MDEA4IoT: Supporting the Internet of Things with
Model-Driven Engineering

Federico Ciccozzi*
*School of Innovation, Design and Engineering
Milardalen University, Visteras (Sweden)
Email: federico.ciccozzi@mdh.se

Abstract—The Internet of Things (IoT) unleashes great oppor-
tunities to improve our way of living and working through a
seamless and highly dynamic cooperation among heterogeneous
Things including both computer-based systems and physical
objects. However, properly dealing with the design, develop-
ment, deployment and runtime management of this breathing
network of Things means to provide solutions for a multitude
of challenges. Among them, we focus on: supporting complexity
and heterogeneity management, supporting collaborative devel-
opment, maximising reusability of design artefacts, and providing
self-adaptation of IoT systems.

In this paper we propose Model-Driven Engineering (MDE)
as a key-enabler for solving these challenges and supporting
the lifecycle of IoT systems, from their design to runtime
management. More specifically, we: (i) introduce MDE4IoT, a
Model-Driven Engineering Framework supporting the modelling
of Things and self-adaptation of Emergent Configurations of
connected systems in the IoT; and (ii) show how MDE in general,
and MDE4IoT in particular, can help in tackling the above
mentioned challenges by providing the Smart Street Lights case
that we use throughout the paper as concrete case.

I. INTRODUCTION

Nowadays, connectivity and technology are becoming more
and more ubiquitous and affordable, respectively. Conse-
quently, a growing trend is to connect everything that can
benefit from being connected, from both digital and physical
world. It is estimated by Cisco and Ericsson that, by 2020,
50 billions devices will be connected to the Internet and this
estimated number is assumed to grow to 500 billions by 2030
with 5G. “The Internet-of-Things has the potential to change
the world, just as the Internet did. Maybe even more so.” [3]].

The IoT includes a huge set of heterogeneous Things:
sensors, actuators, more or less complex devices and com-
puters, as well as physical objects that might be equipped
with some of the previous elements. Things can represent
almost anything one can imagine, from the simplest RFID
tag to modern self-driving cars fully equipped with sensors
and computers. An interesting characteristic of IoT systems
is that heterogeneity embraces both hardware and software.
More specifically, Things might be totally different among
themselves in terms of both hardware and software, or similar
in principle but independently developed and with slight
differences in hardware and/or software. However, the very
same software functionalities are expected to be deployable
on different devices having only a limited set of core common
features [25]]. Another interesting characteristic to observe

Romina Spalazzese'*
TDepartment of Computer Science
!nternet of Things and People Research Center
Malmo University, Malmo (Sweden)
Email: romina.spalazzese @mah.se

within the IoT is that Things can be lightweight, i.e., with
very limited resources and computation capabilities.

Within the IoT, we call Emergent Configuration (EC) of
connected systems a set of Things/devices with their function-
alities and services that connect and cooperate temporarily to
achieve a goal. From a user’s point of view, an EC acts as one
coherent system. Due to the continuously evolving character of
the IoT, ECs can change unpredictably. For instance, Things
might become unavailable because of physical mobility, or due
to insufficient battery level or hardware problems.

To be able to provide the user with a coherent IoT system
over time, there is the need to manage runtime changes of ECs.
For instance, adaptation mechanisms that re-allocate a set of
software functionalities from a faulty device to another offer-
ing similar features might be needed as part of the execution of
proper analysis and planning. In order to maximise reusability
of software functionalities (e.g., software components) and
minimise the need of functional modifications in response
to ECs changes, it would be beneficial to be able to design
software functionalities abstracting away platform-specific de-
tails, which are instead inferred at deployment time. Doing so,
adaptation entailing re-allocation of a software functionality
would not require modifications to the functionality itself.
Finally, to effectively enable collaborative development of IoT
systems, mechanisms for supporting separation of concerns
are needed.

As previously mentioned, the availability of a huge number
and variety of heterogeneous devices within the IoT repre-
sents a great opportunity for improving our way of living
and working if one could allow their seamless and timely
communication, data exchange, and collaboration. Application
areas that would benefit from the IoT innovation include for
instance: smart living, energy, transportation, city, health and
industry. However, to benefit from the great advantages that
the IoT will unleash, a whole set of challenges needs to be
dealt with at all levels. Heterogeneity, adaptability, reusability,
interoperability, data mining, security, abstraction, separation
of concerns, automation, privacy, middleware and architectures
are just some examples of the aspects that need to be taken
into account both at design time and at runtime and for which
new methodological solutions shall be envisioned [4]], [19],
[23]], [24]I, [26], [35].

Among the many challenges, we focus on: providing sup-
port for (1) high-level abstraction to address heterogeneity and
system complexity, (2) separation of concerns for collabora-

tive development, (3) automation for enabling runtime self-
adaptation, and (4) reusability.

In this paper we propose Model-Driven Engineering (MDE)
as a key-enabler for solving the aforementioned challenges in
the IoT. Moreover, we aim at combining MDE’s strengths and
the vision of ECs as self-adaptive systems [14] to support de-
sign, development, and runtime management of IoT systems.
More specifically, we (i) introduce MDE4IoT, a Model-Driven
Engineering Framework supporting the modelling and self-
adaptation of Emergent Configurations of connected systems;
and (ii) show how MDE in general, and our MDE4IoT in
particular, help to tackle the above mentioned challenges and
to boost self-adaptation within IoT by providing the Smart
Street Lights case that we exploit throughout the paper.

The reminder of the paper is organised as follows. Section
introduces the Smart Street Lights case. In Section we
propose the Model-driven Engineering Framework for Internet
of Things while in Section we describe its application to
our case. We present related works in Section [V]and provide a
discussion about our contributions, together with conclusions,
in Section [VII

II. THE SMART STREET LIGHTS CASE

Smart cities are one of the application areas of the IoT
where everything, including cars, bikes, emergency vehicles,
infrastructures and people, will be connected. In this context,
we describe the “Smart Street Lights” demonstrator [30]]
(basic system) and extend it (scenario). Both its hardware
and software have been designed, developed, and assembled
through a collaboration between Malmo University and Sigma
Technology and is part of the ECOS project [15] within the
Internet of Things and People (IoTaP) Research Center [20].

Basic system. The core idea of the Smart Street Lights
system is that every car, bike and pedestrian has its own sphere
of light provided by a set of smart street lights (or lampposts).
The size of this sphere, i.e., the number of lampposts that
increase the brightness of their LED lights, is based on the
vehicle’s or pedestrian’s speed and adapts to it at runtime.
Yellow lights are dimmed down when nobody is around thus
saving energy and red lights are switched on when someone
is driving over the speed limit, increasing traffic awareness
and safety. The smart lampposts handle all the sensing and
computation in a distributed fashion -each lamppost runs
the same code. Each lamppost can: (1) detect the presence
of an “object” (car, bike, or pedestrian); (2) compute an
object’s speed; (3) increase and decrease the brightness of its
own lights, either yellow or red; (4) compute the number of
lampposts that should increase the brightness of their yellow
light or turn on their red lights; (5) send and receive messages
to and from neighbour lampposts.

Figure [I] illustrates a concrete instance of the Smart Street
Lights in use: car A is traveling at normal speed and car B
is approaching at very high speed (over the speed limit) thus
triggering the red lights to turn on. In the dashed ellipse we
can see the set of elements composing a lamppost: a pair of
sensors (s1, S2), a pair of actuators for yellow and red lights
(a1, az), and a computation unit (c1). A set of lampposts that
temporarily connect and cooperate to form the sphere of light
accompanying a road user is an EC. An interesting emergent

property of this EC (shown in Figure [T) is that, when a car
traveling over the speed limit is approaching another car, bike
or pedestrian from the back, the latter gets a heads-up through
the red lights.

Scenario. Car A is approaching a street segment where, all
of a sudden, the red lights of four subsequent lampposts break
(at runtime), and car B is approaching the same street segment
while traveling at a speed over the limit. Due to the lampposts
malfunction, both car A and car B would not be warned by the
system, thus decreasing awareness and safety. To avoid this,
the system needs to self-adapt, i.e., to modify itself at runtime
to keep its properties. The infrastructures, including the lamp-
posts, are grouped into areas, each having an Area Reference
Unit (ARU) providing storage capacity and powerful computa-
tion capabilities. The ARU, not shown in Figure [I] takes care
of the aforementioned faulty situation by initiating (i) a repair
procedure and (ii) a system adaptation at runtime. Initiating
the repair procedure for fixing the lights consists of sending a
proper message with all the needed information to the service,
including for instance the kind of malfunctioning objects and
their location. Moreover, (ii) the ARU continuously monitors
ECs and detects (a) car A traveling towards the malfunctioning
lampposts by exploiting information from the car’s navigation
system, (b) car B approaching, and, thanks to the lampposts
sensors, (c) car B’s too high speed. Since the cars’ navigation
system are available resources, the ARU (d) sends a warning
message (e.g., graphical, textual and/or acoustic) to both cars
to reproduce the warning issued by lampposts’ red light in
normal conditions.

Ak, k

Fig. 1. An instance of the Smart Street Lights Case

III. MDE410T: A MODEL-DRIVEN ENGINEERING
FRAMEWORK FOR 10T

Figure [2] shows a high level model of our vision of IoT
self-adaptive systems [14]. Starting from the bottom layer, we
find heterogeneous Things, which are possibly self-adaptive.
Each Thing is represented through both its software function-
alities and its hardware platform. On the top layer there is
a managing system implementing the MAPE-K loop [22]; a
relevant aspect to mention is that such a system must have
adequate (i) storage space and (ii) computation capabilities to
support the management of the system and in particular of
the lightweight Things. In the remainder of this section we
describe the reasons behind the choice of MDE to tackle the
many challenges related to design and runtime management

of IoT self-adaptive systems, we introduce the Model-Driven
Engineering Framework for IoT (MDE4IoT) and we show how
it supports self-adaptation of ECs.

C‘/ Managing System ‘
W

Software Software
Functionalities; Functionalities,

Hardware
Platform,

Q)

Software
Functionalities,

n

Hardware
Platform,,

Hardware
Platform,

Fig. 2. IoT systems as Self-Adaptive Systems

Why MDE? In MDE, models represent the core concept and
are considered an abstraction of the system under develop-
ment. Rules and constraints for building models are described
through a corresponding modelling language definition and,
in this respect, a metamodel describes the set of available
concepts and wellformedness rules a correct model must
conform to [21]]. Besides abstraction, a core pillar of MDE is
the provision of automation in terms of model manipulation
and refinement, which is performed through model transfor-
mations. A model transformation translates a source model to
a target model while preserving their wellformedness [13]].
Heterogeneity of software and hardware is at the same time
a strength and a big challenge within the IoT [26]. Thanks to
modelling languages, and more specifically domain-specific
ones (DSMLs), MDE can provide unique means for the many
aspects of heterogeneous systems to be represented all in one
place. Models defined through these languages are meant to
be much more human-oriented than common code artefacts,
which are naturally machine-oriented. This means that, e.g.,
software can be defined with concepts that are not necessarily
dependent on the underlying platform or technology. Doing
so0, the very same software functionality should be deployable
on heterogeneous physical devices without modifications to
enhance reusability. Platform-specificity would in fact be in-
ferred by automated mechanisms (i.e., model transformations)
in charge of executing models. The possible ways to generate
execute models are usually three: (1) interpretive, (2) transla-
tional, and (3) compilative execution. Interpretive execution,
where source models are executed through interpretation by a
virtual machine or other kind of middleware; this is heavier
than the other two both in computation and memory usage.
Since many of the Things are embedded and have very limited
resources, this solution is not always applicable. Translational
execution (or code generation), where source models are trans-
lated into a third generation programming language (e.g., Java,
C++) and then run on the target device after compilation or in-
terpretation, is the one currently provided by MDE4IoT based
on our validated code generator [[10]. Compilative execution,
where source models are directly compiled into a machine
language, represents the most complex but at the same time

most powerful option since it allows to exploit the many
advantages and features of modern compilers without having
to exploit intermediate semantically intricate translations from
a high-level language (UML) to another (e.g., Java, C++).
We are already working on possible solutions for providing
this execution strategy in MDE4IoT. Even if more human-
oriented than code, models can become complex and hard
to grasp, even for experts. Especially when heterogeneity is
constantly present, even within the same domain, mechanisms
for properly rendering information in ways that are tailored to
the specific developer are needed. MDE offers powerful instru-
ments for combining multiple DSMLs to achieve the needed
separation of concerns, and exploiting model transformations
to support multi-view modelling, meant as the ability to define
and render models from different design viewpoints. The IoT
is a dynamic network of highly variable Things forming ECs.
Besides the design and initial deployment of these complex
systems, their evolution at runtime is a very challenging issue.
This is particularly hard if operating on code-based artefacts.
Imagine that a specific functionality is implemented for a
specific physical device which, at a certain point, stops to be
available. It would be hard to re-allocate the functionality to
a different type of device without modifying the functionality
itself; reusability of the functionality is hence undermined. In
the following we describe how we address this.

MDEA4IoT Framework. A graphical representation of
MDEA4IoT is shown in Figure |3} Software functionalities (i.e.,
deployable software components, SW;) as well as physical
devices or platforms (i.e., hardware components, HW;) on
which the software functionalities are meant to run, are
modelled by means of a set of modelling languages (DSMLs).
Deployment of software functionalities to physical devices
in terms of allocations are modelled too. Note that physical
devices can be represented at different granularity levels.
For instance a physical device could be represented by a
car navigation system, as a black-box with a specific set of
available features and an operating system on which to run
the allocated software functionalities. On the other hand, such
a complex device could be divided into smaller pieces, such as
sensors, actuators, and processing units. The granularity level
to which the developer models physical devices depends on:
(1) the purpose of the models and their intended use, and (ii)
the capabilities of the involved model transformations that are
in charge of deriving executable artefacts from them.

MDEA4IoT is meant to exploit the combination of a set of
DSMLs to achieve separation of concerns. In Figure [3] we
can see what we call horizontal and vertical viewpoints. For
instance, VP; represents a horizontal viewpoint related to a
specific software application domain, while VP, represents a
horizontal viewpoint for physical devices. VP3 represents a
vertical viewpoint since it embraces both software and hard-
ware of a specific application domain. Different viewpoints are
meant to be concurrently exploited by different domain experts
and automated underlying mechanisms defined in terms of
model transformations are meant to guarantee consistency
among the different viewpoints [8]]. Besides assistance at
design time, MDE4IoT supports evolution scenarios within
the IoT through self-adaptation mechanisms based on models

and model transformations. More specifically, when an EC
changes, and the managing system reasons about possible
adaptations, two outcomes are possible: either (1) the affected
executable artefacts can be directly re-deployed or (2) the
system needs to first re-allocate the functionality at modelling
level and then make executable artefacts run on alternative
physical devices. The realisation of the managing system’s
reasoning is out of the scope of this paper where we rather
focus on a framework that includes the features enabling self-
adaptation.

| Modelling languages ‘

A

______________ IEELEEEEE
1]
| VP, | '
! SW, ['
vl sw — 1 W
| 1 . 1 T I
1 - 1 : !
B ke Tt R

____________ R

1 . 1

1 1

i HW '

. 1 V| HW,

M. ——

monitoring f
5y 4 SW, = software comp.
w execution HW; = hardware comp.

VP, = design viewpoint
= allocation
5 = automation

i,
Running

executable artefacts 3

(’0 = analysis & planning

Fig. 3. MDE4IoT framework

IV. MDE4I0T APPLIED TO THE SMART STREET LIGHTS

In this section, we instantiate MDE4IoT to support self-
adaptation of ECs in the Smart Street Lights Case, both the
basic system and the scenario. This will concretely highlight
the usefulness and advantages of MDE4IoT. Among the many
modelling languages that exist nowadays, UML is regarded as
the de facto standard. Its wide adoption is partially motivated
by its versatility, which enables (i) its usage as general-purpose
language, and (ii) the possibility to customise it through the
so-called profiling mechanisms [[1]] to give it domain specificity
through domain-specific profiles. UML’s latest incarnation
(UML2), together with the standardisation of (i) the Seman-
tics of a Foundational Subset for Executable UML Models
(fUML), which gives a precise execution semantics to a subset
of UML, and (ii) the Action Language for Foundational UML
(ALF), to express complex execution behaviours in terms of
fUML, has made UML a full-fledged implementation quality
language [29]. Through (f)UML and ALF, the developer can
fully describe the software functionalities of the system, while
exploiting the UML profile for Modeling and Analysis of Real-
Time and Embedded Systems (MARTE) [31]] for modelling
hardware components as well as allocations of software to
hardware. Using UML to create domain-specific profiles based
on a single metamodel helps MDE4IoT in providing and
ensuring consistency among models in multiple viewpoints, in

an hybrid multi-view fashion. If the various viewpoints lever-
aged different domain-specific languages, it would be much
harder to ensure consistency since models would conform to
different syntactical and semantic definitions. The exploitation
of ALF as action language brings a set of advantages, such as
easier model validation, analysis, and consistency checking.
In fact, by expressing action code through third generation
programming languages (e.g., Java, C/C++), the developer
would infer assumptions on the target platform (e.g., memory
management, parallelism, communication mechanism), which
can hinder the generation of executable artefacts for different
targets from the same input models, pivotal for MDE4IoT.
@Design time. In Figure 4| we can see a portion of the
model representing the Smart Street Lights in a concrete
graphical syntax. More specifically, the portion represents
a single lamppost system in terms of software functional-
ities, physical devices and allocations. In terms of UML,
LampPost_Functional represents the root software com-
posite component, which contains 6 software components.
Among them, mY of type ManagerY handles sensing
and controls the lamppost’s yellow light, and mR of type
ManagerR handles sensing and controls the lamppost’s red
light. Both mY and mR are connected to sf1, sf2 of type
SenseFunction representing the sensing functionality of
the two motion detectors. Moreover, mY is connected to
1f, of type LightFunction, which represents a lightning
functionality (i.e., on/off or dimmed yellow light), while mR is
connected to wf, of type WarnFunction, which represents
a warning functionality (i.e., on/off of the red light). Connec-
tions between software functionalities are achieved through
connectors via ports. Behavioural descriptions of the software
components are defined in terms of UML state-machines,
for defining the overall behaviour by means of states and
transitions, and ALF, for providing fine-grained actions. The
state-machine diagram describing the behaviour of the type
ManagerR is depicted in the upper right corner of Figure]
A tiny example of ALF behaviour is provided in Listing
The ALF action code represents the state Warn’s do activity;
the code is meant to make wf to display a warning.

o

while (!'this.toWarn)
3 if (this.actl.sendWarning()
4 this.isWarned = true;

== true)

Listing 1. Warn’s do activity in ALF

The default physical devices of the Smart Street Lights
case are modelled and grouped into the following two
hardware components. WarningSystemSensors is com-
posed of the two motion detection sensors S1 and S2 of
type MovementSensor and stereotyped with MARTE'’s
«HWSensor». LampPost_Hardware is composed of two
actuators, LPY representing the lamppost’s yellow light of
type LampPostYLight, and LPR representing the lamp-
post’s red light of type LampPostRLight, both stereotyped
with MARTE’s «<HWActuator», and a computation unit SC
of type ComputationUnit_TypeA and stereotyped with
MARTE’s «<HWProcessor». Thanks to the attributes of the

«Component»
::l LampPost_Functional

[=] + li: LightFunction [1]

| [&=] + mY: ManagerY [1]

+ com_port: DefaultCom [1]

+ act1: DefaultCom [1]
+ sensel: DefaultCom [1]

+ sense2: DefaultCom [1]
h

[&] +mR: ManagerR [1]

VP,

+ sense1: DefaultCom [1]

+ sense2: DefauftCom (17

+ act1: DefaultCom [1]

- ManagerR_SM)
Init
VP,
Default
OutOfOrder
~
M
A\ A

)

VP,

== . _«Allocate»
t«hllocate» =-

]
U
1
' «Allocate»
1

' G it T
L\
X

\I! ::l WarningSystemSensors

«Components

= |LampPost_Hardware

aComponents

: :j NavigationSystem_Hardware

¥

\y
'

«HWSensors

[=] + S1: MovementSensor [1]

«HWActuator»
|=] + LPR: LampPostRLight ...

(3] + screen: Screen [1]

«HWSensor»

[=] + 52: MovementSensor [1]

«HWActuators
[=] + LPY: LampPostYLight [1]

'
'
'
'
'
'
'
'
'
'
'
'
,,,,,,,,,,, talo o, '\ «hllocates
«hllocatex : 2 ***** -
'
'
'
'
'
'
'
]
]
i
I

'
|
!
l
«HWActuator» 1
1
'
'
I

0)

«HwProcessor»

i

(s=]

«Allocate»

«HwProcessor»

AV
+ 8C: ComputationUnit_TypeA [1] i

[c1] + MC: ComputationUnit_TypeB [1]

Fig. 4.

MARTE stereotypes we can specify needed information about
the various devices. As an example for SC we specify its archi-
tecture as x86/x86-64 (using the attribute architecture)
with only one core (using the attribute nbCores).

Software functionalities are allocated to hardware components
through MARTE allocations, that is to say UML abstrac-
tions stereotyped as «Allocate». Software functionalities are
transformed into executable artefacts by model transformation
chains. The transformations, driven by the allocations defined
in the model, are meant to infer platform-specific details to
enable software functionalities to run on specific devices.
Moreover, in Figure [three possible different viewpoints are
highlighted (due to the limited space we do not show them
separately). More specifically, VP; represents a horizontal
viewpoint for the development of the warning’s logic, VP,
for the physical motion sensors, and VP3 represents a vertical
viewpoint of actuators’ logic and hardware. Different view-
points are meant to be concurrently exploited by different
domain experts and kept them synchronised by underlying
mechanisms defined in terms of model transformations [8|]
@Runtime. Car A is getting closer to a street segment where
suddenly the red lights of four subsequent lampposts break,
and car B is approaching the same segment while traveling
over the speed limit (scenario). In our model this means that
part of LampPost_Hardware suffers from a malfunction.
The ARU, our managing system (not shown in the model),
initiates a repair procedure by sending a message to the main-
tenance service, including for instance the kind of malfunc-
tioning objects and their location. Moreover, by continuously
monitoring the IoT and ECs, the ARU detects car A and car B
as well as their navigation systems as available resources and
possible alternatives to replace the malfunctioning red lights.

Portion of the Smart Street Lights Model: allocation @ is for the basic system while @ the scenario

In Figure @ one of the two navigation systems is depicted.
It is represented by NavigationSystem_Hardware,
which is composed of an actuator screen, in terms
of the navigator’s screen, of type Screen and stereo-
typed with MARTE’s «HWActuator», and a compu-
tation unit MC of type ComputationUnit_TypeB,
stereotyped with MARTE’s «HWProcessor»and set as an
ARM architecture with two cores. MDE4IoT checks that
NavigationSystem_Hardware provides the needed fea-
tures for hosting the functionalities previously deployed on
LampPost_Hardware that should be re-allocated: an actua-
tor for showing warnings to replace the broken red light (LPR),
and the routines to manage such an actuator to replace part of
the intelligence provided by mR. Initially the lamppost’s red
light manager represented by mR and the warning functionality
represented by wf are allocated to LampPost_Hardware’s
actuator LPR and computation unit SC (® in Figure H4),
respectively. MDE4IoT runs a feature-compatibility che
between LPR and NavigationSystem_Hardware’s ac-
tuator represented by screen, as well as between SC and
NavigationSystem_Hardware’s computation unit rep-
resented by MC. If features are compatible, then MDE4IoT
re-allocates mR from SC to MC and wf from LPR to screen
(@ in Figure [). Re-allocations are meant to be performed
automatically by specific in-place model transformations [[13]]
that modify the source models. After the re-allocation has
been successfully completed, MDE4IoT generates executable
artefacts for the newly allocated devices. In case there is no
compatibility of features MDE4IoT does not perform any re-

'Compatibility means that heterogeneous devices are considered inter-
changeable if they provide compatible features which can be modelled, e.g.,
by MARTE’s constraints and/or stereotypes’ properties.

allocation, notifies the Things about the incompatibility, and
awaits for further notifications.

Clearly, ECs entail emergent and unknown devices that
must be handled. The Things are in charge of providing the
minimum information (amount of information can vary from
case to case) about themselves so that they can be exploited
by MDE4IoT and the provided model transformations ex-
ploited to re-allocate the affected software functionality and
re-generate suitable executables that can be run on alternative
devices. Re-allocation can be driven by an operator when
human intelligence is required.

V. RELATED WORK

The need of exploiting model-driven techniques to help
the developer in designing applications for the IoT through
separation of concerns and abstraction has been introduced
by Patel et al. [26]]. They provide automatic generation of
an architecture framework and a vocabulary framework to
help the developer to manually implement platform-specific
portions. On the contrary we aim at supporting the developer
by ensuring consistency among design viewpoints and fully
generating and deploying executable artefacts, with the devel-
oper only focusing on the modelling activities. Several other
works, such as [27], provide generation of skeleton code.

Conzon et al. [12] focus instead on a lower abstraction
level, namely the platform and its software architecture. This
approach targets a pretty specific type of IoT configurations,
while we aim at providing a more generic solutions that can be
instantiated in theoretically any type of configuration. Grace
et al. [18] introduce the concept of lightweight interoperability
models to monitor and check the execution of running software
and quickly identify interoperability problems. While the
approach is different in its purpose from ours, its concept
of runtime interoperability models could be exploited by
MDEA4IoT for monitoring the IoT for emergent configurations.

In [32], the author proposes an open distributed architecture
for the engineering of evolvable hybrid assembly systems.
The architecture provides the basis for building frameworks
to develop hybrid assemblies. Also in this case, our approach
is meant to provide support for a wider set of activities rather
than just assembling systems from hybrid components.

Chen et al. [7] present a runtime model-driven approach
for IoT application development. While our approach focuses
on detailed modelling of software functionalities and their
allocation to physical devices, this approach employs models
for describing sensor device models only.

Besides few approaches for IoT, the MDE community
displays a notable amount of literature addressing adapta-
tion, mostly based on models@runtime. Some approaches
use models to specify self-adaptation in terms of mappings
of assertions to adaptation actions [34] or to specify links
between possible configurations [S[]. Usually these models
are leveraged to ease development by partially generating
adaptation engines. Approaches that maintain runtime mod-
els for specifying adaptation and capturing feedback loop’s
knowledge exist too [2f, [16], [17], [25], [28]. In [33], Vogel
et al. provide an approach that enables the specification and
execution of adaptation engines for self-adaptive software with
multiple feedback loops.

The most novel characteristic of our approach, which cannot
be found in any related work, is the ability to encompass
several tasks of the lifecycle, from modelling, consistency
assurance, and executables generation at design time, to self-
adaptation due to evolution of ECs at runtime. Anyhow, we do
not explicitly focus on the use of models for specifying self-
adaptation but rather exploit models for the actual adaptation
enactment. We plan to focus on how to exploit models for
specifying the self-adaptation itself in the coming incarnations
of MDE4IoT.

VI. DISCUSSION AND CONCLUSION

The Internet of Things (IoT) has a great potential for
revolutionising our everyday life in all its aspects. Among
other characteristics, the IoT is composed of an unprecedented
combination of more or less complex and highly heterogenous
constituents (i.e., Things) and it displays continuous evolution,
thus leading to the need of methodological innovation.

In this paper we disclosed the opportunities provided by
Model-Driven Engineering (MDE) to suffice this need. More
specifically, we introduced the MDE4IoT framework to sup-
port modelling of Things and self-adaptation of Emergent
Configurations in the IoT by exploiting: high-level abstraction
and separation of concerns to manage heterogeneity and
complexity of Things, to enable collaborative development,
to enforce reusability of design artefacts, and automation,
in terms of model manipulations, to enable runtime self-
adaptation. The various parts of MDE4IoT have been validated
individually: multi-view modelling for synchronised separa-
tion of concerns in [8]], generation of executable artefacts for
heterogeneous targets in [10]], re-allocation and re-generation
based on runtime feedback in [9], [11]. We are currently
working on validating their synergy. Moreover, the Smart
Street Lights case is a validated running prototype [30] of
the ECOS project [15].

Self-adaptation of complex, heterogeneous, and variable
systems-of-systems such the IoT, entails an endless set of
complex issues to be tackled. The use of models and MDE
can help out in this quest, but the way towards a full-fledged
solution is far from unhindered. In this paper, we focused
on the use of MDE for propagating adaptation from models
to the running system. Clearly, other core features such as
the use of models for adaptation, reasoning, and planning, as
well as analysis of the possible impact of adaptation-triggered
modifications on the unchanged parts of the system need to
be investigated as well [6] as future works.

The incarnation of MDE4IoT presented in this paper is the
outcome of our first engineering effort. We are already working
on several enhancements with the goal of progressively and
iteratively building an open framework for aiding design and
self-adaptation of IoT systems.

ACKNOWLEDGMENTS

This work is partially financed by the Knowledge Founda-
tion (KKS) through the Internet of Things and People research
profile (Malmoé University, Sweden) and the SMARTCore
project (20140051, Milardalen University, ABB Corporate
Research, Ericsson AB, Alten Sweden AB).

[1]

[6]

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]
[21]
[22]
[23]

[24]

REFERENCES

A. Abouzahra, J. Bézivin, M. D. Del Fabro, and F. Jouault. A
practical approach to bridging domain specific languages with UML
profiles. In Proceedings of the Best Practices for Model Driven Software
Development at OOPSLA, volume 5. Citeseer, 2005.

M. Amoui, M. Derakhshanmanesh, J. Ebert, and L. Tahvildari. Achiev-
ing dynamic adaptation via management and interpretation of runtime
models. Journal of Systems and Software, 85(12):2720-2737, 2012.
K. Ashton. That ’internet of things’ thing. RFiD Journal, 22(7):97-114,
2009.

L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey.
Comput. Netw., 54(15):2787-2805, October 2010.

N. Bencomo and G. Blair. Using architecture models to support the gen-
eration and operation of component-based adaptive systems. In Software
engineering for self-adaptive systems, pages 183-200. Springer, 2009.
A. Bennaceur, R. France, G. Tamburrelli, T. Vogel, P. J. Mosterman,
W. Cazzola, F. M. Costa, A. Pierantonio, M. Tichy, M. Aksit, et al.
Mechanisms for leveraging models at runtime in self-adaptive software.
In Models@ run. time, pages 19-46. Springer, 2014.

X. Chen, A. Li, X. Zeng, W. Guo, and G. Huang. Runtime model
based approach to IoT application development. Frontiers of Computer
Science, 9(4):540-553, 2015.

A. Cicchetti, F. Ciccozzi, and T. Leveque. Supporting incremental
synchronization in hybrid multi-view modelling. In Models in Software
Engineering, pages 89-103. Springer, 2012.

F. Ciccozzi, A. Cicchetti, and M. Sjodin. Round-Trip Support for
Extra-functional Property Management in Model-Driven Engineering of
Embedded Systems. Information and Software Technology, 2012.

F. Ciccozzi, A. Cicchetti, and M. Sjodin. On the Generation of Full-
fledged Code from UML Profiles and ALF for Complex Systems. In
Procs of ITNG, February 2015.

F. Ciccozzi, M. Saadatmand, A. Cicchetti, and M. Sjodin. An Automated
Round-trip Support Towards Deployment Assessment in Component-
based Embedded Systems. In Procs of CBSE. ACM, 2013.

D. Conzon, P. Brizzi, P. Kasinathan, C. Pastrone, F. Pramudianto, and
P. Cultrona. Industrial application development exploiting IoT vision and
model driven programming. In Intelligence in Next Generation Networks
(ICIN), 2015 18th International Conference on, pages 168—175. IEEE,
2015.

K. Czarnecki and S. Helsen. Classification of Model Transformation
Approaches. In Procs of OOPSLA, 2003.

R. de Lemos, H. Giese, H. A. Miiller, M. Shaw, J. Andersson, L. Baresi,
B. Becker, N. Bencomo, Y. Brun, B. Cukic, R. Desmarais, S. Dustdar,
G. Engels, K. Geihs, K. M. Goeschka, A. Gorla, V. Grassi, P. Inverardi,
G. Karsai, J. Kramer, M. Litoiu, A. Lopes, J. Magee, S. Malek,
S. Mankovskii, R. Mirandola, J. Mylopoulos, O. Nierstrasz, M. Pezze,
C. Prehofer, W. Schifer, R. Schlichting, B. Schmerl, D. B. Smith, J. P.
Sousa, G. Tamura, L. Tahvildari, N. M. Villegas, T. Vogel, D. Weyns,
K. Wong, and J. Wuttke. Software engineering for self-adaptive systems:
A second research roadmap. In R. de Lemos, H. Giese, H. A. Miiller,
and M. Shaw, editors, Software Engineering for Self-Adaptive Systems
I1, volume 7475, pages 1-32. Springer-Verlag, 2013.

Emergent Configurations of Connected Systems (ECOS). http://iotap.
mah.se/ecos/, [Accessed: 2016-01-21].

J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, and E. Gjorven.
Using architecture models for runtime adaptability. Software, IEEE,
23(2):62-70, 2006.

D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste.
Rainbow: Architecture-based self-adaptation with reusable infrastruc-
ture. Computer, 37(10):46-54, 2004.

P. Grace, B. Pickering, and M. Surridge. Model-driven interoperability:
engineering heterogeneous IoT systems. annals of telecommunications-
annales des télécommunications, pages 1-10, 2015.

J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of things

(iot): A vision, architectural elements, and future directions. Future
Gener. Comput. Syst., 29(7):1645-1660, Sept. 2013.
Internet of Things and People (IoTaP) Research Center. http://iotap.

mah.se/, [Accessed: 2016-01-21].

S. Kent. Model Driven Engineering. In Third International Conference
on Integrated Formal Methods (iFM), 2002.

J. O. Kephart and D. M. Chess. The vision of autonomic computing.
Computer, 36(1):41-50, Jan. 2003.

H.-D. Ma. Internet of things: Objectives and scientific challenges.
Journal of Computer science and Technology, 26(6):919-924, 2011.
D. Miorandi, S. Sicari, F. De Pellegrini, and 1. Chlamtac. Internet of
things. Ad Hoc Netw., 10(7):1497-1516, Sept. 2012.

[25]

[26]

[27]

[28]

[29]

(30]
(31]

[32]

(33]

[34]

[35]

B. Morin, O. Barais, G. Nain, and J.-M. Jezequel. Taming dynamically
adaptive systems using models and aspects. In Proceedings of the
31st International Conference on Software Engineering, pages 122—132.
IEEE Computer Society, 2009.

P. Patel and D. Cassou. Enabling high-level application development
for the Internet of Things. Journal of Systems and Software, 103:62-84,
2015.

F. Pramudianto, I. R. Indra, and M. Jarke. Model Driven Development
for Internet of Things Application Prototyping. Book Model Driven
Development for Internet of Things Application Prototyping (Knowledge
Systems Institute Graduate School, 2013, edn.), 2013.

R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S. Hallsteinsen, J. Lorenzo,
A. Mamelli, and U. Scholz. Music: Middleware support for self-
adaptation in ubiquitous and service-oriented environments. In Software
engineering for self-adaptive systems, pages 164—182. Springer, 2009.
B. Selic. The Less Well Known UML. In Formal Methods for
Model-Driven Engineering, volume 7320 of Lecture Notes in Computer
Science, pages 1-20. Springer Berlin Heidelberg, 2012.

The Smart Street Lights Demonstrator. https://vimeo.com/137837738/,
[Accessed: 2016-01-21].

The UML Profile for MARTE: Modeling and Analysis of Real-Time
and Embedded Systems. http://www.omgmarte.org/, [Accessed: 2014-
11-28].

K. Thramboulidis. An Open Distributed Architecture for Flexible Hybrid
Assembly Systems: A Model Driven Engineering Approach. arXiv
preprint arXiv:1411.1307, 2014.

T. Vogel and H. Giese. Model-driven engineering of self-adaptive
software with EUREMA. ACM Transactions on Autonomous and
Adaptive Systems (TAAS), 8(4):18, 2014.

J. White, D. C. Schmidt, and A. Gokhale. Simplifying autonomic
enterprise Java Bean applications via model-driven engineering and
simulation. Software & Systems Modeling, 7(1):3-23, 2008.

L. D. Xu, W. He, and S. Li. Internet of things in industries: A survey.
EEE Trans. Industrial Informatics, 10(4):2233-2243, 2014.

http://iotap.mah.se/ecos/
http://iotap.mah.se/ecos/
http://iotap.mah.se/
http://iotap.mah.se/
https://vimeo.com/137837738/
http://www.omgmarte.org/

	Introduction
	The Smart Street Lights Case
	MDE4IoT: a Model-Driven Engineering Framework for IoT
	MDE4IoT applied to the Smart Street Lights
	Related Work
	Discussion and Conclusion
	References

