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Abstract

A static WCET analysis should ideally be able to handle most kinds of program constructs.
Unstructured loops are usually avoided nowadays in code written by humans, but they may
be generated by tools, e.g. state machine code generators. They may also be introduced
by an optimizing compiler. Therefore, the WCET analysis should be prepared to handle
unstructured loops.

Most of todays flow analysis requires code without unstructured loops. This paper pro-
poses that unstructured loops should be transformed into structured loops as a preprocessing
step to the actual flow analysis. The advantages with elimination of unstructured loops are:

e The various steps of the analysis does not need to handle unstructured code separately.
This includes e.g.

e Syntactical analysis for finding loops that are possible to reduce
e Finding merge points for flow information

e A single upper bound of a loop

e Tree-based calculation can be used without modifications, since it assumes all loops to
be structured

1 Introduction

The task of estimating WCET using the static approach can be divided into three phases:

e Flow analysis

o Low level analysis

e Calculation
We are developing a tool that implements these phases in a modular manner [GLB02,
Erm03]. The goal is to estimate the WCET for all program constructs (provided that the
program terminates) based on an automatic analysis, i.e. without the need for manual anno-
tations. The purpose of the flow analysis is to detect infeasible paths and to calculate upper
loop bounds. There are different approaches with different properties to such an analysis, see
[Erm03]. We have chosen to use abstract interpretation on an intermediate code level. One
advantage of working with intermediate code is that a certain amount of optimizations may
have been done before the flow analysis take place.

The abstract interpretation calculates safe values of variables with respect to loop bounds.
Abstract interpretation may require a lot of computational power, the amount depending on
the analyzed program as well as its input data. In order to simplify the calculations we can
do a number of approximations, e.g. merging of states and simplified calculations of loop
bounds. If approximations are made this may lead to overestimations (a less tight WCET)
due to the requirement of being safe.

Two of the problems that a WCET tool that is useful in practice has to face are: the
computational requirements of the analysis and the accuracy of the result. The occurrence of
unstructured loops in the analysis may enlarge these problems.

1.1 Reducing Computational Requirements

In order to reduce computational requirements, we use the following methods [GBS03]: rep-
resenting abstract values by a single interval, merging states, collapsing loops and reducing



the information needed for iteration count of loops.

The abstract values are represented by a single interval. An abstract value is the set of
all possible distinct values that a variable can hold at a certain point of the execution. In
order to decrease the amount of data to process we store these values as a single interval in
the current implementation of our tool. In case a value of a variable controls the number of
iterations of a loop this approximation does not need to decrease the tightness of the WCET
value.

Merging of states. Suppose there are two distinct sub paths in the flow graph, p; and
p2, that have at least the start and end nodes in common. For each of these paths, the
abstract interpreter will calculate different states, i.e. different abstract values of the involved
variables. To reduce the amount of data to be processed, these states can be merged to a
single state in one of the common nodes of p; and p2, meaning that for each variable in any
of the states the abstract value in the new state is calculated as the interval containing all
values. We call such common nodes merge points. In general a merge may lead to a larger
overestimation but on the other hand it can speed up the analysis time considerably. For
example, the following positioning of merge points can be considered:

e at function end

e at loop termination
e at each loop iteration
e after if statements

The alternative is selectable in our tool. A suitable merge point that is expected to have a
big effect is once in each iteration of a loop in the flow graph. Since the loop header node is
the only node in a loop that is guaranteed to be taken in every iteration, it can be used as a
merge point.

Collapsing loops. By use of syntactical analysis we can identify a certain set of loop
constructs that can be transformed to a closed form expression. Depending on the analyzed
program, this may have a big influence on the need of computation.

Iteration count of loops. The iteration counts of inner loops may be either calculated
separately from the outer loop or as a sum of all iterations of the outer loop. Again, the
reduction of data needed to be handled in calculation when choosing the latter is payed for as
a possibly less tight final result. However, for simple loops there need not be any reduction
of the tightness.

1.2 Scope Graph

We create a scope graph to provide our tool with a structure of the program on a higher
level than the flow graph [GBS03]. The scope graph is a directed acyclic graph of scopes.
Each scope is a container for a certain possibly looping program construct like a loop or a
function. The scope graph is therefore based on a call graph merged with the flow graphs
[EE00]. The scope graph can support both the flow analysis and the low level analysis with
structure information of the program. A scope contains a non-empty set of nodes that refers
to basic blocks in the flow graph.

Figure 1 depicts a loop with the single node 5, constituting a scope. The function itself
will constitute a scope, which subordinates the loop scope. Scopes forms a tree hierarchy.

The flow information like iteration counts of loops and edges is expressed using so called
flow facts, see [EE00]. Each loop needs to be annotated with a flow fact giving the upper
bound of the iteration count. In addition other flow facts can be created to obtain a more
tight final WCET. The flow facts can also be bound to certain conditions.

An important feature of the scope graph is that the nodes in the scopes are not the actual
nodes of the flow graph, but rather pointers to these (in figure 3 these nodes are annotated
with the numbers of the nodes in the control flow graph that they refer to). This gives a
flexibility to express the flow information in a context sensitive manner, since a single flow
graph node can be pointed to from different scope nodes. This feature will be used in the
following.

2 The Problem of Unstructured Loops

As explained in the introduction we have to manage unstructured loops. An unstructured loop
is a loop without a single header, i.e. a node (basic block) in the flow graph that dominates
all nodes in the loop body [ASUS86].

To analyze unstructured loops one of the following may be a solution:
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Figure 1: The flow graph and the corresponding scope graph for a function containing a loop.

e [GBSO03] describes a method based on attaching one iteration couter to each loop header.
This may lead to overestimation.

o Attaching one iteration counter to each basic block. This will give a lot of flow informa-
tion.

Both solutions have clear disadvantages. Therefore, we have developed a method to transform
unstructured loops into structured.

int irr(int x)

{
if (x < 0)
goto L1;
do {
X++;
L1:
x+=2;
} while (x<10);
return x;
}

Figure 2: A simple C-function containing one unstructured loop.

3 Eliminating Unstructured Loops

Unstructured loops in a control flow graph can be seen as loops with entry edges to more than
one node in the loop. Actually, an unstructured loop can be seen as different loops sharing
(parts of) the same code. In some cases the unstructured loop may actually have been created
from different structured loops, merged together by a code size optimizing compiler. Therefore
a straightforward way to eliminate unstructured loops is to reverse that step: for each entry
of an unstructured loop we create a scope that contains only that entry edge ignoring the
other, hence resulting in a scope that has a single header, see Figure 3. This can easily be
done because of the scope graph construct proposed by [EE00]. Since each scope node is a
pointer to a basic block rather than the basic block itself, it is possible to have duplicate
scopes refering to the same piece of code.
Elimination of unstructured loops in this way can be done in a straightforward manner by
use of well-known techniques. The advantages with elimination of unstructured loops are:
e Merge points in abstract interpretation can be found without extra effort in the analysis.
Since the unstructured loops will be transformed to structured loops there is no difference
in the handling.
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Figure 3: Scope graphs for the unstructured program in Figure 2. The left graph maps directly
to the unstructured control flow graph. On the the right hand side there is a scope graph for the
same program where the unstructured loop is replaced by two structured.

e The upper bound of originally unstructured loops will not be less tight, which they
would have been if the loop had been analyzed in unstructured form.
e It makes tree-based calculation possible to use. The tree-based calculation is not able
to handle unstructured loops.
e The various steps of the analysis will be simpler if they can assume that all loops are
structured.
There exists several algorithms that can be used to identify unstructured loops [Ram02]. In
our implementation we use DJ-graphs, but another can be used as well. One advantage of
DJ-graphs is that they are relatively simple to implement. One disadvantage is that the elim-
ination of multiple entry edges of an unstructured loop may expose nested loops, structured
or unstructured, that was not discovered by the algorithm.

4 Conclusions

This paper suggests transforming unstructured loops to structured in the flow analysis part
of a WCET calculation tool. The method is based on known technologies. We have imple-
mented this as a preprocessing step in our tool for WCET calculation and verified that the
abstract interpretation is capable of analyzing originally unstructured code, without any spe-
cial modification except the preprocessing step. We have also verified that the final WCET
calculation, including path-based calculation, works as expected.

5 Future Work

In case the elimination of unstructured loops exposes loops that was not found by the DJ-
algorithm, our calculations will fail. To solve all cases of unstructured loops we need to refine
the implementation of the loop analysis in our tool. One straightforward method would be
to apply the DJ-algorithm recursively, once for each copy of an unstructured loop. Another
solution can be to implement the node splitting method, see [ASU86] and [UMO02].
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