
Systematic Maintenance of Safety Cases to
Reduce Risk

Omar Jaradat1 and Iain Bate1,2

1 School of Innovation, Design, and Engineering
Mälardalen University, Väster̊as, Sweden

2 Department of Computer Science
University of York, York, United Kingdom

omar.jaradat@mdh.se

iain.bate@york.ac.uk

Abstract. The development of safety cases has become common prac-
tice in many safety critical system domains. Safety cases are costly since
they need a significant amount of time and efforts to be produced. More-
over, safety critical systems are expected to operate for a long period
of time and constantly subject to changes during both development and
operational phases. Hence, safety cases are built as living documents that
should always be maintained to justify the safety status of the associ-
ated system and evolve as these system evolve. However, safety cases
document highly interdependent elements (e.g., safety goals, evidence,
assumptions, etc.) and even seemingly minor changes may have a ma-
jor impact on them, and thus dramatically increase their cost. In this
paper, we identify and discuss some challenges in the maintenance of
safety cases. We also present two techniques that utilise safety contracts
to facilitate the maintenance of safety cases, we discuss the roles of these
techniques in coping with some of the identified maintenance challenges,
and we finally discuss potential limitations and suggest some solutions.

Keywords: Safety Case, Safety Argument, Maintenance, FTA, Sensi-
tivity Analysis, Safety Contracts, Impact Analysis.

1 Introduction

The size and complexity of safety critical systems are considerable. Without a
clear demonstration for the safety performance of a system, it is difficult for
inspector organisations or system engineers themselves to build a confidence in
the safety performance of the system. System engineers of some safety criti-
cal systems are required to demonstrate the safety performance of their systems
through a reasoned argument that justifies why the system in question is accept-
ably safe (or will be so) [10]. This argument is communicated via an artefact that
is known as a safety case. The safety case is the whole safety justification that
comprises every appropriate piece of evidence to make a convincing argument
to support the safety performance claims [13].

2 Systematic Maintenance of Safety Cases to Reduce Risk

Moreover, safety critical systems can be evolutionary as they are subject to
perfective, corrective or adaptive maintenance or through technology obsoles-
cence [24]. Changes to the system during or after development might invalidate
safety evidence or argument. Evidence might no longer support the developers’
claims because it reflects old development artefacts or old assumptions about
operation or the operating environment. After a change, original safety claims
might be nonsense, no longer reflect operational intent, or be contradicted by
new data [17]. Eventually, the real system will have diverged so far from that
represented by the safety case argument and the latter is no longer valid or use-
ful [13]. Hence, it is almost inevitable that the safety case will require updating
throughout the operational lifetime of the system. In addition, any change that
might compromise system safety involves repeating the certification process (i.e.,
re-certification) and repeating the certification process necessitates an updated
and valid safety case that considers the changes. For example, the UK Ministry
of Defence Ship Safety Management System Handbook JSP 430 requires that
“the safety case will be updated ... to reflect changes in the design and/or opera-
tional usage which impact on safety, or to address newly identified hazards. The
safety case will be a management tool for controlling safety through life including
design and operation role changes” [12,25]. Similarly, the UK Health and Safety
Executive (HSE) — Railway safety case regulations 1994 — states in regulation
6(1) that “a safety case to be revised whenever, appropriate that is whenever any
of its contents would otherwise become inaccurate or incomplete” [6, 12].

However, a single change to a safety case may necessitate many other con-
sequential changes — creating a ripple effect [24]. Any improper maintenance
in a safety argument might cause unforeseen violations of the acceptable safety
limits, which will negatively impact the system safety performance conveyed by
the safety case. Hence, a step to assess the impact of this change on the safety
argument is crucial and highly needed prior to updating a safety argument after
a system change. Despite clear recommendations to adequately maintain and
review safety cases by safety standards existing standards offer little advice on
how such operations can be carried out [24].

The concept of contract has been around for a few decades in the system
development domain. There have been significant works that discuss how to
represent and to use contracts (e.g., [3,26]). Also, researchers have used assume-
guarantee contracts to propose techniques to lower the cost of developing soft-
ware for safety critical systems. Moreover, contracts have been exploited as a
means for helping to manage system changes in the system domain or in its cor-
responding safety case [5,9,18]. However, using contracts as a way of managing
change was discussed in some works [2, 9], but deriving the contracts and their
contents have received little support yet [16].

In this paper, we present and discuss techniques that utilises the concept
of contracts to facilitate the accommodation of system changes in safety cases
to ultimately support the maintainability of safety cases. Our work focuses on:
1. How and where to derive safety contracts and their contents, 2. using the
derived contracts to support the decision as to whether or not apply changes,

Systematic Maintenance of Safety Cases to Reduce Risk 3

and 3. using the derived contracts to guide developers to the parts in the safety
case that might be affected after applying a change. This paper is composed
of three further sections. In Section 2, we present background information and
we also present some safety cases’ challenges. In Section 3, we describe two
techniques to facilitate the maintenance of safety cases. In Section 4 we discuss
some limitations, draw a conclusion and propose potential future work.

2 Background and Motivation

2.1 Safety Contracts

In 1969, Hoare introduced the pre- and postcondition technique to describe the
connection (dependency) between the execution results (R) of a program (Q)
and the values taken by the variables (P) before that program is initiated [7].
Hoare introduced a new notation to describe this connection, such as: P {Q} R.
This notation can be interpreted as: “If the assertion P is true before initiation
of a program Q, then the assertion R will be true on its completion” [7].

Contracts are widely used in software development. For instance, Design by
Contract (DbC) was introduced by Meyer [14, 15] to constrain the interactions
that occur between objects. Moreover, contract-based design is an approach
where the design process is seen as a successive assembly of components where
a component behaviour is represented in terms of assumptions about its envi-
ronment and guarantees about its behaviour [4].

The following is an example that depicts the most common used form of
contracts [11]:

Guarantee: The WCET of task X is ≤ 10 milliseconds
Assumptions:
X is:
1. compiled using compiler [C],
2. executed on microcontroller [M] at 1000 MHz with caches disabled, and
3. not interrupted

A contract is said to be a safety contract if it guarantees a property that
is traceable to a hazard. There have been significant works that discuss how
to represent and to use contracts [3, 26]. In the safety critical systems domain,
researchers have used, for example, assume-guarantee contracts to propose tech-
niques to lower the cost of developing software for safety critical systems. More-
over, contracts have been exploited as a means for helping to manage system
changes in a system domain or in its corresponding safety case [5, 9, 18].

2.2 The Goal Structuring Notation (GSN)

A safety argument organizes and communicates a safety case, showing how the
items of safety evidence are related and collectively demonstrate that a sys-
tem is acceptably safe to operate in a particular context. GSN [1] provides a

4 Systematic Maintenance of Safety Cases to Reduce Risk

Requires further
development

Goal InContextOf

SolvedBy

Away Goal

 <Module Name>
SolutionModule Reference

Assumption
A

Strategy Justification
J

Context

Fig. 1. Notation Keys of the Goal Structuring Notation (GSN)

graphical means of communicating (1) safety argument elements, claims (goals),
argument logic (strategies), assumptions, context, evidence (solutions), and (2)
the relationships between these elements. The principal symbols of the notation
are shown in Figure 1 (with example instances of each concept).

A goal structure shows how goals are successively broken down into (’solved
by’) sub-goals until eventually supported by direct reference to evidence. Using
the GSN, it is also possible to clarify the argument strategies adopted (i.e., how
the premises imply the conclusion), the rationale for the approach (assumptions,
justifications) and the context in which goals are stated.

2.3 Safety Cases Maintainability: What does it mean?

The goal of the work which is being discussed in this paper is to facilitate the
accommodation of system changes in safety cases to ultimately en-
hance safety case maintainability. Hence, it is vital to explicitly define what
do we mean by safety case maintainability. We refer to “Safety Case Maintain-
ability” as the ability to repair or replace the impacted elements of a safety case
argument, without having to replace still valid elements, to preserve the validity
of the argument. The maintainability degree is said to be high whenever the
following three activities are done efficiently:

1. Identifying the impacted elements and those that are not impacted.
2. Minimising the number of impacted elements.
3. Reducing the work needed to make the impacted elements valid again.

However, the work presented by this paper does not focus on how to measure
the efficiency of achieving these three activities, but rather it strives to enable
them and improve on them. In order to achieve this goal, we should resolve the
problems that affect the accommodation of system changes in safety cases.

2.4 Safety Cases Maintainability: Why is it painstaking?

Safety assurance and certification are amongst the most expensive and time-
consuming tasks in the development of safety-critical embedded systems [10]. A
key reason behind this is because the increasing complexity and size of these sys-
tems combined with their growing market demands. The cost of system changes
including the cost of the activities that will follow them (e.g., regression test-
ing), are another key reason that exacerbates the problems of cost and time in

Systematic Maintenance of Safety Cases to Reduce Risk 5

safety certification. Coherent strategies are required to reduce the cost and time
of safety certification.

One of the biggest challenges that affects safety case revision and maintenance
is that a safety case documents a complex reality that comprises a complex web
of interdependent elements. That is, safety goals, evidence, argument, and as-
sumptions about operating context are highly interdependent. Hence, seemingly
minor changes may have a major impact on the contents and structure of the
safety argument. Basically, operational or environmental changes may invalidate
a safety case argument for two main reasons as follows:

1. Evidence is valid only in the operational and environmental context in which
it is obtained, or to which it applies. During or after a system change, evi-
dence might no longer support the developers’ claims because it could reflect
old development artefacts or old assumptions about operation or the oper-
ating environment.

2. Safety claims, after introducing a change, might be nonsense, no longer reflect
operational intent, or be contradicted by new data. Changing safety claims
might change the argument structure.

In order to deal with problems that impede safety cases maintenance, we
start by identifying and describing these problems.

Main Problem: Maintaining safety cases after implementing a system change
is a painstaking process. This main problem is caused by three sub-problems.
Sub-problem (1): The lack of documentation of dependencies among the safety
cases contents.

Developers of safety cases are experiencing difficulties in identifying the di-
rect and indirect impact of change due to high level of dependency among safety
case elements. If developers do not understand the impact of change then they
have to be conservative and do wider verification (i.e., check more elements than
strictly necessary) and this increases the maintenance cost. The use of GSN
might help to produce well-structured arguments that clearly demonstrate the
relationships between the argument claims and evidence. However, GSN has not
solved the problem of documenting dependencies among the safety cases con-
tents [22]. In other words, a well-structured GSN argument helps the developers
to mechanically propagate the change through the goal structure. However, it
does not evaluate whether the suspect elements of the argument are still valid or
not (or it does not show why the element is impacted), but rather it can bring
these elements to the developers’ attention [22].

Safety is a system level property; assuring safety requires safety evidence
to be consistent and traceable to system safety goals [24]. Moreover, current
standards and analysis techniques assume a top-down development approach
to system design. One might suppose that a safety argument structure aligned
with the system design structure would make traceability clearer. It might, but
safety argument structures are influenced by four factors: (1) modularity of evi-
dence, (2) modularity of the system, (3) process demarcation (e.g., the scope of
ISO 26262 items [8]), and (4) organisational structure (e.g., who is working on

6 Systematic Maintenance of Safety Cases to Reduce Risk

what) [2]. These factors often make argument structures aligned with the sys-
tem design structure impractical. However, the need to track changes across the
whole safety argument is still significant for maintaining the argument regardless
of its structure.

As explained in Section 2.1, a contract is conceived as an extension to the
specification of software component interfaces that specifies preconditions and
postconditions to describe what properties a component can offer once the sur-
rounded environment satisfies one or more related assumption(s). Based on this
description, safety contracts can be used as a means to record the dependencies
among system components. If we assume a one-to-one mapping between a sys-
tem component and all the claims that are articulated about it, dependencies
among safety argument elements can be conceived through the dependencies be-
tween components of the corresponding system that are recorded in contracts.
In practice, this notion is far from straightforward because it is infeasible to be
achieved and impossible to prove the completeness of the generated contracts,
and the expected number of contracts will be too large to easily manage.
Sub-problem (2): The lack of traceability between a system and its safety case.

We refer to the ability to relate safety argument fragments to system design
components as component traceability (through a safety argument). We refer to
evidence across a system’s artefacts as evidence traceability.

System developers need both top-down and bottom-up impact analysis ap-
proaches to maintain safety cases. A top-down approach is dedicated for analysing
the impacted artefacts from the system domain down to the safety argument.
In contrast, a bottom-up approach is dedicated for analysing impacted elements
from the argument to the corresponding artefacts such as a safety analysis re-
port, test results or requirements specification, etc. The lack of systematic and
methodical approaches to analysing impact of change is a key reason behind
the maintenance difficulties. However, conducting any style of impact analysis
requires a traceability mechanism between the system and safety arguments.

There has been significant work on how to use safety contracts as a means to
establish the required traceability [2]. The guaranteed properties in the contracts
can be mapped to safety argument goals. If the derived safety contracts are
associated with the corresponding argument elements, any broken contracts will
reveal (i.e., highlight) the associated argument elements and thus enabling easier
identification for the impacted parts in the argument due to a system change.
However, this is not as simple as it first appears because we still do not know
which contracts were affected by the change. In other words, how does a change
lead to broken contracts?

Predicting system changes before building a safety argument can be useful
because it allows the safety argument to be structured to contain the impact
of these changes. Hence, anticipated changes may have predictable and trace-
able consequences that will eventually reduce maintenance effort. Nevertheless,
planning the maintenance of a safety case still faces a key problem.

Sub-problem (3): System changes and their details cannot be fully predicted
and made available up front.

Systematic Maintenance of Safety Cases to Reduce Risk 7

Modularity has been proposed as the key element of the ‘way forward’ in
developing systems [19, 21]. Although the most influential approach for using
modularity effectively in software design is information hiding, modularity can
also be beneficial for systems maintenance. For modular systems, it is claimed
that the required maintenance efforts to accommodate predicted changes can be
less than the required efforts to accommodate arbitrary changes. This is because
having a list of predicted changes during the system design phase allows system
engineers to contain the impact of each of those changes in a minimal number of
system’s modules. Predicting system changes before building a safety argument
can be useful because it allows the safety argument to be structured to contain
the impact of these changes. Hence, predicted changes may also have predictable
and traceable consequences that will eventually reduce the maintenance efforts.
Nevertheless, planning the maintenance of a safety case still faces two key issues:
(1) system changes cannot be fully predicted and made available up front, es-
pecially, the software aspects of the safety case as software is highly changeable
and harder to manage as they are hard to contain and (2) those changes can be
implemented years after the development of a safety case [16].

3 Sensitivity Analysis for Enabling Safety Argument
Maintenance (SANESAM)

Sensitivity analysis can be defined as: “The study of how uncertainty in the out-
put of a model (numerical or otherwise) can be apportioned to different sources
of uncertainty in the model input” [23]. The analysis helps to establish reason-
ably acceptable confidence in the model by studying the uncertainties that are
often associated with variables in models.

In our previous work [16], we introduced a Sensitivity ANalysis for Enabling
Safety Argument Maintenance (SANESAM) technique, in which we apply sen-
sitivity analysis on FTAs to measure the sensitivity of outcome A (e.g., a safety
requirement being true) to a change in a parameter B (e.g., the failure proba-
bility in a component). The sensitivity is defined as ∆B/B, where ∆B is the
smallest change in B that changes A (e.g., the smallest increase in failure proba-
bility that makes safety requirement A false). The failure probability values that
are attached to FTA’s events are considered input parameters to the sensitivity
analysis. A sensitive part of a FTA is defined as one or multiple FTA events
whose minimum changes (i.e., the smallest increase in its failure probability due
to a system change) have the maximal effect on the FTA, where effect means
exceeding failure probabilities (reliability targets) to inadmissible levels. SANE-
SAM was extended by SANESAM+ [11] to consider the change’s impact on:
(1) intermediate events of FTAs, (2) multiple events, and (3) duplicated events.
The key principle of both techniques is to determine, for each system compo-
nent, the allowed range for a certain parameter within which a component may
change before it compromises a certain system property (e.g., safety, reliability,
etc.). Sensitivity analysis is used in the techniques as a method to determine
the range of failure probability parameter for each component. The techniques

8 Systematic Maintenance of Safety Cases to Reduce Risk

assume the existence of a probabilistic FTA where each event in the tree is spec-
ified by a current estimate of failure probability FPCurrent|event(x). In addition,
they assume the existence of the required failure probability for the top event
FPRequired(Topevent), where the FTA is considered unreliable if:

FPCurrentl(Topevent) > FPRequired(Topevent) [16].

The steps of SANESAM are shown in Figure 2 and described as follows [16]:
Step 1. Apply the sensitivity analysis to a probabilistic FTA: In this
step the sensitivity analysis is applied to a FTA to identify the sensitive events
whose minimum changes have the maximal effect on the FPTopevent. Identifying
those sensitive events requires the following steps to be performed:

1. Find the Minimal Cut Set (MC) in the FTA. The minimal cut set definition
is: “A cut set in a fault tree is a set of basic events whose (simultaneous)
occurrence ensures that the top event occurs. A cut set is said to be minimal
if the set cannot be reduced without losing its status as a cut set” [20].

2. Calculate the maximum possible increment to the failure probability param-
eter of event x before the top event FPRequired(Topevent) is no longer met,
where x ∈MC, and

(FPIncreased|event(x) − FPCurrent|event(x)) ;
FPIncreased(Topevent) > FPRequired(Topevent).

3. Rank the sensitive events from the most sensitive to the less sensitive. The
most sensitive event is the event for which the following formula is the min-
imum:

FPIncreased|event(x) − FPCurrent|event(x)

FPCurrent|event(x).

Step 2. Refine the identified sensitive parts with system developers:
In this step, the generated list of sensitive events from Step 1 should be discussed
by system developers (e.g., safety engineers) as they should choose the sensitive
events that are most likely to change. The list can be extended to add any
additional events by the developers. Moreover, it is envisaged that some events
might be removed from the list or the rank of some of them might change.

Step 3:
Derive safety
contracts from
FTAs

Step 4:
Build the safety argument
and associate the derived
contracts with it

Step 2:
Refine the identified
sensitive parts with
system developers

Step 1:
Apply Sensitivity
Analysis to
probabilistic FTA(s)

Step 6:
Specify the affected parts
of the safety argument

Step 5:
Analyze the impact of
change

The SANESAM Phase

The Safety Argument Maintenance Phase
Step 7:
Update the argument

Fig. 2. Process diagram of SANESAM and SANESAM+ [16]

Systematic Maintenance of Safety Cases to Reduce Risk 9

Step 3. Derive safety contracts from FTAs: In this step, a safety con-
tract or contracts should be derived for each event in the list from Step 2. The
main objectives of the contracts are to: (1) highlight the sensitive events to make
them visible up front for developers attention, and (2) to record the dependen-
cies between the sensitive events and the other events in the FTA. Hence, if the
system is later changed in a way that increases the failure probability of a con-
tracted event where the increased failure probability is still within the defined
threshold in the contract, then it can be said that the contract(s) in question still
hold (intact) and the change is containable with no further maintenance. The
contract(s), however, should be updated to the latest failure probability value.
On the other hand, if the change causes a bigger increment to the failure prob-
ability value than the contract can hold, then the contract is said to be broken
and the guaranteed event will no longer meet its reliability target. It is worth
noting that the role of safety contracts in SANESAM is to highlight sensitive
events, and not to enter new event failure probabilities. Figure 3 an example of
a derived safety contract from FTA.

Step 4. Build the safety argument and associate the derived con-
tracts with it : In this step, a safety argument should be built and the derived
safety contracts should be associated with the argument elements. Essentially,
SANESAM calculates the maximum possible increment to the failure probability
parameter of only one event at a time before the top event FPRequired(Topevent)

is no longer met. It considers the events within the MC only. SANESAM+ was
introduced to provide more freedom by considering multiple events at a time

Current FP 1.5E-06
Required FP 3.30E-05

4.71E-08

2.17E-04

6.75E-05

BSCU Fault Causes
Loss of Braking

Commands
BSFCLOBC

BSCU System 1 and 2
Do Not Operate

BSS1&2DNO

Loss of BSCU
System 1
LOOBS1

Loss of BSCU
System 2
LOOBS2

BSCU
System 1

Electronics
Failure

BSS1EF

BSCU
System 1 Power
Supply Failure

BSS1PSF

BSCU
System 2

Electronics
Failure
BSS2EF

BSCU System
2 Power

Supply Failure

BSS2PSF

1.50E-04

2.17E-04

6.75E-051.50E-04

Cont...

ContractID: Contr_BSS2EF
G1: The Failure probability for the top event BSFCLOBC is ≤
1.13E-02
A1: Only event BSS2EF increases its failure rate
A2: BSS2EF failure rate increases by ≤ 7.364E-01
A3: The failure of BSS2EF remains independent of any other event
A4: The logic in fault tree WBS1_FTA remains the same

Contr_BSS2EF

Fig. 3. Example of a derived safety contract

10 Systematic Maintenance of Safety Cases to Reduce Risk

and not only the events in the MC. The key principle of SANESAM+ is to
distribute ∆FP(Topevent) over all of the events in FTA, or over the events that
are relevant to a particular change. Hence, the difference between SANESAM
and SANESAM+ is observed only in Step 1, all other steps are identical.

3.1 The roles of safety contracts in SANESAM and SANESAM+

SANESAM and SANESAM+ derive safety contracts for the identified sensi-
tive parts. The main objectives of the contracts is to (1) highlight the sensitive
events to make them visible up front for developers attention and (2) to record
the dependencies between the sensitive events and the other events in the FTA.
Hence, if any contracted event has received a change that necessitates increasing
its failure probability where the increment is still within the defined threshold
in the contract, then it can be said that the contract(s) in question still holds
(intact) and the change is containable with no further maintenance. The con-
tract(s), however, should be updated to the latest failure probability value. On
the contrary, if the change causes a bigger increment in the failure probability
value than the contract can hold, then the contract is said to be broken and the
guaranteed event will no longer meet its reliability target. Hence, SANESAM
and SANESAM+ may address the first and the second identified sub-problems
in Section 2.4.

3.2 Support the prediction of potential system changes

Expectedly, if we ask system engineers to anticipate the potential future changes
for a system they might brainstorm and come up with a list of changes. How-
ever, the list can be incomplete or contain unlikely changes that might influence
the system design to little or no avail. Instead, we propose providing system
developers a list of system parts that may be more problematic to change than
other parts and ask them to choose the parts that are most likely to change. Of
course our list can be augmented by additional changeable parts that may be
provided by the system developers. Hence, SAMESAM and SANESAM+ may
address the third identified sub-problem in Section 2.4.

4 Conclusion and Future Work

System developers should understand the change and the potential risks that it
might carry before they identify the impacted parts. For example, a change might
turn some implicit assumptions about the context in which a system should
operate to be wrong. Misunderstanding the change might lead to skip those parts
of the system which are dependent on that assumptions. Also, the developers
need to understand the dependencies between the system parts to identify the
affected parts correctly. Hence, there is a pressing need for acceptable methods
and techniques to enable easier change accommodation in safety critical systems
without incurring disproportionate cost compared to the size of the change.

Systematic Maintenance of Safety Cases to Reduce Risk 11

In this paper, SANESAM and SANESAM+ were discussed as techniques to
facilitate the maintenance of safety cases. The techniques were introduced and
illustrated in our previous work. More specifically, we proposed SANESAM [16]
through which we: (1) measure the sensitivity of FTA events to system changes
using the events’ failure probabilities, (2) derive safety contracts based on the
results of the analysis, and (3) map the derived safety contracts to a safety ar-
gument to improve the change impact analysis on the safety argument. We used
an aircraft Wheel Braking System (WBS) to illustrate the application of SANE-
SAM. We also developed SANESAM+ [11] as another version of SANESAM to
cover wider variety of change scenarios, where we also used the WBS to illustrate
it. This paper also identifies some challenges in the maintenance of safety cases,
and shows how the techniques might help to address them.

A foreseen limitation in the techniques is that they can be less useful while
dealing with software changes as it is recognised as being difficult to quantify
the failure probabilities of the system software components.

To further develop the approach, SANESAM+ is being migrated to timing.
More specifically, the problem of the Worst Case Execution Time (WCET) is
considered as the property where sensitivity is judged in terms of its impact
on the ability to meet the system’s timing requirements. We also plan to create
several case studies to validate both the feasibility and efficacy of the techniques.

Acknowledgment

This work has been partially supported by the Swedish Foundation for Strategic
Research (SSF) through SYNOPSIS and FiC Projects. The work is also partially
supported by SafeCOP project.

References

1. GSN community standard version 1. Technical report, Origin Consulting (York)
Limited, Nov. 2011.

2. Modular Software Safety Case (MSSC) — Process Description. [online]. available:
https://www.amsderisc.com/related-programmes, Nov 2012.

3. A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone, and C. Sofro-
nis. Multiple viewpoint contract-based specification and design. In Proceedings of
the 6th International Symposium on Formal Methods for Components and Objects,
pages 200–225, Springer Berlin Heidelberg, 2007.

4. L. Benvenuti, A. Ferrari, E. Mazzi, and A. L. Vincentelli. Contract-based design
for computation and verification of a closed-loop hybrid system. In Proceedings
of the 11th International Workshop on Hybrid Systems: Computation and Control,
HSCC ’08, pages 58–71, Berlin, Heidelberg, 2008. Springer-Verlag.

5. P. Graydon and I. Bate. The nature and content of safety contracts: Challenges
and suggestions for a way forward. In Proceedings of the 20th IEEE Pacific Rim
International Symposium on Dependable Computing (PRDC), November 2014.

6. Health and Safety Executive (HSE). Railway Safety Cases - Railway (Safety Case)
Regulations - Guidance on Regulations, 1994.

12 Systematic Maintenance of Safety Cases to Reduce Risk

7. C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, Oct. 1969.

8. ISO 26262:2011. Road Vehicles — Functional Safety, Part 1-9. International Orga-
nization for Standardization, Nov 2011.

9. J. L. Fenn, R. Hawkins, P. J. Williams, T. Kelly, M. G. Banner, Y. Oakshott.
The who, where, how, why and when of modular and incremental certification.
In Proceedings of the 2nd IET International Conference on System Safety, pages
135–140. IET, 2007.

10. O. Jaradat. Enhancing the maintainability of safety cases us-
ing safety contracts, Mälardalen University, Väster̊as, Sweden.
http://www.es.mdh.se/publications/4082-, November 2015.

11. O. Jaradat and I. Bate. Deriving hierarchical safety contracts. In The 21st IEEE
Pacific Rim International Symposium on Dependable Computing, November 2015.

12. T. Kelly. Arguing Safety – A Systematic Approach to Managing Safety Cases. PhD
thesis, Department of Computer Science, University of York, 1998.

13. R. Maguire. Safety Cases and Safety Reports: Meaning, Motivation and Manage-
ment. Ashgate Publishing, Ltd., 2012.

14. B. Meyer. Design by contract. Technical Report TR-EI-12/CO, Interactive Soft-
ware Engineering Inc., 1986.

15. B. Meyer. Object-Oriented Software Construction. Prentice-Hall, Inc., Upper Sad-
dle River, NJ, USA, 1st edition, 1988.

16. O. Jaradat, I. Bate, and S. Punnekkat. Using sensitivity analysis to facilitate the
maintenance of safety cases. In Proceedings of the 20th International Conference
on Reliable Software Technologies (Ada-Europe), pages 162–176, June 2015.

17. O. Jaradat, P. Graydon and I. Bate. An approach to maintaining safety case
evidence after a system change. In Proceedings of the 10th European Dependable
Computing Conference (EDCC), Newcastle, UK, August 2014.

18. P. Conmy, J. Carlson, R. Land, S. Björnander, O. Bridal, I. Bate. Extension
of techniques for modular safety arguments. Deliverable d2.3.1, technical report,
Safety certification of software-intensive systems with reusable components (Safe-
Cer), 2012.

19. D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Commun. ACM, 15(12):1053–1058, Dec. 1972.

20. M. Rausand and A. Høyland. System Reliability Theory: Models, Statistical Meth-
ods and Applications. Wiley-Interscience, Hoboken, NJ, 2004.

21. S. Bates, I. Bate, R. Hawkins, T. Kelly, J. McDermid, and R. Fletcher. Safety case
architectures to complement a contract-based approach to designing safe systems.
In Proceedings of the 21st International System Safety Conference (ISSC), 2003.

22. S. Wilson, T. Kelly, and J. McDermid. Safety case development: Current practice,
future prospects. In Proceedings of the 12th Annual CSR Workshop - Software
Bases Systems. Springer-Verlag, 1997.

23. A. Saltelli. Global sensitivity analysis: the primer. John Wiley, 2008.
24. T. Kelly and J. McDermid. A systematic approach to safety case maintenance.

In Proceedings of the Computer Safety, Reliability and Security, volume 1698 of
Lecture Notes in Computer Science, pages 13–26. Springer Berlin Heidelberg, 1999.

25. U.K. Ministry of Defence, “JSP 430 - Ship Safety Management System Handbook”,
Ministry of Defence January 1996.

26. W. Damm, H. Hungar, J. Bernhard, T. Peikenkamp, and I. Stierand. Using
contract-based component specifications for virtual integration testing and ar-
chitecture design. In Proceedings of the Design, Automation & Test in Europe
Conference & Exhibition, pages 1–6, 2011.

	Systematic Maintenance of Safety Cases to Reduce Risk
	Introduction
	Background and Motivation
	Safety Contracts
	The Goal Structuring Notation (GSN)
	Safety Cases Maintainability: What does it mean?
	Safety Cases Maintainability: Why is it painstaking?

	Sensitivity Analysis for Enabling Safety Argument Maintenance (SANESAM)
	The roles of safety contracts in SANESAM and SANESAM+
	Support the prediction of potential system changes

	Conclusion and Future Work

