
A Model for Systematic Monitoring and Debugging of
Starvation Bugs in Multicore Software

Sara Abbaspour
Asadollah

Mälardalen University
Västerås, Sweden

sara.abbaspour@mdh.se

Mehrdad Saadatmand
SICS Swedish ICT
Västerås, Sweden

mehrdad@sics.se

Sigrid Eldh
Ericsson AB

Kista, Sweden
sigrid.eldh@ericsson.com

Daniel Sundmark
Mälardalen University

Västerås, Sweden
daniel.sundmark@mdh.se

Hans Hansson
Mälardalen University

Västerås, Sweden
hans.hansson@mdh.se

ABSTRACT
With the development of multicore hardware, concurrent,
parallel and multicore software are becoming increasingly
popular. Software companies are spending a huge amount of
time and resources to find and debug the bugs. Among all
types of software bugs, concurrency bugs are also important
and troublesome. This type of bugs is increasingly becom-
ing an issue particularly due to the growing prevalence of
multicore hardware. In this position paper, we propose a
model for monitoring and debugging Starvation bugs as a
type of concurrency bugs in multicore software. The model
is composed into three phases: monitoring, detecting and de-
bugging. The monitoring phase can support detecting phase
by storing collected data from the system execution. The
detecting phase can support debugging phase by comparing
the stored data with starvation bug’s properties, and the
debugging phase can help in reproducing and removing the
Starvation bug from multicore software. Our intention is
that our model is the basis for developing tool(s) to enable
solving Starvation bugs in software for multicore platforms.

CCS Concepts
•Software and its engineering → Software system
models; Formal software verification; Abstraction, mod-
eling and modularity; Runtime environments;

Keywords
Starvation bug; multicore software; monitoring; debugging;
concurrency bugs; parallel application; concurrent program.

1. INTRODUCTION
Multicore hardware and multicore software are two main

categories in multicore technology. Multicore hardware is a

processor that contains multiple cores in a chip and multicore
software is typically a parallel application executing on multi-
core hardware. Multicore software is a field that is emerging
from the necessity of obtaining a good performance on multi-
core processors. Using the potential advantages of multicore
hardware is desired in multicore software field. However
obtaining this aim brings some challenges such as designing
concurrent and parallel software on multicore processors as
well as testing and debugging on these systems. Parallel
execution of multicore software makes them complicated,
error prone and thus expensive.

Our previous investigation [2] indicates that researchers
and developers are still faced with problems on concurrency
software. Concurrency bugs are one of the most difficult types
of bugs to detect, fix and reproduce [7], thus researchers have
still challenge in proposing and improving solutions. More-
over, another challenge is the lack of reliable methods for
monitoring, debugging and testing concurrent and multi-
core software [2]. In parallel and concurrent applications,
Starvation is a condition in which a thread is indefinitely
delayed because other threads are always given preference [9].
Starvation typically occurs when high priority threads are
monopolising the CPU resources. During starvation, at least
one of the involved threads remains in the ready queue.

Based on our investigation in [2], we found that debugging
Starvation bugs compared to debugging other types of con-
currency bugs have attracted less attention and there is a gap
among the researches in the field. For instance, the number
of published papers during 2005 to 2014 on Starvation bugs
was 63 times smaller than the number of published papers
with a focus on debugging Data race bugs and 15 times
smaller than the Deadlock bugs. Although, our investigation
in an open source software shows that some other type of con-
currency bugs (e.g., Data race and Deadlock) are more severe
than Starvation bugs [3] but we believe Starvation bugs still
deserve to get more attention by proposing novel solution or
significant extension to an existing technique specially with
the focus on new demands in multicore software. This leads
us to propose a novel model for debugging Starvation bugs
(as one type of concurrency bugs) on multicore software in or-
der to apply the model in designing and developing a tool(s)
with the aim of fixing the Starvation bugs in multicore soft-
ware as our future work. Due to the complexity of multicore
software, it may be harder to detect potential concurrency

bugs in early stages of software life-cycle and such bugs can
arise during system execution; thus software monitoring may
address and alleviate this challenge by collecting, processing
and measuring significant data at actual execution time.

In this article we particularly make the following main
contributions: (1) we introduce Starvation bugs in multi-
core software and we explain two different Starvation bug
examples. (2) We propose an integration model for fixing
Starvation bugs. The proposed model is composed of three
parts: Monitoring, Detecting and Debugging.

The remainder of this paper is organized as follows. We
survey related work in Section 2. Some terminologies, the
assumed hardware architecture and Starvation bug examples
are presented in Section 3. We describe our proposed model
in Section 4. Finally we conclude the study and highlight
future directions of this work in Section 5.

2. RELATED WORK
Burky and Kalla present a patent and propose a method

for detecting and handling a starvation of a thread in a multi-
threading processor environment [5]. They believe that some
of the available methods are too slow. In their proposed
method first they define a counter for each thread while the
counters are loaded with a pre-selected value. If a group
of instructions from one thread not form the other threads
has been completed then the value of associated counter for
that thread will be updated by decrementing the counter
stored value. If the group of instructions has not been com-
pleted for either thread then the counters will not change and
they will be remained (or reload) with the previous counters
stored value. The value of counters will check whether they
reach to predetermined value or not. If the values are not
equal to predetermined value then the previous steps will
repeat otherwise a thread starvation condition may be de-
tected. The comparison between predefined value and each
thread counter defines which thread may be starved. Their
method may detect the starvation bugs which causes the
performance of the system and not the starvation bugs which
cause nondeterministic output(s) while our proposed method
can monitor, detect and debug the starvation bugs which
cause nondeterministic output.

Moreover, Marwa et al. [8] believe that some of the con-
currency bugs, Starvation and Deadlock bugs, should be
identified in early stage of software life-cycle such as de-
signing process. They use a search technique to propose a
method for detecting Deadlock and Starvation bugs. Their
proposed method requires a Unified Model Language (UML,
sequence diagram) and Modeling and Analysis of Real-Time
and Embedded Systems (MARTE) model of the system under
test. Their method relies on a number of Genetic Algorithms
(GAs), which directed at finding a particular concurrency
bug to search for threads’ conditions by using the information
available in UML/MART model.Their results show that a
great deal of improvement could be obtained in runtime effi-
ciency by using more powerful hardware and distributed GAs.
Since their method is incorporated with design inspections
therefore the design inspections might effect on detecting the
concurrency bugs by this method.

In general, the current fault detectors cannot guarantee
that no faults exist while one may feel confident that such
a case is unlikely. The user may later uncover potential
problems that can arise due to actual execution times of

threads. Our proposed model considers this issue and can
uncover potential problems that can arise due to actual
execution times of threads by collecting, processing and
measuring significant data at actual execution times.

3. PRELIMINARIES
In parallel and concurrent applications, Starvation is a

condition in which a thread indefinitely delayed because
other threads are always given preference [9]. Starvation bug
typically occurs when high priority threads are monopolising
the CPU resources. During Starvation, at least one of the
involved threads remains in the Ready queue [2]. In general,
four conditions should be fulfilled when a Starvation bug
occurs [1]:

1. At least one of the threads is executing on one of the
processor core.

2. At least one of the threads is in the Ready state.1

3. The number of involved threads is larger than the
number of free cores.

4. At least one thread is in the Ready queue for an unac-
ceptably long time.

Starvation bugs on multicore software might happen be-
cause of CPU core availability, when the number of CPU core
is not sufficient to execute the threads then an unexpected
output (nundeterministic result) might be produce within
an expected time-frame.

It should be noted that the terminology concerning soft-
ware problems is not entirely consistent. In software testing,
debugging and troubleshooting, different terms like fault,
error, bug, failure, problems, anomalies, troubles, and defect
exist and are sometimes used interchangeably. In this re-
search we use the term bug while this may not be entirely in
line with the above terminology, it is consistent with the ter-
minology used in related work on concurrency bugs specially
Starvation bug.

In this research, our focus is on Symmetric Multiprocessing
(SMP) architecture (and not on Asymmetric Multiprocessing
(AMP)). On SMP architecture the memory and I/O devices
are shared equally among all of the processors [4]. It is more
uniform and we believe that concurrency problems appear
in a more similar way among SMPs than AMPs, which
implies that articles relaying to concurrency in SMPs are
straightforward to classify. In this SMP model the system
have a single-chip multicore processor with “k” identical cores
and two levels of cache2. Each core has its private level one
cache, while the last level cache (LLC) is shared among all
cores. We furthermore assume a single operating system
managing resources and execution on all cores.

3.1 Starvation Examples on Multicore Software
We provide two starvation examples as a part of a multicore

software and explain their execution scenario in this section.
Figure 1(a) shows an example of a Starvation bug which
is data race free and causes a nondeterministic output. In
order to consider synchronization issues and avoid data race

1Ready is a state when the thread is prepared (ready) to
execute when given the opportunity.
2Cache is “an area of memory that holds recent used data
and instruction” [6].

Thread A
…
4: lock(customerName)
5: lock(balance)
6: customerName = read(customerName)
7: Balance = 1000
8: unlock(balance)
9: unlock(customerName)
…

Thread B
…
13: lock(customerName)
14: lock(balance)
15: customerName = read(customerName)
16: Balance = 500
17: unlock(balance)
18: unlock(customerName)
…

Thread C
…
…

26: file.write (customerName, balance)

…
…

(a) An example of Starvation bug causing unexpected (nondeterministic) output

Thread X
…
X2: Do
X3: If (time.now = = timeSet) then
 X4: sendSignal(alarmA, 1)
 X5:else (time.now > = timeSet +10) then
 X6: sendSignal(alarmA, 0)
X7: while (true)
…

Thread Y
…
Y2: Do
Y3: If (time.now = = timeSet) then
 Y4: sendSignal(alarmB, 1)
 Y5:else (time.now > = timeSet +10) then
 Y6: sendSignal(alarmB, 0)
Y7: while (true)
…

Thread Z
…
Z2: Do
Z3: If (time.now = = timeSet) then
 Z4: sendSignal(alarmC, 1)
 Z5:else (time.now > = timeSet +10) then
 Z6: sendSignal(alarmC, 0)
Z7: while (true)
…

(b) An example of Starvation bug causing performance problem

Figure 1: Starvation bug examples

bug (data race free) we used lock mechanism in this example.
This example suppose to save all updates by Thread A and
B into a file by Thread C. The updated values belong to two
shared variables (customerName, Balance). Thread C is a
separated thread for recording the history of updated data
by other threads (A and B). One scenario for executing these
three threads as parts of multicore software can be as follows:
during the execution only two cores (Core1 and Core2) are
available. When threads A and B are executing on Core1
and Core2 in parallel, Thread C has to wait in Ready queue.
If Core1 reaches line 4 before Core2 reaches line 13 then the
customerName will read from I/O and store the value (which
is given by user) to DRAM, LLC and L1 Cache of Core1
after executing line 6. Then by executing line 7, Core1 will
update the Balance value (with 1000) by storing to L1 Cache
of Core1, LLC and DRAM. On the other hand while Core1
is executing these lines (4 to 7), Core2 will stay in Blocked
queue until Core1 reaches to line 8 and 9 and release the
locks. Core1 will continue to execute other commands from
Thread A. Core2 can execute line 15 and customerName will
read from I/O and store the value (given by user) to DRAM,
LLC and L1 Cache of Core2. Core2 will continue to execute
line 16 and update the Balance value (with 500) by storing
to L1 Cache of Core2, LLC and DRAM. within this time
Thread C still is waiting in Ready queue for an available core
thus the updated value by Thread A cannot store into the
file because Thread C could not execute and the data was
corrupted by Thread B.

Another example of a starvation bug is given in Figure 1(b).
Three threads (X, Y and Z) are parts of multicore software.
The main goal of the software is activating three alarms
(sound or light) after passing some conditions at specific
time (timeSet shows the requested time) and deactivating
the alarms after 10 second from activation time. ThreadX,
Y and Z can send signal to activate the alarms A, B and

C respectively. Suppose just two cores (Core1 and Core2)
are available and Core1 executes ThreadX, Core2 executes
ThreadZ thus ThreadY has to wait in Ready queue. Core1
will execute the lines from X2 to X7 and Core2 will execute
the lines from Z2 to Z7 in parallel. This scenario explains that
both Threads X and Z can active the alarmA and alarmC
and inactive them after 10 second while since Thread Y
was waiting in Ready queue within that time-frame then a
Starvation bug happens and alarmB cannot become active
and deactivate at requested time.

4. PROPOSED MODEL
In this section, we propose a model for monitoring and

debugging Starvation bugs. The proposed model consists of
three phases as it shown in Figure 2, viz., 1) Monitoring, 2)
Detecting and 3) Debugging.

First during the Monitoring phase necessary information
for detection of concurrency bugs (here starvation bugs) are
collected from the running system and logged. Multicore
software poses a unique challenge for generating different
training runs. Different runs, even with the same input, can
have different interleavings. The data in “Data extraction”
represents all information relevant to concurrency bugs such
as thread states, thread interactions, thread priorities and
lock interactions. These data will be collected from each
core. In order to reduce overhead and transmission time
we can as well compress the collected data from the extract
data phase before logging the data in Log file. After the
Monitoring phase, the extracted and compressed data from
each core will be merged and stored into a log file along with
some statistical information such as thread id and core id
and so on, for the purpose of comparing. Log file consists of
recorded significant data from runtime execution in order to
use them off-line in detecting phase.

Multicore
software
execution

Saving
Log file

 Monitoring
Data extraction from

thread on core 1

Data extraction from
thread on core 2

Data extraction from
thread on core k

Data
compression

Data
compression

Data
compression

Comparing
data to

Starvation bug
properties

Replay the
Starvation bug

 Debugging the Starvation
Cause

identification
Exploring
corrections

Fixing the
starvation bug

Yes

No

M
on

ito
rin

g
D

et
ec

tin
g

D
eb

ug
gi

ng

Saving
Starvation bugs

Log file
Yes

No
Fixing

the Starvation
bug now?

Starvation
bug

happened?

Fixing
through

debugging
steps?

Yes

Apply
appropriate
mitigation

method

No

Yes Starvation bug

D
etecting

D
ebugging

M
onitoring

Figure 2: Monitoring and debugging Starvation bugs model

Detecting phase is proposed to find the starvation bugs
either on online mode (at software execution time) or on of-
fline mode. It is decomposed into six steps: 1) comparing the
properties of bug to Starvation bugs’ properties, 2) checking
if a starvation bug has happened, 3) saving starvation bug
log file, 4) checking if the user wants to fix the starvation
bug at that time, 5) checking if the user wants to fix the
bug through debugging steps and 6) applying appropriate
mitigation method. As explained in Section 3 four proper-
ties should be fulfilled when a Starvation bug occurs. In
this phase first, the saved data will be compared to these
properties in order to find Starvation bugs [1]. If the saved
data and starvation bug properties were matched then a star-
vation bug will be reported and a log record will be stored
in a file. In this step the user becomes involved and plays
an important role in order to decide whether to continue
with Monitoring or Debugging phase. If the user wants to
let the system continue its execution despite the occurrence
of the bug (e.g., it is (still) deemed acceptable in terms of
performance, etc.), then the Monitoring phase will not stop
and execution of multicore software will continue (“Multicore
software execution” step). On the other hand, if the detected
bug requires to be fixed, the user may decide that mitigat-
ing the consequences of the bug would be possible without
applying the debugging process. In this case the multicore
software execution will not stop and instead an appropriate
mitigation process will apply (such as software runtime re-
configuration, dynamically changing the priorities of tasks
and threads, changing scheduling policy at runtime, etc.);
otherwise the Monitoring phase will stop and Debugging
phase can start.

Finally, Debugging phase is proposed to replay and debug
the detected Starvation bugs. It is decomposed into four
steps: 1) Replay the starvation bugs, 2) Cause identification,

3) Exploring correction and 4) Fixing the Starvation bugs.
“Replay the Starvation bug” will start if the user wants to
reproduce and debug the Starvation bug. Afterwards the
root cause of the Starvation bug will be identified in “cause
identification”. Then the potential solutions among all possi-
ble solutions for fixing the Starvation bug will be compared
and the best one will be selected in “Exploring corrections”.
Eventually, the process for repairing and fixing the Starvation
bug will lead to remove the bug in “Fixing the Starvation
bug”.

By this model we aim to tracing down the Starvation bugs
that have caused a detected failure and replay the thread
executions and the system behavior repeatedly.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced a model for detection of

concurrency bugs through runtime monitoring, as well as
for debugging and fixing those bugs. The proposed model
provides a systematic way to address and tackle such bugs,
which is currently lacking, and in practice testers mostly
address concurrency bugs more or less the same way as
other types of bugs (e.g., syntactic bugs). Our focus in this
paper has been mainly on Starvation bugs. In our model,
Starvation bugs are detected by checking if specific properties
of these bugs, that distinguish them from other bugs, can be
observed and derived from the collected runtime monitoring
information. As a future work we plan to extend the model
for detection of other concurrency bugs based on their distinct
properties which we have already identified in [1].

Our model also acts as the basis for developing tool(s) to
enable solving Starvation bugs in software executable on mul-
ticore platforms. Another interesting future direction of this
work is to investigate the feasibility of automatic detection

and fixing of Starvation bugs without user intervention by
continuing to execute the software and applying runtime re-
configuration to fix the bug; or in a semi-automatic fashion
by letting users know that the bug cannot be fixed auto-
matically through re-configuartion and requires debugging
the code. There are other possible directions for the future
work such as including static analysis techniques as part of
the model to complement the monitoring part for detecting
concurrency bugs; and also implementing the model as part
of a framework.

6. ACKNOWLEDGMENTS
This research is supported by Swedish Foundation for

Strategic Research (SSF) through the SYNOPSIS project.

7. REFERENCES
[1] S. Abbaspour A., H. Hansson, D. Sundmark, and

S. Eldh. Towards classification of concurrency bugs
based on Observable properties. In International
Workshop on Complex Faults and Failures in Large
Software Systems, Italy, 2015.

[2] S. Abbaspour Asadollah, D. Sundmark, S. Eldh,
H. Hansson, and W. Afzal. 10 years of research on
debugging concurrent and multicore software: a

systematic mapping study. Software Quality Journal,
pages 1–34, 2016.

[3] S. Abbaspour Asadollah, D. Sundmark, S. Eldh,
H. Hansson, and E. Paul Enoiu. A study of concurrency
bugs in an open source software. In International
Conference on Open Source Systems (OSS), 2016.

[4] R. Brown. Method and apparatus for processing
requests for video presentations of interactive
applications in which vod functionality is provided
during nvod presentations, June 23 1998.

[5] W. Burky and R. Kalla. Mechanism for detecting and
handling a starvation of a thread in a multithreading
processor environment, Oct. 28 2004.

[6] D. Gove. Multicore Application Programming: For
Windows, Linux, and Oracle Solaris. Addison-Wesley
Professional, 2010.

[7] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from
mistakes: A comprehensive study on real world
concurrency bug characteristics. SIGPLAN Not.,
43(3):329–339, Mar. 2008.

[8] M. Shousha, L. Briand, and Y. Labiche. A uml/marte
model analysis method for uncovering scenarios leading
to starvation and deadlocks in concurrent systems. IEEE
Trans. Softw. Eng., 38(2):354–374, Mar. 2012.

[9] W. Stallings. Operating Systems internals and design
principles. Prentice Hall Englewood Cliffs, 2012.

