the GSN, it is also possible to clarify the argument strategies adopted (i.e.,
how the premises imply the conclusion), the rationale for the approach (as-
sumptions, justifications) and the context in which goals are stated.
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Figure 9.1: Notation Keys of the Goal Structuring Notation (GSN)

9.2.2 The Concept of Safety Contracts
The concept of contract is not uncommon in software development and it was
first introduced in 1988 by Meyer [5] to constrain the interactions that occur
between objects. Contract-based design [6] is defined as an approach where the
design process is seen as a successive assembly of components where a com-
ponent behaviour is represented in terms of assumptions about its environment
and guarantees about its behavior. Hence, contracts are intended to describe
functional and behavioral properties for each design component in form of as-
sumptions and guarantees. In this paper, a contract that describes properties
that are only safety-related is referred to as a safety contract.

9.2.3 Safety Case Maintenance and Current Practices
A safety case is a living document that should be maintained as the system,
its operation, or its operating context changes. In this paper, we refer to the
process of updating the safety case after implementing a change as safety
case maintenance. Developers are experiencing difficulties with safety case
maintenance, including difficulty identifying the direct and indirect impact of
change. Two main causes of this difficulty are a lack of traceability between a
system and its safety case and a lack of documentation of dependencies among
the safety case’s contents. Systems tend to become more complex, this increas-
ing complexity can exacerbate safety case maintenance difficulties. The GSN
is meant to reduce these difficulties by providing a clear, explicit conceptual
model of the safety case’s elements and interdependencies [7].

Our discussion of documenting interdependencies within a safety case refers
to two different forms of traceability. Firstly, we refer to the ability to relate
safety argument fragments to system design components as component trace-
ability (through a safety argument). Secondly, we refer to evidence across
system’s artefacts as evidence traceability.
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Current standards and analysis techniques assume a top-down development
approach to system design. When systems that are built from components, mis-
match with design structure makes monolithic safety arguments and evidence
difficult to maintain. Safety is a system level property; assuring safety requires
safety evidence to be consistent and traceable to system safety goals [7]. One
might suppose that a safety argument structure aligned with the system design
structure would make traceability clearer. It might, but safety argument struc-
tures are influenced by four factors: (1) modularity of evidence, (2) modularity
of the system, (3) process demarcation (e.g., the scope of ISO 26262 items [1]),
and organisational structure (e.g., who is working on what). These factors often
make argument structures aligned with the system design structure impractical.
However, the need to track changes across the whole safety argument is still
significant for maintaining the argument regardless of its structure.

9.2.4 Sensitivity Analysis

Sensitivity analysis helps to establish reasonably acceptable confidence in the
model by studying the uncertainties that are often associated with variables in
models. There are different purposes for using sensitivity analysis, such as,
providing insight into the robustness of model results when making decisions
[8]. The analysis can be also used to enhance communication from modelers
to decision makers, for example, by making recommendations more credible,
understandable, compelling or persuasive [9]. The analysis can be performed
by different methods, such as, mathematical, graphical, statistical, etc.

In this paper, we use sensitivity analysis to identify the sensitive parts of
a system that might require unnecessary painstaking maintenance. More spe-
cifically, we apply the sensitivity analysis on FTAs to measure the sensitivity
of outcome A (e.g., a safety requirement being true) to a change in a parameter
B (e.g., the failure rate in a component). The sensitivity is defined as ∆B/B,
where ∆B is the smallest change in B that changes A (e.g., the smallest in-
crease in failure rate that makes safety requirement A false). Hence, a sensitive
part is defined as one or multiple FTA events whose minimum changes have
the maximal effect on the FTA, where effect means exceeding failure probab-
ilities (reliability targets) to inadmissible levels due to the change. The failure
probability values that are attached to the FTA events are considered input para-
meters to the sensitivity analysis. A sensitive event is the event whose failure
probability value can significantly influence the validity of the FTA once it in-
creases. A sensitive part of a FTA is assigned to a system design component
that is referred to as sensitive component in this paper. Hence, changes to a
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sensitive component cause a great impact to system design.

9.3 Using Sensitivity Analysis To Facilitate The Main-
tenance of A Safety Case

In this section, we build on the background information provided in Section
9.2 to propose a technique that aims to facilitate the maintenance of a safety
case. The technique comprises 7 steps that are distributed between the Sensitiv-
ity ANalysis for Enabling Safety Argument Maintenance (SANESAM) phase
and the safety argument maintenance phases as shown in Figure 9.2. The
steps of the SANESAM phase are represented along the upper path, whilst
the lower path represents the steps of the safety argument maintenance phase.
The SANESAM phase, however, is what is being discussed in this paper.

Step 3:
Derive safety 
contracts from 
FTAs

Step 4:
Build the safety argument 
and associate the derived 
contracts with it

Step 2:
Refine the identified 
sensitive parts with 
system developers 

Step 1: 
Apply Sensitivity 
Analysis to 
probabilistic FTA(s)

Step 6:
Specify the affected parts 
of the safety argument

Step 5: 
Analyze the impact of 
change 

The SANESAM Phase 

The Safety Argument Maintenance Phase
Step 7:
Update the argument

Figure 9.2: Process diagram of the proposed technique

A complete approach to managing safety case change would include both
(a) mechanisms to structure the argument so as to contain the impact of pre-
dicted changes and (b) means of assessing the impact of change on all parts of
the argument [10]. As discussed in Section 9.1, system changes and their de-
tails cannot be fully predicted and made available up front. Predicting potential
changes to the software aspects of a safety case is even harder than other parts
because software is highly changeable and harder to manage. Consequently,
considering a complete list of anticipated changes is difficult. What can be
easier though is to determine the flexibility (or compliance) of each component
to changes. This means that regardless of the type of changes the latter will be
seen as factors to increase or decrease a certain parameter value. Thus system
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developers can focus more on predicting those changes that might make the
parameter value inadmissible.

The rationale of our technique is to determine, for each component, the
allowed range for a certain parameter within which a component may change
before it compromises a certain system property (e.g., safety, reliability, etc.).
To this end, we use the sensitivity analysis as a method to determine the range
of failure probability parameter for each component. Hence, the technique
assumes the existence of a probabilistic FTA where each event in the tree is
specified by an actual (i.e., current) failure probability FPActual|event(x). In
addition, the technique assumes the existence of the required failure probability
for the top event FPRequired(Topevent), where the FTA is considered unreliable
if: FPActual(Topevent) > FPRequired(Topevent). The steps of the SANESAM
phase are as follows:

• Step 1. Apply the sensitivity analysis to a probabilistic FTA: In this step
the sensitivity analysis is applied to a FTA to identify the sensitive events
whose minimum changes have the maximal effect on the FPTopevent.
Identifying those sensitive events requires the following steps to be per-
formed:

1. Find minimal cut set MC in the FTA. The minimal cut set defin-
ition is: “A cut set in a fault tree is a set of basic events whose
(simultaneous) occurrence ensures that the top event occurs. A cut
set is said to be minimal if the set cannot be reduced without losing
its status as a cut set”[11].

2. Calculate the maximum possible increment in the failure probabil-
ity parameter of event x before the top event FPActual(Topevent) is
no longer met, where x ∈MC and

(FPIncreased|event(x) − FPActual|event(x)) ;
FPActual(Topevent) > FPRequired(Topevent).

3. Rank the sensitive events from the most sensitive to the less sens-
itive. The most sensitive event is the event for which the following
equation is the minimum:

(FPIncreased|event(x) − FPActual|event(x))/FPActual|event(x)

• Step 2. Refine the identified sensitive parts with system developers: In
this step, the generated list from Step 1 should be discussed with system
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developers (e.g., safety engineers) and ask them to choose the sensitive
events that are most likely to change. The list can be extended to add any
additional events by the developers. Moreover, it is envisaged that some
events may be removed from the list or the rank of some of them change.

• Step 3. Derive safety contracts from FTAs: In this step, the refined
list from Step 2 is used as a guide to derive the safety contracts, where
each event in the list should have at least one contract. The main ob-
jective of the contracts is to 1) highlight the sensitive events to make
them visible up front for developers attention, and 2) to record the de-
pendencies between the sensitive events and the other events in the FTA.
Hence, if any contracted event has received a change that necessitates
increasing its failure probability where the increment is still within the
defined threshold in the contract, then it can be said that the contract(s) in
question still holds (intact) and the change is containable with no further
maintenance. The contract(s), however, should be updated to the latest
failure probability value. On the contrary, if the change causes a bigger
increment in the failure probability value than the contract can hold, then
the contract is said to be broken and the guaranteed event will no longer
meet its reliability target. We create a template to document the derived
safety contracts as shown in Figure 9.3a, where G and A stand for Guar-
antee and Assumption, respectively. Furthermore, each safety contract
should contain a version number (it is shown as V in Figure 9.3a). The
version number of the contract should match the artefact version number
(as described in the next step), otherwise it will be considered out of date.
We also introduce a new notation to the FTA to annotate the contracted
events where every created contract should have a unique identifier, see
Figure 9.3b.

• Step 4. Build the safety argument and associate the derived contracts
with it: In this step, a safety argument should be built and the derived
safety contracts should be associated with the argument elements.

In order to associate the derived safety contracts with GSN arguments,
we reuse our previous work [10]. The essence of that work is storing
additional information in the safety argument to facilitate identifying the
evidence impacted by change. This is done by annotating each reference
to a development artefact (e.g. an architecture specification) in a goal
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or context element with an artefact version number. Also by annotating
each solution element with:

1. An evidence version number

2. An input manifest identifying the inputs (including version) from
which the evidence was produced

3. The lifecycle phase during which the evidence obtained (e.g. Soft-
ware Architecture Design)

4. A safety standard reference to the clause in the applicable standard
(if any) requiring the evidence (and setting out safety integrity level
requirements)

However, the approach description, just as it is, does not support as-
sociating our derived safety contracts in Step 3 with the safety argument
without proper adjustments. Hence, a set of rules are introduced to guide
the reuse of the approach in the work of this paper, as follows:

1. GSN element names should be unique.

2. At least one GSN goal should be created for each guarantee (i.e.,
for each safety contract). Moreover, the contract should be annot-
ated in the goal which is made for it. The annotation should be
done by using the contract ID and the notation in Figure 9.3b.

3. Assumptions in each safety contract should be restricted to one
event only. If the guarantee requires assumptions about another
event, a new contract should be created to cover these assumptions.

<<ContractID>>

(b)

ContractID: <<ContractID>>
G1: The Failure probability for <X> event is <Y> 
A1: Only event <Z> increases its failure rate
A2: <Z> failure probability increases by ≤ <P>
A3: The failure of <Z> remains independent of any other event
A4: The logic in the fault tree <FTA_Name> remains the same
V:  <Contract Version No.>
GSNRef: <GSN_ElementName.Module>

(a)

Figure 9.3: (a) Safety Contract Template (b) Safety Contract Notation for FTA
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4. An event in the assumptions list of a safety contract may be also
used as a goal in the argument. In this case, the goal name should
be similar to the event name.

5. Each safety contract should contain the GSN reference within it.
The reference is the unique name of the GSN element followed by
a dot and the name of the GSN module (if modular GSN is used).
It is worth noting that while documenting the safety contracts, the
GSN references might not be available as the safety argument itself
might not be built yet. Hence, whenever GSN references are made
available, system developers are required to revisit each contract
and add the corresponding GSN reference to it. GSN reference
parameter is shown as GSNRef in Figure 9.3a.

It is worth saying that the technique shall not affect the way GSN is being
produced but it brings additional information for developers’ attention.

9.4 An Illustrative Example: The Wheel Braking
System (WBS)

In this section, we illustrate the proposed technique and its key concepts using
the hypothetical aircraft braking system described in Appendix L of Aerospace
Recommended Practice ARP-4761 [12]. Figure 9.4 shows a high-level archi-
tecture view of the WBS

9.4.1 Wheel Braking System (WBS): System Description
The WBS is installed on the two main landing gears. The main function of the
system is to provide wheel braking as commanded by the pilot when the aircraft
is on the ground. The system is composed of three main parts: Computer-based
part which is called the Brake System Control Unit (BSCU), Hydraulic part,
and Mechanical part.

The BSCU is internally redundant and consists of two channels, BSCU
System 1 and 2 (BSCU is the box in the gray background in Figure 9.4). Each
channel consists of two components: Monitor and Command. BSCU System 1
and 2 receive the same pedal position inputs, and both calculate the command
value. The two command values are individually monitored by the Monitor 1
and 2. Subsequently, values are compared and if they do not agree, a failure is
reported. The results of both Monitors and the compared values are provided
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Figure 9.4: A high-level view of the WBS

to a the Validity Monitor. A failure reported by either system in the BSCU will
cause that system to disable its outputs and set the Validity Monitor to invalid
with no effect on the mode of operation of the whole system. However, if both
monitors report failure the BSCU is deemed inoperable and is shut down [13].

It worth noting that Figure 9.4 shows high-level view of the BSCU imple-
mentation and it omits many details. However, the figure is still sufficient to
illustrate key elements of our technique. More details about the BSCU imple-
mentation can be found in ARP-4761 [12].

9.4.2 Applying the Technique

Before we can apply the technique, both the required and actual failure probab-
ilities of the top event should be clearly defined, where FPRequired(Topevent)

> FPActual(Topevent). Appendix L of the ARP-4761 states, as a safety re-
quirement on the BSCU, that: “The probability of BSCU fault causes Loss
of Braking Commands shall be less than 3.30E-5 per flight”. This means
that: FPRequired(Topevent) < 3.30E-5. In line with this, we assumed that
the FPActual(Topevent) ≈ 1.50E-6. Figure 9.5 shows the “Loss of Braking
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Figure 9.5: Loss of Braking Commands FTA

Commands” probabilistic FTA.

• Step 1. Apply the sensitivity analysis to the “Loss of Braking Com-
mands” probabilistic FTA: the following steps were performed to apply
the sensitivity analysis:

1. Find minimal cut set MC in the FTA: there are several algorithms
to find the MC. We apply Mocus cut set algorithm [11], as follows:

MC = {BSVMIRFCSTA + SWFSIIP + (BSS1EF ∗BSS2EF) +
(BSS1EF ∗BSS2PSF) + (BSS1EF ∗ SWFSIS1P) + (BSS1PSF ∗
BSS2EF)+(BSS1PSF∗BSS2PSF)+(BSS1PSF∗SWFSIS1P)+
(BSS2EF ∗ SWFSIS2P) + (BSS2PSF ∗ SWFSIS2P)}.
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Table 9.1: The results of the sensitivity analysis
Event FPActual|event(x) ≈∆FP FPIncreased|event(x) Sensitivity Rank

BSVMIRFCSTA 8.00E-07 3.150E-05 3.2304E-05 39 1
SWFSIIP 6.50E-07 3.150E-05 3.2154E-05 48 2

SWFSIS1P 1.30E-05 1.448E-01 1.4484E-01 51182 5
SWFSIS2P 1.30E-05 1.448E-01 1.4484E-01 51182 5

BSS1EF 1.50E-04 1.448E-01 1.4498E-01 965 3
BSS1PSF 6.75E-05 1.448E-01 1.4490E-01 2145 4
BSS2EF 1.50E-04 1.448E-01 1.4498E-01 965 3

BSS2PSF 6.75E-05 1.448E-01 1.4490E-01 2145 4

2. A simple C program was coded to calculate the maximum pos-
sible failure probability FPIncreased|event(x) for each event in the
MC. Subsequently, the FPActual|event(x) was subtracted from
the FPIncreased|event(x) to obtain ∆FP for each event. Table 9.1
shows the calculated FPIncreased|event(x) and ∆FP .

3. Applying the sensitivity equation:
(FPIncreased|event(x)−FPActual|event(x))/FPActual|event(x) de-
termines the sensitivity for x where x ∈ MC. Table 9.1 shows
the sensitivity values and the ranking, where 1 indicates the most
sensitive event.

• Step 2. Refine the identified sensitive parts with system developers:
the WBS is a hypothetical system and no discussions have been made
with the system developers. For the sake of the example, however, a
pessimistic decision was made to consider all the events in Table 9.1 as
liable to change. It is worth noting that in more complex examples the
volume of sensitive event lists will be quite big. Hence, discussing those
lists with system developers can lead to more selective events and thus
alleviating the number of safety contracts.

• Step 3. Derive safety contracts from “Loss of Braking Commands”
FTA: based on the list of the sensitive events from Step 2, a safety con-
tract was derived for each event in the list. The introduced safety contract
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template in Figure 9.3a was used to demonstrate the derived safety con-
tracts. For lack of space, we show only one example of the eight derived
safety contracts (see Figure 9.6).

ContractID: Contr_BSVMIRFCSTA
G1: The Failure probability for the top event BSFCLOBC ≤ 3.30E-05 
A1: Only event BSVMIRFCSTA increases its failure rate
A2: BSVMIRFCSTA failure rate increases by ≤ 3.2304E-05
A3: The failure of BSVMIRFCSTA remains independent of any other event
A4: The logic in the fault tree "Loss of Braking Commands" remains the same
V:  V1.0
GSNRef: BSCUAllFailures.WBSSafety

Figure 9.6: A derived safety contract

• Step 4. Build the safety argument for the BSCU and associate the de-
rived contracts with it: a safety argument fragment was built as shown
in Figure 9.7. The derived safety contracts are associated with the de-
rived safety contracts according to Steps 4 in Section 9.3. BSCUAll-
Failures claims that BSCU faults cause Loss of Braking commands are
sufficiently managed. The possible faults of BSCU, based on “Loss of
Braking Commands” FTA, are addressed by the subgoals below the Ar-
gAllCaus strategy. Hence, BSCUAllFailures represents the top event of
the FTA and thus the derived safety contracts are associated with it. The
single black star on the left refers to the notation that is used to associate
the contracts with BSCUAllFailures. It is important to note that goals in
the gray color background represent assumptions in the safety contract.
Each goal of those has the same name of the event in the assumptions
list of the corresponding contract. For instance, BSVMIRFCSTA is a
goal that represents an assumption within Contr BSVMIRFCSTA con-
tract which, in turn, guarantees a property for another event.

The double black stars in the lower right corner refer to that annotation
which is described in Section 9.3. It is important to make sure that con-
tracts, related artefacts and items evidence have the same version num-
ber. The main idea of having the information within this notation is to
pave the way to highlight the impact of changes. However, this idea will
be described for the last three steps of the technique which is left for
future work.
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S18AircraftWheelBrakingSafe —
S18 WBS is acceptably safe to operate in its 
intended operating context

StArgOverHazards —
Argument over all identified hazards

CxtOperational context—
During aircraft landing or RTO 
[Ref: system description] CxtAcceptablysafe —

Acceptably safe means that the 
failure probability of the wheel 
braking systems is < 5E-7 per 
flight hour  

CxtWBSS18—
[Ref: S18 wheel Braking 
system (WBS) description]  

HazardIdentified —
All hazards have been 
identified

HazardMitigated —
All hazards are adequately mitigated 

SolHzrdRprt:
Hazard log

... HLossDecelerationCapability—
H1 "Loss of Deceleration Capability when required" hazard is acceptably managed

AHazardAnalysisProcess —
Hazard Analysis Process used to 
identify Hazards and generate 
Hazard Mitigation is adequate A

CxtIdentifiedHazards — 
Identified Hazards are 
recoded in [Ref: hazard log]

ArgAllWCont—
Argument over all identified contributions

SWContIdent—
The ways in which WBS contributes 
to H1 are completely and correctly 
identified
            Safety Analysis...BSCUAllFailures— BSCU Faults cause Loss of 

Braking Commands are sufficiently managed

ArgAllCaus—
Argument over BSCU contributions 
to loss of braking commands

SafetyRequirements—
A set of requirements is specified to 
mitigate BSCU contributions to H1

SolSRRprt:
Safety 
Requirements 
Report

BSS1&2DNO—
BSCU System 1 and 
2 operate when they 
are required

BSCUContIdent—
The ways in which BSCU contributes 
to Loss of Braking Commands are 
completely and correctly identified
            Safety Analysis

CxtBSCUDesc—
[Ref: BSCU description]  

BSVMIRFCSTA—
Incorrect reporting of 
failures by Validity Monitor 
is sufficiently managed

SWFCTLOBBC—!
Switch failures cause 
loss of BSCU Braking 
Commands are managed

SWFSIIP—
Switch is not stuck in 
intermediate positionSWFSIS1P— 

Switch is not Stuck 
in System 1 Position

SWFSIS2P—    
Switch is not Stuck in 
System 2 Position

LOOBS1—
BSCU System 1 operates 
when it is required

LOOBS2—
BSCU System 2 operate 
when it is required

CxtDefReq—
BSCU is required to 
operate upon the arrival 
of braking commands 

BSS2PSF—
System 2 Power Supply 
failures are managed

BSS2EF—
System 2 Electronics 
failure are managed 

BSS1PSF—
System 1 Power Supply 
failures are managed

BSS1EF—
System 1 Electronics 
failures are amanged 

ContractID: 
Contr_BSVMIRFCSTAContractID: 

Contr_BSVMIRFCSTAContractID: 
Contr_BSVMIRFCSTAContractID: 

Contr_BSVMIRFCSTAContractID: 
Contr_BSVMIRFCSTAContractID: 

Contr_BSVMIRFCSTAContractID: 
Contr_BSVMIRFCSTAContractID: 

Contr_BSVMIRFCSTA

Evidence Version: <N>
Input Manifest: (X, Y)
Lifecycle phase: <e.g., Requirement>
Safety Standard: (e.g., DO-178B)

Figure 9.7: Safety argument fragment for WBS
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9.5 Related Work

A consortium of researchers and industrial practitioners called the Industrial
Avionics Working Group (IAWG) has proposed using modular safety cases as
a means of containing the cost of change. IAWG’s Modular Software Safety
Case (MSSC) process facilitates handling system changes as a series of rel-
atively small increments rather than occasional major updates. The process
proposes to divide the system into a set of blocks [3][4]. Each block may cor-
respond to one or more software components but it is associated to exactly one
dedicated safety case module. Engineers attempt to scope blocks so that an-
ticipated changes will be contained within argument module boundaries. The
process establishes component traceability between system blocks and their
safety argument modules using Dependency-Guarantee Relationships (DGRs)
and Dependency-Guarantee Contracts (DGCs). Part of the MSSC process is to
understand the impact of change so that this can be used as part of producing
an appropriate argument. The MSSC process, however, does not give details
of how to do this. The work in this paper addresses this issue.

Kelly [14] suggests identifying preventative measures that can be taken
when constructing the safety case to limit or reduce the propagation of changes
through a safety case expressed in goal-structure terms. For instance, de-
velopers can use broad goals (goals that are expressed in terms of a safety mar-
gin) so that the these goals might act as barriers to the propagation of change as
they permit a range of possible solutions. A safety case therefore, interspersed
with such goals at strategic positions in the goal structure could effectively
contain “firewalls” to change. Some of these initial ideas concerning change
and maintenance of safety cases have been presented in [15]. However, no
work was provided to show how these thoughts can facilitate the maintenance
of safety cases.

9.6 Conclusion and Future Work

Changes are often only performed years after the initial design of the system
making it hard for the designers performing the changes to know which parts
of the argument are affected. Using contracts to manage system changes is not
a novel idea any more since there has been significant work discusses how to
represent contracts and how to use them. However, there has been little work on
how to derive them. In this paper, we proposed a technique in which we showed
a way to derive safety contracts using the sensitivity analysis. We also proposed
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a way to map the derived safety contracts to a safety argument to improve
the change impact analysis on the safety argument and eventually facilitate
its maintenance. Future work will focus on describing the last three steps of
the technique. Also, creating a case study to validate both the feasibility and
efficacy of the technique is part of our future work.
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Abstract

Safety cases need significant amount of time and effort to produce. The re-
quired amount of time and effort can be dramatically increased due to system
changes as safety cases should be maintained before they can be submitted
for certification or re-certification. Sensitivity analysis is useful to measure
the flexibility of the different system properties to changes. Furthermore, con-
tracts have been proposed as a means for facilitating the change management
process due to their ability to record the dependencies among system’s com-
ponents. In this paper, we extend a technique that uses a sensitivity analysis
to derive safety contracts from Fault Tree Analyses (FTA) and uses these con-
tracts to trace changes in the safety argument. The extension aims to enabling
the derivation of hierarchical and correlated safety contracts. We motivate the
extension through an illustrative example within which we identify limitations
of the technique and discuss potential solutions to these limitations.
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10.1 Introduction

The concept of a safety case originated in 1989 when the UK Health and Safety
Executive (HSE) requested from the British nuclear sites to generate a written
report — according to the Control of the Industrial Major Accident Hazards
(CIMAH) regulations — that should contain: (1) facts about the site, and (2)
reasoned arguments about the hazards and risks from the site [1]. This report
is known as a safety case, which should systematically demonstrate a reasoned
argument that a nuclear site is acceptably safe to operate. More specifically,
a safety case should identify the major hazards and risks in a nuclear site and
demonstrate that the site is satisfactory since all of these hazards and risks are
adequately mitigated. The increasing size and complexity of safety critical sys-
tems motivate the application of the safety case concept in different domains
(e.g., oil, avionics, railway, automotive, etc.) to demonstrate a reasoned argu-
ment that those systems are acceptably safe to operate.

Safety certification is typically imposed by authorities as a censorship pro-
cedure to control the development of safety critical systems. The certification
processes are based on an evaluation of whether the hazards associated with a
system are mitigated to an acceptable level. Developers must provide evidence
of safety to their regulators. Safety cases can explain how this evidence shows
that the system is acceptably safe to operate. Hence, the development of safety
cases has become common practice.

The certification process is amongst the most expensive and time-consuming
tasks in the development of safety critical systems. A key reason behind that
is the increasing complexity and size of these systems combined with their
growing market demands. Moreover, safety critical systems are expected to
operate for a long period of time and frequently subject to changes during
both development and operational phases. Any change that might compromise
system safety involves repeating the certification process (i.e., re-certification)
and thus, ultimately, necessitates maintaining the corresponding safety case.
For example, the UK Ministry of Defence Ship Safety Management System
Handbook JSP 430 requires that “The safety case will be updated ... to reflect
changes in the design and/or operational usage which impact on safety, or to
address newly identified hazards. The safety case will be a management tool
for controlling safety through life including design and operation role changes”
[2, 3]. Similarly, the UK HSE Railway safety case regulations 1994 states in
regulation 6(1) that “A safety case is to be revised whenever, appropriate that
is whenever any of its contents would otherwise become inaccurate or incom-
plete” [4, 3].
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One of the biggest challenges that affects safety case revision and main-
tenance is that a safety case comprises a complex web of interdependent ele-
ments. That is, safety goals, evidence, argument, and assumptions about op-
erating context are highly interdependent and thus, seemingly minor changes
may have a major impact on the contents and structure of the safety argu-
ment. As such, a single change to a safety case may necessitate many other
consequential changes — creating a ripple effect [5]. For example, if a new
system component was integrated into a system, old items of evidence might
no longer support the developers’ claims about components’ consistency be-
cause these claims reflect old assumptions in the development artefacts that do
not take into consideration the new component integration.

In order to maintain a safety case after implementing a system change,
system developers need to assess the impact of changes on the original safety
argument. The assessment shall include reviewing the relevant assumptions
made in the argument, and examining the adequacy of the collected body of
evidence. For example, the UK Defence Standard DS 00-56 states that: “Any
amendments to the deployment of the system should be examined against the
assumptions and objectives contained in the safety case” [6], [3]. Hence, a step
to assess the impact of this change on the safety argument is crucial and highly
needed prior to updating a safety argument after a system change. Despite clear
recommendations to adequately maintain and review safety cases by safety
standards, existing standards offer little advice on how such operations can be
carried out [5]. If developers do not understand the impact of change then they
have to be conservative and do wider verification (i.e., check more elements
than strictly necessary). This increases the maintenance cost.

Modularity has been proposed as the key element of the ‘way forward’ in
developing systems [7]. For modular systems, the required maintenance ef-
forts to accommodate predicted changes can be less than the required efforts
to accommodate arbitrary changes. This is because having a list of predicted
changes during the system design phase allows system engineers to contain
the impact of each of those changes in a minimal number of system’s modules.
Hence, predicted changes can have traceable consequences as engineers will be
aware of how a change in one module can result in a change in another module.
In practice, it is hard to align the safety case structure with the system’s mod-
ules [8]. However, a well-established traceability between system’s modules
and its safety case can provide the same traceable consequences of changes in
the safety case. The problem though is that system changes and their details
cannot be fully predicted and made available up front. In particular, software
aspects of the safety case is hard to be predicted as software is highly change-
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able and harder to contain. In this paper, we use sensitivity analysis based
approach to assist system’s engineers to predict changes.

In our previous work [8], we introduced a technique that contains Sensitiv-
ity ANalysis for Enabling Safety Argument Maintenance (SANESAM) phase
that supports system engineers to anticipate potential changes. The key prin-
ciple of SANESAM phase is to determine the flexibility (or compliance) of a
system to changes using sensitivity analysis. The output is a ranked list of FTA
events that system engineers can refine. The result after the refinement is a list
of contracts that can be used as part of later change impact analysis. We also
use safety contracts to record the information of changes that will ultimately
advise the engineers what to consider and check when changes actually hap-
pen. The main contribution of this paper comprises (1) identifying possible
limitations for SANESAM, and (2) suggest an a SANESAM extension to re-
solve the identified limitations. The paper uses the hypothetical aircraft Wheel
Braking System (WBS) to illustrate SANESAM extension.

This paper is composed of four further sections. In Section 10.2 we present
background information about sensitivity analysis, safety contracts, Goal Struc-
turing Notations (GSN), incremental certification and WBS description. In
Section 10.3, we give an overview of a technique to facilitate the maintenance
of safety cases and identify limitations. In Section 10.4, we suggest extending
the technique to resolve the identified limitations, we also use the WBS system
to illustrate the extensions. Finally, we conclude and propose future works in
Section 10.5.

10.2 Background

10.2.1 Sensitivity Analysis

Sensitivity analysis can be defined as: “The study of how uncertainty in the out-
put of a model (numerical or otherwise) can be apportioned to different sources
of uncertainty in the model input” [9]. The analysis helps to establish reason-
ably acceptable confidence in the model by studying the uncertainties that are
often associated with variables in models [10]. There are different purposes
for using sensitivity analysis, such as, providing insight into the robustness of
model results when making decisions [11]. For instance, sensitivity analysis
can be used to determine what level of accuracy is necessary for a parameter
(variable) to make the model sufficiently useful and valid [12].The analysis can
be also used to enhance communication from modelers to decision makers, for
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example, by making recommendations more credible, understandable, compel-
ling or persuasive [13]. The analysis can be performed by different methods,
such as, mathematical, graphical, statistical, etc.

Emberson et al. [14] use sensitivity analysis to improve the flexibility of
task allocation in real-time system design. More specifically, the analysis is
used to evaluate the impact on task allocation solution after applying possible
change scenarios to task allocation framework.

In this paper, we apply the sensitivity analysis on FTAs to measure the
sensitivity of outcome A (e.g., a safety requirement being true) to a change in
a parameter B (e.g., the failure probability in a component). The sensitivity
is defined as ∆B/B, where ∆B is the smallest change in B that changes A
(e.g., the smallest increase in failure probability that makes safety requirement
A false). The failure probability values that are attached to FTA’s events are
considered input parameters to the sensitivity analysis. A sensitive part of a
FTA is defined as one or multiple FTA events whose minimum changes (i.e.,
the smallest increase in its failure probability due to a system change) have the
maximal effect on the FTA, where effect means exceeding failure probabilities
(reliability targets) to inadmissible levels. A sensitive event is an event whose
failure probability value can significantly influence the validity of the FTA once
it increases. A sensitive part of a FTA is assigned to a system design component
that is referred to as a sensitive component in this paper. Changes to a sensitive
component cause a great impact to system design. [8]

10.2.2 Safety Contracts

The concept of contract is familiar in software development. For instance,
Design by Contract (DbC) was introduced in 1986 [15, 16] to constrain the
interactions that occur between objects. Contract-based design is an approach
where the design process is seen as a successive assembly of components where
a component behaviour is represented in terms of assumptions about its envir-
onment and guarantees about its behavior [17]. In the context of contract-
based design, a contract is conceived as an extension to the specification of
software component interfaces that specifies preconditions and postconditions
to describe what properties a component can offer once the surrounding envir-
onment satisfies one or more related assumption(s). A contract is said to be a
safety contract if it guarantees a property that is traceable to a hazard. There
have been significant works that discuss how to represent and to use contracts
[18, 19, 20]. In the safety critical systems domain, researchers have used, for
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example, assume-guarantee contracts to propose techniques to lower the cost
of developing software for safety critical systems. Moreover, contracts have
been exploited as a means for helping to manage system changes in a system
domain or in its corresponding safety case [21, 22, 23].

The following is an example that depicts the most common used form of
contracts:

Guarantee: The WCET of task X is ≤ 10 milliseconds
Assumptions:
X is:

1. compiled using compiler [C],

2. executed on microcontroller [M ] at 1000 MHz with caches dis-
abled, and

3. not interrupted

10.2.3 Safety Argumentation and Goal Structuring Notations
(GSN)

GSN was introduced to provide a graphical means of communicating (1) safety
argument elements, claims (goals), argument logic (strategies), assumptions,
context, evidence (solutions), and (2) the relationships between these elements
[24]. The principal symbols of the notations (with example instances of each
concept) are shown in Figure 10.1. A goal structure shows how goals are suc-
cessively broken down into (‘solved by’) sub-goals until a point is reached
where claims can be supported by direct reference to evidence. Using GSN,
the writer can clarify the adopted argument strategies (i.e., how the premises
imply the conclusion), the rationale for the approach (assumptions, justifica-
tions) and the context in which goals are stated [8]. GSN has been extended to
enable modularity in safety cases (i.e., module-based development of the safety
case) so that it enables the partitioning of a safety case into an interconnected
set of modules.

Well-structured argument may help the developers to mechanically propag-
ate the change through the goal structure. However, it does not tell if the sus-
pect elements of the argument in question are still valid. For example, having
made a change to a model we must ask whether goals articulated over that
model are still valid. Expert judgment is still required in order to answer such
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questions [25]. Hence, merely having well-structured arguments does not dir-
ectly help to preserve the soundness of the argument after a change, but it can
more easily determine the questions to be asked to do so.

10.2.4 Incremental Certification
The Industrial Avionics Working Group (IAWG) — a consortium of research-
ers and practitioners — has proposed Modular Safety Cases as a means of
containing the cost of change by dividing the safety case into a set of argument
modules. IAWG’s Modular Software Safety Case (MSSC) process [26] facil-
itates handling system changes as a series of relatively small increments rather
than occasional major updates. The key principle of the state-of-the-art process
is to modularise a safety case so as to contain changes within a minimal area
of the safety case [26]. More specifically, the process starts by anticipating
potential changes over the lifetime of a system. System developers modularise
the argument so as to contain the impact of the anticipated changes. Hence,
MSSC process ensures that the maximum amount of safety case material that
was previously certified is not impacted, and thus it is available for re-use in
the re-certification process without a need to be revisited [26].

10.2.5 Wheel Braking System (WBS): System Description
The WBS is a hypothetical aircraft braking system described in Appendix L of
a popular standard for safety assessment processes, ARP4761 [27]. Figure 10.2
shows a high-level architecture view of the WBS. The system is installed on the
two main landing gears of a civil air transport. The main function of the system
is to provide wheel braking as commanded by the pilot when the aircraft is on
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Figure 10.1: Overview of GSN Notations



10.2 Background 147

the ground. The system is composed of three main parts: 1. Computer-based
part which is called the Brake System Control Unit (BSCU), 2. Hydraulic part,
and 3. Mechanical part.
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Figure 10.2: A high-level view of the WBS [8]

The BSCU is internally redundant and consists of two channels, BSCU Sys-
tem 1 and 2 (BSCU is the box in the gray background in Figure 10.2). Each
channel consists of two components: Monitor and Command. BSCU System 1
and 2 receive the same pedal position inputs, and both calculate the command
value. The two command values are individually monitored by the Monitor 1
and 2. Subsequently, values are compared and if they do not agree, a failure is
reported. The results of both Monitors and the compared values are provided
to a the Validity Monitor. A failure reported by either system in the BSCU will
cause that system to disable its outputs and set the Validity Monitor to invalid
with no effect on the mode of operation of the whole system. However, if
both monitors report failure, the BSCU is deemed inoperable and is shut down
[8, 27, 28]. Figure 10.2 shows high-level view of the BSCU implementation
and it omits many details. However, the figure is still sufficient to illustrate key
elements of our technique. More details about the BSCU implementation can
be found in ARP-4761 [27]. Figure 10.3 shows the “Loss of Braking Com-
mands” probabilistic FTA.
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Figure 10.4: Process diagram of safety cases maintenance technique
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10.3 A Technique to Facilitate the Maintenance of
Safety Cases

In this section we give an overview of a technique that aims to facilitate the
maintenance of a safety case. The technique comprises 7 steps that are distrib-
uted between the Sensitivity ANalysis for Enabling Safety Argument Main-
tenance (SANESAM) phase and the safety argument maintenance phases as
shown in Figure 10.4. The steps of the SANESAM phase are represented along
the upper path, whilst the lower path represents the steps of the safety argu-
ment maintenance phase. Considering a complete list of anticipated changes
is difficult. This technique uses sensitivity analysis to measure the flexibility
of system components to changes. That is, regardless of the type of changes it
will be seen as factors to increase or decrease a certain parameter value. Thus
system developers can focus more on predicting those changes that might make
the parameter value inadmissible [8]. Furthermore, the technique utilises the
concept of contracts to record the information of changes that will ultimately
advise the engineers what to consider and check when changes actually hap-
pen.

10.3.1 SANESAM Phase

The rationale of this phase is to determine, for each component, the allowed
range for a certain parameter within which a component may change before
it compromises a certain system property (e.g., safety, reliability, etc.). Sens-
itivity analysis is used in this phase as a method to determine the range of
failure probability parameter for each component. The technique assumes
the existence of a probabilistic FTA where each event in the tree is specified
by a current estimate of failure probability FPCurrent|event(x). In addition,
the technique assumes the existence of the required failure probability for the
top event FPRequired(Topevent), where the FTA is considered unreliable if:
FPCurrentl(Topevent) > FPRequired(Topevent). [8]

The steps of SANESAM phase are as follows: [8]

• Step 1. Apply the sensitivity analysis to a probabilistic FTA: In this step
the sensitivity analysis is applied to a FTA to identify the sensitive events
whose minimum changes have the maximal effect on the FPTopevent.
Identifying those sensitive events requires the following steps to be per-
formed:
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1. Find the Minimal Cut Set (MC) in the FTA. The minimal cut set
definition is: “A cut set in a fault tree is a set of basic events whose
(simultaneous) occurrence ensures that the top event occurs. A cut
set is said to be minimal if the set cannot be reduced without losing
its status as a cut set” [29].

2. Calculate the maximum possible increment in the failure probabil-
ity parameter of event x before the top event FPRequired(Topevent)

is no longer met, where x ∈ MC and (FPIncreased|event(x) −
FPCurrent|event(x)) ;
FPIncreased(Topevent) > FPRequired(Topevent).

3. Rank the sensitive events from the most sensitive to the less sens-
itive. The most sensitive event is the event for which the following
formula is the minimum:

FPIncreased|event(x) − FPCurrent|event(x)

FPCurrent|event(x).

• Step 2. Refine the identified sensitive parts with system developers: In
this step, the generated list of sensitive events from Step 1 should be
discussed by system developers (e.g., safety engineers) as they should
choose the sensitive events that are most likely to change. The list can
be extended to add any additional events by the developers. Moreover, it
is envisaged that some events might be removed from the list or the rank
of some of them might change.

• Step 3. Derive safety contracts from FTAs: In this step, a safety contract
or contracts should be derived for each event in the list from Step 2. The
main objectives of the contracts are to 1) highlight the sensitive events
to make them visible up front for developers attention, and 2) to record
the dependencies between the sensitive events and the other events in
the FTA. Hence, if the system is later changed in a way that increases
the failure probability of a contracted event where the increased failure
probability is still within the defined threshold in the contract, then it can
be said that the contract(s) in question still hold (intact) and the change
is containable with no further maintenance. The contract(s), however,
should be updated to the latest failure probability value. On the other
hand, if the change causes a bigger increment in the failure probability
value than the contract can hold, then the contract is said to be broken
and the guaranteed event will no longer meet its reliability target. It is
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<<ContractID>>

(b)(a)

ContractID: Contr_BSVMIRFCSTA
G1: The Failure probability for the top event BSFCLOBC ≤ 3.30E-05 
A1: Only event BSVMIRFCSTA increases its failure rate
A2: BSVMIRFCSTA failure rate increases by ≤ 3.2304E-05
A3: The failure of BSVMIRFCSTA remains independent of any other event
A4: The logic in the fault tree "Loss of Braking Commands" 
remains the same
GSNRef: BSCUAllFailures.WBSSafety

Figure 10.5: (a) FTA Safety contract notation, (b) Derived safety contract

worth noting that the role of safety contracts in SANESAM is to high-
light sensitive events, and not to enter new event failure probabilities.
We introduce a new notation to FTAs to annotate the contracted events,
where every created contract should have a unique identifier, see Fig-
ure 10.5-a. Figure 10.3 shows the derived safety contracts as a result
of SANESAM application to the Loss of Braking Command FTA. We
also create a template to document the derived safety contracts. Figure
10.5-b shows an instantiation of the contents of one of the derived safety
contracts for WBS.

• Step 4. Build the safety argument and associate the derived contracts
with it: In this step, a safety argument should be built and the derived
safety contracts should be associated with the argument elements. As-
sociating the contracts with GSN goals is done by using the introduced
notation in Figure 10.5-a.

10.3.2 SANESAM Limitations
The essence of SANESAM is to calculate the maximum possible increment
in the failure probability parameter of only one event at a time before the top
event FPRequired(Topevent) is no longer met. In this section, we identify three
limitations of the current version of SANESAM and we give an example for
each limitation.

No Support for Intermediate Events

The followed method for applying sensitivity analysis relies on the calculated
cut set for the full FTA. Hence, only basic events are considered during the ap-
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plication of sensitivity analysis and no contracts are derived for the intermedi-
ate events. Figure 10.6-a shows an example of this limitation, where LOOBS1
is an intermediate event and based on SANESAM it cannot be provided as a
sensitive event thus no contract can be derived for it. Having said that, system
developers may need to contain the impact of changes in intermediate levels
to prevent them from rippling through the top-level event. Additionally, some
events might look trivial for system engineers but if those events were packed
in events from higher levels, then they could look nontrivial. For example,
providing system engineers with “Jam of speedbrake lever” as a sensitive event
to a particular change might look less serious than the parent event “Mechan-
ical failures of speedbrake lever”. Another motivation for deriving contracts on
intermediate levels comes from the fact that some intermediate events may rep-
resent top goals in the safety case modules which will be more supportive for
incremental certification as introduced in Section 10.2.4. In other words, pin-
pointing the entire safety case module as affected is easier than starting from
intermediate goals in that module. From the forgoing reasons, SANESAM
should be able to provide system engineers with sensitive events from different
levels of the FTA’s hierarchy.

No Support for Multiple Events Impact

SANESAM calculates the highest possible boundary of failure probabilities
for certain events. SANESAM also assumes independence of events and does
not address the problem of event interdependencies that is typical for any real-
istic system. This means that only one event failure probability is allowed to
increase per change. However, a change might impact multiple events in the
same time. For instance, adding distinct functional redundancy of a critical
software component might decrease the failure probability of multiple events
in the FTA. Likewise, removing a redundant component to make the system
simpler and cheaper might increase the failure probability of multiple events.
Since the failure probabilities of multiple components often change at once,
a SAMESAM extension to handle such changes is highly desirable. A clear
example can be given by assuming a change to BSCU System 1 power supply
in Figure 10.6-a. A change to BSCU System 1 power supply will necessitate a
correlated change to BSCU System 2 power supply. Hence, when we need to
calculate the possible increment to the failure probability of BSS1PSF (for this
specific change), we must take into account the correlation between BSS1PSF
and BSS2PSF.
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BSCU System 1 and 2 
Do Not Operate
BSS1&2DNO

Loss of BSCU 
System 1
LOOBS1

Loss of BSCU 
System 2
LOOBS2

BSCU System 1 
Electronics Failure 

BSS1EF

BSCU System 1 
Power Supply Failure

BSS1PSF

BSCU System 2 
Electronics Failure 

BSS2EF

BSCU System 2 
Power Supply Failure

BSS2PSF

Contr_BSS1EF

Contr_BSS1PSF

Contr_BSS2EF

Contr_BSS2PSF

4.71E-08

2.17E-04

6.75E-05

1.50E-04 1.50E-04

6.75E-05

2.17E-04

(a) (b)

Switch Failed Stuck to 
System 1 Position 
and System 1 Fails

SWFSTS1PAS1F

Loss of BSCU 
System 1

LOOBS1

BSCU System 1 
Power Supply Failure

BSS1PSF

Switch Failed 
"Stuck" in System 

1 Position
SWFSIS1P

Contr_SWFSIS2P

Contr_BSS1PSFContr_BSS1EF

BSCU System 
1 Electronics 

Failure 
BSS1EF

2.83E-09

1.30E-05

6.75E-051.50E-04

2.17E-04

Figure 10.6: Limitation examples

Neglecting Duplication

It is possible for an event to be represented in more than one location in the
same FTA. For example, LOOBS1 event is represented twice in this FTA. In
the first representation (Figure 10.6-a) it is combined with LOOBS2 by AND
gate, where both events have the same failure probability. In its second repres-
entation (Figure 10.6-b), LOOBS1 is combined with SWFSIS1P by AND gate,
both events have different failure probabilities. Hence, the possible increment
on LOOBS1 failure probability will vary in the two locations. SANESAM
neglects events duplication, and this is considered a limitation because the cal-
culated possible failure probability increment of the same event may vary in the
same FTA if the event is duplicated. Calculating the possible increment on the
failure probability of a duplicated event is based on the failure probability(s) of
the combined events. More clearly, in each duplication of an event, the event
may be combined with different event(s), different failure probability values,
and by different gates (e.g., AND, OR, XOR, etc.).
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10.4 SANESAM Extension
In this section, we suggest extending SANESAM to resolve the limitations that
were identified in Section 10.3.2. The extended SANESAM is referred to as
SANESAM+ in this paper. SANESAM and SANESAM+ are mutually ex-
clusive and selecting among them is very dependent on the refined list by sys-
tem engineers in Step 2 of the technique (described in Section 10.3.1). More
clearly, if at least one of the events in the refined list is duplicated, or if its
change necessitates a correlated event to change, then SANESAM+ is the one
to go. Otherwise, developers are free to choose SANESAM or SANESAM+.
However, choosing SANESAM means that the developers accept the assump-
tion that only one event is allowed to change at a time.

SANESAM relies on the calculated MC (minimum cut set) for the full
FTA which means that only the basic events are considered for sensitivity ana-
lysis. However, SANESAM+ requires measuring the sensitivity of all events
in the FTA. This means that we need to calculate the Maximum Allowed Fail-
ure Probability (MAFP) for each event in the FTA taking into account that all
events may change at a time. That is, ∆FP(Topevent) = (FPRequired(Topevent)

− FPCurrent(Topevent).) will be distributed over all FTA’s events, where
∆FP(Topevent) > 0.
In order to apply SANESAM+ and calculate the MAFP for FTA events, we
replace the procedure of Step 1 in Section 10.3.1 with the following procedure:

1. Find the difference between new and current FP s of the ancestor events,
as follows:

∆FP(Ancestor) = FPNew − FPCurrent

The first run of this step should start with ∆FP(Topevent), where the
new FP in this specific case is the required FP . The second run should
be for each event in the very next level and so on and so forth until the
basic events are reached.

2. This sub-step is very dependent on the type of the gate between the an-
cestor and descendant events. In case of OR gate, sub-steps 2-A and
2-B should be followed. In case of AND gate, sub-step 2-C should be
followed.

(a) Find the ratio of the descendant events to the ancestor event. The
first run of this step should start with the top event and the events
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beneath it. The second run of this step should consider one more
level down. In other words, descendant events in the first run will
become ancestors in the second one. The ratio of a descendant
event to its ancestor is calculated by Equation 10.1, as follows:

RatioDesc(x) =
FPCurrent(Desc(x))

FPCurrent(Ancestor)
(10.1)

(b) Increase the FP for each of the descendant events by ∆FP(Ancestor)

which is calculated in step 1. Increasing events’ FP is done by
Equation 10.2, as follows:

FPIncreased|Desc(x) = FPCurrent(Desc(x))

+(Ratio(Desc(x)) ∗∆FP(Ancestor))
(10.2)

(c) In this sub-step, we need to distribute the increment to the FP of
an ancestor event over its descendent events in the presence of an
AND gate. The increment to each descendant event is calculated in
two different ways based on the number of descendent events and
if their FPs vary.

Case 1. if the events share the same FP value, we can use:
n
√
FP(Increased|Ancestor), where n is the number of the descend-

ent events.

LOOBS1 and LOOBS2 in Figure 10.6-a represents an example of
this case.

Case 2. if the descendent events do not share the same FP , then
FP(Topevent) is distributed over them unevenly, but rather based
on the FP ratio of every descendent event to ∆FP(Ancestor) as
described by Equation 10.3:

FPCurrent(Desc(x)) + (
FPCurrent(Desc(x))∑
FPCurrent(AllDesc)

∗ I) (10.3)

In order to determine I we need to consider all sibling events as
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described in Equation 10.4:

(FPCurrent(Desc(x1)) + (
FPCurrent(Desc(x1))∑
FPCurrent(AllDesc)

∗ I))

∗(FPCurrent(Desc(x2)) + (
FPCurrent(Desc(x2))∑
FPCurrent(AllDesc)

∗ I))

∗(FPCurrent(Desc(xn) + (
FPCurrent(Desc(xn))∑
FPCurrent(AllDesc)

∗ I))

= FPIncreased(Ancestor)

(10.4)

LOOBS1 and SWFSIS1P in Figure 10.6-b represent an example of
this case.

3. Repeat steps 1 and 2 until FP of the basic events get increased. Unlike
SANESAM, SANESAM+ distinguish between duplicated events. That
is, if an event shows up in multiple locations in the FTA, we still need
to calculate its FP wherever we encounter it. Later on when finish cal-
culating the FP for all duplicates of an event we unify the its FP by
considering the minimum calculated FP of them.

4. Finally, rank the sensitivity of events from the most sensitive to the less
sensitive. The most sensitive event is the event for which Equation 10.5
is the minimum, as follows:

Sensitivity(x) =
FPIncreased(x) − FPCurrent(x)

FPCurrent(x)
(10.5)

It is worth noting that the difference between the steps of SANESAM and
SANESAM+ is observed only in Step 1, all other later steps are identical.

10.4.1 SANESAM+ Application: An Example

In this section, we use the Loss of Braking Commands FTA (in Figure 10.3) to
show an application example of SANESAM+.
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Figure 10.7: Loss of Braking Commands FTA [8]

1. Find ∆FP(Ancestor) (which is the top event in the FTA for the first of
this sub-step): ∆ FP(BSFCLOBC) = 3.30E-05 - 1.5031E-06
∆ FP(BSFCLOBC) = 3.14969E-05

2. Since BSFCLOBC is correlated with its descendants (i.e., BSS1&2DNO,
BSVMIRFCSTA and SWFCTLOBBC) via OR gate, then sub-steps 2-A
and 2-B should be followed.

(a) We need to find FP ratio for each of BSS1&2DNO, BSVMIRFC-
STA and SWFCTLOBBC to BSFCLOBC using Equation 10.1.

Example: BSS1&2DNO

RatioBSS1&2DNO =
4.71E–08

1.5031E–06
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RatioBSS1&2DNO = 3.133524050E-02.

(b) In this sub-step, ∆FP(BSFCLOBC) should be distributed over each
of BSS1&2DNO, BSVMIRFCSTA and SWFCTLOBBC based on
their ratios to FPActaul(Ancestor) using Equation 10.2.

Example: BSS1&2DNO
FPIncreased(BSS1&2DNO) =
4.71E-08 + (3.133524050E-02 * 3.14969E-05)
FPIncreased(BSS1&2DNO) = 1.034062937E-06

(c) Now, let us take other examples where AND gate correlates an an-
cestor event with its descendent events. The example covers Case
1 and 2 as described in sub-step 2-C in Section 10.4.

Example of Case 1: LOOBS1 and LOOB2.
FP(Increased(x) = 2

√
FP(Increased|BSS1&2DNO)

FP(Increased|LOOBS1) = 1.016889E-03
FP(Increased|LOOBS2) = 1.016889E-03

Example of Case 2: LOOBS1 and SWFSIS1P
In this example, the FP of LOOBS1 and SWFSIS1P are increased
using Equations 10.3 and 10.4.

= (2.17E–04 + (
2.17E–04

2.17E–04 + 1.30E–05
∗ I)) ∗

(1.30E–05 + (
1.30E–05

1.30E–05 + 2.17E–04
∗ I))

= 6.216381375E–08

FP(Increased|LOOBS1) = 1.02E-03
FP(Increased|SWFSIS1P ) = 6.10E-05

3. In this step, we repeat the 1 and 2 steps until FP of the basic events
get increased. Figure 10.7 shows the calculated FP s (in boxes) us-
ing SANESAM+. Looking at the figure, It should be observed that
the events, BSS1EF, BSS2EF, BSS1PSF and BSS2PSF are duplicated.
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These events were assumed independent from each other while calculat-
ing their FP s. However, this assumption was vanished after the calcula-
tion and the minimum FP (values between brackets in Figure 10.7) was
considered the maximum possible FP for each duplicate events. For ex-
ample, two FP values were obtained for BSS1EF in different locations
(i.e., 4.56E-04 and 3.167E-04) but since 3.167E-04 is the minimum FP
value of the two duplicates, it is, therefore, the maximum possible FP
for all BSS1EF’s duplicates.

4. In this step, we use Equation 10.5 in Section 10.4. Table 10.1 shows the
results of the sensitivity analysis and the ranking of the events’ sensitivity
where 1 is the most sensitive event.

Table 10.1: The results of SANESAM+ sensitivity analysis

Event Name Current FP Increased FP Sensitivity Rank

SWFSIS1P
SWFSIS2P 1.30E-05 6.10E-05 3.692307692 2

LOOBS1
LOOBS2 2.17E-04 1.02E-03 3.700460829 3

BSS1EF
BSS2EF 1.50E-04 1.013E-03 5.753333333 4

BSS1PSF
BSS2PSF 6.75E-05 3.167E-04 3.69185185 1

SWFCTLOBBC 6.56E-07 1.44E-05 20.95121951 5

SWFSTS1PAS1F
SWFSTS2PAS2F 2.83E-09 6.22E-08 20.97879859 6

BSVMIRFCSTA 8.00E-07 1.76E-05 21 7

SWFSIIP 6.50E-07 1.43E-05 21 7

BSS1&2DNO 4.71E-08 1.04E-06 21.08067941 8
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10.4.2 SANESAM+ For Predicted Changes
SANESAM+ can be useful even for arbitrary changes. That is, even if the sys-
tem engineers are not sure of the potential future changes, SANESAM+ enable
the derivation of safety contracts for all events in different levels in the FTA.
Hence, when a change request shows up, system engineers, and by returning
to the sensitivity results, can decide whether the effect of the change is toler-
able or not. However, SANESAM+ can be more useful in the presence of a
predicted change as it can increase the effect tolerance of that change. More
clearly, distributing ∆FP(Topevent) over all FTA’s events might increase the
change impact tolerance of some events that are unlikely to change. On the
other hand, the change impact tolerance might be slightly increased for events
that are more likely to change. Consequently, having a change scenario in ad-
vance will motivate increasing the change impact tolerance for only the events
that fall in the scope of that change. Since, however, SANESAM+ (for pre-
dicted changes) will exclude the events that are unlikely to change, we will
slightly modify the steps by which we calculate the FP of events. The follow-
ing steps give guidance on how to calculate the FP SANESAM+ for predicted
change scenarios:

1. Find the difference between the current and required FP of the top event
∆FP(Topevent).

2. Find the highest event that contains the effect. If the highest event does
not fall directly under the top event, the effect should be traced up the
fault tree further until we reach the affected event that falls directly under
the top event.

3. Distribute the calculated ∆FP(Topevent) in sub-step 1 to the identified
events in sub-step 2 based on the determined ratio in sub-step 3. The
first run of this sub-step should start with the top event and the events
beneath it, and the second runshould consider one more level down.This
sub-step is very dependent on the type of the gate between the ancestor
and descendant events. In the case of an OR gate sub-step 4-A should be
followed. In the case of an AND gate sub-step 4-B should be followed.

(a) In this sub-step, we need to distribute the increment to the FP of an
ancestor event over its descendent affected events in the presence
of an OR gate. We first need to find the ratio of the affected event to
its ancestor event. Afterwards, we need to use the calculated ratio
to determine the amount of the increment to the affected event.
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The first run of this step should start with the affected events that
fall directly under the top event. The second run of this step should
consider one more level down. In other words, descendant events in
the first run will become ancestors in the second one. The simplest
FP calculation is when to have two descendent events and only
one of them is affected. This is because all what we need to do
is to subtract the unaffected FP from the increased ancestor event
to get the the increased FP of the affected event as presented in
Equation 10.6:

FPIncreased(Ancestor) − FPCurrent(Unaffect|Desc(x))

= FPIncreased(Desc(x))

(10.6)

Otherwise, the ratio of a descendant event to its ancestor and the
granted increment to an affected event is calculated by Equation
10.7 as follows:

FPIncreased(Desc(x)) =

(
FPCurrent(Desc(x))

FPCurrent(Ancestor) −
∑

FPCurrent(Unaffect)

∗ FPIncreased(Ancestor)) + FPCurrent(x)

(10.7)

(b) In this sub-step, we distribute the increment to the FP of an an-
cestor event over its affected descendent events in the presence of
an AND gate. The increment calculation is dependent on five cases,
as follows:
Case 1. Two descendent events and only one of them is affected.
This is the simplest case because all what we need to do is to divide
the increased FP of the ancestor event on the current FP of the
unaffected descendent event as presented in Equation 10.8:

FPIncreased(Desc(x)) =
FPIncreased(Ancestor)

FPCurrent(Unaffect|Desc(x))
(10.8)

Case 2. All descendent events are affected and share the same FP
value. In this case, we apply:
n
√
FP(Increased|Ancestor), where n is the number of the descend-

ent events.
Case 3. All descendent events are affected and do NOT share the
same FP value. In this case, we apply equations (3) and (4) as
described in Section 10.4.
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Case 4. NOT all descendent events are affected where the affected
ones share the same FP value. In this case, we apply Equation
10.9 as follows:

FPIncreased(Desc(x)) =

n

√
(

FPIncreased(Ancestor(x))∑
FPCurrent|Unaffect(x1)∗(x2)∗...∗(xn))

(10.9)

where n is the number of the affected events.
Case 5. NOT all descendent events are affected where the affected
ones do NOT share the same FP value. In this case, we use Equa-
tion 10.10, as follows:

FPIncreased(Ancestor(x))∑
FPCurrent|Unaffected(x1)∗(x2)∗...∗(xn))

(10.10)

4. Repeat step 3 until the FP of all affected events get increased.

10.4.3 SANESAM+ For Predicted Changes: An Example
In this example we again use the WBS FTA. We consider a predicted change
that will be applied to the power supplies within both BSCU1 and 2. How-
ever, it is still unknown how this change will increase the FP s of the two
power supplies. We apply “SANESAM+ For Predicted Changes” to dedicate
the maximum allowed FP to the affected events by the change, as follows:

1. ∆ FP(BSFCLOBC) = 3.30E-05 - 1.5031E-06
∆ FP(BSFCLOBC) = 3.14969E-05

2. Find the highest event that contains the effect. Changes to System 1 and
2 power supplies will directly affect the events BSS1EF and BSS2EF as
highlighted in Figure 10.7 . These two events, however, are duplicated
elsewhere in the FTA and thus there are multiple high events that contain
the change.

(a) BSS1EF on the left-hand side of the FTA falls under LOOBS1
but the latter does not fall directly under the top event thus
BSS1&2DNO is the highest event that contains the effect on BSS1EF.

(b) BSS2EF on the left-hand side of the FTA falls under LOOBS2
but the latter does not fall directly under the top event thus
BSS1&2DNO is the highest event that contains the effect on BSS2EF.
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(c) BSS1EF on the right-hand side of the FTA falls under LOOBS1
but the latter does not fall directly under the top event thus it is not
the required highest event and we need to take one more level up
to find the highest event. Having done that will lead us to SWF-
STS1PAS1F which is also not the highest event that falls directly
under the top event thus we need to go up again which will result
SWFCTLOBBC as the required highest event.

(d) BSS2EF on the right-hand side of the FTA falls under LOOBS2
but the latter does not fall directly under the top event thus it is not
the required highest event and we need to take one more level up
to find the highest event. Having done that will lead us to SWF-
STS1PAS2F which is also not the highest event that falls directly
under the top event thus we need to go up again which will result
SWFCTLOBBC as the required highest event.

3. Distribute the increment to the FP of an ancestor event over its des-
cendent affected events. Since BSS1&2DNO and SWFCTLOBBC are
the events that contain the change, no further calculations will be applied
to BSVMIRFCSTA.

(
4.71E–08

1.5031E–06− 8.00E–07
∗ 3.30E–05) + 4.71E–08

= 2.16E–06

(
6.56E–07

1.5031E–06− 8.00E–07
∗ 3.30E–05) + 6.56E–07

= 3.00E–05

4. In this step, we repeat the previous step until all FP s of the affected
events get increased. Figure 10.7 shows the calculated FP s (in squashed
boxes).

5. In this step, we use 10.5 to calculate events’ sensitivity.

It is worth noting that the sensitivity of BSS1PSF and BSS2PSF using SANESAM+
is 3.69185185 as shown in Table 10.1. However, the sensitivity of these events
is 18.55555556 when SANESAM+ For Predicted Changes is used.
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10.5 Conclusions and Future Work
Sensitivity analysis is useful to measure the flexibility of different system prop-
erties to changes. In our previous work, we proposed a technique comprises
of two phases to facilitate the maintenance of safety cases. SANESAM is the
first phase of the technique in which we (1) measure the sensitivity of FTA
events to system changes using the events’ failure probabilities, and (2) derive
safety contracts based on the results of the analysis. In the second phase, we
map the derived safety contracts to a safety argument to improve the change
impact analysis on the safety argument. In this paper, we identified some lim-
itations to SANESAM and we suggested two options as extensions to resolve
these limitations. The first option is SANESAM+, which is useful in the case
of arbitrary changes because it calculates the FP for all events in the FTA
regardless of any change scenario. The second option is SANESAM+ For
Predicted Changes, this option increases the FP for only the events that are
associated to a predicted change. A derived safety contract by SANESAM+
For Predicted Changes can guarantee higher FP than the guaranteed FP (for
the same event and using the same set of assumptions) in a derived safety con-
tract by SANESAM+. Hence, the derived safety contracts by SANESAM+
For Predicted Changes are more tolerant and robust than those derived by
SANESAM+. Future work will focus on describing the second phase of the
technique. Creating a case study to validate both the feasibility and efficacy of
the technique is also part of our future work.

Acknowledgment
We acknowledge the Swedish Foundation for Strategic Research (SSF) SYN-
OPSIS Project for supporting this work. We thank Patrick Graydon for his help
and fruitful discussions of this paper.



Bibliography

[1] CASSIDY K. CIMAH safety cases - the HSE approach. IChemE Sym-
posium series no. 110, 1988.

[2] U.K. Ministry of Defence, “JSP 430 - Ship Safety Management System
Handbook,” Ministry of Defence January 1996.

[3] Timothy Patrick Kelly. Arguing safety – a systematic approach to man-
aging safety cases, 1998.

[4] HSE, ”Railway Safety Cases - Railway (Safety Case) Regulations 1994
- Guidance on Regulations,” Health and Safety Executive, HSE Books
1994.

[5] T.P. Kelly and J.A. McDermid. A systematic approach to safety case
maintenance. In Proceedings of the Computer Safety, Reliability and Se-
curity, volume 1698 of Lecture Notes in Computer Science, pages 13–26.
1999.

[6] U.K. Ministry of Defence, 00-56 Safety Management Requirements for
Defence Systems, Ministry of Defence, Defence Standard December
1996.

[7] S Bates, I Bate, R Hawkins, T P Kelly, J A McDermid, and R Fletcher.
Safety case architectures to complement a contract-based approach to
designing safe systems. In Proceedings of the 21st International System
Safety Conference (ISSC), 2003.

[8] Omar Jaradat, Iain Bate, and Sasikumar Punnekkat. Using sensitivity
analysis to facilitate the maintenance of safety cases. In Proceedings
of the 20th International Conference on Reliable Software Technologies,
June 2015.

165



166 Bibliography

[9] A. Saltelli. Global sensitivity analysis: the primer. John Wiley, 2008.

[10] Omar Jaradat, Iain Bate, and Sasikumar Punnekkat. Facilitating the main-
tenance of safety cases. In Proceedings of the 3rd International Confer-
ence on Reliability, Safety and Hazard - Advances in Reliability, Main-
tenance and Safety (ICRESH-ARMS), June 2015.

[11] A.C. Cullen and H.C. Frey. Probabilistic techniques in Exposure assess-
ment. Plenum Press, New York, 1999.

[12] Mark Choudhari Lucia Breierova. An introduction to sensitivity ana-
lysis. Technical report, Massachusetts Institute of Technology, September
1996.

[13] David J. Pannell. Sensitivity analysis of normative economic models:
theoretical framework and practical strategies. Agricultural Economics,
16(2):139 – 152, 1997.

[14] P. Emberson and I. Bate. Stressing search with scenarios for flexible
solutions to real-time task allocation problems. Software Engineering,
IEEE Transactions on, 36(5):704–718, Sept 2010.

[15] B. Meyer. Design by contract. Technical Report TR-EI-12/CO, Interact-
ive Software Engineering Inc., 1986.

[16] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1st edition, 1988.

[17] L. Benvenuti, A. Ferrari, E. Mazzi, and A. L. Vincentelli. Contract-
based design for computation and verification of a closed-loop hybrid
system. In Proceedings of the 11th International Workshop on Hybrid
Systems: Computation and Control, pages 58–71, Berlin, Heidelberg,
2008. Springer-Verlag.

[18] Albert Benveniste, Benoit Caillaud, Alberto Ferrari, Leonardo
Mangeruca, Roberto Passerone, and Christos Sofronis. Multiple view-
point contract-based specification and design. In Proceedings of the 6th
International Symposium, pages 200–225, October 2007.

[19] Werner Damm, Hardi Hungar, Bernhard Josko, Thomas Peikenkamp, and
Ingo Stierand. Using contract-based component specifications for virtual
integration testing and architecture design. In Proceedings of the Design,



Bibliography 167

Automation & Test in Europe Conference & Exhibition (DATE), pages
1–6, 2011.

[20] Sebastian S. Bauer, Alexandre David, Rolf Hennicker, Kim Guld-
strand Larsen, Axel Legay, Ulrik Nyman, and Andrzej Wasowski.
Moving from specifications to contracts in component-based design.
In Proceedings of the 15th International Conference on Fundamental
Approaches to Software Engineering, FASE’12, pages 43–58, Berlin,
Heidelberg, 2012. Springer-Verlag.

[21] Jane L Fenn, Richard D Hawkins, PJ Williams, Tim P Kelly, Michael G
Banner, and Y Oakshott. The who, where, how, why and when of modular
and incremental certification. In Proceedings of the 2nd IET International
Conference on System Safety, pages 135–140. IET, 2007.

[22] Safecer. (2013, June) Safety certification of software-intensive systems
with reusable components. [Online]. Available: http://www.safecer.eu.

[23] Patrick Graydon and Iain Bate. The nature and content of safety contracts:
Challenges and suggestions for a way forward. In Proceedings of the 20th
IEEE Pacific Rim International Symposium on Dependable Computing
(PRDC), November 2014.

[24] GSN Community Standard: (http://www.goalstructuringnotation.info/)
Version 1; (c) 2011 Origin Consulting (York) Limited.

[25] S P Wilson, T P Kelly, and J A McDermid. Safety case development:
Current practice, future prospects. In Proceedings of the 12th Annual
CSR Workshop - Software Based Systems. Springer-Verlag, 1997.

[26] Modular Software Safety Case (MSSC) — Process Description. [online].
available: https://www.amsderisc.com/related-programmes, Nov 2012.

[27] SAE ARP4761 Guidelines and Methods for Conducting the Safety As-
sessment Process on Civil Airborne Systems and Equipment, December
1996.

[28] O. Lisagor, M. Pretzer, C. Seguin, D. J. Pumfrey, F. Iwu, and T. Peiken-
kamp. Towards safety analysis of highly integrated technologically het-
erogeneous systems – a domain-based approach for modelling system
failure logic. In Proceedings of the 24th International System Safety Con-
ference (ISSC), Albuquerque, USA, 2006.



[29] Marvin Rausand and Arnljot Høyland. System Reliability Theory: Mod-
els, Statistical Methods and Applications. Wiley-Interscience, Hoboken,
NJ, 2004.






