Solving Sudoku with MATLAB

Raluca Marinescu Andrea Garcia Ivan Castro
Eduard Paul Enoiu
Malardalen University, Vasteras, Sweden
{rmu09001, aga09001, ico09002, eeu09001}@student.mdh.se

March 25, 2011

Abstract

Sudoku puzzles appear in magazines, newspapers, web pages and
even books on a daily basis. In fact, millions of people around the
world know how to play Sudoku. However, the science behind this
game is much more complex than it looks. That is why many re-
searchers have put a notable amount of effort to generate efficient
algorithms to solve these puzzles. Some researchers might even sug-
gest that an algorithm to solve Sudoku games without trying a large
amount of permutations does not exist.

This paper describes the development and implementation of a Su-
doku solver using MATLAB. Furthermore, this document includes
detailed directions about the creation of a graphical user interface and
the implementation of a constraint-propagation algorithm to complete
Sudoku puzzles interactively.

Contents

A

B

C

Introduction
Related Work

Implementation

3.1 Graphical User Interface
3.1.1 Sudoku GUI
3.1.2 Game Database

3.2 An Algorithm for Solving Sudoku Puzzles

Experimental Results

4.1 User Interface Testing
4.2 Algorithm Testing

Conclusions
GUI Source Code
Puzzle Verification Function Source Code

Puzzle Solver Alghorithm Source Code

11
11
12

13

14

20

22

1 Introduction

Games and puzzles have been a platform for application of mathematics, ar-
tificial intelligence and other fields techniques. The past years have brought
into attention a very popular puzzle called Sudoku. The typical Sudoku puz-
zle grid is a 9-by-9 cells into nine 3-by-3 squares. The rules of the game are:
Every row, column, and square (of 3-by-3) must be filled with each of the
numbers 1 till 9 and that number cannot appear more than once in any of
the row, column, or square. For more general information on Sudoku the
reader can access this website!.

Sudoku has led other researchers to some advances in algorithm design and
implementation. This work was largely motivated by the interesting mathe-
matical concepts behind it.

This paper describes the development of a Sudoku solver using MATLAB.
The remainder of this paper will cover some research work concerning dif-
ferent solutions for solving Sudoku puzzles, our algorithm solution and GUI
implementation will be covered in Section 3. Before concluding the paper in
Section 5, some experimental results will be shown in Section 4.

2 Related Work

Sudoku puzzles can be viewed as an interesting problem for different fields
of mathematics, computer science, artificial intelligence, physics, and others.
There are many researchers from these fields who have proposed algorithms
for solving Sudoku puzzles.

In [5] the authors are proposing a search based solution by using some heuris-
tic factors in a modified steepest hill ascent. Some researchers, as found in [6],
are suggesting the design of a genetic algorithm by representing the puzzle
as a block of chromosomes, more precise as an array of 81 integers. Any
crossover appears between the 3x3 grids and any mutations occur only inside
the 3x3 grids. From the experiments done in [6] the algorithm based on ge-
netic algorithms performs well though is does not solve all cases. Geem in [3]
is proposing a Sudoku solver model based on harmony search that mimics
the characteristics of a musician. As mentioned in [4] the performance of the
algorithm is not that good and it solves puzzles in less than 40 seconds and
300 iterations. Santos-Garcia and Palomino are suggesting in [9] a method

thttp://goo.gl/ITf0r

for solving Sudoku puzzles using simple logic with rewriting rules to mimic
human intelligence. This method works but, as the author admits, it is not
performing well when compared with other techniques. Others like in [10] are
suggesting neural networks by modelling an energy driven quantum (Q’tron)
neural network to solve the Sudoku puzzles.

In [1], Barlett and Langville are proposing a solution based on binary in-
teger linear programming (BILP). To formulate in a simple way the method,
we can say that it uses binary variables to pick a digit for any cell in a Sudoku
puzzle. The model in [1] is implemented also in MATLAB.

In [8], Russell Norvig is suggesting a solution based on backtracking. The
algorithm is a combination of constraint propagation and direct search by
assigning a value to a square on the grid and then propagating these con-
straints to other squares.

We have decided to solve the puzzles using a constraint-propagation al-
gorithm as in [8] because of the algorithm performance and simplicity, as
demonstrated by Norvig in his paper. We will present in the next section
our own version of the algorithm implemented in Matlab using constraint
propagation.

3 Implementation

3.1 Graphical User Interface

A graphical user interface (GUI) is a collection of visual components that
allows the user to interact with a computer program. The usage of buttons
or similar components, facilitate the interaction with an application without
knowing the underlying program. In contrast, in a command-line based ap-
plication the user needs to type instructions to perform a task [7]

The implementation of the GUI for this project was done using MATLAB’s
Graphical User Interface Environment (GUIDE). This environment allows
the creation of different layouts by means of drag and drop components.
Each component has one or more callback functions whose purpose is to exe-
cute a set of instructions based on the user’s input. An example of this type
of functions can be a key press or a mouse click.

Additionally, each component comprises a list of properties that can be edited

in order to modify its appearance. For example, one can edit a component’s
color, size and position on the layout. In fact, one of the main purposes of
the callback functions is to update the component’s properties.

3.1.1 Sudoku GUI

There are various components that can be used, such as textboxes, push but-
tons and menus among others. However, for the development of this project
only a few different components were used in order to create the GUI of the
Sudoku solver.

-
u iSudoku = x|

iSudoku

EEE [P
EEE [P
EEE [[P
RN
RN
RN
CETEEE [
CETEEE [
FETEEE T

Randuml Verify | Solve | Clear |

Figure 1: Sudoku GUI at initial state

The Sudoku board is represented by 81 textboxes, where each 3 by 3 sub
square uses a different background color in order to be distinguished from
each other. Moreover, four push buttons are used to achieve the program’s
functionality. These buttons are called random, solve, verify and clear. Fig-
ure 1 illustrates the Sudoku’s GUI at its initial state.

The random button creates and displays a random game on the board. This
is done by selecting a game from a database of several games. This button is
the only one enabled when the application is started. Once a game has been
displayed, the remaining buttons get enabled and only the empty cells can

bt

be edited. This means, that the hint cells cannot be modified by the user.
An example of a random game is depicted at Figure 2, where its hint cells
are displayed in black.

[B isudoku N [E=SEy—x=|

Figure 2: A random game and its hint cells

The solve button solves the current game and displays the solution on the
board. This is achieved in three main steps:

1. Read the current game from the board and generate a numerical matrix
of 81 elements, where the empty cells are substituted by zeros. A
validation of the input data is performed in order to avoid sending
invalid values to the algorithm. Only integer values from one to nine
can be inserted in the cells.

2. Execute the Sudoku solver function, iSudokuALG, using the numerical
matrix as an input.

3. Retrieve the solution provided by the Sudoku solver function and pop-
ulate the board. The hint cells remain in black while the solution cells
are highlighted in red. Figure 3 depicts a solution of a game.

[isudok ==l 8

iSudoku

[Rsi=] e [7 [« [e o s
[el[silel 2 [« [o [e 7[5
OO A ENENENENEN
[7[1[s]sfofef2]e][s
[e 2o [s7]s]=]e
[sfefe[s[e[2]c]1]7
[5 [« [+ [oif=i[s][7 [s e
[o e [[misiiel « [2 [+
[2[7 o [aifeifa] = s [o

Randoml Verify | Solve | Clear I

Figure 3: A solved game

The verify button examines the correctness of either a partial game or a com-
plete game. If a partial or a complete game is detected to be incorrect, the
program will display a pop-up window with an error message. Otherwise,
a different pop-up window will display a message stating that the game is
correct and in case of a partial game, the message will also state the number
of remaining empty cells. An example of these type of messages is illustrated
at Figure 4(a) and Figure 4(b)

Bl Correct (=2 % | - Error =[u(E)

Partial Solution is Correct!, Empty Cells: 41 e Partial Solution is incorrect

(a) Correct Game (b) Incorrect Game

Figure 4: GUI Message Boxes

Finally, the clear button implements the simplest functionality as it only
clears the board and disables all the buttons except the random one, return-
ing the program to its initial state.

3.1.2 Game Database

In order to have different games to be solved by the program an Excel
database was created. This database includes games of different levels of
difficulty, which means that the number of hints varies from game to game.
All the games are contained within an Excel worksheet that is read when the
GUI is initialized. An extract of the game database can be seen at Figure 5.

11 - |

AlB|c[D]E|F[G[H]I
34
35| 54
36| 6 | 9 2 1]a
37 30215
38 a 93|25
39 2 8|7 |1 5 |3
40 5 2 6
a1 3 6 5 1
42 1 9|7 6|8
43 932 1
a8 | 7 51609 2
45

Figure 5: Extract of the Excel game database

The reading process is performed by means of MATLAB’s built-in function
zlsread. This function receives as input the name of the Excel file and the
worksheet to be read. The output of this function is stored into a cell matrix
that later on is used by the random button to select a game. This function
is represented by the following:

% Read predefined games from the input spreadsheet
[num, cellMat]= xlsread(’sudoku.xls’, ’Games’);

3.2 An Algorithm for Solving Sudoku Puzzles

The algorithm was implemented in MATLAB using direct puzzle search and
constraint propagation. The constraint propagation was implemented in such
a manner that:

e When a value is assigned to a square that same value cannot be used
as a possible assignment in all related cells;

e [f a cell has only one single value for possible assignment, that value is
immediately assigned.

Our MATLAB program has only 4 steps:
1. Find all the possible values for all empty cells;
2. If there is a single possible value, we assign that value to the cell;
3. Propagate constraints to other cells;

4. If all the cells have more than one possible value we fill in a tentative
value for that cell.

This algorithm, though it is simplistic, it should perform fairly well because
of the algorithm’s nature, as described in [8]. The process is performed by
1SudokuALG function. This function receives as an input parameter the cell
matrix A and gives as output a solved puzzle in the form of a matrix. This
is represented by

% Read predefined games and outputs the solved puzzle
function [A]= iSudokuALG(A)

Also we have implemented a function in order to perform a correctness verifi-
cation function. This function has as input the cell matrix A which contains
the current puzzle. The output of the function is stored in variable val
which can have two values: 0 if the puzzle is correct and 1 otherwise. We
represented the verification function as

% Puzzle verification function
function [vall=verific(A)

To see how our program works, we will use a simpler 4-by-4 grid with 2-by-2
blocks. As mentioned in [2] these kinds of puzzles are called Shidoku (”Shi”
means "four” in Japanese). Figure 6(a) shows a Shidoku puzzle. Figure 6(b)
through Figure 6(f) shows how we get to a solution by using our algorithm.

1 I@ 3|2 4|3 4| 1
2 1 3|1 4 2 3 4
3 1 2 3 1 4|2 4
4 4 1 211 3|2 3
(a) A Shidoku puzzle (b) The possible candidates for all
squares

[8]

O« | [:]:]0OT:
rslie|l 2|4 @O 2 |54

Q|3 |:4|24 1| 3 |[@)|z2+

4 |1 2|138|23s 1 | @)|23]23
(c) Inserting value 2 and constraint (d) Constraint propagation
propagation

2 B 3 2 4 3 1

SEEE

(e) Insert the remaining values to (f) The puzzle completed
complete the puzzle

Figure 6: The algorithm for solving a simple Shidoku puzzle

In Figure 6(b), the possible assignment, are represented as smaller digits.

10

Also for example in Figure 6(b) line 1, row 1, we show that we have two
possible values to choose from. If a cell contains only one candidate it is
filled immediately.

4 Experimental Results

In this section we are presenting some experimental results using different in-
put puzzles and we will describe how our MATLAB implementation behaves
to various situations.

4.1 User Interface Testing

After developing the user interface, the functionality associated to each GUI
component was tested. More specifically, it was verified the absence of run-
time errors shown in MATLAB’s command window when the user executes
an action. For example, when launching the application or when clicking any
of the available buttons, no errors are displayed. Additionally, the program
flow was tested to ensure that multiple Sudoku games can be solved without
closing and opening the application when a game is finished.

In order to verify the correct operation of the random and solve buttons,
it was checked that all of the Sudoku games in the database could be ran-
domly selected and solved correctly. Similarly, the verify button was tested
by manually entering incorrect numbers and characters in the Sudoku board.
The purpose of this test was to verify that the pop-up error messages are dis-
played when the proposed solution is incorrect. Finally, the clear button was
verified by checking that all of the cells in the board are cleared when the
button is pushed.

The only issue found during the verification phase for the GUI was related to
MATLAB'’s xlsread function when using Microsoft Excel 2010. Apparently
this is a well documented problem 2 regarding how the latest version of Excel
handles COM objects and activeX commands which are used by this func-
tion . Nevertheless, the xlsread function works correctly when using previous
versions of Excel, like version 2007.

http://www.mathworks.com/matlabcentral /newsreader/view_thread /28771 7#766161

11

SQempty | Si | te (seconds)
37 4 0.064
42 4 0.096
36 2 0.174
41 9 0.622
37 3 0.156
36 3 0.188
41 5 0.276
42 4 0.422
41 4 0.294
37 3 0.344

Table 1: Experimental results for different Sudoku puzzles

4.2 Algorithm Testing

All the algorithm source code was compiled and build using Matlab R2007a
and is available online®. The test system was a HP G7035EA laptop with
1.86 GHz Celeron Processor, 1 GB RAM and Windows XP as operating sys-
tem.

In order to verify and test our algorithm we have defined some test pa-
rameters. This parameters are t. (algorithm’s execution time in seconds),
SQempty (number of empty cells in a puzzle) and s; (steps or iterations done
by the algorithm, meaning that one iteration starts when the solver begins
the puzzle from the first cell and finishes when the last cell is computed).
Table 1 shows the results of our experiments for different sgepm,t, in relation
to t. and s;. We can say that t. is fluctuating in the interval [0.06, 0.62] and
5Qempty for every puzzle is not a predictable measure of performance related
to t.. Also our algorithm is solving Sudoku puzzles with 40 empty cells in
average and s; is varying between 2 and 9. After analysing all our results we
can say that for relatively easy Sudoku puzzles our algorithm is performing
quite well.

3http://goo.gl/96pCS

12

5 Conclusions

Implementing a Sudoku solver in MATLAB allowed us to use many of the
tools and built-in functions presented during the Numerical Methods course.
For example, the utilization of loops, if-else statements and the manipulation
of matrices and vectors. Nonetheless, we also learnt new functions by our-
selves in order to enhance the application. For instance, we learnt to design
GUIs, use pop-up windows to display messages and also importing data from
Excel.

Nowadays, there are extensive studies regarding the mathematics of Sudoku
as well as many different algorithms to solve the puzzles. Some algorithms
are designed to solve the puzzles as quick as possible while some others are
designed to solve them as efficiently in terms of computational power and
memory. However, finding a suitable algorithm to solve any particular Su-
doku game proved to be difficult.

The combination of a simple, yet effective algorithm with a graphical user
interface allowed us to generate games, solve them and verify the given solu-
tions in a simple and quick way. Additionally, the good communication and
coordination among the team members made possible the completion of the
project before the established deadline.

13

A GUI Source Code

% File: iSudokuGUI.m

% Description: This file implements the graphical user interface for the

% iSudoku solver. The user interface consists of 81 text boxes to represent
% the 9 by 9 sudoku board, 1 label fot the GUI title (iSudoku) and 4

% buttons: Random, Verify, Solve and Clear.

% Author(s): Andrea Garcia, Ivan Castro

% Mail(s): aga09001@student.mdh.se, ico09002@student.mdh.se

% Group number: A-3

function varargout = iSudokuGUI(varargin)
% Last Modified by GUIDE v2.5 23-Feb-2011 23:01:41

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct(’gui_Name’, mfilename,
’gui_Singleton’, gui_Singleton,
’gui_OpeningFcn’, @iSudokuGUI_OpeningFcn,
’gui_OutputFcn’, @iSudokuGUI_OutputFcn,
’gui_LayoutFen’, [] ,
’gui_Callback’, ;

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{l:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% —--- Executes just before iSudokuGUI is made visible.

function iSudokuGUI_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to iSudokuGUI (see VARARGIN)

% Choose default command line output for iSudokuGUI
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes iSudokuGUI wait for user response (see UIRESUME)

14

% Read predefined games from the input spreadsheet
[num, cellMat]= xlsread(’sudoku.xls’, ’Games’);
set (handles.RandomBtn, ’UserData’, cellMat);

% —--- Outputs from this function are returned to the command line.
function varargout = iSudokuGUI_QOutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% __
% Executes on button press in RandomBtn.
% This button is in charge of generating a random dudoku game and display

% it in the user interface. This button also enables the "verify", "solve"
% and "clear" button.

0

R R ————

function RandomBtn_Callback(hObject, eventdata, handles)

% hObject handle to RandomBtn (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get a sudoku game using a random number
cellMat = get(handles.RandomBtn, ’UserData’);
randNum = ceil(20.*rand(1));

srtTarg = [’S’ num2str(randNum)];

[cRowSize cColSize] = size(cellMat);

% Find the random game in from the database
rowOffset = 1;
for cRowInd = 1: cRowSize
if (strcmp(srtTarg, cellMat(cRowInd,1)) == 1)
rowOffset = cRowInd;
break;
end
end

%Fill-up the board using the game matrix
for rowInd = 1:9
for colInd = 1:9

cName = [’c’ num2str(rowInd) num2str(colInd)];

cValue = strtrim(cellMat{rowOffset+rowInd, colInd});

% Set a number in the appropriate position in the board

if strcmp(cValue, ’’)

expr = [’set(handles.’ cName ’, ’’String’’, ’’’ cValue ’’’,

15

>’FontWeight’’, ’’normal’’, ’’Enable’’, ’’on’’,
> ’ForegroundColor’’, [’ num2str([0 0 0]) ’1)°];

else
expr = [’set(handles.’ cName ’, ’’String’’, ’’’ cValue ’’’,
’’FontWeight’’, ’’bold’’, ’’Enable’’, ’’inactive’’,...
’»?ForegroundColor’’, [’ num2str([0 0 0]) ’1)’1;
end
eval (expr) ;
end

end

% Enable the solve, verify and clear buttons
set(handles.SolveBtn, ’Enable’, ’on’);
set (handles.ClearBtn, ’Enable’, ’on’);
set (handles.verifyBtn, ’Enable’, ’on’);

e
% Executes on button press in SolveBtn.

% This button is in charge of solving the sudoku game displayed on the user
% interface using the iSudokuAlg function.

e
function SolveBtn_Callback(hObject, eventdata, handles)

% hObject handle to SolveBtn (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% First Read the board:
[validMatrix toSolveMatrix hintMatrix] = readBoard(handles);

% At this point "toSolveMatrix" holds the Sudoku game that needs to be
% solved automatically.

if (validMatrix == 1) % % The board has only valid characters (1-9)
% Verify that the solution / partial solution is correct
incorrectGame = verific(toSolveMatrix);
if (incorrectGame == 0)

% Solve the Game using the iSudokuAlg function:
solvedMatrix = iSudokuALG(toSolveMatrix);
% Populate the GUI with the solution obtained from
% the solving algorithm:
for rowInd = 1:9
for collnd = 1:9
cName = [’c’ num2str(rowInd) num2str(collnd)];
cValue = num2str(solvedMatrix(rowInd, collnd));
if (hintMatrix(rowInd,colInd) == 1)
% This position corresponds to a hint
expr = [’set(handles.’ cName ’, ’’String’’,...
’2 cValue)7)))];

16

else
% This position is part of the solution

expr = [’set(handles.’ cName ’, ’’String’’, ’’’ ...
cValue ’’’, ’’ForegroundColor’’, [’ num2str([1 O 0])...
>], ’’Enable’’, ’’inactive’’)’];
end
eval (expr) ;
end
end
else
% The current game is incorrect, display an error message.
msg = ’Invalid Game!’;
h = msgbox(msg, ’Error’,’error’, ’replace’);
end
end
% __

% Executes on button press in ClearBtn.
% This button just clears the board and resets the solve button and the
% verify button to their default state, disabled.

function ClearBtn_Callback(hObject, eventdata, handles)

% hObject handle to ClearBtn (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%Clear the board
for rowInd = 1:9
for colInd = 1:9

cName = [’c’ num2str(rowInd) num2str(colInd)];
cValue = ’’;
expr = [’set(handles.’ cName ’, ’’String’’, ’’’ cValue
722 2FontWeight’’, ’’normal’’, ’’Enable’’, ’’on’’)’];
eval (expr) ;

end

end

% Disable the Solve and Verify buttons:
set(handles.SolveBtn, ’Enable’, ’off’);
set (handles.verifyBtn, ’Enable’, ’off’);

S,
% Executes on button press in verifyBtn.

% This button verifies that the solution (partial or complete) displayed on
% the board is correct. If it is correct, a pop-up window will display that
% the solution is correct. Otherwise it will display an error message.
S
function verifyBtn_Callback(hObject, eventdata, handles)

% hObject handle to verifyBtn (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

17

% handles structure with handles and user data (see GUIDATA)

% First Read the board:
[validMatrix toSolveMatrix hintMatrix] = readBoard(handles);
numberOfHints = sum(sum(hintMatrix));

if (validMatrix == 1)
% Verify that the solution / partial solution is correct

incorrectGame = verific(toSolveMatrix);

if (all(all(hintMatrix)) == 1) % Complete Game

if (incorrectGame == 1)
msg = ’Solution is incorrect’;
h = msgbox(msg, ’Error’,’error’, ’replace’);
else
msg = ’Solution is Correct!, Game Completed’;
h = msgbox(msg,’Correct’,’help’, ’replace’);
end
else % Partial Game
if (incorrectGame == 1)
msg = ’Partial Solution is incorrect’;
h = msgbox(msg, ’Error’,’error’, ’replace’);
else

toGo= 81 - numberOfHints;

msg = [’Partial Solution is Correct!, Empty Cells: ...
num2str (toGo)];

h = msgbox(msg,’Correct’,’help’, ’replace’);

% This function reads the board and generates a numeric matrix with the
% game and a hint matrix. This function is used by both the solve and the
% verify buttons

function [valid toSolveMatrix hintMatrix] = readBoard(handles)

valid = 1;

toSolveMatrix = zeros(9,9);

hintMatrix = zeros(9,9); % This matrix holds the position of the hints
% or given numbers before solving the game

for rowInd = 1:9

for colInd 1:9
cName = [’c’ num2str(rowInd) num2str(colInd)];
expr = [’cValue = get(handles.’ cName ’, ’’String’’);’];
eval (expr) ;

%Validate data correctness prior solving the game

18

%0nly values from 1-9 should be entered, an empty cell is valid
if (isempty(cValue) == 0)

if (isempty(str2num(cValue)) == 1)
msg = [’Non numeric value found at row: ’ num2str(rowInd)...
>, column: ’> num2str(colInd)];
h = msgbox(msg, ’Error’,’error’, ’replace’);
valid = O;
break;

elseif (length(cValue) "= 1 |[|...
str2num(cValue) < 1 ||...
str2num(cValue) > 9)

msg = [’Invalid input found at row: ’ num2str(rowInd)
>, column: ’ num2str(colInd)];

h = msgbox(msg, ’Error’,’error’, ’replace’);

valid = 0;

break;

end

%Cell data is valid, add it to the matrix
toSolveMatrix(rowInd,colInd) = str2num(cValue);
hintMatrix(rowInd,colInd) = 1;

else
%Change the empty cell to zero and add it to the matrix
toSolveMatrix(rowInd,colInd) = O;

end

end
if (valid == 0)
break;

end
end

19

B Puzzle Verification Function Source Code

% File: verific.m

% Description: This file implements the corectness verification
% function. It has as input the cell matrix A which contains

% the current puzzle. The output of the function is stored in

% variable val which can have two values: O if the puzzle is

% correct and 1 otherwise.

% Author(s): Raluca Marinescu, Eduard Enoiu

% Mail(s): rmu09001@student.mdh.se, eeu09001@student.mdh.se

% Group number: A-3

function [vall=verific(A)

flag=0;
for i=1:9
for nr=1:9
count=0;
for j=1:9
if A(i,j)==nr count=count+1;
end
end
if count>1 flag=1;
end
end
end
% if flag==
% fprintf (’Same number on a row.\n’)
% flag=0;
% end
for i=1:9
for nr=1:9
count=0;
for j=1:9
if A(j,i)==nr count=count+1;
end
end
if count>1 flag=1;
end
end
end
% if flag==
% fprintf (’Same number on a column.\n’)
% flag=0;
% end

20

for n=1:3
for nr=1:9
count=0;
for i=((n-1)*3+1): (n*3)
for j=((n-1)*3+1):(n*3)
if A(i,j)==nr count=count+1;

end
end
end
if count>1 flag=1;
end
end

end
if flag==0 val=0;

else val=1;
end

21

C Puzzle Solver Alghorithm Source Code

% File: iSudokuALG.m

% Description: This file impements the algorithm for ISudoku Matlab
% app. The process is performed by SudokuALG function. This

% function receives as an input parameter the cell

% matrix A and gives as output a solved puzzle in the form of a

% matrix.

% Author(s): Raluca Marinescu, Eduard Enoiu

% Mail(s): rmu09001@student.mdh.se, eeu09001@student.mdh.se

% Group number: A-3

function [A]l= iSudokuALG(A)

clc;

tic;

[flagl]=verific(A);

if flagl==0 fprintf(’The Sudoku Puzzle is correct.\n’)

err_flag=0;
count_zeros=81;

for i=1:9
for j=1:9
B(i,j)=0;
end
end

step=1;

while ((err_flag==0)&&(count_zeros>0))
fprintf (’\n Step %d\n’, step);
step=step+1;

C=B;
%I look for the postions where there is a single possible value
%and I put that value in the matrix
for i=1:9
for j=1:9
if (A(i,j)+B(i,j))==0
possible=[];

for k=1:9
B(i,j)=k;
flag2=verific(A+B);
if flag2==0

possible=[possible k];

end

end

B(i,j)=0;

if length(possible)==
B(i,j)=possible;

22

fprintf(’Value %d in A(%d,%d)--singleton.\n’, B(i,j), i, j);
end
end
end
end

%If we don’t find one position with a single possible value
%I put a number (correct) in an empty cell
if C==B
count2=0;
x=1;
y=1;
while (count2==0)
if (A(x,y)+B(x,y))==0
for k=1:9
B(x,y)=k;
flag3=verific(A+B);
if flag3==0
count2=1;
fprintf (’Value %d in A(%d,%d).\n’, B(x,y), x, y);
break
else
B(x,y)=0;
end
end
end

if (x<9) x=x+1;

elseif (y<9)x=1; y=y+1;
else break

end

end
end

%if the matrix is the same then I have an error
if (B==C) err_flag=1;
end

%I count the empty cells to know when the puzzle is solved
count_zeros=0;
for i=1:9
for j=1:9
if ((A(i,j)+B(i,j))==0) count_zeros=count_zeros+l;
end
end
end

end

23

%We save the result; check if it is correct
A=A+B
[flag3]=verific(A);
if flag3==0 fprintf (’The Sudoku Puzzle is correct.\n’)
else fprintf(’The Sudoku Puzzle is incorrect.\n’)
end
else fprintf(’The Sudoku Puzzle is incorrect.\n’)
end
time=toc;
fprintf (’\n\n Execution Time: %f \n’, time);

24

References

[1]

g x

[10]

A.C. Bartlett and A.N. Langville. An integer programming model for the Sudoku
problem. Preprint, available at hitp://www. cofe. edu/” langvillea/Sudoku/sudoku?.
pdf, 2006.

JF Crook. A pencil-and-paper algorithm for solving Sudoku puzzles. Notices of the
AMS, 56(4):460-468, 2009.

Z. Geem. Harmony search applications in industry. Soft Computing Applications in
Industry, pages 117-134, 2008.

R.C. Green II. Survey of the Applications of Artificial Intelligence Techniques to the
Sudoku Puzzle. 2009.

SK Jones, PA Roach, and S. Perkins. Construction of heuristics for a search-based
approach to solving Sudoku. Research and Development in Intelligent Systems XXIV,
pages 37-49, 2008.

T. Mantere and J. Koljonen. Solving, rating and generating Sudoku puzzles with GA.
In Evolutionary Computation, 2007. CEC 2007. IEEE Congress on, pages 1382—1389.
Teee.

Mathworks. Creating graphical user interfaces
http://www.mathworks.com/help/techdoc/creating_guis /bqz79mu.html, March
2011.

P. Norvig. Solving every sudoku puzzle. Preprint.

G. Santos-Garcia and M. Palomino. Solving Sudoku puzzles with rewriting rules.
Electronic Notes in Theoretical Computer Science, 176(4):79-93, 2007.

T.W. Yue and Z.C. Lee. Sudoku Solver by Q’tron Neural Networks. Intelligent
Computing, pages 943-952, 2006.

25

https://www.researchgate.net/publication/268188612

