Version 1 - Ready for review
Date: 2015-12-18

Appendix: Technical Report of Property
models for the automotive domain —
Version 1.0

Severine Sentilles, Efi Papatheocharous, Federico Ciccozzi and Kai Petersen
Malardalen University, Swedish Institute of Computer Science, Blekinge Institute of Technology

Draft
2016-02-18

Version 1 - Ready for review
Date: 2015-12-18

Abstract

This technical report lists the property models that are important for the automotive domain,
including property models for Development Effort, Development Time, Cost and Performance.
For each of these property models, evaluation methods are described in detail.

The property models can be used to make estimates of a property of a given system (e.g.,
performance). Several property models can be used for the estimation of a property. Properties
are described based on: property ID, name, data format and documentation (description of the
property, purpose, intended use, etc.)

A property may be assessed through the use of evaluation methods. Evaluation methods are
listed in this report underneath their property models. However, evaluation methods can be
related with several property models. Evaluation methods are described based on: method ID,
name, output, unit, applicability, parameter(s), driver(s), formula, description, available
implementation.

Combinations of evaluations may also be used by another evaluation method(s), or even
experts, to evaluate for example, trade-offs between alternatives in architectural
decision-making. A more concrete example is to decide among several components that have
various origins: they might be developed (e.g., in-house), reused, bought (e.g., COTS,
sub-contracted) or obtained (e.g., open source), which is the optimal one to use, in terms of the
property of interest.

Version 1 - Ready for review
Date: 2015-12-18

Table of Contents

A. Property model for Development Effort
Development Effort
A.1. Evaluation methods for Development Effort
A.1.1. Basic COCOMO 1
A.1.2. Intermediate COCOMO 1
A.1.3. Advanced, Detailed COCOMO 1
A.1.4. Application composition COCOMO I
A.1.5. Early design COCOMO I
A.1.6. Reuse COCOMO I
A.1.7. Post-architecture COCOMO 1l
A.1.8. Expert estimation
A.1.9. Estimation by Analogy (EbA)
A.1.10. Weighted Micro Function Points
B. Property models for Development Time
Development Time
B.1. Evaluation methods for Development Time
B.1.1. COCOMO 1
B.1.2. COCOMO Il
B.1.3. Early design COCOMO 1l
B.1.4. Expert estimation
C. Property models for Cost
Cost
C.1. Evaluation methods for Cost
C.1.1. Cost estimation
C.1.2. Expert estimation
D. Property models for Performance
CAN schedulability
D.1. Evaluation methods for CAN schedulability analysis
Worst-Case Execution Time
D.2. Evaluation methods for Worst-Case Execution Time
D.2.1. WCET analysis based on IPET
D.2.2. Expert estimation
D.2.3. Measurement-based WCET analysis
D.2.4. Probabilistic Hybrid WCET Analysis
End-to-end response time (or delay) analysis
D.3. Evaluation methods for End-to-end response time (or delay) analysis
D.3.1. End-to-end response time (or delay) analysis
Stochastic Analysis of CAN-Based Real-Time Automotive Systems
D.4. Evaluation methods for Stochastic Analysis of CAN-Based Real-Time
Automotive Systems
D.4.1. Stochastic Analysis of CAN-Based Real-Time Automotive Systems

https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.rcomakdlqsxb
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.bt9baxkdxz7j
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.lrjuf9h3janp
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.d0y44jx9a781
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.n31915iwftpc
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.67y48fyyxr0p
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.240o3g8ev5kx
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.29qo59f0kaes
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.l6krhcds7af9
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.y5fb3j4wakl7
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.ohln8wwy2r5u
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.k5jukv9rmwka
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.ibzeo7z1myf7
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.j2sbw65cvciw
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.t7kc6nrejhwf
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.kfch3bglq0fj
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.yvubd3fk1bna
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.xtlmdvngwwrk
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.p6vbsrn8brx5
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.ok24xg3au7hr
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.t3uq6o9le8cq
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.s9xci6k343da
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.lb33xi3dv8dl
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.kp7seitf0lqc
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.2jimcrqocufr
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.4abnuiju17i4
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.jrfoslcog4bh
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.tk5c7xj3pc77
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.aktuodgqbp9x
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.2wjo5uxst1fw
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.gkwxq07v7vlh
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.o51h55npfrmq
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.k8n0ex5s9vlk
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.s7jql6yq35ry
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.yls5nkhi9ptk
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.hd37blgij7i1
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.dc68avuw6eq2
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.qiv2v2v31z9x
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.hrfq90s2zngj
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.hrfq90s2zngj
https://docs.google.com/document/d/1qLfBdjlzPGFD1qhm3HKnrD4hiXM0mFFh93Db0Ng8BrQ/edit#heading=h.tmtp50w6prm9

Version 1 - Ready for review
Date: 2015-12-18

A. Property model for Development Effort

DevelopmentEffortPropertyModel = <”Development Effort”, {“Basic
COCOMO 1”7, “Intermediate COCOMO 1”, “Advanced, Detailed COCOMO 17,
“Application composition COCOMO II”, “Early design COCOMO II”, “Reuse
cocoMo 11”7, “Post-architecture COCOMO II1”, “Expert estimation”,
“Estimation by Analogy”, “Weighted Micro Function Points”}>

Version 1 - Ready for review
Date: 2015-12-18

Development Effort

PropID: Development Effort

Data_format: Number (unit: Person-month)

Documentation:

Development effort is “the total number of person-months logged by the development team in all
the stages of product development, starting from initial design through final product acceptance
testing” [Harter 2000]. For example, if a product requires 6 person-months for its development,
this means that 1 person will need 6 months to develop product. This is equivalent to 2 persons
for 3 months or 3 persons for 2 months, etc.

Reference:

e [Harter 2000] Donald E. Harter, Mayuram S. Krishnan, Sandra A. Slaughter, (2000)
Effects of Process Maturity on Quality, Cycle Time, and Effort in Software Product
Development. Management Science 46(4): 451-466. http://dx.doi.org/10.1287/
mnsc.46.4.451.12056

Version 1 - Ready for review
Date: 2015-12-18

A.1. Evaluation methods for Development Effort

A.1.1. Basic COCOMO 1

Evaluation method Name: Basic COCOMO 1
Measure: Development Effort
Unit: Person-month

Applicability: familiar projects, ambitious projects, tightly constrained/complex projects

Parameters:

e KLOC is a measure of the size of a computer program. The size is determined by
measuring the number of lines of source code a program has. High-level languages such
as C++, will compile into more lines of machine code than an assembly language, which
is a low-level language.

Drivers:
e Development mode (organic, semi-detached, embedded)
e Application domain
e Project characteristics: Size, Innovation, Deadline, Dev. Environment

Formula: Development Effort = a(KLOC)?

with a, b two constants which are set based on the mode of development according to the
following table:

Basic COCOMO a b

Organic 24 105
Semi-detached 30 112
Embedded 36 120

Description:

The Basic COCOMO 1 model is a single-valued, static model that computes software
development effort as a function of program size expressed in estimated kilo-line of code
[Pressman 1993].

The model relies on the characteristics of the project, which allows deciding upon one of the
three following development modes:

Version 1 - Ready for review
Date: 2015-12-18

e Organic: for relatively small teams developing software in a highly familiar, in-house
environment.

e Semi-detached: when the team members have some experience related to some
aspects of the system under development but not others and the team is composed of
experienced and inexperienced people.

e Embedded: if the project must operate within a strongly coupled complex of hardware,
software, regulations, and operational procedures, such as real-time systems.

These modes range from the familiar to the ambitious, tightly constrained development projects.

Another way to describe the development mode is through the following project characteristics:

Development Mode Project Characteristics

Size Innovation Deadline/constraints Dev, Environment
Organic Small Little Not tight Stable
Semi-detached Medium Medium Medium Medium
Embedded Large Greater Tight Complex hardware/

customer interfaces

Table from [Merlo-Schett et al. 2002-03].

e Model assumptions
o KLOC can be somehow estimated at the point the estimate is needed
o There are 152 hours per person-month. According to the organization this value
may differ from the standard by 10% to 20% [Merlo-Schett et al. 2002-03].

e Advantages
o Transparent, one can see how it works.
o Good for quick, early, rough order of low magnitude estimate of software cost.
o Drivers are particularly helpful to the estimator to understand the impact of
different factors that affect project costs.
o Granularity is low which is consistent to the granularity of the information
available to support the estimation.

e Disadvantages
o Limited accuracy (does not take into account factors known to significantly affect
the development effort).
o Hard to estimate accurately KLOC early on in the project, when effort estimates
are required, actually KLOC is a length measure and not a size measure.
o Vulnerable to the quality of tuning of the model based on the needs of the
organization and classifications of development mode.

e Sources:

Version 1 - Ready for review
Date: 2015-12-18

o [Pressman 1993] Pressman, Roger S. A Manager's Guide to Software
Engineering. New York: McGraw-Hill, 1993.

o [Boehm 1981] Boehm, Barry W. Software Engineering Economics. Englewood
Cliffs, NJ: Prentice-Hall, 1981

o [Merlo-Schett et al. 2002-03] Merlo-Schett N., Glinz M, Mukhija A. COCOMO
(Constructive Cost Model) - Seminar on Software Cost Estimation. University of
Zurich, Switzerland. 2002-2003.
https://files.ifi.uzh.ch/rerg/arvo/courses/seminar_ws02/reports/Seminar_4.pdf

Available Implementation: None.

A.1.2. Intermediate COCOMO 1

Evaluation Method Name: Intermediate COCOMO 1
Measure: Development Effort
Unit: Person-month

Applicability: familiar projects, ambitious projects, tightly constrained/complex projects, known
requirements, systems and sub-systems

Parameters:
e KLOC
e EAF based on the Product (RELY, DATA, CPLX), Computer (TIME, STOR, VIRT,
TURN), Personnel (ACAP, AEXP, PCAP, VEXP, LEXP), Project (MODP, TOOL, SCED)
characteristics

Drivers:
e Development mode (organic, semi-detached, embedded) based on the Project
characteristics: Size, Innovation, Deadline, Development Environment

Formula: Development Effort = a(KLOC)**(EAF)
with a, b two constants which are set based on the mode of development according to the
following table:

Intermediate COCOMO a b

Organic 32 | 1.05
Semi-detached 20 1.12
Embedded 28 120

and EAF the effort adjustment factor based on 15 cost drivers.

https://files.ifi.uzh.ch/rerg/arvo/courses/seminar_ws02/reports/Seminar_4.pdf

Version 1 - Ready for review
Date: 2015-12-18

Description:

*See Basic COCOMO 1 for the description of organic, semi-detached, embedded.

Cost Driver |[Description Rating

Very Low ||[Nominal High Very Extra

Low High [High
Product ”
RELY Required software reliability 0.75 ||0.88 1.00 1.15 1.40 -
[DATA [Database size |- 094 100 [1os Jrie |- |
CPLX Product complexity 070 Jo8s |1.00 1.15 1.30 1.65
Computer
[TIME [Execution time constraint |- [[1.00 i i3 [re6 |
STOR Main storage constraint - [1.00 1.06 121 156 |
VIRT Virtual machine volatility - 087 [[1.00 1.15 130 |- |
ITURN |[Computer turnaround time |- 087 |[1.00 [to7 Jhas |- i
Personnel | | !
ACAP Analyst capability 1.46 1.19 [1.00 086 o071 |- |
|AEXP |Applications experience (129 113 100 loor Jos2 |- |
PCAP Programmer capability 1.42 1.17 [1.00 086 070 |- |
VEXP Virtual machine experience 121 1.10 [[1.00 090 |- |- |
ILEXP [Language experience 114 [1o7 |j1.00 logs |- |- |
Project | | |
MODP Modern programming practices 1.24 .10 [[1.00 091 082 |- |
ITOOL |[Software Tools (124 110 |j1.00 loo1 o83 |- |
ISCED [Development Schedule (123 [1.08 [1.00 [Lo4 [110 |- |

The Effort Adjustment Factor (EAF) is the product of the effort multipliers corresponding to each
of the cost drivers for the project.

e Model assumptions
o There are 152 hours per person-month [Merlo-Schett et al. 2002-03].
o The ratings of the cost drivers are applicable to the project for which estimates
are needed.

e Advantages
Good to use when the requirements have been specified.

o Commonly used model.
o Open / accessible model.
o Granularity is higher but it needs to be consistent to the granularity of the

information available to support the estimation.
o Available implementation.

Version 1 - Ready for review
Date: 2015-12-18

e Disadvantages
o Extremely vulnerable to mis-classification of the development mode.
o Success depends largely on tuning the model to the needs of the organization,
using historical data which is not always available.
o KLOC measures system length not size.

e Sources:
o [Boehm 1981] Boehm, Barry W. Software Engineering Economics. Englewood
Cliffs, NJ: Prentice-Hall, 1981
o [Merlo-Schett et al. 2002-03] Merlo-Schett N, Glinz M, Mukhija A. COCOMO
(Constructive Cost Model) - Seminar on Software Cost Estimation. University of
Zurich, Switzerland. 2002-2003.
https://ffiles.ifi.uzh.ch/rerg/arvo/courses/seminar_ws02/reports/Seminar_4.pdf

Available Implementation:
COCOMO® 81 Intermediate Model Implementation
http://sunset.usc.edu/research/COCOMOII/cocomo81_pgm/cocomo81.html

https://files.ifi.uzh.ch/rerg/arvo/courses/seminar_ws02/reports/Seminar_4.pdf
http://sunset.usc.edu/research/COCOMOII/cocomo81_pgm/cocomo81.html

Version 1 - Ready for review
Date: 2015-12-18

A.1.3. Advanced, Detailed COCOMO 1

Evaluation Method Name: Advanced, Detailed COCOMO 1
Measure: Development Effort
Unit: person-month

Applicability: familiar projects, ambitious projects, tightly constrained/complex projects,
systems and sub-systems, product design phase, detailed-design phase, code and unit test
phase, integration and test phase, at the component level

Parameters:
e Program size

Drivers:
e Cost drivers weighted according to each phase of the software lifecycle

Formula: --

Description: A major shortcoming of both the Basic and Intermediate COCOMO 1 models is
that they consider a software product as a single homogeneous entity. However, most large
systems are made up several smaller sub-systems. These sub-systems may have widely
different characteristics.

The Detailed COCOMO Model differs from the Intermediate COCOMO model in that it uses
effort multipliers for each phase of the project. These phase dependent effort multipliers yield
better estimates because the cost driver ratings may be different during each phase.

In Advanced COCOMO Model the cost of each subsystem is estimated separately. This
approach reduces the margin of error in the final estimate.

The Advanced COCOMO Model computes effort as a function of program size and a set of cost
drivers weighted according to each phase of the software lifecycle. The Advanced models
applies the Intermediate model at the component level, and then a phased-based approach is
used to consolidate the estimate [Fenton, 1997].

The four phases used in the Detailed COCOMO model are: requirements planning and product
design (RPD), detailed design (DD), code and unit test (CUT), and integration and test (IT).
Each cost driver is broken down by phases as in the example shown in the table below for the
Analyst Capability (ACAP). Estimates for each module are combined into subsystems and
eventually an overall project estimate. Using the detailed cost drivers, an estimate is determined
for each phase of the lifecycle.

Version 1 - Ready for review
Date: 2015-12-18

Cost Driver Rating RPD DD CUT IT

ACAP Very Low 180 135 135 150
Low 085 085 085 120
Nominal 1.00 1.00 1.00 1.00
High 075 090 090 085

Very High 055 075 075 070

Table from [Merlo-Schett 2002].

Model assumptions

o

o

Program size can be estimated in good-enough accuracy.

The model can be also used to estimate effort of maintenance. Maintenance
includes small updates and repairs during the operational life of a system. Most
parameters are used, but some like SCED, RELY, MODP are not applicable.

Advantages

o

o

o

Applied at the component level

Reduces the margin of error in the final estimate.

Adds separate cost drivers for each phase and allows for a more flexible phase
distribution

Tied-up to a quality model [Boehm 1978] and [ISO/IEC 9126-1].

Disadvantages

o

Requires much more detailed cost drivers and detailed information needs to be
available to support the estimation.

Ratings of cost drivers could not be found in the original material [Boehm, 1981]
Formula is not found.

No implementation is available.

Sources:

o

[Fenton and Pfleeger 1997] Fenton, N.E. and Pfleeger, S.L. (1997). Software
Metrics: A Rigorous and Practical Approach International Thomson Computer
Press.

[Boehm 1981] Boehm, Barry W. Software Engineering Economics. Englewood
Cliffs, NJ: Prentice-Hall, 1981

[Merlo-Schett et al. 2002-03] Merlo-Schett N, Glinz M, Mukhija A. COCOMO
(Constructive Cost Model) - Seminar on Software Cost Estimation. University of
Zurich, Switzerland. 2002-2003.
https://ffiles.ifi.uzh.ch/rerg/arvo/courses/seminar_ws02/reports/Seminar_4.pdf
[ISO/IEC 9126-1] ISO/IEC 9126-1, Software engineering — product quality — Part
1: Quality Model, first ed.: 2001-06-15.

https://files.ifi.uzh.ch/rerg/arvo/courses/seminar_ws02/reports/Seminar_4.pdf

Version 1 - Ready for review
Date: 2015-12-18

o [Boehm 1978] Boehm, B. W., Brown, J. R., Kaspar, H., Lipow, M., McLeod, G.,
and Merritt, M., Characteristics of Software Quality, North Holland, 1978, Boehm,
Barry W.

Available Implementation: N/A

Version 1 - Ready for review
Date: 2015-12-18

Introduction to COCOMO I

The model COCOMO Il consists of a composition of the three previous models. It is
tuned to estimate projects of life cycle practices of the 1990’s and 2000’s. The full
COCOMO Il model includes three stages. Stage 1 supports estimation of prototyping or
applications composition efforts. Stage 2 supports estimation in the Early Design stage
of a project, when less is known about the project’s cost drivers. Stage 3 supports
estimation in the Post-Architecture stage of a project.

COCOMO Il is based on the general formula [USC 2000]:

17 o 091 +001 Zl SF] i mn]
[T (Eh) -4 [(H 100] =B . —ATFROD
i=1
] where O
Size = KNSLOC + [KHSLOC (lEIIJ - A [AA+ SU+04-DM+03 - CM+0.3 - IM',I:I
100 i 100
B =091+001 Z.S'F
F=1
Estimate effort with:

Syvmbol Description

A Constant, currently calibrated as 2.45

AA Assessment and assimilation

ADAPT Percentage of components adapted (represents the effort required in
understanding software)

AT Percentage of components that are automatically translated

ATPROD Automatic translation productivity

REWL Breakape: Percentage of code thrown away due to requirements volatility

CM Percentage of code modified

DM Percentage of design modified

EmM Effort Multipliers: RELY, DATA, CPLX, RUSE, DOCLU, TIME, STOR,
PVOL, ACAP, PCAP, PCON, APEX, PLEX, LTEX, TOOL, SITE

IM Percentage of intepration and test modified

KASLOC Size of the adapted component expressed in thousands of adapted source
lines of code

KENSLOC Size of component expressed in thousands of new source lines of code

PM Person Months of estimated effort

SF Scale Factors: PREC, FLEX, RESL, TEAM, PMAT

S0 Software understanding (zero 1f DM = 0 and CM = 0)

Version 1 - Ready for review
Date: 2015-12-18

Formula and Table from [USC 2000]

A.1.4. Application composition COCOMO I/

Evaluation Method Name: Application composition COCOMO II
Measure: Development Effort
Unit: Person-month

Applicability: Early, prototyping and design phase (application composition), familiar
applications to be composed from interoperable components (e.g., GUI builders, database or
object managers, middleware, hypermedia handlers)

Parameters:
e Number of application points
e Application point productivity

Drivers:
e Complexity of object points

Formula: PM = (NAP * (1-%reuse/100)) / PROD

where NAP is the number of application points, %reuse is the percentage of screens, reports,
and 3GL modules reused from previous applications, pro-rated by degree of reuse, and PROD
is the application point productivity. PROD (application point productivity) is estimated as
NOP/person-month. NOP refers to New Object Points (Object Point count adjusted for reuse). In
NOP (number of object points) the use of the term "object" in "Object Points" defines screens,
reports, and 3GL modules as objects.

Description:
The model supports estimation of prototyping or applications composition efforts. It uses Object
Points Counting Procedure (as described in [USC 2000]).

e Model assumptions

o Estimates can be made after the requirements have been agreed.

o To estimate the number of application points (i.e., the number of screens,
reports, 3GL components) that the application will comprise of, assumptions on
their standard definition needs to be assumed that it applies in the specific
context.

e Advantages
o Reflects more up-to-date software practices than COCOMO 1.

Version 1 - Ready for review
Date: 2015-12-18

o Size measurement is not based on code length but on object points and
complexity.
o Flexible/tailorable for estimation for Application Generator.

e Disadvantages
o Requires expertise in estimating application or object points.
o Vulnerable to mis-estimations due to subjective classification of object instances
into simple, medium and difficult complexity levels.
o Assumes typical format of applications, based on clients, servers, screens,
reports and 3GL components, which might be considered outdated.

e Sources:

o [Sommerville 2010] Sommerville, ., Software Engineering, 9th ed., Addison
Wesley, 2010
[USC 2000] USC COCOMO Il manual,
http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/Cll_manual2000.0.
pdf

o http://csse.usc.edu/csse/affiliate/private/COCOMOII_2000/Book_Draft/K_chapter
~5 991223 v6+CR.doc

Available Implementation: COCOMO Il - Constructive Cost Model
http://csse.usc.edu/tools/COCOMOIl.php

A.1.5. Early design COCOMO I/

Evaluation Method Name: Early design COCOMO ||
Measure: Development Effort
Unit: person-month

Applicability: Early design phase, familiar projects, application generation with more granular
information

Parameters:

e Number of function points (FP). FP measure a software project by quantifying the
information processing functionality associated with major external data input, output, or
file types.

A is the Effort Coefficient (= 2.94 calibrated for COCOMO Il 2000)
EM are the effort multipliers (7 are used for the Early design COCOMO II)

Drivers:
e Scale factors: the following are used PREC, FLEX, RESL, TEAM, PMAT.

http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/CII_manual2000.0.pdf
http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/CII_manual2000.0.pdf
http://csse.usc.edu/tools/COCOMOII.php

Version 1 - Ready for review
Date: 2015-12-18

PM = 4*Size" *[[EM,
Formula: PM =a(FP)**(EM) OR more general :
where PM are person-months, FP number of function points and EM effort multipliers, a, b two
constants, a is the multiplicative constant and b is the scale factors.

B=ﬁu+iﬁfsﬁ

The five Scale Factors are:
1. PREC Precedentedness (how novel the project is for the organization)

2. FLEX Development Flexibility
3. RESL Architecture / Risk Resolution
4. TEAM Team Cohesion
5. PMAT Process Maturity
Scale Factors (W) annotation
PREC iIf a product is similar to several preweusly’* Describe much the same influences
developed project, then the precedentednese that the original Development Mode
iis high i » did, largely intrinsic to a project and
: : uncontrollable
FLEX Conformance needs with requuements f
external interface specifications, .. i
RESL Combines Design Thoroughness and RISIG\
[Elimination (two scale factors in Ada). .
TEAM gaccounts for the sources of project turbulence§ Identify management controllables
'and entropy because of difficulties in | by which projects can reduce
‘synchronizing the project's stakeholders. : ~ diseconomies of scale by reducing
| sources of project turbulence,
PMAT gtime for rating: project start. Two ways fori| entropy and rework.
rating: 1. by the results of an organized

ievaluation based on the SEI CMM, 2. 18 I-(ew
{Process Areas in the SEI CMM.

Table 4: scale factors description for COCOMO 1l
Scale factors from [Merlo-Schett et al. 2002-03]

Description:
Model supports estimation in the Early Design stage of a project, when less is known about the
project’s cost drivers. The same approach is used for the Post Architecture COCOMO II.

This model is used in the early stages of a software project when very little may be known about
the size of the product to be developed, the nature of the target platform, the nature of the
personnel to be involved in the project, or the detailed specifics of the process to be used. This
model could be employed in either Application Generator, System Integration, or Infrastructure
development sectors.

Version 1 - Ready for review
Date: 2015-12-18

It uses Function points which measures a software project by quantifying the information
processing functionality associated with major external data input, output, or file types. Five user
function types should be identified as defined in the table below.

External Input (Inputs) [Count each unique vser data or uwser control input type that (i)
enters the external boundary of the software system being
measured and (1) adds or chanpes data in a logical internal file.

External Output Count each unique user data or control output type that leaves the
(Outputs) external boundary of the software system being measured.

Internal Logical File | Count cach major logeal group of user data or control information
(Files) in the software system as a logical internal file type. Include each

logical file (e.g., ecach logical proup of data) that 1s generated, used,
or maintained by the software system.

External Interface Files passed or shared between software systems should be counted

Files {Interfaces) a5 external interface file types within each system.

External Inquiry Count cach unigque input-output combination, where an input

(Queries) causes and penerates an immedizte output, as an external inguiry
Lype.

Table from [USC 2000]

The function point cost estimation approach is based on the amount of functionality in a
software project and a set of individual project factors [Behrens 1983] [Kunkler 1985] [IFPUG
1994]. Function points are useful estimators since they are based on information that is
available early in the project life cycle.

Each instance of these function types is then classified by complexity level. The complexity
levels determine a set of weights, which are applied to their corresponding function counts to
determine the Unadjusted Function Points quantity. This is the Function Point sizing metric used
by COCOMO Il. The usual Function Point procedure involves assessing the degree of influence
(DI) of fourteen application characteristics on the software project determined according to a
rating scale of 0.0 to 0.05 for each characteristic. The 14 ratings are added together, and added
to a base level of 0.65 to produce a general characteristics adjustment factor that ranges from
0.65 to 1.35. Each of these fourteen characteristics, such as distributed functions, performance,
and reusability, thus have a maximum of 5% contribution to estimated effort. This is inconsistent
with COCOMO experience; thus COCOMO Il uses Unadjusted Function Points for sizing, and
applies its reuse factors, cost driver effort multipliers, and exponent scale factors to this sizing
quantity.

Tahble 1. COCOMO IT cost driver values

Version 1 - Ready for review
Date: 2015-12-18

Cost Very Very | Extra
Driver | Low | Low |Nominal| High | High | High
PREC 6.20(496 372 248 124 000
FLEX 507 405 34l 03] 101 0.00
RESL 707 565 424 283 141 0.00
TEAM 548 438 329 219 1.10| 000
PMAT TR0 624 468 312 156 000

RELY 0.82(092 100 110 1.26
DATA 0.90 100 1.14] 128
CPLX 073 087 100 1.17] 134 1.74
RUSE 0.95 100 107 115 1.24
DOCU 081 091 100 111 1.3
TIME 100 111 1.29 1.63
STOFR. 100 105 117 146
PVOL 0.87 100 1.15] 1.30
ACAP 142 119 100 085 07
PCAP 134| 1.15 100 088 076
PCON 129 112 100 090 0381
AEXP 122| 1.14 100 0B8] 0381
PEXP 1.19| 1.09 100 091 085
LTEX 120 1.09 1.00| 091 084
TOOL 1.17| 1.09 100 090] 078
SITE 122 1.09 100 093 0386| 080
SCED 143 1.14 100 1.00] 100

For Early design a reduced set of multiplicative cost drivers is used shown in the Table below.
The models is used to make rough estimates of the project’s cost and duration before its entire

architecture is determined.

Early Design cost drivers

Post-Architecture cost drivers
(Counterpart combined)

Product reliability and complexity RCPX RELY, DATA, CPLX, DOCU
Required reuse RUSE RUSE

Platform difficulty PDIF TIME, STOR, PVOL
Personnel capability PERS ACAP, PCAP, PCON
Personnel experience PREX AEXP, PEXP, LTEX
Facilities FCIL TOOL, SITE

Required Development Schedule SCED SCED

Early design and Post-Architecture cost drivers from [Merlo-Schett et al. 2002-03]

e Model assumptions

o Rates assumed from COCOMO ||

e Advantages

Version 1 - Ready for review
Date: 2015-12-18

A reduced set of multiplicative cost drivers is used (for example instead of RELY,
DATA, CPLX, DOCU the driver RCPX is used)

Early cost drivers are obtained by combining the Post-Architecture model cost
drivers

It can be used without collecting much information

It can be used early, before the entire architecture is determined

e Disadvantages

o

No available implementation.

e Sources:

O

[Merlo-Schett et al. 2002-03] Merlo-Schett N, Glinz M, Mukhija A. COCOMO
(Constructive Cost Model) - Seminar on Software Cost Estimation. University of
Zurich, Switzerland. 2002-2003.
https://files.ifi.uzh.ch/rerg/arvo/courses/seminar_ws02/reports/Seminar_4.pdf
http://csse.usc.edu/csse/affiliate/private/ COCOMOII_2000/Book_Draft/K_chapter 5 99122
3_v6+CR.doc

[Behrens 1983] Behrens, C. (1983), "Measuring the Productivity of Computer
Systems Development Activities with Function Points,” IEEE Transactions on
Software Engineering, 1983.

[Kunkler 1985] Kunkler, J. (1983), "A Cooperative Industry Study on Software
Development/Maintenance Productivity," Xerox Corporation, Xerox Square ---
XRX2 52A, Rochester, NY 14644, Third Report, March 1985.

[IFPUG 1994] IFPUG (1994), IFPUG Function Point Counting Practices: Manual
Release 4.0, International Function Point Users’ Group, Westerville, OH.

Available Implementation: N/A

A.1.6. Reuse COCOMO II

Evaluation Method Name: Reuse COCOMO I
Measure: Development Effort
Unit: person-month

Applicability: projects based on reuse (black-box or white-box)

Parameters:

e Number of LOC reused or generated

Drivers:

https://files.ifi.uzh.ch/rerg/arvo/courses/seminar_ws02/reports/Seminar_4.pdf
http://csse.usc.edu/csse/affiliate/private/COCOMOII_2000/Book_Draft/K_chapter_5_991223_v6+CR.doc
http://csse.usc.edu/csse/affiliate/private/COCOMOII_2000/Book_Draft/K_chapter_5_991223_v6+CR.doc

Version 1 - Ready for review
Date: 2015-12-18

Formula: PM = (ASLOC *AT/100) / ATPROD
for the black-box reuse; where ASLOC is the number of lines of generated code, AT is the
percentage of code automatically generated and ATPROD is the productivity of engineers in
integrating this code.

ESLOC = ASLOC *(1-AT/100) * AAM
for the white-box reuse; where ASLOC is the number of lines of generated code, AT is the
percentage of code automatically generated and AAM is the adaptation adjustment multiplier
computed from the sum of the costs of changing the reused code, the costs of understanding
how to integrate the code and the costs of reuse decision making. The latter two costs range
from 50 for complex unstructured code to 10 for well-written object oriented code and from 0 to
8 depending on the amount of analysis effort required.

Description:

COCOMO is not only capable of estimating the cost and schedule for a development started
from "scratch", but it is also able to estimate the cost and schedule for products that are built
upon already existing code. Adaptation considerations have also been incorporated into
COCOMO, where an estimate for KSLOC will be calculated. This value will be substituted in
place of the SLOC found in the equations already discussed. This adaptation of code utilizes an
additional set of equations that are used to calculate the final count on source instructions and
related cost and schedule. These equations use the following values as components:

e Adapted Source Lines of Code (ASLOC). The number of source lines of code adapted
from existing software used in developing the new product.

e Percent of Design Modification (DM). The percentage of the adapted software’s design
that received modification to fulfill the objectives and environment of the new product.

e Percent of Code Modification (CM). The percentage of the adapted software’s code that
receives modification to fulfill the objectives and environment of the new product.

e Percent of Integration Required for Modified Software (IM). The percentage of effort
needed for integrating and testing of the adapted software in order to combine it into the
new product.

Percentage of reuse effort due to Software Understanding (SU).
Percentage of reuse effort due to Assessment and Assimilation (AA).
Programmer Unfamiliarity with Software (UNFM)

The AAF is the adaptation adjustment factor. The AAF is the calculated degree to which the
adapted software will affect overall development.

18
PMtotal = (SCED)x PMnominal x HEM:‘

i=1

e Model assumptions

Version 1 - Ready for review
Date: 2015-12-18

o Estimates and percentages of reuse can be made.

e Advantages
o Allows adaptations of COCOMO in the case code is reused, which is very
common way of development.
e Disadvantages
o No available implementation.

e Sources:
o [USC 2000] USC COCOMO Il manual,
http://csse.usc.edu/csse/research/ COCOMOII/cocomo2000.0/Cll_manual2000.0.

pdf

Available Implementation: N/A

A.1.7. Post-architecture COCOMO I/

Evaluation Method Name: Post-architecture COCOMO I
Measure: Development Effort
Unit: Person-month

Applicability: projects that a software life-cycle architecture has been developed, system
Integration, or infrastructure developments

Parameters:
e Number of lines of source code
e As the Effort Coefficient = 2.94 for COCOMO I
e EM are the effort multipliers (17 are used for the Post-architecture COCOMO II)

Drivers:

PM = 4*Size" *[EM,
Formula: :

Description: Model supports estimation in the Post-Architecture stage of a project. It uses
COCOMO.II formulas. It uses for sizing the formulas shown below, and applies a set of 17 cost
drivers grouped into 4 categories (Product factors, Platform factors, Personnel

factors, Project factors). These four categories are parallel the four categories of COCOMO 1.
Many of the seventeen factors of COCOMO Il are similar to the fifteen factors of COCOMO 1. It

http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/CII_manual2000.0.pdf
http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/CII_manual2000.0.pdf

Version 1 - Ready for review
Date: 2015-12-18

is used after project’s overall architecture is developed. This stage proceeds most cost
-effectively if a software life-cycle architecture has been developed, validated with respect to the
systems mission, concept of operation and risk.

REVL

Si;c—(l+ —

= % (New KSLOC + Equivalent KSLOC)

Equivalent KSLOC = Adapted KSE.(J("x[] - l;:';]x AAM

J AA + AAFx(1+[0.02xSUx UNFM)
where AAM = : 100 B
‘ AA + AAF + (SUx UNFM)
100
AAF = (0.4x DM)+ (0.3xCM)+ (0.3xIM)

.for AAF<50

, for AAF > 50

Sizing equations from [Merlo-Schett et al. 2002-03].

Table I, COCOMO II cost driver values

Cost Very Very | Extra
Driver | Low | Low |Nominal| High | High | High
PREC 6.20(496 372 2 1.24 0.00
FLEX 507 405 30d| 203 1.01 0.00
RESL 107 545 424 283 141 0.00
TEAM 548(438 329 219 1.10 0.00
PMAT TR0 624 468 312 1.56 0.00

RELY 082 092 1.00 1.10 1.26
DATA 0.90 1.00 1.14 1.28
CPLX 073 0.87 1.00 1.17 1.34 1.74
RUSE 0.95 1.00 1.07 1.15 1.24
DOCU 081 091 1.00 1.11 1.73
TIME 1.00 111 1.29 1.63
STOR 1.00 1.05 1.17 1.46
PVOL 0.87 1.00 1.15 1.30
ACAP 142 1.19 100 085 07
PCAP 134 1.15 100 088 078
PCON 129 1.12 100 090 081
AEXP 122| 114 100 0B8] 081
PEXP 1.19| 1.09 100 091 0.85
LTEX 120 1.09 1.00| 091 0.84
TOOL 1.17| 1.09 100 090 078
SITE 122 1.09 100 093] 086 0.80
SCED 143 1.14 1.00 1.00 1.00

e Model assumptions
o Adjusts for software reuse and reengineering where automated tools are used for
translation of existing software

e Advantages
o Accounts for requirements volatility in the estimates.
o The most detailed model.

Version 1 - Ready for review
Date: 2015-12-18

Applicable to multiple sizing methods.

Tailorable mix of the Application Composition model (for early prototyping efforts)
and two increasingly detailed estimation models for subsequent portions of the
life cycle, Early Design and Post-Architecture.

e Disadvantages
o Requires a lot of effort to produce estimates as the level of granularity of the
information needed is high.
o No implementation available.

e Sources:

o [USC 2000] USC COCOMO Il manual,
http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/Cll_manual2000.0.
pdf

o [Merlo-Schett et al. 2002-03] Merlo-Schett N, Glinz M, Mukhija A. COCOMO
(Constructive Cost Model) - Seminar on Software Cost Estimation. University of
Zurich, Switzerland. 2002-2003.
https://ffiles.ifi.uzh.ch/rerg/arvo/courses/seminar_ws02/reports/Seminar_4.pdf

Available Implementation: None.

A.1.8. Expert estimation

Evaluation Method Name: Expert estimation
Measure: Development Effort
Unit: person-month

Applicability: Similar projects, expertise and experience, to any case

Parameters:

Experts value estimate

Experts confidence, experience, skill

Experts weights

Expert’s background

Available checklist of information related to the project

Drivers: Expert’s experience and knowledge, gut-feeling.

Formula: N/A

http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/CII_manual2000.0.pdf
http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/CII_manual2000.0.pdf
https://files.ifi.uzh.ch/rerg/arvo/courses/seminar_ws02/reports/Seminar_4.pdf

Version 1 - Ready for review
Date: 2015-12-18

Description:

In expert estimation, the estimation work is conducted by a person recognized as an expert on
the task, and that a significant part of the estimation process is based on non-explicit and
non-recoverable reasoning process, i.e. “intuition” [Jargensen 2004]. Expert estimation is the
dominant strategy when estimating software development effort.

Several experts on the proposed software development techniques and the application domain
are consulted. They each estimate the project cost. These estimates are compared and
discussed. The estimation process iterates until an agreed estimate is reached [Sommerville
2010].

It has been demonstrated in [Jgrgensen 2004] that in some cases expert estimates are more
accurate than other types of estimation methods. This is the case when the methods used are
not properly calibrated, or for cases in which having specific knowledge is important (e.g.
knowing who works on which part of the project).

According to [Jargensen 2004], the following 12 principles can improve the accuracy of expert
estimations:
e evaluate estimation accuracy but avoid high evaluation pressure
e avoid conflicting estimation goals (e.g. “bid”, “planned”, “most likely” and “wishful
thinking” vs “realism)
ask the estimators to justify and criticize their estimates
avoid irrelevant and unreliable estimation information
use documented data from previous development tasks
find estimation experts with relevant domain background and good estimation records
estimate top-down and bottom-up independently of each other
use estimation checklists
combine estimates from different experts and estimation strategies
assess the uncertainty of the estimate
provide feedback on the estimation accuracy and development task relations
provide estimation training opportunities

e Model assumptions
o Expertis available

e Advantages
o Expert estimation is the dominant strategy when estimating software
development effort
Simple to understand
Does not rely on project sizing (e.g. KLOC) to provide the estimate

e Disadvantages
o How the estimation has been performed remains typically undocumented.

Version 1 - Ready for review
Date: 2015-12-18

o Subjective to the expert’s opinion and bias.

e Sources:
o [Jargensen 2004] Jgrgensen, M. A review of studies on expert estimation of
software development effort, Journal of Systems and Software, Volume 70,
Issues 1-2, February 2004, Pages 37-60, ISSN 0164-1212,
http://dx.doi.org/10.1016/S0164-1212(02)00156-5.

Available Implementation: N/A

A.1.9. Estimation by Analogy (EbA)

Evaluation Method Name: Estimation by Analogy (EbA)
Measure: Development Effort
Unit: Person-months

Applicability: Anytime, data is available
Parameters: --

Drivers: --

Formula: --

Description: EbA is applicable when other projects in the same application domain have been
completed. The cost of a new project is estimated by analogy with these completed projects.
EBA can be performed according to one of the following three scenarios [Jgrgensen et al.
2003]:
1. Pure expert judgment (the “database” of previous projects is in the expert’s head)
2. Expert estimation informally supported by a database containing information about
previous projects, or
3. Estimation based on the use of automatic clustering algorithms to find similar projects
from a database.
To discover similar or analogous projects typical methods are: Top-K, K-nearest neighbours,
where all projects need to be compared with similarity measures like the squared Euclidean
distance, Cosine similarity, Gaussian distance, RBF kernel.

An example approach is AQUA from [Li et al. 2007].

Version 1 -

There are three basic steps for estimating effort by analogy using AQUA.:

Step 1. Retrieve analogy

Ready for review
Date: 2015-12-18

In order to get the Top-N similar objects from DB, s, is compared with
all the objects in R through similarity measures. Similanty measures

between two objects over a set of attrnibutes are defined in terms

of local

and global similarity measures (Richter, 1995). Local similarity measure
Lsim: M; = M;—[0, 1Ju|NULL} is defined as measuring the similarity
between two objects related to an attribute a4; €A, where M; is the type of

attribute a;.

The global similarity measure between s.€5 and r,€ R, Gsim: § x
R — [0,1] u {NULLY), is defined as a function of local similarity measures:
Gsim(sg, r) = f(Lsim(ai(sg), ai(r)), Lsim(az(sg.).a2(r)),..., Lsim(a,,
(8g.).8,,(r;))). The concrete function f will be defined in Section 3.6. The
result of this step is a set of vectors regarding the analogy of s, and corre-
sponding global similarities: ¥(s;) = {<ry, Gsim(s,, ri)=,...,<r,, Gsim(s,,

ra)=}.

Detailed definitions of the types of attributes, as well as the local and
global similarity measures, will be given in Sections 3.3, 3.5 and 3.6,

respectively.

Step 2. Determine the Top-N similar objects

In order to predict the effort of 5., the Top-N similar objects Rpnisg)
are selected from R based on Y(s;). Different from the existing analogy-
based effort estimation methods, thresholds of both similanty measures
and the number of analogies used for analogy adaptation will be con-
sidered in order to determine R,,,n{5;) in AQUA. For given N and T, the

set Rypaisg) is defined as follows:
Riopnisg) = {rf,rg rlf, }. with

(N;) number of analogies for adaptation is N, i.e., |[Rigpnisg)l = N,

(N) the global similarity between s, and all objects in R, must be
greater than the given threshold T: Gsim(s,, rf) = T forall rf € Ryw and

(N1) Ryopn includes only the closest NV objects to s, in R in terms of global
similarity: Gsim(s,, rf) = Gsim(sg, r.) for all rf € Ry, and all r, € (RIR),
where (R/R,,,y) is the subtraction of sets, which includes the objects in

R but not in Rypx.

Step 3. Predict effort

Given Rm,,,n.r[sg}. the effort estimate of s, 1s then adapted from the
values of Effort of objects from R..,n(s,):Effort(s,) = g(Effort(r{),

Eﬁarf{rg}, __.,Eﬁaf-r{rﬁ}].
Again, the adaptation strategy g will be given in Section 3.6.

Version 1 - Ready for review
Date: 2015-12-18

Model assumptions
o Prior knowledge exists (stored or can be accessed).

Advantages
o Clear mathematical reasoning.
o Provides opportunities for weighing and obtaining local and global measures.

Disadvantages
o Similar projects in relation to the project needing the estimate exist, are
documented or accessible.
o Requires apriori selection of the most important attributes.

Sources:

o [Jergensen et al. 2003] Jergensen, M., Indahl, U., Sjgberg, D. (2003) Software
effort estimation by analogy and regression toward the mean. J Syst Softw
68(3):253-262.

o Li, J., Ruhe, G., Al-Emran, A. and Richter, M.M., 2007. A flexible method for
software effort estimation by analogy. Empirical Software Engineering, 12(1),
pp.65-106.

Available Implementation: Earlier implementation of ANaloGy SoftwarE TooL (ANGEL)
http://dec.bournemouth.ac.uk/ESERG/ANGEL/; not available any more.

A.1.10. Weighted Micro Function Points

Evaluation Method Name: Weighted Micro Function Points
Measure: Development Effort
Unit: Percentage of the whole unit

Applicability:

Parameters:

Flow complexity (FC): Measures the complexity of a programs' flow control path in a similar
way to the traditional cyclomatic complexity, with higher accuracy by using weights and
relations calculation.

Object vocabulary (OV): Measures the quantity of unique information contained by the
programs' source code, similar to the traditional Halstead vocabulary with dynamic language
compensation.

Object conjuration (OC): Measures the quantity of usage done by information contained by
the programs' source code.

http://dec.bournemouth.ac.uk/ESERG/ANGEL/
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://en.wikipedia.org/wiki/Halstead_complexity_measures

Version 1 - Ready for review
Date: 2015-12-18

e Arithmetic intricacy (Al): Measures the complexity of arithmetic calculations across the
program
Data transfer (DT): Measures the manipulation of data structures inside the program
Code structure (CS): Measures the amount of effort spent on the program structure such as
separating code into classes and functions

Inline data (ID): Measures the amount of effort spent on the embedding hard coded data
Comments (CM): Measures the amount of effort spent on writing program comments

Drivers:
e D: The cost drivers factor supplied by the user input

Formula: The WMFP algorithm uses a three-stage process: function analysis, APPW transform,
and result translation. A dynamic algorithm balances and sums the measured elements and
produces a total effort score. The basic formula is:

5 (WiMi) 1Pd

M = the source metrics value measured by the WMFP analysis stage
W = the adjusted weight assigned to metric M by the APPW model

N = the count of metric types

i = the current metric type index (iteration)

D = the cost drivers factor supplied by the user input

q = the current cost driver index (iteration)

K = the count of cost drivers

Description:

WMFP uses a parser to understand the source code breaking it down into micro functions and
derive several code complexity and volume metrics, which are then dynamically interpolated into a
final effort score. A three-stage process is used: function analysis, APPW transform, and result
translation. The basic formula is used.

A dynamic algorithm balances and sums the measured elements and produces a total effort score.
This score is then transformed into time by applying a statistical model called average programmer
profile weights (APPW) which is a proprietary successor to COCOMO Il 2000 and COSYSMO. The
resulting time in programmer work hours is then multiplied by a user defined cost per hour of an
average programmer, to produce an average project cost, translated to the user currency.

e Model assumptions
o Assumes availability of code.

e Advantages

https://en.wikipedia.org/wiki/COCOMO
https://en.wikipedia.org/wiki/COSYSMO

Version 1 - Ready for review
Date: 2015-12-18

Produces more accurate results than traditional software sizing methodologies
Requires less configuration and knowledge from the end user, as most of the
estimation is based on automatic measurements of an existing source code

o Compatible with waterfall and newer SDLCs, such as Six Sigma, Boehm spiral, and
Agile (AUP/Lean/XP/DSDM) methodologies

e Disadvantages
o The basic elements of WMFP, when compared to traditional sizing models such as
COCOMO, are more complex to a degree that they cannot realistically be evaluated
by hand, even on smaller projects, and require a software to analyze the source
code. Thus it can only be used as an Estimation by Analogy method.

e Sources:
o https://en.wikipedia.org/wiki/Weighted Micro_Function_Points
o [ProjectCodeMeter 2010] "ProjectCodeMeter Users Manual" pp. 33—-34 (2010).
o [Jones 2009] Jones C. "Software Engineering Best Practices": pp. 318—-320 [1]
(October 2009)
o [TickIT 209] TicklT Quarterly publication (2009) "Quarter 1, 2009": page 13

Available Implementation: http://www.projectcodemeter.com/cost_estimation/index.html

https://en.wikipedia.org/wiki/Spiral_model
https://en.wikipedia.org/wiki/Agile_software_development
http://www.projectcodemeter.com/cost_estimation/images/files/PCMProManual.pdf
http://www.amazon.com/dp/007162161X
http://www.amazon.com/dp/007162161X
http://www.tickit.org/TI1Q09.pdf
http://www.tickit.org/TI1Q09.pdf
http://www.projectcodemeter.com/cost_estimation/index.html

Version 1 - Ready for review
Date: 2015-12-18

B. Property models for Development Time

DevelopmentTimePropertyModel = <“Development Time”, {wcocomMmo 17,
“COCOMO II”, “Early design COCOMO II”, “Expert estimation”}>

Version 1 - Ready for review
Date: 2015-12-18

Development Time

ProplD: Development Time

Data_format: Positive integer (unit:month)

Documentation:

Development time is the estimated time to develop the software, expressed in months.

Version 1 - Ready for review
Date: 2015-12-18

B.1. Evaluation methods for Development Time

B.1.1. COCOMO 1

Evaluation Method Name: COCOMO 1
Measure: Development Time
Unit: Month

Applicability: familiar projects, ambitious projects, tightly constrained/complex projects

Parameters:
e Effort

Drivers:
e Development mode (organic, semi-detached, embedded)
e Application domain
e Project characteristics: Size, Innovation, Deadline, Dev. Environment

Formula: 2,5 * (Effort)*c
with ¢ a constant which is set based on the mode of development according to the following
table:

Development mode c

organic 0,38

semi-detached 0,35

embedded 0,32
Description:

The model relies on the characteristics of the project, which allows to decide upon one of the
three following development modes:
e Organic: for relatively small teams developing software in a highly familiar, in-house
environment
e Semi-detached: when the team members have some experience related to some
aspects of the system under development but not others and the team is composed of
experienced and inexperienced people.
e FEmbedded: if the project must operate within a strongly coupled complex of hardware,
software, regulations, and operational procedures, such as real-time systems.

Version 1 - Ready for review
Date: 2015-12-18

These modes range from the familiar to the ambitious, tightly constrained development projects.

Another way to describe the development mode is through the following project characteristics:

Development Mode Project Characteristics

Size Innovation Deadlineg/constraints Dev. Environment
Organic Small Little Mot tight Stable
Semi-detached Medium Medium Medium Medium
Embedded Large Greater Tight Complex hardware/

customer interfaces

Table from [Merlo-Schett et al. 2002-03].

e Model assumptions

o The calculation is based on the development effort calculated through one of the
COCOMO evaluation methods (Basic COCOMO 1, Intermediate COCOMO 1,
Advanced COCOMO 1).

o In Basic COCOMO 1, there are 152 hours per person-month. According to the
organization this value may differ from the standard by 10% to 20%
[Merlo-Schett et al. 2002-03].

o In addition to the EAF, the model parameter "a" is slightly different in
Intermediate COCOMO from the Basic model. The parameter "b" remains the
same in both models.The following formula is used to calculate the difference in
the Effort:

-'w-'w Forr = -EAF > -'u-'w momingl : . f .
Equation 1: intermediate COCOMO; man month correction

e Advantages
o Transparent, one can see how it works.
o Good for quick, early, rough order of magnitude estimate of software cost.
o Drivers are particularly helpful to the estimator t o understand the impact of
different factors that affect project costs.

e Disadvantages

o Limited accuracy (does not take into account the factors known to significantly
affect the development effort).

e Sources:
o [Boehm 1981] Boehm, Barry W. Software Engineering Economics. Englewood
Cliffs, NJ: Prentice-Hall, 1981
o [Merlo-Schett et al. 2002-03] Merlo-Schett N, Glinz M, Mukhija A. COCOMO
(Constructive Cost Model) - Seminar on Software Cost Estimation. University of

Version 1 - Ready for review
Date: 2015-12-18

Zurich, Switzerland. 2002-2003.
https://files.ifi.uzh.ch/rerg/arvo/courses/seminar_ ws02/reports/Seminar 4.pdf

Available Implementation: None.

B.1.2. COCOMO II

Evaluation Method Name: COCOMO I
Measure: Development time
Unit: Month

Applicability: Application Generator, System Integration, or Infrastructure developments
Parameters:
e Person-month

e Schedule

Drivers:
e PREC, FLEX, RESL, TEAM, PMAT

Formula:
i —[02E+02=x[B-101]]) BCED%
TDEV = [3.6?‘>< [PMH] s
where
5
E=091+001 ZSF;
F=1
Formula from [USC 2000]
Symbuol Description
PM Person Months of estimated effort from Early Design or Post-Architecture
moadels {excluding the effect of the SCED effort multiplier).
SF Seale Factors: PREC, FLEX, RESL, TEAM, PMAT
TDEWV Time 1o develop
SCED Schedule
SCED% The compression / expansion pereentage in the SCED effort multplier

Table from [USC 2000]

https://files.ifi.uzh.ch/rerg/arvo/courses/seminar_ws02/reports/Seminar_4.pdf

Version 1 - Ready for review
Date: 2015-12-18

Description:
e Model assumptions
o Development effort is estimated from Early Design or Post-Architecture models.

e Advantages
o Transparent, one can see how it works.
o Good for quick, early, rough order of low magnitude estimate of development
time.

e Disadvantages
o Dependent on variables that are not easily estimated (e.g., SCED).

e Sources:
o [USC 2000] USC COCOMO Il manual,
http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/Cll_manual2000.0.
pdf

Available Implementation:

B.1.3. Early design COCOMO Il

Evaluation Method Name: Early design COCOMO I
Measure: Development Time
Unit: calendar time

Applicability: Early design phase, familiar projects, application generation with more granular
information

Parameters:
e PM person-months
e Cisaconstant = 3.67 calibrated for COCOMO II
e Dis aconstant = 0.28 calibrated for COCOMO II
e Fis a calculated parameter

Drivers:

Formula:
IDEV,s = Cx(PM 5 ¥ where £ =D +0.2x0.01x>:SFj Equation 3: Time to develop
. S

where F=D + 0.2 x (E-B) andC=367andD=028

PMys = AxSize" x H EM,

where |E =B +0.0].1:ZSFJ.

B=ﬁﬂ+iﬁf“SE

Version 1 - Ready for review
Date: 2015-12-18

where A =2 94 (for COCOMO 11.2000) Equation 2 Person month

where B =0.91 (for COCOMO 11.2000)

Description: Model supports estimation in the Early Design stage of a project, when less is
known about the project’s cost drivers. The same approach is used for the Post Architecture

COCOMO L.

It is based on the Development effort estimation formulas, i.e., it uses the PM (person-months),
FP number of function points and EM effort multipliers, a, b two constants, a is the multiplicative
constant and b is the scale factors.

The five Scale Factors are:
1. PREC Precedentedness (how novel the project is for the organization)

2. FLEX Development Flexibility

3. RESL Architecture / Risk Resolution
4. TEAM Team Cohesion

5. PMAT Process Maturity

Scale Factors (W) Eannotation

PREC If a product is similar to several prewously:“ Describe much the same influences
‘developed project, then the precedentedmess that the original Development Mode
is high \. did, largely intrinsic to a project and

: : uncontrollable

FLEX Conformance needs with reqmrements fg
external interface specifications, .. 3

RESL Combines Design Thoroughness and RlSk}\

Ellmmatlon (two scale factors in Ada). _

TEAM accounts for the sources of project turbulenr,e Identify management controllables
iand entropy because of difficulties in | Py Wwhich projects can reduce
synchronizing the project's stakeholders. r diseconomies of scale by reducing

:| sources of project turbulence,

PMAT itime for rating: project start. Two ways for! entropy and rework.

irating: 1. by the results of an organized

gevaluallon based on the SEI CMM, 2. 18 I-(ey,;
{Process Areas in the SEI CMM.

Table 4: scale factors description for COCOMO 1l
Scale factors from [Merlo-Schett et al. 2002-03]

Version 1 - Ready for review
Date: 2015-12-18

Model assumptions
o Calibrations are not obsolete

Advantages
o It can be used without collecting much information
o It can be used early, before the entire architecture is determined

Disadvantages
o No available implementation.

Sources:

o [Merlo-Schett et al. 2002-03] Merlo-Schett N, Glinz M, Mukhija A. COCOMO
(Constructive Cost Model) - Seminar on Software Cost Estimation. University of
Zurich, Switzerland. 2002-2003.
https://files.ifi.uzh.ch/rerg/arvo/courses/seminar_ws02/reports/Seminar_4.pdf

o [USC 2000] USC COCOMO Il manual,

http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/Cll_manual2000.0.
pdf

Available Implementation:

B.2.4. Expert estimation

Evaluation Method Name: Expert estimation
Measure: Development Time
Unit: Month

Applicability: Similar projects, expertise and experience, to any case

Parameters:

Experts value estimate

Experts confidence, experience, skill

Experts weights

Expert’s background

Available checklist of information related to the project

Drivers: Expert's experience and knowledge, gut-feeling.

Formula: N/A

https://files.ifi.uzh.ch/rerg/arvo/courses/seminar_ws02/reports/Seminar_4.pdf

Version 1 - Ready for review
Date: 2015-12-18

Description:

In expert estimation, the estimation work is conducted by a person recognized as an expert on
the task, and that a significant part of the estimation process is based on non-explicit and
non-recoverable reasoning process, i.e. “intuition”.[Jargensen 2002]. Expert estimation is the
dominant strategy when estimating software development effort.

Several experts on the proposed software development techniques and the application domain
are consulted. They each estimate the project cost. These estimates are compared and
discussed. The estimation process iterates until an agreed estimate is reached [Sommerville
2010]

It has been demonstrated in [Jgrgensen 2004] that in some cases expert estimates are more
accurate than other types of estimation methods. This is the case when the methods used are
not properly calibrated, or for cases in which having specific knowledge is important (e.g.
knowing who works on which part of the project).

According to [Jargensen 2004], the following 12 principles can improve the accuracy of expert
estimations:
e evaluate estimation accuracy but avoid high evaluation pressure
e avoid conflicting estimation goals (e.g. “bid”, “planned”, “most likely” and “wishful
thinking” vs “realism)
ask the estimators to justify and criticize their estimates
avoid irrelevant and unreliable estimation information
use documented data from previous development tasks
find estimation experts with relevant domain background and good estimation records
estimate top-down and bottom-up independently of each other
use estimation checklists
combine estimates from different experts and estimation strategies
assess the uncertainty of the estimate
provide feedback on the estimation accuracy and development task relations
provide estimation training opportunities

e Model assumptions
o Expertis available

e Advantages
o Expert estimation is the dominant strategy when estimating software
development effort
Simple to use
Does not rely on project sizing (e.g. KLOC) to provide the estimate

e Disadvantages
o How the estimation has been performed remains typically undocumented

Version 1 - Ready for review
Date: 2015-12-18

e Sources:
o [Jergensen 2004] Jargensen, M. A review of studies on expert estimation of
software development effort, Journal of Systems and Software, Volume 70,
Issues 1-2, February 2004, Pages 37-60, ISSN 0164-1212,
http://dx.doi.org/10.1016/S0164-1212(02)00156-5.

Available Implementation: N/A

Version 1 - Ready for review
Date: 2015-12-18

C. Property models for Cost

CostPropertyModel = <Cost, {“Cost Estimation”, “Expert estimation”}>

Version 1 - Ready for review
Date: 2015-12-18

Cost

ProplID: Cost

Data_format: Number (unit:)

Documentation:

Cost is the total cost of a development project (according to [Sommerville 2010]) and involves
three parameters: (1) hardware and software costs, including maintenance, (2) travel and
training costs, and (3) effort costs (the costs of paying software engineers). Depending on the
type of project and organization, any of these costs can be the dominant cost.

Organizations compute effort costs in term of overhead costs where they take the total cost of
running the organization and divide this by the number of productive staff. Therefore, the
following costs are all part of the total effort cost:

costs of providing, heating and lighting office space

costs of support staff such as accountants, secretaries, cleaners, etc.

costs of networking and communications

costs of central facilities, such as libraries, recreational facilities

costs of pensions, health insurance, etc.

e Sources: [Sommerville 2010] Sommerville, |., Software Engineering, 9th ed., Addison
Wesley, 2010

C.1. Evaluation methods for Cost

C.1.1. Cost estimation
Evaluation Method Name: Cost estimation
Measure: Cost
Unit: monetary equivalent (USD?)
Applicability: any domain, anytime
Parameters:

e Development Effort

e Average Monthly Salary for developers

Drivers: Economy

Formula: Cost = (Development Effort)* Salary
Description:

e Model assumptions
o Development effort can be estimated

e Advantages
o Simple, generic and applicable

e Disadvantages
o Too generic

e Sources:

Version 1 - Ready for review
Date: 2015-12-18

o [Abbas et al. 2012] Abbas, Syed Ali, et al. "Cost Estimation: A Survey of
Well-known Historic Cost Estimation Techniques." Journal of Emerging Trends in
Computing and Information Sciences 3.4 (2012): 612-636.

Available Implementation: http://www.payscale.com/

http://www.payscale.com/

Version 1 - Ready for review
Date: 2015-12-18

C.2.2. Expert estimation

Evaluation Method Name: Expert estimation
Measure: Development Time
Unit: Month

Applicability: Similar projects, expertise and experience, to any case

Parameters:
e Experts value estimate
Experts confidence, experience, skill
Experts weights
Expert’s background
Available checklist of information related to the project

Drivers: Expert’s experience and knowledge, gut-feeling.
Formula: N/A

Description:

In expert estimation, the estimation work is conducted by a person recognized as an expert on
the task, and that a significant part of the estimation process is based on non-explicit and
non-recoverable reasoning process, i.e. “intuition” [Jargensen 2004]. Expert estimation is the
dominant strategy when estimating software development effort.

Several experts on the proposed software development techniques and the application domain
are consulted. They each estimate the project cost. These estimates are compared and
discussed. The estimation process iterates until an agreed estimate is reached [Sommerville
2010].

It has been demonstrated in [Jgrgensen 2004] that in some cases expert estimates are more
accurate than other types of estimation methods. This is the case when the methods used are
not properly calibrated, or for cases in which having specific knowledge is important (e.g.
knowing who works on which part of the project).

According to [Jargensen 2004], the following 12 principles can improve the accuracy of expert
estimations:
e evaluate estimation accuracy but avoid high evaluation pressure
e avoid conflicting estimation goals (e.g. “bid”, “planned”, “most likely” and “wishful
thinking” vs “realism)

e ask the estimators to justify and criticize their estimates

Version 1 - Ready for review
Date: 2015-12-18

avoid irrelevant and unreliable estimation information

use documented data from previous development tasks

find estimation experts with relevant domain background and good estimation records
estimate top-down and bottom-up independently of each other

use estimation checklists

combine estimates from different experts and estimation strategies

assess the uncertainty of the estimate

provide feedback on the estimation accuracy and development task relations

provide estimation training opportunities

e Model assumptions
o Expertis available

e Advantages
o Expert estimation is the dominant strategy when estimating software
development effort
Simple to use
Does not rely on project sizing (e.g. KLOC) to provide the estimate

e Disadvantages
o How the estimation has been performed remains typically undocumented

e Sources:
o [Jergensen 2004] Jargensen, M. A review of studies on expert estimation of software
development effort, Journal of Systems and Software, Volume 70, Issues 1-2, February
2004, Pages 37-60, ISSN 0164-1212, http://dx.doi.org/10.1016/S0164-1212(02)00156-5.

Available Implementation: N/A

Version 1 - Ready for review
Date: 2015-12-18

D. Property models for Performance

PerformancePropertyModell = <CAN sched, {"Controlled Area Network
(CAN) schedulability analysis"}

PerformancePropertyModel?2 = <WCET, {“Worst-case execution time (WCET)
analysis based on Implicit Path Enumeration Technique (IPET)”,
“Expert estimation”, “Measurement-based WCET analysis”,
“Probabilistic Hybrid WCET Analysis”}>

PerformancePropertyModel3 = <E2E respTime, {“End-to-end response time
(or delay) analysis”, ...}>
PerformancePropertyModel4 = <Stoch CAN, {“stochastic analysis of

CAN-based Real-Time Automotive Systems”}>

Version 1 - Ready for review
Date: 2015-12-18

CAN schedulability

ProplID: CAN_sched

Data_format: boolean (unit: N/A)

Documentation:

CAN schedulability uses worst-case response time of CAN messages to check and eventually
guarantee that messages between CAN-connected nodes do not exceed their deadlines. A
CAN_sched value of true means that it is schedulable, while false means not schedulable.

Version 1 - Ready for review
Date: 2015-12-18

D.1 Evaluation methods for CAN schedulability analysis

D.1.1. Controller Area Network (CAN) schedulability analysis

Evaluation method Name: Controlled Area Network (CAN) schedulability analysis
Measure: CAN_sched
Unit: schedulable / not schedulable (boolean)

Applicability: real-time embedded systems with CAN-based communication (e.g., embedded
distributed units (ECUs) communicating via CAN in automotive)

Parameters: data frames, number of nodes, static set of hard real-time msgs, msg IDs, max
data bytes per msg, max transmission time per msg, msgs period (Tm), msg deadline (Dm),
queuing jitter (Jm), queuing delay (wm), msg transition time (Cm)

Drivers: --
Formula: Vmm = [1..n], R, <= D,
(where R, = WCET of message m, and D,, = deadline of message m)

Description: CAN is used extensively in automotive applications for communication across
ECUs via messages that have specific deadlines which are not supposed to be missed. CAN
schedulability analysis employs worst-case response time of CAN messages to check and
eventually guarantee that messages do not exceed their deadlines.

e Model assumptions
o fixed priority preemptive
o Highest priority msg enters in arbitration when arbitration starts
o Depending on the number of buffers of on-chip CAN controller, Dm <= Tm can be
needed
o One time domain wrt nodes clock

e Advantages
o Crucial timing analysis in the automotive domain and in general hard real-time
embedded systems with CAN-based communication.

e Disadvantages
o ltis limited to the model assumptions
o Variations in the model affect the analysis and shall be thoroughly assessed

Version 1 - Ready for review
Date: 2015-12-18

e Sources:
o [Davis et al. 2007] Davis, R.l., Burns, A., Bril, R.J., Lukkien, J.J. Controller Area
Network (CAN) schedulability analysis: Refuted, revisited and revised.Real-Time
Systems. 2007 Apr 1;35(3):239-72.

Available Implementation: Volcano Network Architect (VNA) by Mentor Graphics

Version 1 - Ready for review
Date: 2015-12-18

Worst-Case Execution Time

PropID: WCET
Data_format: number (unit:milliseconds)
Documentation:
e Worst-Case Execution Time (WCET) analysis is used to determine the WCET of a

program (or a function) based on mathematical models representing software and
hardware.

Version 1 - Ready for review
Date: 2015-12-18

D.2. Evaluation methods for Worst-Case Execution Time

D.2.1. Worst-case execution time (WCET) analysis based on Implicit Path Enumeration
Technique (IPET)

Evaluation method Name: Worst-case execution time (WCET) analysis based on Implicit Path
Enumeration Technique (IPET)

Measure: WCET

Unit: milliseconds

Applicability: real-time systems, embedded, distributed on, e.g. CAN and LIN, tasks on
different microcontrollers

Parameters: executable binary, annotations for additional external info: possible program flow,
hardware configuration can be required, clock rate, routine entry, memory access, known
register values, address mapping, recursion depth, loop bound, etc..

Drivers: ----

Formula: WCET = max(Xx; -t,),i = [e;... e,]
(x; = execution frequency of edge e; in the control flow graph, ¢ = execution time of edge e,
edges defined in the optimization problem as constraints)

Description:

To give system timing guarantees, WCET of tasks running on different microcontrollers is
crucial. WCET analysis can be done both dynamically and statically. Static WCET analysis is
used to determine the WCET of a program (or a function) based exclusively on mathematical
models representing software and hardware.

e Model assumptions
o no event-triggered are transmitted (possible)
o no sporadic frames are transmitted (possible)
o no sleep requests occur (possible)
o no errors occur (possible)

e Advantages
o description of complex flow facts is possible
o generation of constraints is simple
o constraints can be solved by existing tools

Version 1 - Ready for review
Date: 2015-12-18

e Disadvantages

solving ILP is in general NP hard

flow facts that describe execution order are difficult to integrate
generic control flow

complex hardware

manual workload needed for annotation

o

o O O O

e Sources:
o [Byhlin et al 2005] Byhlin, S., Ermedahl, A., Gustafsson, J. and Lisper, B., 2005,
July. Applying static WCET analysis to automotive communication software. In
Real-Time Systems, 2005.(ECRTS 2005). Proceedings. 17th Euromicro
Conference on(pp. 249-258). IEEE.

Available Implementation: Absint (http://www.absint.com/ait/, commercial or evaluation
license), SWEET (http://www.mrtc.mdh.se/projects/wcet/sweet/index.html, open-source)

D.2.2. Expert estimation

Evaluation Method Name: Expert estimation
Measure: Development Time
Unit: Month

Applicability: Similar projects, expertise and experience, to any case

Parameters:
e Experts value estimate
Experts confidence, experience, skill
Experts weights
Expert’s background
Available checklist of information related to the project

Drivers: Expert’'s experience and knowledge, gut-feeling.
Formula: N/A

Description:

In expert estimation, the estimation work is conducted by a person recognized as an expert on
the task, and that a significant part of the estimation process is based on non-explicit and
non-recoverable reasoning process, i.e. “intuition” [Jargensen 2004]. Expert estimation is the

http://www.absint.com/ait/
http://www.mrtc.mdh.se/projects/wcet/sweet/index.html

Version 1 - Ready for review
Date: 2015-12-18

dominant strategy when estimating software development effort .

Several experts on the proposed software development techniques and the application domain
are consulted. They each estimate the project cost. These estimates are compared and
discussed. The estimation process iterates until an agreed estimate is reached [Sommerville
2010].

It has been demonstrated in [Jgrgensen 2004] that in some cases expert estimates are more
accurate than other types of estimation methods. This is the case when the methods used are
not properly calibrated, or for cases in which having specific knowledge is important (e.g.
knowing who works on which part of the project).

According to [Jargensen 2004], the following 12 principles can improve the accuracy of expert
estimations:
e evaluate estimation accuracy but avoid high evaluation pressure
e avoid conflicting estimation goals (e.g. “bid”, “planned”, “most likely” and “wishful
thinking” vs “realism)
ask the estimators to justify and criticize their estimates
avoid irrelevant and unreliable estimation information
use documented data from previous development tasks
find estimation experts with relevant domain background and good estimation records
estimate top-down and bottom-up independently of each other
use estimation checklists
combine estimates from different experts and estimation strategies
assess the uncertainty of the estimate
provide feedback on the estimation accuracy and development task relations
provide estimation training opportunities

e Model assumptions: availability of experts.

e Advantages
o Expert estimation is the dominant strategy when estimating software
development effort
o Simple to use
o Does not rely on project sizing (e.g. KLOC) to provide the estimate

e Disadvantages
o How the estimation has been performed remains typically undocumented

e Sources:
o [Jergensen 2004] Jargensen, M. A review of studies on expert estimation of
software development effort, Journal of Systems and Software, Volume 70,

Version 1 - Ready for review
Date: 2015-12-18

Issues 1-2, February 2004, Pages 37-60, ISSN 0164-1212,
http://dx.doi.org/10.1016/S0164-1212(02)00156-5.

Available Implementation: N/A

D.2.3. Measurement-based WCET analysis

Evaluation method Name: measurement-based worst-case execution time (WCET) analysis
Measure: WCET
Unit: milliseconds

Applicability: real-time systems, embedded, distributed

Parameters:sample block of C/C++ code, user event markers in code
Drivers: ----

Formula: WCET = p— B log(— log((1 —p,)"))
(1= Gumbel distribution location parameter, p = Gumbel distribution scale parameter , p,
exceedance probability, b= block size of the sample block)

Description:

This measurement-based approach produces both a WCET estimate, and a prediction of the
probability that a future execution time will exceed our estimate. The approach is
statistical-based and uses extreme value theory to build a model of the tail behavior of the
measured execution time value.

e Model assumptions
o Uses a Gumbel distribution
o Uses Chi-Squared test
o Execution time samples are independent and thus the blocking method chosen
will not affect the statistical properties of the blocks
No data dependent loops in tasks
Execution time distribution has a non-heavy tail for most tasks

e Advantages
o Ability to predict the exceedance probability

Version 1 - Ready for review
Date: 2015-12-18

o Exceedance probability more predictable and controllable than maximum
Observed execution time
Based on real execution traces
Constraints can be solved by existing tools

e Disadvantages
e Sources:
o [Hansen et al 2009] Hansen, Jeffery, Scott A. Hissam, and Gabriel A. Moreno.
"Statistical-based wcet estimation and validation." Proceedings of the 9th Intl.

Workshop on Worst-Case Execution Time (WCET) Analysis. 2009.

Available Implementation: Lambda,;, (http://www.sei.cmu.edu/predictability/tools/lambda/)

D.2.4. Probabilistic Hybrid WCET Analysis

Evaluation method Name: Hybrid worst-case execution time (WCET) analysis
Measure: WCET
Unit: milliseconds

Applicability: real-time systems, embedded, distributed

Parameters: basic code blocks, info about dependency among blocks
Drivers: ----
Formula: N/A

Description:

This approach combines (probabilistically) the worst case effects seen in individual blocks to
build the execution time model of the worst case path of the program. Execution times are
measured.

e Model assumptions
o When blocks are not independent, involved random variables are assumed to be
comonotonic
o Irreducible structures belong to one block

Version 1 - Ready for review
Date: 2015-12-18

o Timing information of the execution time of each basic block in each run is
available (calculated by the tool)

e Advantages
o Portability: minimal dependence on processor architecture
o Fully flexible timing program generation
o Genericity: source of data for tracing analysis can be provided in many different
ways
o Automatic loop analysis: maximum number of iterations of loops are deduced
Automatically from trace analysis

e Disadvantages
o Can be slower than static analysis
o Commercial tool

e Sources:
o [Bernat et al 2002] Bernat, Guillem, Anotione Colin, and Stefan M. Petters.

"WCET analysis of probabilistic hard real-time systems." Real-Time Systems
Symposium, 2002. RTSS 2002. 23rd IEEE. IEEE, 2002.

Available Implementation:Rapitime (https://www.rapitasystems.com/products/rapitime,

commercial)

https://www.rapitasystems.com/products/rapitime

Version 1 - Ready for review
Date: 2015-12-18

End-to-end response time (or delay) analysis

PropID: E2E_respTime

Data_format: number (unit:milliseconds)

Documentation:

End-to-end response time analysis is a particular variant of schedulability analysis which
calculates upper bounds on the response time (and delays) of task chains distributed over
several nodes or in the system.

Version 1 - Ready for review
Date: 2015-12-18

D.3. Evaluation methods for End-to-end response time (or delay)
analysis

D.3.1. End-to-end response time (or delay) analysis

Evaluation method Name: End-to-end response time (or delay) analysis
Measure: E2E_respTime
Unit: milliseconds

Applicability: networked AUTOSAR-compliant systems, real-time systems, embedded,
heterogeneous networks, e.g. CAN, LIN and FlexRay

Parameters: task period, task response time, task worst case response time, generated
messages, static transmission time, transmission delay, worst case message transmission time,
queueing protocol delay, ...

Drivers: ----

Formula:
fi— 1 g
J“j.; f Z‘IR.I.-. T (;}nl... fI‘rri,._ LA Jr-:r +1) + H.l.-..
i=1

where R, denotes the worst-case response time of the task generating message m,; , and Com,

the worst-case transmission time of m,;,

used to schedule m,, T ., represents the period of the receiver task

Q,,,w_ represents the queueing delay for the protocol

Description: A generalized end-to-end timing analysis to handle hierarchical heterogeneous
bus structures, by exploiting common underlying structures for different communication bus
interfaces. Analytical infrastructure can therefore be leveraged to perform end-to-end timing
analysis of networked AUTOSAR-compliant automotive systems.

e Model assumptions
o AUTOSAR-compliant system
o Communication based on a combination of LIN, CAN, FlexRay

Version 1 - Ready for review
Date: 2015-12-18

e Advantages
o Common structure between different communication bus interfaces
o Generic end-to-end response-time bound for task pipelines spanning different
communication networks
o Practical constraints imposed by AUTOSAR result in high schedulable utilization
values

e Disadvantages

e Sources:

o [Lakshmanan et al 2010] Lakshmanan, K., Bhatia, G. and Rajkumar, R., 2010,
March. Integrated end-to-end timing analysis of networked autosar-compliant
systems. InProceedings of the Conference on Design, Automation and Test in
Europe(pp. 331-334). European Design and Automation Association.

Available Implementation:SysWeaver
(http://users.ece.cmu.edu/~raj/publications.html#SysWeaver)

http://users.ece.cmu.edu/~raj/publications.html#SysWeaver

Version 1 - Ready for review
Date: 2015-12-18

Stochastic Analysis of CAN-Based Real-Time Automotive Systems

ProplD: Stoch_CAN
Data_format: number (unit: milliseconds)
Documentation:
e Stochastic analysis of CAN-based systems analyzes the timing performance of
distributed automotive architecture with priority-based scheduling.

Version 1 - Ready for review
Date: 2015-12-18

D.4. Evaluation methods for Stochastic Analysis of CAN-Based
Real-Time Automotive Systems

D.4.1. Stochastic Analysis of CAN-Based Real-Time Automotive Systems

Evaluation method Name: Stochastic analysis of CAN-based RT systems
Measure: Stoch_CAN
Unit: milliseconds

Applicability: real-time systems, embedded, based on CAN and OSEK

Parameters: task period, task initial phase, task execution time, task priority, job arrival time,
job release time, resource hyperperiod, average utilization, ...

Drivers: ----

Formula:
P(R:; =t=0Q;;) =P(Fi; =1),¥t

where RiJ = response time, QiJ = queuing time, Fi]. = finish time , at any time t

Description:
Stochastic analysis of the timing performance of distributed automotive architecture with
priority-based scheduling, i.e., OSEK compliant operating systems and the CAN bus protocol.

e Model assumptions
o OSEK-compliant OS.
Communication on CAN.
Communication based on the periodic activation model.
Priority-based scheduling.
Communication based on the preservation of the latest written value and the
overwriting of old ones (shared variable buffer).
Axecution times of all the jobs of are independent and identically distributed.
No clock synchronization among the nodes connected to the CAN bus.
All nodes boot up at arbitrary times.

o O O O

e Advantages
o Adds probability to analysis of the latency in the end-to-end propagation of
information among periodically activated tasks and messages.

Version 1 - Ready for review
Date: 2015-12-18

o Proofs that technique provides a good approximation of the latency distribution.

e Disadvantages
o Constrained due to the assumptions (described above).

e Sources:
o [Zeng 2009] Zeng, H., Di Natale, M., Giusto, P. and Sangiovanni-Vincentelli, A.,
2009. Stochastic analysis of CAN-based real-time automotive systems. Industrial
Informatics, IEEE Transactions on, 5(4), pp.388-401.

Available Implementation: ad-hoc (not available)

