
 1

Ada User Journal Volume 36, Number 4, December 2015

Deriving Reusable Process-based Arguments from
Process Models in the Context of Railway Safety
Standards
Barbara Gallina
Mälardalen University, P.O. Box 883, SE- 721 23 Västerås, Sweden;
barbara.gallina@mdh.se
Luciana Provenzano
Bombardier Transportation, Östra Ringvägen 2, 722 14 Västerås, Sweden;
luciana.provenzano@rail.bombardier.com

Abstract
In the railway domain, standards such as the
EN5012x family prescribe processes to be followed
for the management and certification of safety-critical
systems. This results in a need to model processes and
retrieve process-based arguments to prove that the
system achieved the required safety level in order to
reduce time and cost spent in the certification
process. In this paper, we present the application of
the MDSafeCer, i.e. a model-driven safety
certification method, for railways. In particular, we
model in SPEM 2.0 the safety requirements process
according to what described in the safety plan, and
we show how it is possible to extract safety evidence
to prove the compliance of this process to the
EN50128 standard.

Keywords: railway, safety certification, process
modelling

	

1 Introduction
In the context of safety-critical railway systems
engineering, various standards (i.e. EN5012x) play a
crucial role in prescribing process reference models at
system (i.e. EN50126 [5]) as well as at sub-system level
(i.e. EN50128 [6]). These models define sets of partially
ordered tasks that have to be executed to develop safety-
critical railway systems (such as entire vehicle, signalling
components, etc.). As also observed in the automotive
domain [4], to these partially ordered tasks other core
process elements are directly or indirectly associated
namely roles, work-products, and guidelines. These core
process elements allow process engineers to establish
responsibilities by defining roles (who) for producing
specified work products (what). Moreover, for the
execution of the tasks well-defined principles and
techniques supported by guidelines are applied. The rigor
and stringency required during the application of these

reference models vary with respect to the criticality of the
systems, and are subject to interpretations. Compliance
with the process reference models constitutes a mandatory
requirement for certification purposes in which process-
related deliverables are fundamental. Within EN50129 [7],
a safety case is defined as a structured justification
document that includes the required evidence, i.e. evidence
of quality management, evidence of safety management
(compliance with the EN50126 RAMS process [5]), and
evidence of functional and technical safety. Evidence of
quality as well as safety management represents process-
related evidence. The provision of such evidence is time-
consuming and costly, especially if reuse [3] and semi-
automatic generation is not enabled.

To reduce time and cost, we apply MDSafeCer, which was
introduced by Gallina [2] in the context of the SafeCer
project [1] SYNOPSIS [14]. MDSafeCer is a model-driven
certification method for the (semi) automatic generation of
process-related deliverables. In this paper we consider a
portion of the safety plan, we model it in SPEM (Software
Process Engineering Meta-model) 2.0 [11], and then we
show how process-based fragments in form of GSN (Goal
Structuring Notation)-compliant goal structures [9] of a
safety case can be derived from the safety plan model.

The remainder of this paper is organized as follows.
Essential background information is recalled in Section 2.
The application of MDSafeCer to the safety-requirements
process defined within a railway project is described in
Section 3. Concluding remarks and perspective for future
work are presented in Section 4.

2 Background
In this section, we shortly recall some background on
which this work is based. In particular, in Section 2.1, we
provide a quick survey of the CENELEC EN5012x family
of European standards applicable for the management and
certification of safety-critical railway systems. In section
2.2 we recall the main SPEM 2.0 process elements that will

2 Ada User Journal

Volume 36, Number 4, December 2015 Ada User Journal

be used further in this paper to model the safety
requirements process. In section 2.3, we briefly introduce
the GSN graphical notation used to build the safety case
fragment. Finally, in section 2.4 we introduce MDSafeCer
method that we will apply in the railway domain.
2.1 EN5012x standards
The European group of standards EN5012x defines
processes that enable the implementation of a consistent
approach for the management of safety-critical railway
systems. The three main standards are:
• EN50126, which describes a process for the

specification and demonstration of the RAMS
(Reliability, Availability, Maintainability, Safety)
requirements [5]

• EN50129, which defines a process for safety
acceptance and approval [7]

• EN50128, which focuses on processes for the
development, deployment and maintenance of safety-
related software for railway control and protection
applications [6].

Figure 1 shows the scope of the above-mentioned standards
compared to the railway product or system under
development and/or maintenance.

In order to obtain the safety approval for a given safety-
critical railway system or product, the EN50129 standard
prescribes that an independent safety assessment is
performed based on documentary evidence. The
documentary evidence includes the so-called Safety Case,
i.e. the documented demonstration that the product
complies with the specified safety requirements [7]. The
Safety Case addresses the conditions that shall be satisfied
to prove that the necessary level of safety has been
achieved, i.e. evidence of quality management, evidence of
safety management, and evidence of functional and
technical safety.

The Software Requirement Phase is part of the life-cycle
model (Figure 2) required by the Software Quality
Assurance activities described in chapter 6.5.4.5 of the
EN50128 standard [6]. In particular, the standard states that

quality concerning the life-cycle model shall address as a
minimum:

• activities and elementary tasks consistent with the
plans, e.g. Safety Plan, that have been established at
the System level;

• entry and exit criteria of each activity;

• inputs and outputs of each activity;

• major quality activities;

• the entity responsible for each activity

	

Figure 2	
 Life-cycle phases for a development project extracted
from the V-model defined in the EN50128	

Moreover, section 7.2 “Software Requirements” of the
same standard defines the artifacts that shall be produced at
the end of the Software Requirements Phase, i.e.:

• Software Requirements Specification
• Overall Software Test Specification
• Software Requirements Specification Report
By reading these recommendations, it is clear that a process
shall be defined which complies with the standard.
2.2 Process modelling through SPEM 2.0
SPEM 2.0 [11] is the OMG standard for systems and
software process modelling. Despite it is a general-purpose
language, its elements implicitly enable to model safety
concerns, as explained by Gallina et al. in [3] and [4].
The following table (Table 1) shows a subset of SPEM 2.0
modelling elements, in particular the ones we will use in
Section 3 to model task, roles, guidance, tools and work-
products related to the safety requirements process.

2.3 Safety case documentation
As summarized by Dardar et al. [12], a safety case can be
documented in textual or graphical languages (refer to [8]).
GSN [9] is a graphical notation that allows organizing the

II. BACKGROUND

In this section, we present the background information on
which we base our work. In particular, in Section II-A, we
recall what should be meant by process and we briefly present
SPEM 2.0, the process modeling language used to model safety
processes. In Section II-B we recall the basic principles of
model-driven engineering. Finally, in Section II-C, we briefly
present GSN and SACM, the graphical notation and its meta-
model used to model safety arguments.

A. Process and SPEM 2.0-based process modeling

A process identifies a structure that is imposed on the
development of a system. More precisely, a process can be
defined as a set of partially ordered tasks that have to be
executed to develop systems. The main process elements that
can be associated to a task are: work-products (e.g., artifacts,
deliverables, outcomes, etc.), roles, guidance (e.g., templates),
tools, etc. Tasks can be grouped to form an activity and
activities in turn can be grouped to form a phase. To model
a process various languages are at disposal. In this paper,
we select SPEM 2.0 (see [4], [5] for the motivation of this
choice). SPEM (Software Process Engineering Meta-model)
2.0 [6] is the OMG’s standard for systems and software
process modelling. SPEM 2.0 offers static as well as dynamic
modelling capabilities. In this paper, we mainly limit our
attention to the statics modeling. SPEM 2.0 offers support
for the definition of reusable process content (MethodContent
package). Process engineers are enabled to define reusable
work definition elements (e.g. phases, activities, tasks, etc.) as
well as elements representing: who is responsible for the work
(roles), how the work should be performed (guidance), what
should be expected as in/output (work-products) and which
tool should be used to perform the work.

In Table I, we recall a subset of SPEM 2.0 modelling
elements, which can be interrelated to model static process
structures (except for TaskUse that can be used to model
dynamic structures). More precisely, we only recall those
elements that we use in Section III.

TABLE I. ICONS DENOTING METHOD CONTENT (USE) ELEMENTS

Task TaskUse Role WorkProduct Tool Guidance

Despite their general-purpose nature, SPEM 2.0 modeling
elements implicitly permit process engineers to model safety
concerns. In [3], however, a SPEM 2.0 extension is proposed
to model safety concerns (e.g. integrity levels) explicitly.

B. Model-driven Engineering

Model-driven Engineering (MDE) [7] is a model-centric
software development methodology aimed at raising the level
of abstraction in software specification and increasing automa-
tion in software development. MDE indeed exploits models
to capture the software characteristics at different abstraction
levels. These models are usually specified by using (semi)
formal domain-specific languages. For automation purposes,

model transformations are used to refine models (model-to-
model transformations) and finally generate code (model-to-
code transformations). A model transformation (e.g. Model-
to-Model) transforms a source model (compliant with one
meta-model) into a target model compliant with the same
or a different meta-model. Besides vertical transformations
for software development, horizontal transformations can be
conceived for other purposes (e.g. verification, etc.). A stan-
dard transformation can be defined as a set of rules to map
source to the target. Each rule describes how to transform
source instances to the identical target. Many languages are
available to specify transformations. For instance, to specify
Model-to-Model (M2M) transformations, declarative as well
as operational languages can be used. Transformations are
executed by transformation engines.

C. GSN

As already summarized in [8], to document safety cases,
several approaches exist [9]. GSN [10] is one of them. GSN
is a graphical notation, which permits users to structure
their argumentation into flat or hierarchically nested graphs
(constituted of a set of nodes and a set of edges), called
goal structures. To make the paper self-contained, in Fig. 1,
we recall the concrete syntax of the core GSN modelling
elements used in Section IV. As Fig. 1 shows, all the nodes
are characterized by an identifier (ID) and a statement, which
is supposed to be written in natural language.

Fig. 1. Subset of GSN concrete syntax.

We recall that a Goal represents a claim about the system;
a Strategy represents a method that is used to decompose a
goal into sub goals; a Solution represents the evidence that
a particular goal has been achieved; a Context represents
the domain or scope in which a goal, evidence or strategy
is given; Supported by represents an inferential (inference
between goals) or evidential (link between a goal and the
evidence used to substantiate it) relationship. Finally, In context
of represents a contextual relationship.

ARgument Metamodel (ARM) [11] represented an effort
to unify and standardize the graphical notations (namely GSN
and CAE [12]) broadly used for documenting safety cases.
By providing a meta-model that defines the abstract syntax
of a unified argumentation language, ARM thus constitutes a
step towards the formalization of these notations. The OMG
specification provides tables that show the mapping between
ARM concepts and GSN/CAE concepts. Columns 2-3 in
Table II recall the mapping between ARM and GSN (focus on
core elements). More recently, another OMG standard, called
SACM, superseded ARM. SACM (Structured Assurance Case
Metamodel) [13] combines ARM and Software Assurance
Evidence Metamodel (SAEM) and preserves the mapping
shown in Table II.

Table 1	
 Icons denoting method content (use) elements

Figure 1 Scope of the EN5012x standards

Barbara Gal l ina & Luciana Provenzano 3

Ada User Journal Volume 36, Number 4, December 2015

safety argumentation into flat or hierarchically nested
graphs called goal structures. Figure 3 shows the syntax of
the core GSN modelling elements that we will use in
Section 3.

	

Figure 3	
 Subset of GSN concrete syntax	

SACM (Structured Assurance Case Metamodel) [13] is an
OMG standard that represents an effort to unify and
standardize the graphical notations, namely GSN and CAE
(Claim Argument Evidence) [10], broadly used for
documenting safety cases. By providing a meta-model that
defines the abstract syntax of a unified argumentation
language, SACM thus constitutes a step towards the
formalization of these notations.
2.4 Model-Driven Safety Certification
In this subsection we recall essential information on the
Model-Driven Safety Certification (MDSafeCer) method
[2]. MDSafeCer allows the (semi) automatic generation of
process-based evidence from process models. MDSafeCer
consists of three iterative tasks in succession, as shown in
Figure 4.
The main idea is that a process is modelled (refer to the
first task “Safety-process modelling”) according to the best
practices and the applicable standards. Once the process
model is ready, a process-based argument can be generated
(refer to the second task “Process-based argument
generation”) via a model to model transformation. The
generated argument may need to be rectified, resulting in
iterations back to the previous tasks, and/or completed by a
safety argumentation expert (refer to the third task
“Process-based argument Check&Completition”) [2].

	

Figure 4	
 MDSafeCer overview specified in SPEM 2.0

	

3 EN50128-compliance via MDSafeCer
In this section, we apply MDSafeCer in the context of
safety-critical railway systems to:

• Model the safety requirements process

• Build evidences required to prove the compliance of
this process with what described in chapter 7.2
“Software Requirements” of the EN50128:2011

railway standard. These evidences will compose the
Safety Case, as explained in Section 2.1.

In particular, we model the process of building the
Software Requirements Specification artifact within the
Software Requirements Phase.
3.1 Safety-requirements process modelling
The first step is to model in SPEM 2.0 the task concerning
the writing of the Software Requirements Specification
document (refer to task “Safety-process modeling” in
Section 2.4). This task shall be compliant with chapter 7.2
of the EN50128 standard.
To perform this activity, all process elements linked to this
task shall be specified, as required by the SPEM 2.0
process elements recalled in Section 2.2. For example, we
shall define the work-product associated to this task, the
role in charge of creating and maintaining this document,
and so on. This information should be described in the
Project Safety Plan and/or in other project plans, such as
the Quality Assurance plan, etc. that are referred in the
Safety Plan. The following table (Table 2) shows the
definition of the process elements related to the safety
requirements process and in which project plan we find the
needed information.

SPEM2.0
Process
element

Process element
description

Information found
in…

Work
product

Software
Requirements
Specification

Sub-chapter “Safety
life-cycle” of chapter
“Safety Management”
within the Safety Plan

Role Requirement
Manager

Engineering Project
Plan (EPP) that is
referenced in sub-
chapter “Roles and
Responsibilities” of
chapter “Safety
Management” within
the Safety Plan

Tool IBM DOORS Sub-chapter “Safety
Requirements” of
chapter “Safety
Management” within
the Safety Plan.

Guidance Software Safety
Requirement
Guidelines

Requirement
Management Plan that
is referenced in sub-
chapter “Safety
Requirements” of
chapter “Safety
Management” within
the Safety Plan

II. BACKGROUND

In this section, we present the background information on
which we base our work. In particular, in Section II-A, we
recall what should be meant by process and we briefly present
SPEM 2.0, the process modeling language used to model safety
processes. In Section II-B we recall the basic principles of
model-driven engineering. Finally, in Section II-C, we briefly
present GSN and SACM, the graphical notation and its meta-
model used to model safety arguments.

A. Process and SPEM 2.0-based process modeling

A process identifies a structure that is imposed on the
development of a system. More precisely, a process can be
defined as a set of partially ordered tasks that have to be
executed to develop systems. The main process elements that
can be associated to a task are: work-products (e.g., artifacts,
deliverables, outcomes, etc.), roles, guidance (e.g., templates),
tools, etc. Tasks can be grouped to form an activity and
activities in turn can be grouped to form a phase. To model
a process various languages are at disposal. In this paper,
we select SPEM 2.0 (see [4], [5] for the motivation of this
choice). SPEM (Software Process Engineering Meta-model)
2.0 [6] is the OMG’s standard for systems and software
process modelling. SPEM 2.0 offers static as well as dynamic
modelling capabilities. In this paper, we mainly limit our
attention to the statics modeling. SPEM 2.0 offers support
for the definition of reusable process content (MethodContent
package). Process engineers are enabled to define reusable
work definition elements (e.g. phases, activities, tasks, etc.) as
well as elements representing: who is responsible for the work
(roles), how the work should be performed (guidance), what
should be expected as in/output (work-products) and which
tool should be used to perform the work.

In Table I, we recall a subset of SPEM 2.0 modelling
elements, which can be interrelated to model static process
structures (except for TaskUse that can be used to model
dynamic structures). More precisely, we only recall those
elements that we use in Section III.

TABLE I. ICONS DENOTING METHOD CONTENT (USE) ELEMENTS

Task TaskUse Role WorkProduct Tool Guidance

Despite their general-purpose nature, SPEM 2.0 modeling
elements implicitly permit process engineers to model safety
concerns. In [3], however, a SPEM 2.0 extension is proposed
to model safety concerns (e.g. integrity levels) explicitly.

B. Model-driven Engineering

Model-driven Engineering (MDE) [7] is a model-centric
software development methodology aimed at raising the level
of abstraction in software specification and increasing automa-
tion in software development. MDE indeed exploits models
to capture the software characteristics at different abstraction
levels. These models are usually specified by using (semi)
formal domain-specific languages. For automation purposes,

model transformations are used to refine models (model-to-
model transformations) and finally generate code (model-to-
code transformations). A model transformation (e.g. Model-
to-Model) transforms a source model (compliant with one
meta-model) into a target model compliant with the same
or a different meta-model. Besides vertical transformations
for software development, horizontal transformations can be
conceived for other purposes (e.g. verification, etc.). A stan-
dard transformation can be defined as a set of rules to map
source to the target. Each rule describes how to transform
source instances to the identical target. Many languages are
available to specify transformations. For instance, to specify
Model-to-Model (M2M) transformations, declarative as well
as operational languages can be used. Transformations are
executed by transformation engines.

C. GSN

As already summarized in [8], to document safety cases,
several approaches exist [9]. GSN [10] is one of them. GSN
is a graphical notation, which permits users to structure
their argumentation into flat or hierarchically nested graphs
(constituted of a set of nodes and a set of edges), called
goal structures. To make the paper self-contained, in Fig. 1,
we recall the concrete syntax of the core GSN modelling
elements used in Section IV. As Fig. 1 shows, all the nodes
are characterized by an identifier (ID) and a statement, which
is supposed to be written in natural language.

Fig. 1. Subset of GSN concrete syntax.

We recall that a Goal represents a claim about the system;
a Strategy represents a method that is used to decompose a
goal into sub goals; a Solution represents the evidence that
a particular goal has been achieved; a Context represents
the domain or scope in which a goal, evidence or strategy
is given; Supported by represents an inferential (inference
between goals) or evidential (link between a goal and the
evidence used to substantiate it) relationship. Finally, In context
of represents a contextual relationship.

ARgument Metamodel (ARM) [11] represented an effort
to unify and standardize the graphical notations (namely GSN
and CAE [12]) broadly used for documenting safety cases.
By providing a meta-model that defines the abstract syntax
of a unified argumentation language, ARM thus constitutes a
step towards the formalization of these notations. The OMG
specification provides tables that show the mapping between
ARM concepts and GSN/CAE concepts. Columns 2-3 in
Table II recall the mapping between ARM and GSN (focus on
core elements). More recently, another OMG standard, called
SACM, superseded ARM. SACM (Structured Assurance Case
Metamodel) [13] combines ARM and Software Assurance
Evidence Metamodel (SAEM) and preserves the mapping
shown in Table II.

III. GENERATION AND REUSE OF PROCESS-BASED
ARGUMENTS

In the context of safety certification, it is required to collect
and structure the evidence that a system is acceptably safe.
Generally, this requires the provision of process as well as
product-based arguments. A safety case should be constituted
of two branches (one devoted to process-based argumentation
and the other to product-based argumentation). These branches
could be developed in parallel and be inter-related. In some
safety standards, these branches can be provided separately.
As recalled in the introduction, within ISO 26262, the process-
based argumentation is provided separately to be evaluated
and documented within the Safety Functional Audit work-
product. In this section, we focus on the process-based branch
and we present a method to generate and reuse process-
based arguments. In particular, in Section III-A we give an
overview of our model-driven safety certification method. In
Section III-A, we provide the conceptual mapping between
SPEM 2.0 and ARM/SACM. Then, in Section III-C, we sketch
in natural language the meaningful steps of the algorithm that
should be executed to automatically generate process-based
arguments from process models.

A. Model-driven Safety Certification

To generate certification artifacts, we propose to use MDE
principles and apply them in the context of certification.
The idea is to pioneer a Model-Driven Safety Certification
(MDSafeCer) method enabling automatic generation of argu-
mentation models from process models. The goal is not the
creation of novel goal structures, but the generation of goal
structure that have successful stories and a proven compelling
power. Thus, reuse of experience is crucial to provide adequate
transformation rules allowing for the generation of easy-to-
maintain and easy-to-review arguments.

Fig. 2. MDSafeCer overview specified in SPEM 2.0.

Fig. 3. Safety process modeling.

As Fig. 2 shows, MDSafeCer is constituted of three chained
iterative tasks. The first task, called “Safety process modeling”
is detailed in Fig. 3. This first task shows that a process
engineer is responsible of modeling a safety process according
to the best practices in process modeling as well as according
to the standard(s). To model a process, a modeling tool is used.

As shown in Fig. 4, once the model is available the process
engineer generates a process-based argument by using a model

transformation implemented within a transformation engine.
As shown in Fig. 5, this argument, which can be considered
a “raw” or better defeasible [14] argument, is then checked
and eventually corrected (if fallacies are detected) and/or
completed by a safety argumentation expert. Checking and
completion is an iterative task, which takes in input also the
feedback provided by external assessors. If the transformation
engine or the safety argumentation expert detect problems re-
lated to the process-based argument due to e.g. missing/wrong
information in the process model, new iterations of the first
task are required.

Fig. 4. Process-based argument generation.

Fig. 5. Process-based argument Check&Completion.

To perform the generation of the process-based argument
via model transformation, no constraint on the source and
target meta-models exists. However, by considering the current
state of the art in terms of standardization, tool-support and
active research community, we choose SPEM 2.0 for the source
space and ARM/SACM for the target space. Fig. 6 shows the
M2M intended transformation. In case of more appropriate
future alternatives, our general approach remains valid. As
recalled in Section II, both SPEM 2.0 and ARM/SACM are two
domain-specific meta-models and in the context of this paper
they represent a possibility towards the realization of our MD-
SafeCer method, allowing for the generation of ARM/SACM-
compliant argumentation models from SPEM 2.0-compliant
process models.

Fig. 6. M2M tranformation.

As we discussed in [15] and as it was mentioned in [16],
the goal of automation is not to replace human reasoning, but
to focus it on areas where they are best used. Similarly, in
this work we are not aiming at eliminating human reasoning

4 Ada User Journal

Volume 36, Number 4, December 2015 Ada User Journal

SPEM2.0
Process
element

Process element
description

Information found
in…

Task Software
Requirements
Specification

Sub-chapter “Safety
life-cycle” of chapter
“Safety Management”
within the Safety Plan

Table 2	
 Process elements description	

Figure 5 depicts the final result of the modeling in SPEM
2.0 of the task Software Requirements Specification.

It is worth noting that SPEM 2.0 also enables the process
engineer to define via stereotypes some additional
information for each process element (e.g., <<performs,
primary>>). This makes possible the addition of important
pieces of information, necessary to support the safety
justification.

Moreover, in the case of the process element “role”, it is
possible to specify that the Requirements Manager’s
competence is substantiated through CV and course
attendance certificates. These pieces of information are
then included in the final justification, as shown in Section
3.2.

The same logic used to model in SPEM 2.0 the Software
Requirements Specification can be applied to model the
remaining work-products within the Software
Requirements Phase, i.e. the Overall Software Test
Specification and the Software Requirement Specification
Report.
3.2 Process-based argument compliance
Based on the information defined in the model in Figure 5
and by applying the transformation rules [2], we can create
the safety argumentation (refer to task “Process-based
argument generation” in Section 2.4) in the GSN notation,
as depicted in Figure 6.
As discussed in [8], the documentation style is a matter of
taste and inclination. Text-inclined safety experts/assessors
might prefer reviewing textual documentation. To satisfy
text-inclined argument-readers, instead of a model to model

transformation, a model to text transformation should be
provided aiming at generating a safety justification in the
shape of a structured prose, as shown in this example:

“This argument establishes the following claim: the task
requirement specification has been planned, within the
context of EN50128. To establish the top-level claim, four
strategies are adopted: (1) argues about roles; (2) argues
about work-products; (3) argues about guidelines; (4)
argues about tools.

To argue about roles, one sub-claim is established: (1) the
requirement manager is certified. This sub-claim is
supported by direct evidence in form of CV and course
attendance. Etc...”

The above-written text-based argumentation is equivalent
to the one given in GSN.

Once the argumentation is available, it is used by a safety
expert (refer to task “Process-based argument
Check&Completion” in Section 2.4) as basis for creating
the final document to be submitted to the authority. The
safety expert may improve the confidence of an argument
by adding more assumptions and justifications, modify
existing goals or develop new goals, as explained in [2].

Once the safety argumentation is entirely checked and
finalised, it can be used to prove the compliance of the
safety-requirements process with the EN50128 standard
and, as a result, included in the Safety Case.

4 Conclusions and future work
In this paper, we presented the application of MDSafeCer
to railway standards.

In railways, safety standards (EN5012x) prescribe
processes to be followed for the management and
certification of safety. This requires the definition of well-
defined processes and their application and monitoring
throughout the entire project life-cycle. Moreover, process-
based safety arguments shall be extracted to show process
compliance. These activities can be time-consuming,
expensive and error-prone if not supported by a structured

Figure 5	
 SPEM 2.0 modeling of Software Requirements
Specification in EN50128

Figure 6 GSN structure arguing about process
compliance

Barbara Gal l ina & Luciana Provenzano 5

Ada User Journal Volume 36, Number 4, December 2015

process modelling and systematic reuse. For these reasons,
we explored the possibility of applying MDSafeCer to
model the safety requirements process and to build the
process-based argument needed to show the compliance of
this process with the EN50128 standard.

The first result we obtained is that MDSafeCer can be
successfully used for this purpose. By drawing
generalizations from this result, we can conclude that
MDSafeCer can be applied to the whole life-cycle defined
in EN50128. The proposed usage of SPEM2.0 resulted to
be promising. SPEM2.0 can be used to model the whole
life-cycle defined in EN50128 in a rather intuitive way.
This outcome is also valid for all other safety railway
standards.

We also observed that the use of MDSafeCer can
significantly improve the process quality at very early stage
of the project. In fact, MDSafeCer enables to highlight
missing information about work-products, roles,
responsibilities, etc. by giving an opportunity of tuning the
process in the right way. To generate the argument-
fragment, MDSafeCer needs to transform process elements
into argumentation elements. Whenever process elements
are missing MDSafeCer is expected to notify the user.
From this perspective we think that MDSafeCer will reduce
time and cost for the production of the safety evidence.

In the future, in cooperation with assessors, we plan to fully
define a pattern for arguing about process compliance in
the context of railways standards. Moreover, we also expect
to automate the generation of the argument by using the
prototype tool support currently available within the AIT
WEFACT tool [15].

Acknowledgements
This work has been partially supported by the Swedish SSF
SYNOPSIS project [14].

References
[1] ARTEMIS-JU-269265, SafeCer - Safety Certification

of Software-Intensive Systems with Reusable
Components.

[2] B. Gallina (2014), A Model-driven Safety Certification
Method for Process Compliance, 2nd IEEE
International Workshop on Assurance Cases for
Software-intensive Systems (ASSURE), joint event of
ISSRE, Naples, Italy.

[3] B. Gallina, I. Sljivo, O. Jaradat (2012), Towards a
Safety-oriented Process Line for Enabling Reuse in
Safety Critical Systems Development and Certification,
Post-proceedings of the 35th IEEE Software
Engineering Workshop (SEW-35).

[4] B. Gallina, S. Kashiyarandi, H. Martin and R.
Bramberger (2014), Modelling a Safety- and
Automotive-oriented Process Line to Enable Reuse and
Flexible Process Derivation, Proceedings of the 8th
IEEE International Workshop on Quality-Oriented
Reuse of Software (QUORS), joint workshop at
COMPSAC conference, IEEE Computer Society, doi:
10.1109/COMPSACW.2014.84, pp. 504-509,Västerås
(Sweden).

[5] BS EN50126-1 (1999), Railway applications – The
specification and demonstration of Reliability,
Availability, Maintainability and Safety (RAMS)

[6] BS EN50128 (2011), Railway applications –
Communication, signalling and processing systems –
Software for railway control and protection systems

[7] BS EN50129 (2003), Railway applications –
Communication, signalling and processing systems –
Safety related electronic systems for signalling

[8] C. Holloway (2008), Safety case notations:
Alternatives for the non-graphically inclined?,
Proceedings of the 3rd IET International Conference
on System Safety, IET Press, pp. 1-6.

[9] GSN (2011), Community Standard Version 1.

[10] L. Emmet and G. Cleland (2002), Graphical notations,
narratives and persuasion: A pliant systems approach
to hypertext tool design, in Proceedings of the
Thirteenth ACM Conference on Hypertext and
Hypermedia, ser. HYPERTEXT ’02. New York, NY,
USA: ACM, pp. 55–64.

[11] Object Management Group (2008), Software and
Systems Process Engineering Meta-Model (SPEM),
v2.0. Full Specification formal.

[12] R. Dardar, B. Gallina, A. Johnsen, K. Lundqvist, M.
Nyberg (2012), Industrial Experiences of Building a
Safety Case in Compliance with ISO 26262,
Proceedings of the 2nd IEEE WoSoCER, joint event of
the 23rd International Symposium on Software
Reliability (ISSRE), Dallas (Texas), IEEE Computer
Society, ISBN 978-1-4673-5048-8, USA.

[13] SACM, http://www.omg.org/spec/sacm/1.0.

[14] SYNOPSIS-SSF-RIT10-0070: Safety Analysis for
Predictable Software Intensive Systems, Swedish
Foundation for Strategic Research.

[15] WEFACT: Workflow Engine for Analysis, Certification
and Test, http://www.ait.ac.at/research-
services/research-services-digital-safety-
security/verification-and-validation/methods-and-
tools/wefact-workflow-engine-for-analysis-
certification-and-test/?L=1

