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Abstract. Testing of safety-critical systems is an important and costly
endeavor. To date work has been mainly focusing on the design and
application of diverse testing strategies. However, they have left the im-
portant decision of “when to stop testing” as an open research issue. In
our previous work, we proposed a convergence algorithm that informs
the tester when it is concluded that testing for longer will not reveal
sufficiently important new findings, hence, should be stopped. The stop-
test decision proposed by the algorithm was in the context of testing the
worst-case timing characteristics of a system and was evaluated based on
the As Low As Reasonably Practicable (ALARP) principle. The ALARP
principle is an underpinning concept in many safety standards which is
a cost-benefit argument. ALARP implies that a tolerable risk should be
reduced to a point at which further risk-reduction is grossly dispropor-
tionate compared to the benefit attained. An ALARP stop-test decision
means that the cost associated with further testing, after the algorithm
stops, does not justify the benefit, i.e., any further increased in the ob-
served worst-case timing.
In order to make a stop-test decision, the convergence algorithm used the
Kullback-Leibler DIVergence (KL DIV) statistical test and was shown to
be successful while being applied on system’s tasks having similar char-
acteristics. However, there were some experiments in which the stop-test
decision did not comply to the ALARP principle, i.e., it stopped sooner
than expected by the ALARP criteria. Therefore, in this paper, we in-
vestigate whether the performance of the algorithm could be improved
in such experiments focusing on the KL DIV test. More specifically, we
firstly determine which features of KL DIV could adversely affect the
algorithm performance. Secondly, we investigate whether another sta-
tistical test, i.e., the Earth Mover’s Distance (EMD), could potentially
cover weaknesses of KL DIV. Finally, we experimentally evaluate our
hypothesis of whether EMD does improve the algorithm where KL DIV
has shown to not perform as expected.

1 Introduction

Safety-critical systems are those in which failure can lead to loss of people’s lives
or catastrophic damage to the environment. Timeliness is an important concept



in a safety-critical system and relates to the notion of response time, which is the
time a system takes to respond to stimuli from the environment. If the response
time exceeds a specific time, called deadline, a catastrophe might occur. Testing
is an important process in a safety-critical system and can be used to assure that
timing requirements are met. However, it is also one of the most expensive parts.
Therefore, a key issue for testers is to determine when to stop testing as stopping
too early may result in defects remaining in the system, or a catastrophe due to
high severity level of undiscovered defects; and stopping too late will result in
waste of time and resources. Researchers and practitioners, so far, have mainly
focused on the design and application of diverse testing strategies, leaving the
stop-test decision largely an open research issue.

Our previous work [1], [2], [3], was about developing a convergence algorithm
to make a stop-test decision in the context of testing the worst-case timing
characteristics of systems. The algorithm informs the tester whether further
testing would reveal significant new information about timing behaviour; and
if not, suggests testing to be stopped. In order to make such a decision, the
algorithm looks into the testing data, i.e., response times of system’s tasks, and
(i) determines whether the Maximum Observed Response Time (MORT) has
recently increased and, when this is no longer the case, (ii) it investigates if
the distribution of response times has significantly changed. When no significant
new information about the system is revealed during a given period of time,
it is concluded, with some statistical confidence, that more testing of the same
nature is not going to result in significant new insight. However, some other
testing techniques may still achieve significant new findings.

The evaluation of the algorithm was based on the As Low As Reasonably
Practicable (ALARP) principle which is an important concept in many safety
standards, and involves weighting benefit against the associated cost [4]. We
showed that, by further testing, the sacrifice would be grossly disproportionate
compared to the benefits attained, i.e., any significant increase in the observed
MORT, after stopping the test, needs a disproportionate amount of testing.

Our evaluations based on simulation showed that the convergence algorithm
was successful while being applied across task sets having similar characteristics,
e.g., all trials consisted of 10 tasks with task set periods ranging from 200 µs to
400 µs. However, there were some experiments in which the algorithm could not
suggest a proper stop-test decision according to ALARP. In order to deal with
such situations, in this paper, we investigate whether the algorithm performance
could be improved focusing on the statistical test used in the algorithm. The
algorithm suggests testers to stop testing when it gets statistically confidence
that further testing is not going to reveal significant new findings using the
Kullback-Leibler DIVergence (KL DIV) [5], [6] statistical test. In this paper,
firstly, we determine features of the KL DIV test that may adversely affect the
algorithm. Secondly, we look into a similar test, called Earth Mover’s Distance
(EMD), which seems to cover some weaknesses of KL DIV, thus, improving
the convergence algorithm. Finally, we experimentally investigate whether EMD
does improve the algorithm compared to KL DIV.



The remainder of this paper is structured as follows. Section 2 describes
the related work. The convergence algorithm and the simulation environment in
which we run our experiments are stated in 3. The evaluation criteria is presented
in Section 4 followed by a comparison of KL DIV and EMD statistical tests in
Section 5. The experimental results are shown in Section 6. Section 7 finally
states the conclusions and future work.

2 Related Work

There are stringent timing requirements imposed on safety-critical systems which
make testing an important and necessary process with which not only the correct
system functionality must be tested, but also the timing characteristics.

Testing of a safety-critical system involves reliable timing analysis in the form
of the Worst-Case Execution Time (WCET) estimation and Response Time
Analysis (RTA) to assure that tasks in the system meet their timing require-
ments. However, there are variations in software execution times, caused by
some software and hardware characteristics, which make timing analysis a com-
plex and difficult process. Sources such as varying input sets to the software, the
software layout in the memory for the code and data may cause execution times
variation on the software side. Whereas, features that improve the average per-
formance by exploiting properties of execution history, e.g., caches and pipelines,
may cause execution times variations on the hardware side. If all characteristics
of software and the underlying hardware are thoroughly understood, accurate
WCET estimation would be possible. However, the dependence of hardware and
software timing characteristics on the history of execution is one of the main
factors that makes the cost of acquiring knowledge needed to perform timing
analysis challenging.

WCET estimation is carried out using two main approaches: Deterministic
Timing Analysis (DTA) and Probabilistic Timing Analysis (PTA). DTA and
PTA approaches are performed through two categories: static and measurement-
based methods.

2.1 Static Timing Analysis (STA)

Conventional static timing analysis techniques require the system under analysis
to be time deterministic. In a time deterministic system, for a specified input set,
the sequence of events that will occur is completely known, as well as the time
after which the output of an event will be generated. This analysis depends on a
very detailed model of the system as well as accurate information of dependence
between significant events. The growing complexity in safety-critical systems, at
hardware and software level, makes the extent of required knowledge, time, effort
and cost to acquire and understand all the relevant details, unaffordable. There-
fore, as long as current analysis techniques are incapable of covering challenges
within increased hardware complexity, there will be a significant degradation in
the quality of the resulting products.



To sum up, industry demands higher level of performance with reduced cost
and power dissipation which can be provided by advanced hardware features.
However, complex hardware features are difficult to deal with by DTA techniques
as the amount of required information is becoming challenging.

2.2 Probabilistic Timing Analysis (PTA)

The cost of acquiring knowledge to carry out correct timing analysis can be
significantly reduced by a hardware/software architecture in which the execution
time behaviour does not depend on execution history [7]. This can be achieved
by introducing randomisation in the timing behaviour of hardware and software
while functional behaviour is kept unchanged which is coupled with new PTA
techniques.

Static Probabilistic Timing Analysis (SPTA) [7] statically derives a-priori
probabilities from a model of the system. Tight WCET estimates made with
SPTA have less dependence on complete knowledge than conventional DTA
methods, and lack of information in analysis has less impact on the WCET esti-
mation. In fact, WCET estimates provided by SPTA react much more smoothly
to the lack of knowledge, with a gradual shift towards a maximum value as
knowledge is reduced. Although the amount of information required about the
hardware/software under analysis is reduced, SPTA stills needs a lot of infor-
mation about the internal behaviour of the architectural components.

Measurement-Based Probabilistic Timing Analysis (MBPTA) requires much
less information rather than SPTA which makes it more attractive for industry.
MBPTA derives probabilities from end-to-end runs of the software under analysis
on the target platform. These runs provide data about the timing behaviour of
the software when executing on the proposed hardware with randomised timing
behaviour. MBPTA derives probabilities by intensively stress testing the real
system through high-coverage input data, then, recording the longest execution
time, called High WaterMark (HWM); and adding to it an engineering margin
to make safety allowances for the unknown.

A MBPTA technique based on the Extreme Value Theory (EVT) [8] is pro-
posed by Cucu-Grosjean et al. [9] which addresses the problems with the way
EVT is applied [10], [11]; and derives probabilistic WCET (pWCET) estimates.
The authors collect execution times achieved by end-to-end runs of the sys-
tem under analysis on the target platform. In order to apply EVT, they collect
from the original distribution, the values which fit into the tail while discard-
ing the rest of observations. Then, by means of a convergence algorithm, they
assure whether enough number of observations is gained to obtain statistical
significance; and for EVT to provide high quality pWCET estimates. Their con-
vergence algorithm compares tails of two distributions depicted by Ncurrent and
Ncurrent + Ndelta where N determines the number of runs and decides to stop
observing WCETs if the difference between the distributions’ tail becomes below
a given threshold for some specified consecutive iterations.

The work of Cucu-Grosjean et al. [9] is similar to ours in the sense that both
are based on a convergence algorithm to decide whether enough observations



from testing have been gained to predict future timing behaviour of the system.
However, the two methods involve the following differences:

– Our observations relate to the response times of tasks in the system without
knowledge of the exact WCETs, thus, is based on a black-box approach.
While their method is based on the WCETs obtained from end-to-end runs
of the software using a white-box technique.

– To decide the sufficiency of observations, our method looks into the whole
distribution of testing data while theirs just considers the distribution tail.
In our view, it would not be sufficient to look into the distribution tail as
it might happen that while there is no significant change in the distribution
tail, the rest of the distribution is still significantly changing which indicates
that there is a high chance of observing new and important information by
further testing. On the other hand, if the whole distribution is converged,
future timing behaviour is not expected to significantly change and even if
there would be such a change, its cost is not justified.

– In the work by Cucu-Grosjean et al. [9], the correct use of EVT imposes that
observed execution times can be described by independent and identically
distributed (i.i.d.) random variables. This also places strong requirements
on the processor hardware and how end-to-end execution times are taken
such that they can be modeled by i.i.d. random variables. Our work is nei-
ther based on EVT nor assumes hardware dependencies. However, hardware
dependencies are a part of our future work.

3 Convergence Algorithm

This section, firstly, describes the system simulator model on which our analysis
is based. Further, it describes our proposed convergence algorithm to decide
when to stop testing for worst-case timing characteristics of systems.

3.1 Task Set Simulator

Testing data, in this work, is generated using an in-house task set simulator
which is a simplified version of what was originally used for the ball and beam
example in [12]. The overall scheme of the simulator is shown in Figure 1. The
simulator generates a set of tasks and executes them for a specified duration
(SimDur). No task dependency, overhead and context switch time is consid-
ered in the simulator. The simulator neither involves the underlying hardware
characteristics. Tasks are prioritized based on the Deadline Monotonic Prior-
ity Ordering (DMPO), i.e., the shorter a task’s deadline, the highest priority
it takes. Periods are randomly generated and each task deadline is equal to its
period. Each task is assigned a random execution time in the range [Best-Case
Execution Time (BCET), WCET]. The BCET and WCET are the shortest and
the longest execution times of a task respectively. The scheduler monitors each
task’s status: delayed, in run queue or executed and performs preemptive Dead-
line Monotonic Scheduling Theory (DMST) based on tasks’ fixed priorities, i.e.,



the task with the highest priority is executed first. The simulator also generates
static WCRT of the tasks.

The reason to use the simulator is that, in this way, we have careful control
over the task set characteristics and a ground truth for evaluations is established.
Two ground truths are provided by the simulator: (i) WCRT achieved by static
analysis which provides an exact safe result, and (ii) a HWM achieved by signif-
icantly longer simulation. Longer simulation is possible due to the nature of the
simulator used. However, such increased testing would be prohibitively expensive
in a real system.

Scheduler	  	  
(Pre-‐emp/ve,	  DMST)	  Task	  set	  

generator	  

Simulator	  	  
(SimDur)	  

Convergence	  
algorithm	  
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/mes	  

Task	  set	  

Stop-‐test	  
decision	  

Task	  1	  

Task	  n	  
Execu/on	  /me	  
	  
	  
Period	  

Task	  2	  

Execu/on	  /me	  
	  
	  
Period	  

Execu/on	  /me	  
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Fig. 1: Overall scheme of task set simulator

3.2 The Convergence Algorithm

As stated earlier in 1, in order to decide when to stop testing, we proposed a con-
vergence algorithm in [1] which was further developed it in [2], [3]. The algorithm
makes statistical analysis on the observed response times to determine whether
the Maximum Observed Response Time (MORT) has recently increased and the
distribution of response times has significantly changed using the following tests
respectively:

– High WaterMark (HWM) which stands for the MORT during testing and
determines whether the MORT has recently increased. In order to run the



HWM test, the algorithm compares HWMs corresponding to two successive
response times distributions, Tcurrent and Tcurrent + T∆, over a couple of
iterations. If the HWM does not increase for a specific number of consecutive
iterations, the algorithm analyses the distributions in more details using a
statistical test. The HWM test increases the scalability of the convergence
algorithm by reducing the number of statistical tests that are needed.

– When the MORT values have no increase for a specific time, i.e., the HWM
test is passed, the algorithm applies the KL DIV test to examine whether the
distribution of response times has significantly changed. The KL DIV test
is applied on Tcurrent and Tcurrent + T∆ histograms and the result shows
the difference between these two. If the test result falls below a specified
threshold at a required confidence level, it is concluded that Tcurrent and
Tcurrent + T∆ have converged. The convergence indicates that no significant
new information has been observed, thus, future timing behaviour is not
going to be significantly different. At this point, the convergence algorithm
proposes to stop testing.

Figure 2 shows the steps within the convergence algorithm along with its pa-
rameters. The convergence algorithm takes each task’s response times (testing

Task	  set	  
Simulator	  

Response	  
Times	  

Counter++	  Counter	  >=	  i	  

Tcurrent	  =	  Tcurrent	  	  +	  β	  

Yes	  

Yes	  

Yes	  

No	  

No	  
No	  

	  
Tcurrent	  

Tcurrent+Δ	  =	  α	  *	  Tcurrent	  	  
	  

	  λ	  (bin	  size)	  	  

Counter	  =	  0	  

HWMcurrent+Δ	  
<=	  HWMcurrent	  

KL	  DIV	  <	  δ	  

Test	  Cases	  

Stop	  

Fig. 2: Convergence algorithm

data) as input, analyses them and proposes a StopPoint. In order to improve the
scalability of our method, a parameter called λ is introduced that keeps track
of frequencies of response times falling between time t and t + λ. This pro-
cess is called binning where λ defines the bin size. Consequently, the algorithm
compares histograms of binned response times rather than distributions of indi-



vidual values which saves us memory space (Figure 3). In each round of analysis,
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two histograms Tcurrent and Tcurrent + T∆ are compared where Tcurrent + T∆
is equal to α * Tcurrent and α forms another parameter in the algorithm. At
the next step, the HWM test is applied on Tcurrent and Tcurrent + T∆ and if
there has been no increase in the HWM for i successive iteration, then, the KL
DIV test would be applied. If the KL DIV test’s result falls below a threshold,
depicted by δ, the algorithm concludes the distributions of response times have
converged, thus, suggests to stop testing. i and δ are the other two parameters
of the convergence algorithm. If either tests is not passed, Tcurrent is increased
by β µs and the next analysis round starts. These steps are taken for each task
in the simulator and the algorithm would stop when the latest task in the task
set passes the HWM and KL DIV tests.

4 Evaluation

As stated earlier, the algorithm is designed and evaluated with a particular fo-
cus on the As Low As Reasonably Practicable (ALARP) principle which involves
weighting benefit against the associated cost [4]. In order to evaluate the conver-
gence algorithm, it is shown that the sacrifice would be grossly disproportionate
compared to the benefits attained, i.e., any further significant increase in the
observed worst-case timing, after stopping the test, needs a disproportionate
amount of testing time.

Three criteria for evaluations are defined as follows.



– The first criterion relates to the closeness of the HWM when the algorithm
suggests testing to be stopped (depicted by HWM at StopPoint) to the
last observed HWM, i.e., the ground truth (depicted by GTHWM ), and is
formulated as follows.

GTHWM −HWMatStopPoint

GTHWM
(1)

The smaller the equation result, the better performance in terms of MORT
is achieved at StopPoint.

– The second criterion relates to testing effort at StopPoint relative to testing
effort at GTHWM which is as follows.

TestingEffortatStopPoint

TestingEffortatGTHWM
(2)

Similar to Equation 1, smaller result indicates better performance of the
algorithm in terms of testing effort.
The first and second criteria try to compare the gain at StopPoint (closeness
of the HWM at StopPoint to GTHWM) with the associated cost, i.e., cost-
benefit analysis. It is ideal to get as close as possible to GTHWM with as
low as possible cost when we stop testing.

– A quantified MORT, here called ALARPHWM, is also defined so that if
the HWM at StopPoint falls between ALARPHWM and GTHWM, it is
considered as an acceptable performance. As all MORT values in the range
[ALARPHWM, GTHWM ] are acceptable in terms of benefit, the StopPoint
with less effort is more desirable. The ALARPHWM is defined as follows.

ALARPHWM = GTHWM − ξ% ∗GTHWM (3)

The value of ξ can be set according to requirements which is 5% in our
evaluations. Consequently, the third criteria is defined as in Equation 4.

HWMatStopPoint−ALARPHWM

HWMatStopPoint
(4)

These criteria help to evaluate the performance of the algorithm in terms
of benefit at StopPoint (closeness to the GTHWM) against the associated cost
(testing time) whilst the least acceptable benefit has to be met (ALARPHWM).

5 The Convergence Algorithm Statistical Test

This section starts with a motivational example of implementing the convergence
algorithm with a new statistical test called EMD. Further, KL DIV and EMD
are compared to explain how EMD could improve the algorithm performance
where KL DIV is not successful.



5.1 Motivational Example

The convergence algorithm introduced in Section 3 has shown to be successful
so far, i.e., it makes a stop-test decision in compliance to the ALARP criteria in-
troduced in Section 4. Figure 4 shows multiple algorithm’s suggested StopPoints
and shows how they conforms to our ALARP criteria. For example, the algo-
rithm gets the same benefit in terms of MORT at StopPoint1 and StopPoint2
according to Equation 1. However, testing effort at StopPoint1 is less than Stop-
Point2. So, it is concluded that StopPoint1 results in better performance than
StopPoint2. At StopPoint3, both HWM and testing effort are less then Stop-
Point1 which means that the algorithm has better performance in terms of cost
and poorer performance in terms benefit at StopPoint3 rather than StopPoint1.
However, as all MORT values in the range [ALARPHWM, GTHWM ] are ac-
ceptable in terms of benefit (Equation 3), StopPoint3 with less effort is more
desirable.
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Fig. 4: Evaluation of the convergence algorithm

Figure 4 also shows a situation when the algorithm stop-test decision occurs
before ALARPHWM which is not desirable (StopPoint4 ). It can be also seen that
the HWM is going to increase soon after StopPoint4, i.e., the algorithm StopPoint
still can be improved, in terms of the observed HWM, with a reasonable amount
of further testing. In order to deal with such a situation, we try to investigate
whether any feature of KL DIV could have a potential impact on the algorithm
and if such features are improved in another statistical test.

5.2 Earth Mover’s Distance (EMD)

There were some experiments in which the convergence algorithm based on KL
DIV did not result in a desirable stop-test decision. Therefore, we focus on KL
DIV features to determine whether any of them could affect the algorithm and
if another test can do better. One of the issues with the KL DIV test is that



large quantities of testing data can affect the test results, i.e, subtle changes are
harder to be observed with lots of data which might be an issue in our algorithm
as it also deals with large amount of WCRTs. Therefore, we are interested in a
statistical test which is more appropriate with respect to the large amount of
testing data.

Moreover, the KL DIV test measures bin-by-bin dissimilarity which means
only pairs of bins in two histograms that have the same index are matched [13].
In another word, the dissimilarity between two histograms is a combination of
all the pairwise differences. A ground distance is only implicitly used by these
measures and in an extreme form, i.e., features that fall into the same bin are
close enough to each other to be considered the same, while those that do not are
too far apart to be considered similar. In this sense, bin-by-bin measures imply
a binary ground distance with a threshold depending on bin size. The major
drawback of such a measure is that it only accounts for the correspondence
between bins with the same index, and does not use information across bins.

Cross-bin dissimilarity measures, on the other hand, use the information
across bins as well and deal better with large amount of data, e.g., the Earth
Mover’s Distance (EMD) test. Such a measure may improve our convergence al-
gorithm performance, i.e., as stated in 3.2, the algorithm compares two successive
histograms Tcurrent and Tcurrent + T∆ while a big part of these two histograms
intersects and there is subtle changes observed in Tcurrent + T∆ compared to
Tcurrent, e.g., the zoomed area in Figure 5 shows how delicate are the changes
between the red bars (Tcurrent) and the black bars (Tcurrent + T∆). Thus, the
more sensitive the algorithm to the extra observed testing data in Tcurrent+T∆,
the more accurate dissimilarity between histograms could be measured.
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Therefore, the EMD test hypothetically seems to be a good substitute for the
KL DIV test in our algorithm and is described as follows: given two distributions,
one can be seen as a mass of earth properly spread in space and the other as a
collection of holes in that same space. Then, the EMD measures the least amount



of work needed to fill the holes with earth where a unit of work corresponds to
transporting a unit of earth by a unit of ground distance [13].

6 Experimental Results

This section describes the experimental framework used to run the simulation.
Then, the experimental results are presented that compare two versions of the
algorithm based on: (i) the KL DIV test, and (ii) the EMD test.

6.1 The Experimental FrameWork

The evaluation phase is based on 20 trials, each consisting of 10 tasks, in the
simulator. The simulator runs for SimDur = 10000000 sec in each trial and gen-
erates the following task set characteristics according to pseudo code presented
in Algorithm 1 (All timing in microsecond unless otherwise stated):

– Non-harmonic periods which are randomly generated within the input do-
main [50000, 200000] for tasks which are not part of the control software,

– Execution times which are randomly generated between the BCET and the
WCET where BCET and WCET are calculated as shown in Algorithm 1,
so that the overall task set utilisation is within [80%, 100%],

– Deadlines which are equal to periods,
– Priorities which are assigned based on DMPO.

Algorithm 1: The Task Set Generation Pseudo Code

Input: NumberOfTasks,MinUTIL,MaxUTIL,UTILStep,
MinPeriod,MaxPeriod, PeriodStep,MaxBCET,BCETStep

Output: TaskSetCharacteristics

1 NumberOfTasks = 10;
2 foreach Task ∈ {TaskSet} do
3 TaskPeriod← Rand(MinPeriod,MaxPeriod, PeriodStep);
4 TaskDeadline← TaskPeriod;
5 TaskBCET ← Rand(1,MaxBCET,BCETStep);
6 TaskSetUTIL← Rand(MinUTIL,MaxUTIL,UTILStep);
7 TaskUTIL← UUniFast(TaskSetUTIL);
8 WCET ← TaskPeriod ∗ TaskUTIL;
9 TaskPriority ← DMPO(TaskSet);

10 end

The Rand function in Algorithm ?? is initialized by a random seed and
returns a value in the range [MinValue, MaxValue] with coefficient ValueStep
in which Value can stand for period, BCET or UTIL. UTIL corresponds to the
utilisation and the UUniFast algorithm generates each task’s utilisation with
uniform distributions [14]. The DMPO function returns each task priority based
on the DMPO.



6.2 Results

Results in this section correspond to the comparison of the KL DIV with the
EMD test in terms of performance. Evaluation of these two tests is based on the
benefit and cost metrics achieved from Equation 1 and 2 respectively.

Figure 6 shows the performance of the convergence algorithm using KL DIV
vs. EMD test. The horizontal axis corresponds to the KL DIV and EMD test
results for different tasks within the task set while each axis tick shows the task
with its priority, e.g., KLDIV1 shows the KL DIV result for the highest priority
task. The convergence algorithm parameters had the same tunings within both
tests which are as follows: {α = 2, i = 10, δ = 0.001, λ = 200, β = 1250 sec}.
It can bee seen that for the first two highest priority tasks, KL DIV and EMD
get almost similar performance in terms of benefit while from the third task, as
the task priority decreases, the KL DIV results in poorer benefit rather than the
EMD test. However, the EMD test is passed in fewer cases rather than the EMD.
It could be argued that EMD is more sensitive to subtle changes in distributions
compared to KL DIV. Higher priority tasks tend to converge soon in simulation,
thus, result in KL DIV and EMD having similar performance. Lower priority
tasks, however, tend to converge later, thus, EMD results in either late or no
convergence rather than KL DIV. The tests performance in terms of cost is quite
similar as shown in 6 (bottom graph).
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Fig. 6: KL DIV vs. EMD for trials of 10 tasks



From Figure 6, it can be concluded that with a choice of small δ, EMD
converges later than KL DIV as the task priority decreases. This might also
help the situations where KL DIV stops sooner than expected according to the
ALARP criteria. Figure 7 shows such a situation, for a task with low priority,
where StopPointKLDIV and StopPointEMD show the algorithm StopPoint for
KLDIV and EMD respectively. The parameter ξ in Equation 3 is set to 1%. It can
be seen that KL DIV stops sooner than ALARP while EMD stops later spending
a reasonable amount of further testing time, thus, it improves the performance
of the algorithm compared to KL DIV.
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Fig. 7: EMD outperforming KLDIV with δ = 0.001

In the next round of analysis, we increased δ to see how EMD performance
would change. We used the following set of tunings through KL DIV and EMD:
{α = 2, i = 10, δ = 0.1, λ = 200, β = 1250 sec}. The results are shown in
Figure 8. It can be seen that with bigger δ, the EMD test performance (benefit
and cost) is similar to the KL DIV and more tasks of lower priority passed
EMD compared to Figure 6. So, it can be concluded that the EMD test is more
sensitive to dissimilarity between histograms, i.e., with lower threshold δ, less
tasks of lower priority pass the test compared to the KL DIV test.



KLDIV1 EMD1 KLDIV2 EMD2 KLDIV3 EMD3 KLDIV4 EMD4 KLDIV5 EMD5 KLDIV6 EMD6 KLDIV7 EMD7 KLDIV8 EMD8 KLDIV9 EMD9 KLDIV10 EMD10
−0.5

0

0.5

1

1.5

2

2.5

3
x 104

Co
st 

M
et

ric

 

 
KLDIV Median
KLDIV/EMD Raw Data
EMD Median

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Be
ne

fit 
M

et
ric

Fig. 8: KL DIV vs. EMD for trials of 10 tasks

In order to determine how λ affects the KL DIV and EMD tests, we used
the following tunings: {α = 2, i = 10, δ = 0.001, λ = 1400, β = 1250 sec}
where λ is bigger than tunings used in Figure 6. As shown in Figure 9, the two
tests have similar cost metric values. However, the EMD test has better benefit
from task 3 to task 7. For the last three lowest priority tasks, i.e., task 8 to task
10, no task pass the EMD test while the KL DIV results for them is similar
to tunings with λ = 200. So, it can be concluded that more bins, which result
in smaller bin size, make differences between histograms more apparent and the
EMD test becomes more sensitive using smaller bins. According to [13], cross-bin
dissimilarity measures, e.g., EMD, yield better results with smaller bins. Then,
the important issue would be to decide the bin size so that a balance between
quality of the results and scalability of the algorithm could be made, i.e., smaller
bins result in less scalable algorithm in terms of physical memory occupied by
testing data.
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Fig. 9: KL DIV vs. EMD for trials of 10 tasks

From Figure 9 discussion, it can be concluded that the smaller bin size, the
more sensitive EMD test becomes to the subtle changes in distributions which
is not the case for KL DIV. This might also improve the convergence algorithm
where KL DIV does not make an ALARP-based decision. Figure 10 shows such
a situation, for a task with mid priority in the task set. The parameter ξ in
Equation 3 is set to 0.5%. It can be seen that KL DIV stops sooner than ALARP
while EMD stops later, thus, it meets the ALARP criteria. However, as it was
mentioned earlier the next issue would be the choice of been size such that less
testing effort is associated with EMD, i.e., StopPointEMD is preferred to stop
sooner after ALARP than later.
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Fig. 10: EMD outperforming KLDIV with λ = 1400

From this section results, it can be concluded that EMD is a more sensitive
test to subtle differences between histograms when dealing with lots of data
compared to KL DIV and can improve the performance of the algorithm in
situations where KLDIV has shown to be weak.

7 Conclusions and Future Work

In order to make a stop-test decision in the context of the worst-case timing
characteristics, we propose and develop a convergence algorithm. However, we
observe experiments in which the algorithm could not make a proper stop-test
decision according to the ALARP principle. In order to deal with such situa-
tions, we propose that the KL DIV test to be replaced by the EMD test. We
experimentally evaluate the performance of the algorithm using EMD against
KL DIV to determine whether EMD does make an improvement.

The immediate extension of the work will focus on making the algorithm
robust. For the convergence algorithm to become robust, it is important that
it holds when task set characteristics vary across some required ranges, e.g.,
number of tasks ranging from 10 to 50, task period ranging from [200, 400] µs
to [200, 1000] µs. In order to achieve robustness, we have taken the following
steps so far: firstly, in [3], we derived a set of task set characteristics and their
values that adversely affect the algorithm performance. Secondly, in the current
work, it is examined whether the algorithm itself can be improved with a focus
on the statistical test it uses. Thirdly, in the next piece of work, the algorithm
would be stress tested using the influential task set parameters identified earlier
and tuned so that the algorithm could hold across the required ranges of task
set characteristics.

Further future work will be around applying the convergence algorithm in
systems with more complex timing behaviour. This may include using advanced



bench marks, real system considering hardware dependency or the support of
mixed criticality. Criticality is a designation of the level of assurance against
failure needed for a system component and a mixed criticality system (MCS) is
the one that has two or more distinct levels, e.g., safety critical, mission critical
and low critical [15].
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