
Mälardalen University Licentiate Thesis
No.11

Transformation Methods for
Off-line Schedules to

Attributes for Fixed Priority
Scheduling

Radu Dobrin
May 2003

Department of Computer Science and Engineering
Mälardalen University

Väster̊as, Sweden

Copyright c© Radu Dobrin, 20031

ISBN 91–88834–01–8
Printed by Arkitektkopia, V̈aster̊as, Sweden
Distribution: Mälardalen University Press

1Paper A, B and C,c©by publisher.

Abstract

Off-line scheduling and fixed priority scheduling (FPS) are often considered
as complementing and incompatible paradigms. A number of industrial ap-
plications demand temporal properties (predictability, jitter constraints, end-
to-end deadlines, etc.) that are typically achieved by using off-line schedul-
ing. The rigid off-line scheduling schemes used, however, do not provide for
flexibility. FPS has been widely studied and used in a number of industrial
applications, e.g., CAN bus, mostly due to its simple run-time scheduling and
small overhead. It can provide more flexibility, but is limited with respect to
predictability, as actual start and completion times of executions depend on
run-time events.
In this work we show how off-line scheduling and FPS run-time scheduling can
be combined to get the advantages of both – the capability to cope with com-
plex timing constraints while providing run-time flexibility. The proposed ap-
proaches assume that a schedule for a set of tasks with complex constraints has
been constructed off-line. We present methods to analyze the off-line sched-
ule and derive FPS attributes, e.g., priorities, offsets, and periods, such that
the runtime FPS execution matches the off-line schedule. The basic idea is to
analyze the schedule and to derive task attributes for fixed priority scheduling.
In some cases, i.e., when the off-line schedule can not be expressed directly
by FPS, we split tasks into instances to obtain a new task set with consistent
task attributes. Furthermore, we provide a method to keep the number of newly
generated artifact tasks minimal.
Finally, we apply the proposed method to schedule messages with complex
constraints on Controller Area Network (CAN). We analyze an off-line sched-
ule constructed to solve complex constraints for messages, e.g., precedence,
jitter or end-to-end deadlines, and we derive attributes, i.e., message identi-
fiers, required by CAN’s native protocol. At run time, the messages are trans-
mitted and received within time intervals such that the original constraints are
fulfilled.

Acknowledgements

I would like to thank my supervisor Gerhard Fohler at the Department of Com-
puter Science and Engineering for his guidance and constant constructive feed-
back through the first part of my graduate education. Further more, I want to
thank Damir Isovic and Tomas Lennvall for their help with reviewing the work
presented in this thesis, and all my other colleagues at the Department of Com-
puter Engineering for the pleasant time we have had during this period of time.
Last, but definitely not least, I would like to thank my parents for their major
contribution in my scholar education.

This work has been supported by ARTES.

Västeṙas, May 2003
Radu Dobrin

Contents

1 Introduction 1
1.1 Real-Time Systems . 1
1.2 Complex Constraints . 2
1.3 Motivation . 3

1.3.1 Off-line vs. Fixed Priority Scheduling (FPS) 3
1.3.2 Application domains 4

1.4 Problem Formulation and Proposed Solutions 6
1.5 Results . 7

1.5.1 Paper A . 7
1.5.2 Paper B . 8
1.5.3 Paper C . 8

1.6 Conclusions and Future Work 9

2 Paper A: Task Attribute Assignment of Fixed Priority Scheduled
Tasks to Reenact Off-line Schedules 15
2.1 Introduction . 17
2.2 Problem Description . 18

2.2.1 Offline Schedule . 18
2.2.2 Online Scheduling 19
2.2.3 Problem Statement 19

2.3 Overview – Basic Idea . 20
2.3.1 Overview . 20
2.3.2 Basic idea of attribute assignment algorithm 21

2.4 Algorithm . 21
2.4.1 Assumptions . 21
2.4.2 Attribute assignments 22
2.4.3 Task attribute assignment algorithm 22

vi CONTENTS

2.4.4 Priority assignment conflict – Instance splitting 24
2.5 Example . 24
2.6 Summary and Outlook . 26

3 Paper B: Translating Off-line Schedules into Task Attributes for
Fixed Priority Scheduling 31
3.1 Introduction . 33
3.2 Off-line Schedules . 35

3.2.1 Target windows . 35
3.2.2 Time triggered system operation and schedule construc-

tion . 36
3.2.3 FPS reenaction of off-line schedules 36
3.2.4 Increased runtime flexibility 36
3.2.5 Selectively reduced runtime flexibility 37

3.3 Attribute assignment algorithm 37
3.3.1 Problem Definition 37
3.3.2 Algorithm Overview 38
3.3.3 Derivation of the Inequalities 39
3.3.4 Attribute Assignment - Conflicts 40
3.3.5 ILP Problem Representation 42
3.3.6 Periods and Offsets 44
3.3.7 Discussion . 45

3.4 Example . 46
3.5 Conclusions and future work 47
3.6 Acknowledgements . 49
3.7 Proofs . 49

3.7.1 Proof 1 . 49
3.7.2 Proof 2 . 53

4 Paper C: Implementing Off-line Message Scheduling on Controller
Area Network (CAN) 57
4.1 Introduction . 59
4.2 Controller Area Network (CAN) and message scheduling . . . 60
4.3 Attribute assignment algorithm 61

4.3.1 Overview . 61
4.3.2 Priority inequalities 63
4.3.3 Attribute assignment - conflicts 64
4.3.4 Minimizing the final number of messages 65

4.4 Example . 66

CONTENTS vii

4.5 Conclusions and future work 68
4.6 Acknowledgements . 69

List of Figures

2.1 Method overview . 20
2.2 Off-line schedule . 25

3.1 Sequence of tasks. 40
3.2 Example 1: Off-line Schedule and Target Windows 41
3.3 Example 1: Sequences of tasks 42
3.4 Example 1: FPS tasks. 45
3.5 Example 2: Off-line Tasks 47
3.6 Example 2: Off-line Schedule and Target Windows 48
3.7 Example 2: Inequalities . 49
3.8 Example 2: FPS Tasks . 50
3.9 Example 2: FP Schedule . 50

4.1 Algorithm overview. 62
4.2 Sequence of messages. 63
4.3 Original set of messages . 66
4.4 Off-line Scheduled Messages and Target Windows 67
4.5 Inequalities . 67
4.6 FP messages . 68

List of Publications

The following articles are included in this licentiate2 thesis:

A Task Attribute Assignment of Fixed Priority Scheduled Tasks to Reenact Off-
line Schedules, Radu Dobrin and Gerhard Fohler, In Proceedings of Con-
ference on Real-Time Computer Systems and Applications, Korea, 2000.

B Translating Off-line Schedules into Task Attributes for Fixed Priority Schedul-
ing, Radu Dobrin, Gerhard Fohler and Peter Puschner, In Proceedings of
Real-Time Systems Symposium, London, UK, 2001.

C Implementing Off-line Message Scheduling on Controller Area Network (CAN),
Radu Dobrin and Gerhard Fohler, In Proceedings of Emerging Technolo-
gies and Factory Automation, Antibes, France, 2001.

2A licentiate degree is a Swedish graduate degree halfway between MSc and PhD.

Chapter 1

Introduction

1.1 Real-Time Systems

Real-time systems are computer systems in which the correctness of the system
depends not only on the logical correctness of the computations performed, but
also on which point in time the results are provided [1]. Delivering a result at
a point in time beyond the latest possible, i.e., after it’s deadline, may result to
catastrophic consequences inhard real-time systems. Example of such systems
are medical control equipment or vehicle control systems. On the other hand,
in soft real-time systems, e.g., multimedia applications, a number of deadlines
can be missed without serious consequences. In this work we will primarily
focus on hard real-time systems.
A real-time system typically consist of a number ofresources(e.g., one or sev-
eral processors), a number oftasks, designed to fulfill a number oftiming con-
straints, and aschedulerthat assigns each task a fraction of the processor(s),
according to ascheduling policy. Tasks are usuallyperiodicor non-periodic.
Periodic tasks consist of an infinite sequence of invocations, calledinstances
or jobs. Non-periodic tasks are invoked by the occurrence of an event. The
choice of tasks and scheduling policy is made to satisfy some original con-
straints imposed on the system. Tasks can have various parameters, such as
period, deadline, priority, depending on the scheduling policy chosen to be
used.
The scheduling policies are divided inoff-line, [2, 3], andon-line scheduling,
[4]. The main difference between the two is that, in off-line scheduling, the
decision of which tasks to execute at which time point and on which processor

2 Complex Constraints

is made at the design stage, and, at run-time, the dispatcher selects which task
to execute from scheduling tables. On the other hand, in on-line scheduling,
all decisions are made at run-time depending on the task priorities and their
arrival times. At each point in time, the task which is ready to execute and has
the highest priority, is dispatched to execute. On-line scheduling is furthermore
divided infixed-anddynamic-priority scheduling, e.g.,rate monotonic(RM)
or earliest deadline first(EDF) [4].
A key issue in real-time systems ispredictability, i.e., to be able to anticipate
the behavior of the systembeforerun-time and the guarantee that the system
will behave as anticipatedat run-time. At the same time,run-time flexibilityis
a desired feature, as not all run-time events can be completely accounted for in
advance. Additionally, the choice of scheduling strategy in real-time systems is
strongly related to the nature of the timing constraints which are to be fulfilled.
As different scheduling schemes provide different levels of, e.g., predictability
or flexibility, for the cost of a number of limitations, there is usually a trade-off
between the ability to handle complex constraints and the level of flexibility
provided by the selected scheduling strategy.
In this work, we present mechanisms to handle real-time, complex constraints,
while providing predictability and run-time flexibility for the task executions.
In particular, we want to handle complex constraints while exploiting the run-
time advantages provided by FPS.

1.2 Complex Constraints

In this section we describe a number of constraints that are challenging to deal
with in priority driven scheduling, e.g., FPS, while fairly easy to solve in off-
line scheduling.
Jitter – The time interval between consecutive task executions is bounded by
fixed values. In this case, the execution of consecutive instances of the same
task has to fixed between pre-determined points in time. Consequently, in some
cases, different instances of the same tasks must have different attributes, e.g.,
priorities, leading to inconsistencies in FPS.
Precedence –Tasks must execute in a pre-defined order, e.g., sampling and
actuating tasks in real-time control systems. Work has been done to deal with
precedence constraints in EDF [5] as well as precedence relations have been
taken into account when performing the schedulability analysis in FPS [6].
However, the issue of attribute assignment for FPS is a challenging task as the
task executions depend on the unpredictable run-time events.

Motivation 3

Distribution – Tasks are allocated to different nodes, e.g., to achieve inter-node
communication. Well used in, e.g., automotive and avionics industry, [7], to-
gether with FPS. Additionally, in some cases, tasks with precedence constraints
have to be alocated to different nodes. Mapping of all these constraints to FPS
attributes directly, may be a challenging task.
Instance separation –Usually demanded in control systems [8], e.g., to achieve
synchronized sampling, control computations and actuating [9]. That may re-
quire the execution of different instances of the same task separated by different
time intervals, potentially leading to FPS attribute inconsistencies.

1.3 Motivation

1.3.1 Off-line vs. Fixed Priority Scheduling (FPS)

Off-line scheduling, [3, 2], and fixed priority scheduling (FPS), [10, 11], are
often considered as having incompatible paradigms, but complementing prop-
erties. FPS has been widely studied and used in a number of applications,
mostly due its simple run-time scheduling, small overhead, and good flexibil-
ity for tasks with incompletely known attributes. Temporal analysis of FPS
algorithms focuses on providing guarantees that all task instances will finish
before their deadlines. However, additional constraints to FPS schemes re-
quire new schedulability tests, which may not have been developed yet, or may
find the system unschedulable in the new configuration. Hence, the run-time
flexibility provided by FPS comes at the expense of ability to handle multiple
constraints, such as, jitter, instance separation or end-to-end deadlines.
Furthermore, FPS is widely used in a number of industrial applications involv-
ing network scheduling using Controller Area Network (CAN). Early results
on message scheduling on CAN have been presented in [12] and [13], in which
the authors focused on fixed priority scheduling based on work presented in
[4] and [14]. An approach to time–triggered communication on controller area
network has been presented in [15], while in [16], the authors presented an
approach to enhance both event– and time–triggered communication in CAN.
However, both approaches imply modifications to the native CAN protocol.
Priority assignment for FPS tasks has, for example, been studied in [10] and
[11]. [17] studies the derivation of task attributes to meet overall constraints,
e.g., demanded by control performance. Modifications to the basic scheme
to handle semaphores [18], aperiodic tasks [19], static [20] and dynamic [21]
offsets, and precedence constraints [22], have been presented.

4 Motivation

Off-line, table driven, scheduling for time-triggered systems, [3], on the other
hand, provides predictability, as all times for task executions are determined
and known in advance. The off-line scheduler allocates tasks to the processors
and resolves complex constraints by determining windows for tasks to execute
in, and sequences, usually stored in scheduling tables. At run-time, the dis-
patcher, invoked at regular time intervals, selects which task to execute from
the scheduling tables, ensuring tasks execution within the off-line determined
windows and, thus, meet their constraints.
However, as all actions have to be planned before startup, run-time flexibility
is lacking. The advantage of solving complex constraints comes at a price of
limited run-time flexibility in terms of ability to handle tasks with incompletely
known attributes, e.g., aperiodic or sporadic tasks.
Off-line scheduling for time triggered systems has, for example, been studied
in [3, 2]. The choice of scheduling technique used in order to achieve different
requirements has been well analyzed and discussed [23].
The purpose of this work is to provide methods to combine the advantages of
both scheduling strategies, off-line scheduling and FPS, i.e., predictability and
ability to solve complex constraints while flexibility at run-time. A method to
transform off-line schedules into earliest deadline first tasks has been presented
in [24].

1.3.2 Application domains

Instead of enhancing only either FPS or off-line scheduling alone, the methods
provide for a combination, such that benefits of either scheme are accessible
to the other. In particular, the presented methods provide solutions for the
following scenarios:

Legacy Systems: Some safety critical applications, e.g., from the avionics
domain [7], demand temporal partitioning of task executions or assertions not
only about deadline being met, but restrictions on the actual times when task
executions are performed. Typically, such applications are executed in time
triggered architectures with off-line schedule construction. A move to fixed
priority based systems has to ensure the specific demands will be met, which
may be cumbersome applying standard FPS methods, as these concentrate on
deadlines primarily.
The proposed methods transform these demands directly into attributes for
tasks to be feasibly scheduled by FPS, pertaining the predictability provided
by off-line schemes.

Motivation 5

FPS systems with unresolved constraints: The feasibility test provided for
FPS tasks defines the types of constraints which can be met. Additional con-
straints or combinations require modifications to existing tests or the develop-
ment of new ones, which may not be available in limited time.
In addition, constraints demanded by complex applications, cannot be expressed
generally. Control applications may require constraints on individual instances
rather than fixed periods, reliability demands can enforce allocation and sepa-
ration patterns, or engineering practice may require relations between system
activities.
The proposed method resolves the need for developing of new specific tests
for unusual constraints: first, a designer will apply known tests on the appli-
cation under consideration. Should standard schemes prove to be incapable,
the designer submits these tasks to an off-line scheduling scheme, which can
use elaborate and general methods, such as search or constraint satisfaction, to
provide a feasible off-line schedule. Then, by using the proposed methods, we
derive attributes, such as period, priority, and offset for these tasks, such that
they can be scheduled with FPS, while meeting the specific constraints.

Predictable flexibility: Off-line scheduling provides deterministic execution
patterns for all tasks in the system, while FPS schemes provide flexibility for
all tasks. Only few applications, however, will demand either determinism or
flexibility uniformly for all activities in the system. Rather, only few selected
tasks have tight restrictions on their executions, e.g., those sampling or actu-
ating in a control system, with strict demands on jitter and variability, while a
majority can execute flexibly.
The methods allows the amount of flexibility at runtime to be set off-line in
a predictable way by including restrictions on task execution as input to the
transformation algorithm.

Off-line scheduling in Controller Area Network (CAN): Controller Area
Network (CAN), has gained wide acceptance as a standard in a large number
of industrial applications. The priority based message scheduling used in CAN
has a number of advantages, some of the most important being the efficient
bandwidth utilization, flexibility, simple implementation and small overhead.
However, the increasing demands from the industrial applications leads to in-
creased complexity imposed on the system.
On the other hand, off-line scheduling for time triggered systems provides de-
terminism [3, 2], and, additionally, complex constraints can be solved off-line,
but this scheduling strategy is not suitable for native CAN protocol.

6 Problem Formulation and Proposed Solutions

By using the proposed methods, we transform off-line scheduled transmission
schemes into sets of messages that can be feasibly scheduled on CAN without
modifying the basic CAN mechanism.

1.4 Problem Formulation and Proposed Solutions

In this thesis we present work to combine FPS with off-line schedule construc-
tion.

Problem formulation First, an off-line schedule is constructed for a set of
tasks to fulfill their complex constraints. Then, by analyzing the off-line sched-
ule together with the original constraints, we derive FPS attributes, i.e., pri-
orities, offsets, deadlines, such that the tasks, when scheduled by FPS, will
execute flexibly, while fulfilling the same complex constraints of the original
off-line scheduled tasks.

Proposed solutions FPS cannot reconstruct all schedules with periodic tasks
with the same priorities for all instances directly. The constraints expressed via
the off-line schedule may require that instances of a given set of tasks need to
be executed in different order on different occasions. Hence, there not allways
exist a valid FPS priority assignment that can achieve these different orders.
Our methods detects such situations, and circumvents the problem by splitting
a task into its instances. Then, the algorithm assigns different priorities to the
newly generated “artifact” tasks, the former instances.
Key issues in resolving the priority conflicts are the number of artifact tasks
created, and the number of priority levels. Depending on how the priority con-
flict is resolved, the number of resulting tasks may vary, e.g., splitting a task
with a large number of instances over LCM would result in a large number of
artifacts. The method presented in paper A [25], uses a constructive, heuris-
tic approach, potentially creating large numbers of artifacts. In paper B [26]
we present an approach that generates optimal solutions with an ILP-based al-
gorithm. It does so by deriving priority inequalities, which are then resolved
by integer linear programming. The result provided by the method is the task
attributes for FPS that yield the minimum number of artifact tasks. By using
an ILP solver for the derivation of priorities, additional demands, such as re-
ducing the number of preemption levels, can be added by inclusion in the goal
function.

Results 7

Finally, we use the method described in paper B [26] to implement off-line
scheduling in Controller Area Network (CAN). The description of the ap-
proach was presented in paper C [27]. The ILP-formulation is modified to
ensure unique priorities for the messages, as required by the CAN protocol.
The off-line analysis we perform in the proposed method is simplified when
applied to CAN, due to the CAN properties which we can take advantage of:

• The message length is constant in CAN – This fact ease the off-line anal-
ysis we perform in our methods, as it avoids situations where the order
of transmission may change as a consequence of variable transmission
time. In task scheduling we assume task executing for worst case exe-
cution time (WCET) while the actual execution time at run-time is most
likely much less.

• CAN scheduling is non-preemptive – In preemptive task scheduling, the
execution order may change, due to variations in the execution times. In
CAN this problem no longer exist since the message length is constant
and no preemptions may occur.

An additional issue is that CAN scheduling require unique priorities. We solve
the issue by simply adding an extra constraint to the ILP.
By using our method, we solve the issue of attribute assignment for a set of
messages with complex constraints and schedule them on CAN while preserv-
ing the native CAN mechanism.

1.5 Results

This section summarizes the main contribution of each paper in the thesis.
The following papers are included in the thesis:

1.5.1 Paper A

“Task Attribute Assignment of Fixed Priority Scheduled Tasks to Reenact Off-
line Schedules”, Radu Dobrin and Gerhard Fohler, In Proceedings of Confer-
ence on Real-Time Computer Systems and Applications, Korea, 2000

Summary In this paper, we present a method to combine off-line schedule
construction with fixed priority scheduling by determining task attributes for
the off-line scheduled tasks, such that the original schedule is reconstructed if

8 Results

the tasks are scheduled by FPS at run-time. The method analyzes an off-line
schedule together with original task constraints to create sequences and win-
dows of tasks. Priorities and offsets are set to ensure task orders in sequences
and relations between windows. As FPS cannot reconstruct all schedules with
periodic tasks, our algorithm can split tasks into several instances to achieve
consistent task attributes. Lower priority tasks can be added for run-time use.

1.5.2 Paper B

“Translating Off-line Schedules into Task Attributes for Fixed Priority Schedul-
ing ”, Radu Dobrin, Peter Puschner and Gerhard Fohler, in Proceedings of
Real-Time Systems Symposium, London, UK, 2001

Summary In this work we show how off-line scheduling and FPS run-time
scheduling can be combined to get the advantages of both – the capability to
cope with complex timing constraints and flexibility. We assume that a sched-
ule for a set of tasks with complex constraints has been constructed off-line
and we present a method to analyze the off-line schedule and derive an FPS
task set with FPS attributes priority, offset, and period, such that the runtime
FPS execution matches the off-line schedule. The proposed method analyzes
the schedule and sets up inequality relations for the priorities of the tasks un-
der FPS. Integer linear programming (ILP) is then used to find a FPS priority
assignment that fulfills the relations. In case the priority relations for the tasks
of the off-line schedule are not solvable we split tasks into the number of in-
stances, to obtain a new task set with consistent task attributes. By using ILP,
we can ensure that our schedule translation algorithm keeps the number of
newly generated artifact tasks minimal.

1.5.3 Paper C

“Implementing Off-line Message Scheduling on Controller Area Network (CAN)”,
Radu Dobrin and Gerhard Fohler, in Proceedings of Emerging Technologies
and Factory Automation, France 2001

Summary In this paper we apply the previously developed methods to take
advantage of the benefits of off-line scheduling in controller area network
(CAN). Assuming that a schedule, for a set of tasks transmitting messages
on CAN, has been constructed off-line, we present a method that analyzes the
off-line schedule and derives a set of periodic messages with fixed priorities,

Conclusions and Future Work 9

which can be scheduled on CAN. Based on the information provided by the off-
line schedule, the method derives inequality relations between the priorities of
the messages under FPS. In case the priority relations of the messages are not
solvable, we split some messages into a number of artifacts, to obtain a new set
of messages with consistent identifiers. We use integer linear programming to
minimize the final number of messages.

1.6 Conclusions and Future Work

In this work we present methods that combine off-line schedule construction
with fixed priority run-time scheduling. In particular, we want to take advan-
tage of all benefits provided by off-line scheduling, while using fixed priority
scheduling. We use off-line schedules to express complex constraints and pre-
dictability for selected tasks. Then, we derive attributes for tasks, such that,
if applying FPS at run-time, the tasks will execute flexibly while fulfill their
original constraints.
Thus, the methods solve issues arising from legacy systems, e.g., partition
scheduling for avionics applications, and allows to handle constraints not cov-
ered by FPS feasibility tests, while using standard FPS at runtime. Also it pro-
vides for predictable flexibility, i.e., the restricted execution of selected tasks,
e.g., for sampling and actuating in control systems, while enabling runtime
flexibility for others. Furthermore, the method is applied to schedule mes-
sages with complex constraints on CAN. We use the information provided by
an off-line schedule constructed to solve complex constraints and we derive
attributes, i.e., message identifiers, required by CAN’s native protocol. At run
time, the messages are transmitted and received within time intervals such that
the original constraints of the messages are fulfilled.
Our methods analyze an off-line schedule, constructed to solve complex con-
straints, and derives attributes for fixed priority scheduling such that the tasks,
when scheduled by FPS, execute flexibly while fulfilling the original con-
straints. In certain cases, the method splits tasks into instances, creating artifact
tasks, as not all off-line schedules can be expressed directly with FPS. A first,
constructive approach, creates a potentially large amount of artifacts, while,
later on, we use standard integer linear programing to solve priority inequal-
ities derived from the off-line schedule and minimize the number of artifact
tasks created. Finally, we assign offsets and periods to the task set provided by
ILP in order to ensure the correct run-time execution.
In some cases, we have to perform additional splits, due to a violation of the

10 Conclusions and Future Work

periodicity in the off-line schedule, which gives different offsets for different
instances of the same task. By minimizing the number of artifact tasks, our
method minimizes the number of offsets in the system as well.
Our methods does not introduce artifacts or reduce flexibility unless required
by constraints: a set of FPS tasks, scheduled off-line according to FPS, and
transformed by our method, executes in the same way as the original tasks.
To this point, we have concentrated on reconstructing the off-line schedule.
Using the flexibility of the ILP solver, we can add objectives by inclusion in
the goal function.
In this work, we assumed that all task dependencies have been resolved off-
line. Future work will address the issue of task relations at run-time as well.
Furthermore, we are currently investigating the possibility to improve FPS in
terms of minimizing the number of preemptions yielded by an arbitrary set of
tasks scheduled by FPS. At the same time, we aim to develop a common inter-
face between original task constraints and the different scheduling strategies,
i.e., off-line scheduling, FPS and EDF, to directly map complex constraints
into attributes specific for each scheduling paradigm.

Bibliography

[1] J. A. Stankovic and K. Ramamritham.IEEE Tutorial: Hard Real-Time
Systems. IEEE Computer Society Press, Washington, D.C., USA, 1988.

[2] H. Kopetz and G. Grunsteidl. TTP - a Protocol for Fault-Tolerant Real-
Time Systems.Computer, 27(1):14–23, 1994.

[3] H. Kopetz. Why Time-Triggered Architectures will Succeed in Large
Hard Real-Time Systems. InProceedings of the Fifth IEEE Computer
Society Workshop on Future Trends of Distributed Computing Systems,
pages 2–9, 1995.

[4] C.L. Liu and J.W. Layland. Scheduling Algorithms for Multiprogram-
ming in Hard Real-Time Environment.Journ. of the ACM, 20, 1, Jan.
1973.

[5] H. Chetto, M. Silly, and T. Bouchentouf. Dynamic Scheduling of Real-
Time Tasks under Precedence Constraints.Real-Time Systems Journal,
2(3):181–194, Sept. 1990.

[6] J.C. Palencia and M. Gonzalez Harbour. Exploiting Precedence Rela-
tions in the Schedulability Analysis of Distributed Real-Time Systems.
In Proceedings of 20th IEEE Real-Time Systems Symposium, 1999.

[7] T. Carpenter, K. Driscoll, K. Hoyme, and J. Carciofini. ARINC Schedul-
ing: Problem Definition. InProceedings of Real-Time Systems Sympo-
sium, pages 165–169, 1994.

[8] M. Törngren. Fundamentals of Implementing Real-Time Control Appli-
cations in Distributed Computer Systems.Real-Time Systems, 1997.

12 BIBLIOGRAPHY

[9] P. Marti, J. M. Fuertes, G. Fohler, and K. Ramamritham. Jitter Compen-
sation for Real-Time Control Systems. InProceedings of the 22nd IEEE
Real-Time Systems Symposium, Dec 2001.

[10] N.C. Audsley. Optimal Priority Assignment and Feasibility of Static Pri-
ority Tasks With Arbitrary Start Times. Technical report, Departament of
Computer Science, University of York, 1991.

[11] R. Gerber, S. Hong, and M. Saksena. Guaranteeing Real-Time Require-
ments with Resource-Based Calibration of Periodic Processes.IEEE
Transactions on Software Engineering, 21(7), July 1995.

[12] K. Tindell, H. Hansson, and A.J. Wellings. Analizing Real-Time Commu-
nications: Controller Area Network (CAN). InProceedings of Real-Time
Systems Symposium, pages 259–263, Dec. 1994.

[13] K. Tindell, A. Burns, and A.J. Wellings. Calculating Controller Area Net-
work (CAN) message response times.Contr. Eng. Practice, 3(8):1163–
1169, 1995.

[14] J.Y-T. Leung and J. Whitehead. On the Complexity of Fixed-Priority
Scheduling of Periodic, Real-Time Tasks.Performance Evaluation,
2(4):237–250, Dec. 1982.

[15] G. Leen and D. Heffernan. Time-Triggered Controller Area Network.
Computing and Control Engineering, 2001.

[16] L. Almeida, P. Pedreiras, and J. A. Fonseca. The FTT-CAN Protocol:
Why and How.IEEE Transactions on Industrial Electronics, 49(6), Dec
2002.

[17] D. Seto, J.P. Lehoczky, and L. Sha. Task Period Selection and Schedula-
bility in Real-Time Systems. InProceedings of Real-Time Systems Sym-
posium, pages 188–198, 1998.

[18] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority Inheritance Protocols:
an Approach to Real-Time Synchronization.IEEE Transactions on Com-
puter, 39(9):1175–1185, Sept 1990.

[19] B. Sprunt, L. Sha, and J.P. Lehoczky. Aperiodic Task Scheduling for Hard
Real-Time Tasks.The Journal of Real-Time Systems, 1989.

BIBLIOGRAPHY 13

[20] K. Tindell. Adding Time Offsets to Schedulability Analysis. Technical
report, Departament of Computer Science, University of York, January
1994.

[21] J.C. Palencia and M. Gonzalez Harbour. Schedulability Analysis for
Tasks with Static and Dynamic Offsets. InProceedings of 19th IEEE
Real-Time Systems Symposium, pages 26–37, 1998.

[22] M. Gonzalez Harbour and J.P. Lehoczky. Fixed Priority Scheduling of
Periodic Task Sets with Varying Execution Priority. InProceedings of
Real-Time Systems Symposium, pages 116–128, Dec. 1991.

[23] J. Xu and D. L. Parnas. Priority Scheduling versus Pre-run-time Schedul-
ing. Real-Time Systems, 2000.

[24] G. Fohler. Flexibility in Statically Scheduled Hard Real-Time Systems.
PhD thesis, Technische Universität Wien, Austria, Apr. 1994.

[25] R. Dobrin, Y. Özdemir, and G. Fohler. Task Attribute Assignment of
Fixed Priority Scheduled Tasks to Reenact Off-line Schedules. InCon-
ference on Real-Time Computing Systems and Applications, Korea, De-
cember 2000.

[26] R. Dobrin, P. Puschner, and G. Fohler. Translating Off-line Schedules
into Task Attributes for Fixed Priority Scheduling. InProceedings of
Real-Time Systems Symposium, December 2001.

[27] R. Dobrin and G. Fohler. Implementing Off-line Scheduling in Con-
troller Area Network (CAN).Proc. of the 8th International Conference
on Emerging Technologies and Factory Automation, 2001.

Chapter 2

Paper A: Task Attribute
Assignment of Fixed Priority
Scheduled Tasks to Reenact
Off-line Schedules

Radu Dobrin and Gerhard Fohler
In Proceedings of Conference on Real-Time Computer Sytems and Applica-
tions, Korea, 2000.

Abstract

A number of industrial applications advocate the use of time triggered ap-
proaches for reasons of predictability, distribution, and particular constraints
such as jitter or end-to-end deadlines. The rigid offline scheduling schemes
used for time triggered systems, however, do not provide for flexibility. Fixed
priority scheduling can provide more flexibility, but is limited with respect to
predictability, as actual times of executions depend on run-time events. In this
paper, we present a method to combine off-line schedule construction with
fixed priority scheduling: by determining task attributes for the off-line sched-
uled tasks, such that the original schedule is reconstructed if scheduled with
FPS at run-time. It analyzes an off-line schedule together with original task
constraints to create sequences and windows of tasks. Priorities and offsets are
set to ensure task orders in sequences and relation between windows. As FPS
cannot reconstruct all schedules with periodic tasks, our algorithm can split
tasks into several instances to achieve consistent task attributes. Lower priority
tasks can be added for run-time use.

Introduction 17

2.1 Introduction

Fixed priority scheduling (FPS) has been widely studied and used in a num-
ber of applications, mostly due by its simple run-time scheduling and resulting
small overhead. Modifications to the basic scheme to handle semaphores [1],
aperiodic tasks [2], static [3] and dynamic [4] offsets, and precedence con-
straints [5], have been presented. Consequently, FPS enables good flexibility
for tasks with incompletely known attributes. Temporal analysis of FPS al-
gorithms focuses on meeting deadlines, i.e., guarantees that all instances of
tasks will finish before their deadlines. The actual times of executions of tasks,
however, are generally not known and depend largely on run-time events, com-
promising predictability.
Off-line scheduling for time-triggered systems, on the other hand, provides
strong predictability, as all times for task executions are determined and known
in advance. In addition, complex constraints can be solved off-line, such as
distribution, end-to-end deadlines, precedence, jitter, or instance separation.
All this is enabled at the expense of loosing run-time flexibility, as all actions
have to be planned before.
In this paper, we present an algorithm to combine off-line schedule construc-
tion with fixed priority run-time scheduling. The resulting systems have a time-
triggered base that is complemented with even-triggered on-line scheduling.
This allows us to combine benefits of off-line scheduling, in particular a dis-
tributed system, complex, constrained tasks, and end-to-end deadlines, with
online scheduling, which allows flexible task execution. A number of tasks are
specified to execute predictable, while allowing flexibility for all others.
Our method works by transforming off-line scheduled tasks with their original
constraints into tasks with attributes suited for fixed priority scheduling, i.e.,
periods, deadlines, and offsets, which will reenact the original offline sched-
ule at runtime. It divides the off-line schedule and its tasks into windows and
sequences, sets priorities to ensure execution orders within windows, and de-
termines priorities and offsets to ensure orders and relations between windows.
As FPS cannot reconstruct all schedules with periodic tasks, our algorithm can
split tasks into several instances to achieve consistent task attributes. Tasks
with lower priorities can be added for run-time scheduling.
Priority assignment for FPS tasks has been studied in, e.g., [6], [7], and [8]
study the derivation of task attributes to meet a overall constraints, e.g., de-
manded by control performance. Instead of specific requirements, our algo-
rithm takes an entire off-line schedule and all task requirements to determine
task attributes. A method to transform off-line schedules into earliest deadline

18 Problem Description

first tasks has been presented in [9].
The rest of this paper is organized as follows: section 2.2 describes the problem
and introduces items and terms used in the paper. Section 2.3 and 2.4 describe
basic idea and algorithm, which is illustrated by an example in section 2.5.
Summary and outlook in section 2.6 conclude the paper.

2.2 Problem Description

2.2.1 Offline Schedule

First, an off-line schedule is created for a set of tasks and constraints. While
our method does not rely on a particular off-line scheduling algorithm, we
have used the one described in [3] for our implementation and analysis. The
schedule is usually created up to the least common multiple, LCM, of all task
periods. LCM/T(Ti) instances of each taskTi with period T(Ti) will execute
in the schedule.
The off-line scheduler resolves constraints such as distribution, end-to-end
deadlines, precedence, etc, and creates scheduling tables for each node in the
system, listing start- and finishing-times of all task executions. These schedul-
ing tables are more fixed than required by the original constraints, so we can re-
place the exact start- and finishing-times of tasks with feasibility windows, tak-
ing the original constraints into account. A task receiving (sending) a message
over the network, for example, has to start (finish) after (before) the scheduled
transmission time, giving more leeway than the rigid scheduling table, defin-
ing release times (deadlines). Slot shifting [4] uses this method to transform
off-line schedules into task for earliest deadline first scheduling.
Feasibility windows WF (T j

i) of each instanceT j
i of each taskTi, are de-

rived from schedule and constraints transformed into earliest start times and
deadlines.
Theearliest start time, est(T j

i), of an instanceT j
i of a taskTi, is provided by

the task constraints expressed in the offline schedule.
Thescheduled finishing time,finish(T j

i) of an task instance is the time when
T j

i , is completing its execution according to the offline schedule.
Thescheduled start time,start(T j

i), of an task instance is the time whenT j
i

is starting its execution according to the offline schedule.
A sequenceS(tk) consists of instances of tasksT j

i ordered increasingly after
theirs scheduled start times, such that

start(WF (T j
i)) = tk ∨ start(WF (T j

i)) < tk ∧ finish(T j
i) > tk

Problem Description 19

according to the order of execution in the offline schedule. Additionally, we
define:

first(S(tk)) = S1 = first task instance in the sequence S(tk)
last(S(tk)) = SN = last task instance in S(tk)

Consequently:

S(tk) = {Sn|Sn = T j
i , where

start(WF (T j
i)) = tk, or

start(WF (T j
i)) < tk ∧ finish(T j

i) > tk}

Additionally:

start(S1) < start(S2) < · · · < start(SN)

and
S1 = first(S(tk)) and SN = last(S(tk))

2.2.2 Online Scheduling

At run-time, we want tasks to be scheduled according to fixed priority assign-
ment. Our method assigns priorities, offsets, deadlines, periods. We refer to
anexecution window, Wexec(T j

i), of an instanceT j
i of a taskTi, as the time

interval in whichT j
i will execute and complete if scheduled by FPS together

with the other instances of the other tasks.

2.2.3 Problem Statement

Given a set of tasksTi , i=1,2,. . . ,n with earliest start timesest(Ti), deadlines
dl(Ti), periodsT (Ti), offline scheduled, with constraints represented by feasi-
bility windows, we want to find fixed priorities, fixed offsets and deadlines for
these tasks,P (Ti), O(Ti), dl(Ti), such that the execution windows of each task
Wexec(Ti) given by FPS will be contained within the respective feasibility
window WF (Ti) and the sequence ordering kept. In case of priority conflict,
i.e., if assigning the same priorities to all instances of a task fail, we want to
find priorities, offsets, and deadlines, such that each of these instances executes
within its respective feasibility window for a small number of instances.

20 Overview – Basic Idea

2.3 Overview – Basic Idea

2.3.1 Overview

Our method performs the following steps transforming the offline schedule into
FPS tasks (figure 2.1).

Figure 2.1: Method overview

1. Initially, tasks are given with their original constraints, and attributes,
including worst case computation times, and periods.

2. A standard offline scheduling-algorithm constructs offline-scheduling ta-
bles with (1) as input.

3. Feasibility windows for each instance of each task are derived from
scheduling tables and original task constraints

Algorithm 21

4. SequencesS(tk) ∈ WF (T j
i) are now straightforward to derive from the

feasibility windows.

5. and 6. perform the actual attribute assignment creating FPS task

7. Whenever a priority conflict arises during the priority settings, we split a
taskTi into instances for different priorities.

8. Having the set of tasks with priorities, offsets, periods, deadlines, it is
straightforward to schedule these using FPS.

2.3.2 Basic idea of attribute assignment algorithm

Our algorithm determines priorities by traversing the off-line schedule repre-
sented by the series of feasibility windows in increasing order of time (left to
right). It sets priorities to reflect the positions of task instances in sequences,
i.e., later position gives lower priority. The algorithm attempts to keep the same
priorities for all instances of a task. This may, however, lead to an inconsistent
assignment. Then the algorithm splits the task into instances and assigns new
attributes for each.

2.4 Algorithm

2.4.1 Assumptions

Our method is based on the following assumptions:

• Task deadlines are less than the task periods.

• The computation-time of a task has a known, upper bound.

• Tasks execute as soon as they are ready and have the highest priority.

• Tasks are independent and fully preemptive. All dependencies have been
resolved in the off-line schedule.

• A higher numerical value for priority represents higher priority.

22 Algorithm

2.4.2 Attribute assignments

It suffices to set priorities according to the sequence of tasks of a feasibility
window, if it does not overlap with any other feasibility window. In the case
of overlaps, however, the order in more than one sequence has to be taken into
account for the priority assignment.
Our algorithm traverses the schedule in the sequence of feasibility windows
and performs two operations:setandcheck + split/update. Setis performed
on each first instanceT 1

i of each taskTi by assigning a priority to the task
Ti according to the sequenceS(tk), tk = Start(WF (T 1

i)). For the rest of
the instances ofTi we checkif the priority assigned by thesetoperation will
scheduleT j

i within its feasibility window, in the same position in the sequence
S(tk) given by the offline schedule. It may happen, however, that the ordering
of tasks may be different for some instances. These cases cannot be expressed
directly with fixed priority assignment, leading to inconsistent priority assign-
ment. Our algorithm detects this, and circumvents the problem by splitting a
task into its instances by performingsplit andupdateon all the previous in-
stances ofT j

i by updating offsets, periods and deadlines and by that, treating
all instances ofTi as individual tasks.
So, the priorities of instancesT j

i of tasksTi with est(T j
i) = start(WF (T j

i))
are based upon either:

• the priority of the first task instance in sequenceS(tk) in this window or

• the priority of another task assigned to this window which was set in a
previous step

Initially, no priorities are set:∀i, j, P (T j
i) = NULL, offsets are equals to

start(WF (T j
i)): ∀i, j, O(T j

i) = start(WF (T j
i)), and deadlines are set to

the ends of respective feasibility windows:∀i, j, D(T j
i) = end(WF (T j

i)).
The priority ofT j

i ∈ S(tk) = [T1, T2, . . . , Tn] must be set/checked to be in
descending order:P (T1) > P (T2) > · · · > P (Tn).

2.4.3 Task attribute assignment algorithm

In this section, we present the pseudo code for the proposed method.
For each start of feasibility windowtk, k ≤ nr of feasibility windows,
∀i, j such that est(T j

i) = tk :

1. if j = 1 (the first instance of taskTi)

Algorithm 23

(a) if ∃ Tn
m ∈ S(tk) s.t. n > 1 ∧ (P (Tn

m) 6= NULL)
(P (Tn

m) is the priority ofTn
m one instance in sequence has already

pre-set priority, thensetpriorities in sequence accordingly)

i. if Tn
m is scheduled to execute afterT j

i (according o the se-
quenceS(tk)), then:
setP (T j

i) = P (Tn
m) + (x + 1) ∗ c

(where x=nr. of executing tasks belonging toWF (T j
i) be-

tweenT j
i andTn

m andc is a constant)

ii. else (Tn
m is scheduled to execute beforeT j

i according to the
sequenceS(tk)):
setP (T j

i) = P (Tn
m)− (x + 1) ∗ c

(b) else (∀m,n s.t. Tn
m ∈ S(tk), n = 1, i.e., we have only first in-

stances in the sequenceS(tk))
setP (firstS(tk)) = P (S1) = default = p
setP (T j

i) = P (S1)− x ∗ c
(initial number priorities can be adjusted after assignment,S1 =
First(S(tk) and x=nr. of executing tasks (with higher priority) in
S(tk) beforeT j

i)

2. else (j > 1, andP (T j
i) = P (T (j−1)

i) = · · · = P (T 1
i), e.g., priorities

for all instances have already been set/checked in a previous step to the
same value)
∀m,n, m 6= i, n 6= j, such thatTn

m ∈ S(Tk) andP (Tn
m) 6= NULL,

Checkpriority of T j
i :

(a) if Tn
m is scheduled to execute afterT j

i (according to the sequence
S(tk))

• if P (T j
i) > P (Tn

m) ⇒ OK!

• else (P (T j
i) < P (Tn

m) ⇒ priority conflict! ⇒ Split/Update
(section 2.4.4)

(b) if Tn
m is scheduled to execute beforeT j

i (according to the sequence
S(tk))

• if P (T j
i) < P (Tn

m) ⇒ OK!

• else (P (T j
i) > P (Tn

m) ⇒ priority conflict! ⇒ Split/Update
(section 2.4.4)

24 Example

2.4.4 Priority assignment conflict – Instance splitting

Two instances,Tm and T j
n, of two tasksTm, Tn, have a priority-relation,

P (T i
m) > P (T j

n), in an feasibility windowWF (T i
m)orWF (T j

n). Now, sup-
pose that at a later point in time the relation between these two priority assign-
ments is contradicted:P (T (i+k)

m) < P (T (j+p)
n). EitherT (i+k)

m must have a
different priority than the previous instanceT i

m, or T
(j+p)
n thanT j

n. When a
priority assignment conflict arises between two instancesT i

m andT j
n, we have

to change the priority of one of the instances, which causes the conflict, i.e.,
T i

m or T j
n. One way to solve this problem is to split one of these two tasks

instances. The result is that the split instances will be treated as unique tasks
with their own attributes.
The selection of which task to split depends on the tasks period and whether it
is possible to split this task. The first choice is to split the task with the largest
period, because that gives the least number of new tasks (least number of in-
stances). A taskTm can be split without risking further conflicts, if the earliest
start time of the conflicting instanceT i

m is the start of the current feasibility
windowWF (T i

m).
If we split a taskTm whose instanceT i

m is released before the start of the cur-
rent feasibility window, a priority change ofT i

m could lead to another conflict
in one of its previous feasibility window where the tasks priority has already
been checked in a previous step. Further on, the successive instances ofTm

will be treated as first instances of new tasks.
When we split a taskTm, the attributes of all instances ofT k

m, k = 1, 2, . . .
will be updated, with:

offset(T k
m) = (k − 1) ∗ period(Tm)

dl(T k
m) = k ∗ period(Tm) + dl(Tm)

period(T k
m) = LCM

2.5 Example

We illustrate the algorithm with an example. Lets assume that we have the
following task-set: A(15,2), B(15,1), C(15,5), D(10,3) where T(Period, com-
putation time).The original offline schedule for the taskset is shown in figure
2.2. The feasibility windows for the task instances starts att1 = 0, t2 = 10,
t3 = 15, t4 = 20. At time t1 = 0 (table 2.1), the instances whose earliest start

Example 25

15 0 10 20

D A B C D A B C D

Figure 2.2: Off-line schedule

times are equal tot1 are D1, A1, B1, C1. We set the default priority (in this
case 100) on D and lower priorities of A, B and C according to the sequence
S(t1) = D,A,B, C.

tk est(T j
i) = tk est(T j

i) = tk&f(T j
i) > tk operation status

0 D1, A1, B1, C1 NONE setP(D)=100 default

S(t1) :

setP(A)=99
setP(B)=98
setP(C)=97

Table 2.1: Sequence att1 = 0

At time t2 = 10, (table 2.2) the second instance of D has its earliest start
time equal tot2. Since D has already been assigned the priority P(D)=100
at time t1, we check if this priority will schedule the second instance of D
into its off-line scheduled position according toS(t2) = C,D. In this case,
since Cs already assigned priority, P(C)=97, is lower than P(D)=100, we have
a priority conflict. We have to choose which task to split. The first candidate
is C because the number of invocations of C during LCM, 2, is lower then the
number of invocations of D, 3. Since Cs earliest start time for this instance
is, however,t1 < est(D), we have to split and update D, creating three tasks
D1, D2, D3. The previous instance of D, D1, is updated with T(D1)=LCM,
O(D1)=est(D1)=0, dl(D1)= end(WF(D1)) =10, P(D1)=100. D2. The instance
creating the conflict, D2, is treated as the first instance of an new task D2, with
T(D2) = LCM, O(D2) = est(D2) = 10, dl(D2)= end(WF(D2))=20, and with a
priority based on the priority of C, according to the sequenceS(t2) = C,D2,
P(D2)=P(C)-1=96.
At time t4 = 20 (table 2.3), we have the first instance of the new task D3 with
its earliest start time equal tot3. Since the task has no priority, we set P(D3)
based on the priority of the C, according to the sequenceS(t4) = C,D3,

26 Summary and Outlook

10 D2 C1 check P(D) conflict!
split D

S(t2) :

Table 2.2: Sequence att2 = 10

P(D3)=P(C)-1 =96.

15 A2, B2, C2 NONE check P(A) OK!
check P(B) OK!
check P(C) OK!

20 D3 C2 set P(D3)=96

Table 2.3: Sequence att4 = 20

The final set of tasks provided by our algorithm is shown in table 2.4.

Task C T O dl priority

A 2 15 0 15 99
B 1 15 0 15 98
C 5 15 0 15 97
D1 3 30 0 10 100
D2 3 30 10 20 96
D3 3 30 20 30 96

Table 2.4: FPS tasks

2.6 Summary and Outlook

In this paper, we presented a method to combine off-line schedule construction
with fixed priority run-time scheduling. It uses off-line schedules to express
complex constraints and predictability for selected tasks, while providing flex-
ibility for the remaining tasks and newly added ones at run-time. At first, it

Summary and Outlook 27

analyses the off-line schedule together with the original task constraints and
divides into windows and sequences. Then, it sets priorities and offsets to
ensure task orders in sequences and relation between windows. The algorithm
splits periodic tasks into several instances, as not all schedules can be expressed
with FPS. Using fixed priority scheduling at run-time, the tasks with computed
attributes will execute toreenactthe original offline schedule. New, lower pri-
ority tasks can be added for run-time execution.
We have implemented the described methods and tested the results both via
response time analysis and the original off-line schedule and original task con-
straints. Our algorithm determines task attributes trying to keep priorities for
all instances of periodic tasks the same. This will lead to inconsistent prior-
ity assignments for some schedules, e.g., those created with a earliest deadline
first strategy. Our algorithm attempts to resolve the arising priority conflicts
by splitting the task into several instances with different priorities. We are cur-
rently investigating this issue further to try to reduce the number of instances
with different attributes created.
We assume here, that task dependencies have been resolved off-line. Future
work will address the issue of task relations at run-time as well.

Bibliography

[1] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority Inheritance Protocols:
an Approach to Real-Time Synchronization.IEEE Transactions on Com-
puter, 39(9):1175–1185, Sept 1990.

[2] B. Sprunt, L. Sha, and J.P. Lehoczky. Aperiodic Task Scheduling for Hard
Real-Time Tasks.The Journal of Real-Time Systems, 1989.

[3] K. Tindell. Adding Time Offsets to Schedulability Analysis. Technical
report, Departament of Computer Science, University of York, January
1994.

[4] J.C. Palencia and M. Gonzalez Harbour. Schedulability Analysis for Tasks
with Static and Dynamic Offsets. InProceedings of 19th IEEE Real-Time
Systems Symposium, pages 26–37, 1998.

[5] M. Gonzalez Harbour and J.P. Lehoczky. Fixed Priority Scheduling of
Periodic Task Sets with Varying Execution Priority. InProceedings of
Real-Time Systems Symposium, pages 116–128, Dec. 1991.

[6] N.C. Audsley. Optimal Priority Assignment and Feasibility of Static Pri-
ority Tasks With Arbitrary Start Times. Technical report, Departament of
Computer Science, University of York, 1991.

[7] R. Gerber, S. Hong, and M. Saksena. Guaranteeing Real-Time Require-
ments with Resource-Based Calibration of Periodic Processes.IEEE
Transactions on Software Engineering, 21(7), July 1995.

[8] D. Seto, J.P. Lehoczky, and L. Sha. Task Period Selection and Schedula-
bility in Real-Time Systems. InProceedings of Real-Time Systems Sym-
posium, pages 188–198, 1998.

BIBLIOGRAPHY 29

[9] G. Fohler. Joint Scheduling of Distributed Complex Periodic and Hard
Aperiodic Tasks in Statically Scheduled Systems. InProc. 16th Real-time
Systems Symposium, Pisa, Italy, 1995.

Chapter 3

Paper B: Translating Off-line
Schedules into Task
Attributes for Fixed Priority
Scheduling

Radu Dobrin, Gerhard Fohler and Peter Puschner
In Proceedings of Real-Time Systems Symposium, London, UK, 2001.

Abstract

Off-line scheduling and fixed priority scheduling (FPS) are often considered as
complementing and incompatible paradigms. A number of industrial applica-
tions demand temporal properties (predictability, jitter constraints, end-to-end
deadlines, etc.) that are typically achieved by using off-line scheduling. The
rigid off-line scheduling schemes used, however, do not provide for flexibility.
FPS has been widely studied and used in a number of applications, mostly due
to its simple run-time scheduling, and small overhead. It can provide more
flexibility, but is limited with respect to predictability, as actual start and com-
pletion times of execution depend on run-time events.
In this paper we show how off-line scheduling and FPS run-time scheduling
can be combined to get the advantages of both – the capability to cope with
complex timing constraints and flexibility. The paper assumes that a schedule
for a set of tasks with complex constraints has been constructed off-line. It
presents a method to analyze the off-line schedule and derive an FPS task set
with FPS attributes priority, offset, and period, such that the runtime FPS exe-
cution matches the off-line schedule. It does so by analyzing the schedule and
setting up inequality relations for the priorities of the tasks under FPS. Integer
linear programming (ILP) is then used to find a FPS priority assignment that
fulfills the relations. In case the priority relations for the tasks of the off-line
schedule are not solvable we split tasks into the number of instances, to obtain a
new task set with consistent task attributes. Our schedule translation algorithm
keeps the number of newly generated artifact tasks minimal.

Introduction 33

3.1 Introduction

Off-line scheduling and fixed priority scheduling (FPS) are often considered
as having incompatible paradigms, but complementing properties. FPS has
been widely studied and used in a number of applications, mostly due its sim-
ple run-time scheduling, small overhead, and good flexibility for tasks with
incompletely known attributes. Modifications to the basic scheme to handle
semaphores [1], aperiodic tasks [2], static [3] and dynamic [4] offsets, and
precedence constraints [5], have been presented. Temporal analysis of FPS al-
gorithms focuses on providing guarantees that all instances of tasks will finish
before their deadlines. The actual start and completion times of execution of
tasks, however, are generally not known and depend largely on run-time events,
compromising predictability.
Off-line scheduling for time-triggered systems, on the other hand, provides
determinism, as all times for task executions are determined and known in
advance. In addition, complex constraints can be solved off-line, such as dis-
tribution, end-to-end deadlines, precedence, jitter, or instance separation. As
all actions have to be planned before startup, run-time flexibility is lacking.
In this paper we present work to combine FPS with off-line schedule construc-
tion. It assumes a schedule has been constructed off-line for a set of tasks to
meet their complex constraints. Our method takes the schedule and assigns the
FPS attributes priority, offset, and period, to the tasks, such that their runtime
FPS execution matches the off-line schedule. It does so by deriving priority
inequalities, which are then resolved by integer linear programming.
Instead of enhancing only either FPS or off-line scheduling alone, our method
provides for a combination, such that benefits of either scheme are accessible
to the other. In particular, the presented method provides solutions for the
following scenarios:

Legacy Systems: Some safety critical applications, e.g., from the avionics
domain [6], demand temporal partitioning of task executions or assertions not
only about deadline being met, but restrictions on the actual times when task
executions are performed. Typically, such applications are executed in time
triggered architectures with off-line schedule construction. A move to fixed
priority based systems has to ensure the specific demands will be met, which
may be cumbersome applying standard FPS methods, as these concentrate on
deadlines primarily.
Our method transforms these demands directly into attributes for tasks to be
feasibly scheduled with FPS, pertaining the predictability provided by off-line

34 Introduction

schemes.

FPS systems with unresolved constraints: The feasibility test provided for
FPS tasks defines the types of constraints which can be met. Additional con-
straints or combinations require modifications to existing tests or the develop-
ment of new ones, which may not be available in limited time.
In addition, constraints demanded by complex applications, cannot be expressed
generally: Control applications may require constraints on individual instances
rather than fixed periods, reliability demands can enforce allocation and sepa-
ration patterns, or engineering practice may require relations between system
activities.
Our method resolves the need for developing of new specific tests for unusual
constraints: first, a designer will apply known tests on the application under
consideration. Should standard schemes prove to be incapable, the designer
submits these tasks to an off-line scheduling scheme, which can use elaborate
and general methods, such as search or constraint satisfaction, to provide a
feasible off-line schedule. Then, our method derives attributes period, priority,
and offset for these tasks, such that they can be scheduled with FPS, while
meeting the specific constraints.

Predictable flexibility: Off-line scheduling provides deterministic execution
patterns for all tasks in the system, while FPS schemes provide flexibility for
all tasks. Only few applications, however, will demand either determinism or
flexibility uniformly for all activities in the system. Rather, only few selected
tasks have tight restrictions on their executions, e.g., those sampling or actu-
ating in a control system, with strict demands on jitter and variability, while a
majority can execute flexibly.
Our method allows the amount of flexibility at runtime to be set off-line in
a predictable way by including restrictions on task execution as input to the
transformation algorithm.
FPS cannot reconstruct all schedules with periodic tasks with the same priori-
ties for all instances directly. The constraints expressed via the off-line sched-
ule may require that instances of a given set of tasks need to be executed in
different order on different occasions. Obviously, there exist no valid FPS pri-
ority assignment that can achieve these different orders. Our algorithm detects
such situations, and circumvents the problem by splitting a task into its in-
stances. Then, the algorithm assigns different priorities to the newly generated
”artifact” tasks, the former instances.

Off-line Schedules 35

Key issues in resolving the priority conflicts are the number of artifact tasks
created, and the number of priority levels. Depending on how the priority
conflict is resolved, the number of resulting tasks may vary, depending on the
periods of the split tasks. Our algorithm minimizes the number of artifact tasks.
By using an ILP solver for the derivation of priorities, additional demands such
as reducing number of preemptions levels can be added by inclusion in the goal
function.
Priority assignment for FPS tasks has, for example, been studied in [7] and
[8]. [9] study the derivation of task attributes to meet overall constraints, e.g.,
demanded by control performance. Instead of specific requirements, our algo-
rithm takes an entire off-line schedule and all task requirements to determine
task attributes. A method to transform off-line schedules into earliest deadline
first tasks has been presented in [10]. A related paper [11] deals with priority
assignment for off-line schedules. It uses a constructive, heuristic approach,
potentially creating large numbers of artifacts, while the approach presented
here generates optimal solutions with an ILP-based algorithm.
The paper is organized as follows: in Section 3.2 we describe the rationale
and how our method relates off-line scheduling and FPS. In Section 3.3 we
describe the problem together with the basic idea and the algorithm, which is
illustrated by an example in Section 3.4. In Section 3.5 we present conclusions
and further work, and we conclude the paper with proofs in appendix 3.7.

3.2 Off-line Schedules

In this section, we discuss the rationale of our method and position its function-
ality with respect to application timing constraints, off-line scheduler, and FPS
online execution of tasks. We discuss the complexity reduction of the NP hard
scheduling problem with general constraints achieved by the off-line scheduler
and how the new method provides for a selective choice of degree of online
flexibility of the resulting FPS tasks.

Before starting the discussion, we introduce the termtarget windows.

3.2.1 Target windows

We define the target window of as task is the interval of time in which the
instance will execute and complete at run-time. For example, the target window
of a task scheduled by the RM algorithm will be the period of the task. The

36 Off-line Schedules

target window of a task scheduled off-line will consist of the time slots that the
off-line scheduler assigned to the task.

3.2.2 Time triggered system operation and schedule construc-
tion

We assume a distributed system of stand-alone computers connected via a
shared network. Tasks are allocated to these nodes, communicate across the
system, and are demanded to fulfill complex constraints, such as precedence,
end-to-end deadlines, and jitter. The off-line scheduler allocates tasks to nodes
and resolves complex constraints by determining windows for tasks to execute
in, and sequences, usually stored in scheduling tables. The resulting off-line
schedule is one feasible, likely suboptimal solution. At run-time, a simple dis-
patcher selects which task to execute from the scheduling tables, ensuring tasks
execute within the windows and thus meet their constraints.
This way, the complexity of the original scheduling problem is reduced off-
line, which allows for elaborate methods, improvement of results and modifi-
cations in the failure case.

3.2.3 FPS reenaction of off-line schedules

For off-line tasks, typically, the runtime dispatcher is invoked in each node
at regular time intervals,slots, and performs table lookup for task selection.
While being simple, this is not the only way to ensure tasks execute in the
windows, from now on calledtarget windows, and in the order computed by
the off-line scheduler.
In this paper, we propose to use standard fixed priority scheduling instead: by
deriving priorities and offsets for tasks in such a way that tasks execute within
their target windows and fulfill the precedence requirements when scheduled
by FPS, the system will reenact the off-line schedule. Thus, the advantages
of deterministic off-line scheduling can be combined with FPS scheduling at
runtime.

3.2.4 Increased runtime flexibility

By modifying target windows, flexibility can be increased at runtime, while
keeping the original constraints. Target windows created by the offline sched-
uler resolve two types of constraints:temporal, e.g., start of periods, end-to-
end deadlines, sending or receipt of messages over the network, or jitter, in-

Attribute assignment algorithm 37

stance separation, etc, andorder of task execution, as determined by the offline
scheduler, e.g., for data flow processing, precedence, mutual exclusion. The of-
fline scheduler resolves both types of constraints by assigning absolute points
in time for the execution of all tasks. While the times for temporal constraints
have to be kept, e.g., a task cannot execute after its deadline, order constraints
are relative, i.e., tasks can execute earlier provided the execution order of the
schedule is maintained. The offline schedule, however, prevents tasks from ex-
ecuting at a different time, even if resources become available earlier, e.g., by
early termination of a task, i.e., the schedule is over constrained.
We provide an execution pattern which is more flexible than interpreting an
offline schedule but nevertheless guarantees to meet the given constraints. We
propose to join target windows of order constrained tasks which have the same
temporal constraints. These tasks form chains according to their order inside
these new target windows. Thus, we can exploit more flexibility while main-
taining the constraints resolved by the offline schedule.

3.2.5 Selectively reduced runtime flexibility

While desirable in general, additional flexibility may be harmfull for some
tasks, e.g., those sampling and actuating in a control system. For such tasks,
the deterministic execution provided by the offline schedule has to be pertained.
We propose to prevent the joining of target windows or to reduce the length
of some windows selectively to keep the strict execution behaviour of selected
tasks, while providing flexibility for the rest. Thus, our methods allows the
amount of run-time flexibility of a task to be set offline in a predictable way.

3.3 Attribute assignment algorithm

We present a method which determines attributes for tasks assigned to target
windows and associated chains such that, if executed according to fixed priority
scheduling, they will execute inside their target window and obey the order
constraint of the task chains.

3.3.1 Problem Definition

Given a set of off-line scheduled tasks,Original Tasks where

Original Tasks = {T1, T2, . . . , Tn}

38 Attribute assignment algorithm

with constraints represented by target windows,TWi, i = 1, 2, . . ., we want
to transform them into a set of tasks,FPSTaskswhere

FPS Tasks = {T1, T2, . . . , Tm},

with attributes suitable for FPS, i.e.,prio(Ti), o(Ti), dl(Ti), p(Ti), such that:

1. Each instance of each taskTi will execute at run time inside its target
window

2. The order of execution enforced by the original task constraints is pre-
served

if the tasksTi ∈ {FPS Tasks} are scheduled by FPS.

3.3.2 Algorithm Overview

As input to our method we have:
TasksetTi ∈ {Original Tasks}, i = 1, 2, . . ., with constraints expressed in:

• Off-line schedule, up to LCM, expressing the original task constraints,
that gives off-line scheduled start- and finishing times for each instance
T j

i of each taskTi, st(T j
i), ft(T j

i)

• Target windows,TWn, n = 1, 2, . . ., that gives earliest start times and
deadlines for each instanceT j

i of each taskTi:
est(T j

i) = begin(TWn) = begin(TW (T j
i)), and

dl(T j
i) = end(TWn) = end(TW (T j

i))

We start with target windows and sequences of instances. We translate order
constraints into priority constraints between the new FP tasks.
We may not be able to find a FPS schedule with the same number of tasks as
the original one, but we may have to create new tasks by splitting some of the
original off-line tasks. The resulting number of FPS tasks is to be minimized.

Output: we are looking for a set of tasks,Ti ∈ {FPS Tasks}, with:

• Priorities,prio(Ti)

• Offsets,o(Ti)

• Periods,p(Ti), where Ti ∈ {FPS Tasks}

Attribute assignment algorithm 39

3.3.3 Derivation of the Inequalities

Given the target windows derived from the original constraints and the off-line
schedule and defined asTWn = {T j

i | est(T j
i) = tk = begin(TWn), and

dl(T j
i) = end(TWn)}, wherebegin(TWn) andend(TWn) are the starting

time and the end time of thenth target window, we derive thesequences of
taskscorresponding to the start of each target window. The derivation of the
sequences is illustrated in Figure 3.1.
A sequence of tasksSEQk consists of task instances, ordered by increasing
scheduled start times according to the off-line schedule. A sequence may con-
tain instancesT j

i of tasksTi such thatest(T j
i) = tk, referred to as{current

instances}tk
, or instancesT q

s of tasksTs from overlapping target windows
such thatest(T q

s) < tk andft(T q
s) > tk, which we refer to as{interfering

instances}tk
, wheretk = begin(TWn).

SEQk = {{current instances}tk
∪

∪{interfering instances}tk
}ordered =

= <
k

S1,
k

S2, . . . ,
k

SN >

Where:

• {current instances}tk
= {T j

i | est(T
j
i) = tk}

• {interfering instances}tk
= {T q

s | est(T q
s) < tk ∧ ft(T q

s) > tk}

• first(SEQk) =
k

S1 = first task instance in SEQk

• last(SEQk) =
k

SN = last task instance in SEQk

The priority assignment has to preserve the execution order expressed in the
off-line schedule. Therefore, from each sequence of tasksSEQk, k = 1, 2, . . .,
we derive priority relations between the task instances withinSEQk.

prio(
k

S1) > prio(
k

S2) > . . . > prio(
k

SN)

The priority inequality system derived from the sequences of tasks, includes
all task instances in the off-line schedule.

40 Attribute assignment algorithm

{current instances}tk
{interfering instance}tk

�� @@@
@

@@
TWn

TWn−q

TWn+r

A B

C D

F

tk−1 tk tk+1

SEQk =< DAB >

Figure 3.1: Sequence of tasks.

3.3.4 Attribute Assignment - Conflicts

Based on the order of execution expressed by the inequalities derived in Section
3.3.3, we derive attributes - priorities and offsets - for each task.
Our goal is to provide tasks with fixed offsets and fixed priorities. It may
happen, however, that we have to assign different offsets/priorities to different
instances of the same task, in order to reenact the off-line schedule at run time.
These cases cannot be expressed directly with fixed priorities and fixed off-
sets and are the sources foroffset assignment conflictsor priority assignment
conflicts. In both cases, we split the conflicting task into instances such that,
further on, each instance will be considered as an independent task with one
instance during LCM.
By offset assignment conflictwe mean that different instances of the same task
have to be assigned different offsets in order to ensure the run-time execution
of each one of them in the derived target window.

for 1 ≤ i ≤ nr of off − line scheduled tasks
for 1 ≤ j ≤ n, where n = nr of instances(Ti)

if: begin(TW (T j
i))− (j − 1)p(Ti) 6=

6= begin(TW (T j+1
i))− j ∗ p(Ti),

Then:We split Ti into Ti,1, Ti,2, . . . , Ti,n

The offset and period assignment will be described in section 3.3.6.

Attribute assignment algorithm 41

Priority assignment conflictsare detected after the derivation of the sequences,
and occurs in the cases when two different instances of the same task have
to be assigned different priorities in order to ensure the run-time execution of
each one of them in the derived target window, and in the right position in the
sequence the tasks belongs to. In this case, since a priority assignment involves
more than one task, there is typically a choice of which task to split.
In our method, we split tasks that causes offset assignment conflicts into in-
stancesbeforederiving the sequences of instances. By that, we reduce the
probability of priority assignment conflict eventually caused by the same tasks
since the new created tasks will have only one instance during LCM.
We illustrate the issues with an example. Assume that we have the off-line
schedule in Figure 3.2 expressing the original constraints of the following
taskset: A(5,1), B(10,3), C(20,8), (period, computation time). We assume
that we have a precedence constraint between the(4m + 1)th instance of A
and the(2m + 1)th instance of B,A4m+1 → B2m+1, m = 0, 1, 2, . . . ,
and a precedence constraint between the(2n + 2)th instance of B and the
(4n + 3)th instance of A,B2(n+1) → A4n+3, n = 0, 1, 2, The time points

TW (C1)︷ ︸︸ ︷
TW (B1)︷ ︸︸ ︷ TW (B2)︷ ︸︸ ︷

A B B B C A C C C C B B B A C A C C
0 ︸ ︷︷ ︸

TW (A1)

5 ︸ ︷︷ ︸
TW (A2)

10 ︸ ︷︷ ︸
TW (A3)

15 ︸ ︷︷ ︸
TW (A4)

20

Figure 3.2: Example 1: Off-line Schedule and Target Windows

t1 = 0, t2 = 5, t3 = 10, t4 = 15 marks the beginning of the target win-
dows (Figure 3.2), i.e.,TW1 = TW (A1) = [0, 5], TW2 = TW (B1) =
[0, 10], TW3 = TW (C1) = [0, 20], TW4 = TW (A2) = [5, 10], etc. The
priority relations (inequalities) between the tasks of each target window, are
shown in Figure 3.3. In this example, we can easily see that we do not have
any offset assignment conflicts, since the target windows of the instances of
the same task begins at the same point in time relative to the task period. Ac-
cording to the sequenceSEQ1 =< A1, B1, C1 >, taskA must be assigned
a higher priority then taskB. On the other hand, according to the sequence
SEQ3 =< B2, A3, C1 >, taskB must be assigned higher priority thenA. In
this case we have a cycle of priority inequalities that has to be solved:

prio(A1) > prio(B1) > . . . > prio(B2) > prio(A3)

42 Attribute assignment algorithm

k tk

{
current

inst.

}
tk

{
intf.
inst.

}
tk

SEQk Priority inequalities

1 0 A1, B1, C1 None A1, B1, C1 prio(A1) > prio(B1)
prio(B1) > prio(C1)

2 5 A2 C1 A2, C1 prio(A2) > prio(C1)
3 10 A3, B2 C1 B2, A3, C1 prio(B2) > prio(A3)

prio(A3) > prio(C1)
4 15 A4 C1 A4, C1 prio(A4) > prio(C1)

Figure 3.3: Example 1: Sequences of tasks

We solve this issue by splitting the task with the inconsistent priority assign-
ment into a number of new periodic tasks with different priorities. The in-
stances of the new tasks comprise all instances of the original task. Since a
priority assignment conflict involves more than one task, like in our example,
there is typically the choice of which task to split. Our goal is to find the splits
which yield the smallest number of FPS tasks. In our example, we have to
break the chain by splitting eitherA or B into instances and considering each
one of these instances as individual tasks. Depending on the number of in-
stances ofA andB during LCM, the choice of the task to be split influences
the number of artifact tasks created.
In order to minimize the number of artifact tasks, we create an integer linear
programming problem from the derived system of priority inequalities to first
identify which instances to split, if any, and to derive priorities for the resulting
FPS tasks. The flexibility of the ILP solver allows for simple inclusion of other
criteria via goal functions.
In section 3.3.6 we present a complete solution for our example.

3.3.5 ILP Problem Representation

A linear programming (LP) problem consists of a linear goal function in a
number of variables and a set of linear inequality relations of the variables. LP
solving searches a value assignment for all variables (solution) that optimizes
(minimizes or maximizes) the given goal function under the given constraints.
If the values of a solution have to be integral the problem is called an integer
linear programming (ILP) problem.
The aim of the given attribute assignment problem is to find a task set, i.e., a
minimum number of tasks together with their priorities, that fulfills the priority
relations of the sequences of the schedule. As mentioned above, each task of

Attribute assignment algorithm 43

the task set is either one of the original tasks or an artifact task created from
one of the instances of an original task selected for splitting.
The problem is translated into an ILP problem, because we are only interested
in integral priority assignments and solutions. In the ILP problem the goal
function G to be minimized computes the number of tasks to be used in the
FPS scheduler

G = N +
N∑

i=1

(ki − 1) ∗ bi,

whereN is the number of tasks in the off-line schedule,ki is the number of
instances of taskTi, andbi is a binary integral variable that indicates ifTi needs
to be split into its instances.
The constraints of the ILP problem reflect the restrictions on the task priorities
as imposed by scheduling problem. The priority relations of the original tasks
of the off-line schedule form the basis for the ILP constraints. To account for
the case of priority conflicts, i.e., when tasks have to be split, the constraints
between the original tasks are extended to include the constraints of the artifact

tasks. Thus each priority relationprio(
k

Sl) > prio(
k

Sl+1) with
k

Sl = T j
i and

k

Sl+1 = T q
p is translated into an ILP constraint

pi + pj
i > pp + pq

p,

where the variablespi andpp stand for the priorities of the FPS tasks represent-
ing the original tasksTi andTp, respectively, andpj

i , pq
p stand for the priorities

of the artifact tasksT j
i andT q

p (in case it is necessary to split the off-line tasks).

Although this may look like a constraint between four tasks (Ti, T j
i , Tp, T q

p)
it is in fact a constraint between two tasks – for each task only its original (Ti

resp.Tp) or its artefact tasks (T j
i resp.T q

p) can exist in the FPS schedule. A
further set of constraints for each off-line taskTi ensure that only either the
original tasks or its artefact tasks are assigned valid priorities (greater than 0)
by the ILP solver. All other priorities are set to zero.

pi ≤ (1− bi) ∗M

∀j : pj
i ≤ bi ∗M

In these constraintsM is a large number, larger than the total number of in-
stances in the off-line schedule. The variablebi for taskTi, which also occurs

44 Attribute assignment algorithm

in the goal function, is the binary variable that indicates ifTi has to be split,
i.e., bi allows only a task or its artifact tasks to assume valid priorities. Since
the goal function associates a penalty equal to the number of instances ofTi

for eachbi that has to be set to 1, the ILP problem indeed searches for a so-
lution that produces a minimum number of task splits. The constraints on the
variablesbi complete the ILP constraints:bi ≤ 1.

The solution of the ILP problem yields the total number of tasks as the result
of the goal function. The values of the variablespi andpj

i for each task repre-
sent a priority assignment for tasks and artifact tasks that satisfies the priority
relations of the scheduling problem. Ifpi > 0 or pj

i > 0 then the respective
taskTi or T j

i exists in the FPS schedule and its priority ispi or pj
i , respectively.

If a variable (pi or pj
i) has been assigned the value zero the task/artifact task is

not included into the FPS schedule, i.e.,FPS tasks = {Ti : pi > 0} ∪ {T j
i :

pj
i > 0} and for each task inFPS tasks the priorityprio(Ti) is the value of

the priority variable of the corresponding task/artifact task, i.e.,pi or pj
i .

In our example (Example 1), the solution provided by the solver is:

bA = bC = 0
bB = 1, meaning that task B is to be split

pA = 3
p1

B = 2
p2

B = 4
pC = 1

3.3.6 Periods and Offsets

Since the priorities of the FP tasks have been assigned by the LP-solver, we can
now focus on the assignment of periods and offsets. Now we have a set of tasks
with priorities,FPStasks, produced by the LP-solver, consisting of a subset of
the original taskset,{orig tasks} ⊆ {Original Tasks}, and a set of artifact
tasks,{art tasks}, FPS tasks = {orig tasks ∪ art tasks}. Based on the
information provided by the LP-solver, we assign periods and offsets to each
task inTi ∈ {FPS Tasks}, in order to ensure the run time execution within
their respective target windows, as following:

Attribute assignment algorithm 45

Ti p c o prio

A 5 1 0 3
B1 20 3 0 2
B2 20 3 10 4
C 20 8 0 1

Figure 3.4: Example 1: FPS tasks.

for 1 ≤ i ≤ nr of tasks in(FPS tasks)

p(Ti) =
LCM

nr of instances(Ti)

o(Ti) = begin(TW (T 1
i))

The final set of tasks, derived from the original off-line scheduled tasks in
example 1, by performing the steps described in Sections 3.3.4, 3.3.5 and 3.3.6,
are illustrated in Figure 3.4. The highest value represents the highest priority.

3.3.7 Discussion

Our method does not introduce artifacts or reduce flexibility unless required by
constraints: a set of FPS tasks, scheduled off-line according to FPS, and trans-
formed by our method will execute in the same way as the original FPS tasks.
The FPS tasks resulting from our method execute flexibly, unless prevented
by reducing target windows for strict predictability for some tasks. Tasks can
execute earlier if preceding tasks finish earlier than the assumed worst case ex-
ecution time, or may even change order of execution, if tasks are not ready to
run, provided the priority order is kept.
In some cases, we have to perform additional splits, due to violation of the
periodicity in the off-line schedule, which gives different offsets for different
instances of the same task. By minimizing the number of artifact tasks, our
method minimizes the number of offsets in the system as well, since we don’t
change offsets unless we have to split tasks. By using ILP, we minimize the
number of artifact tasks and, implicitly, offsets.

46 Example

While our method is capable of deriving FPS tasks for general off-line sched-
ules, the resulting task set and attributes may be awkward in extreme cases,
e.g., the off-line schedule includes non periodic patterns or changes execution
orders of tasks. Still, our method allows these to be re-enacted with standard
FPS scheduling. We are currently investigating the inclusion of trade-offs in
our algorithm if more straight forward FPS tasks are desired.
Note that our method allows, e.g., tasks to execute according to earliest dead-
line first order, although using FPS, by creating artifact tasks with different
priorities. Thus, the properties of, in this case, EDF can be exploited in an
FPS system. The resulting increase in utilization comes from the periods of
the artifact tasks being set to LCM.
Target windows can be derived from off-line schedules directly, without fur-
ther knowledge about the original timing constraints. In that case, the off-line
schedule will be re-enacted exactly by the FPS tasks, providing the same deter-
minism. The resulting assignment, however, will lead to inflexible schedules
and inefficient attributes.
We envision the proposed method to be complemented by a run-time enforce-
ment mechanism, such as a watch-dog, to ensure tasks do not overrun their
budgets.
On-line tasks with lower priority can easily be added to the fixed priority sched-
ule, while an on-line acceptance test can be performed on the higher priority
sporadic or aperiodic tasks.

3.4 Example

We illustrate the ability of the method to deal with tasks with complex con-
straints, with an example. We assume we have the taskset described in Figure
3.5 and the earliest start times and the deadlines of the off-line tasks, are equal
to the start and end of the periods. The precedence relations are:A→B→C;
D→E; F→G; F→C, and it takes one time slot to send a message between 2
nodes. Additionally, we want the FPS execution of task A to be fixed between
(est(A) + 2) and(est(A) + 4). The off-line schedule and the target windows
are illustrated in Figure 3.6.
The priority inequalities between the instances are derived in the same way
as in the example presented in Section 3.3 and shown in Figure 3.7. From the
inequalities, we can see that we have a number of priority assignment conflicts,
i.e., prio(E1) > prio(B1) > prio(C1) > prio(D2) resulting fromSEQ3

corresponding tot3 = 5, andprio(D2) > prio(E2) fromSEQ4, meaning that

Conclusions and future work 47

Task p c Node

A 15 2 0
B 15 1 0
C 15 5 0
D 10 3 0
E 10 2 0
F 15 3 1
G 15 4 1

Figure 3.5: Example 2: Off-line Tasks

we have a cycle of inequalities consisting ofprio(E1) > prio(B1) > . . . >
prio(E2). Another cycle of inequalities is given bySEQ1, SEQ2, SEQ3 and
SEQ4: prio(D1) > prio(E1) > . . . > prio(C1) > prio(D2). We formulate
our goal function in the same way we did in Section 3.3.5, in order to minimize
the number of artifact tasks, and LP provide us information about which task(s)
to split, in this case D and E, and priorities for the final FPS tasks. Finally we
assign offsets and periods to the FPS tasks in order to ensure the execution
within the target windows (Figure 3.8). The schedule obtained by scheduling
the final taskset by FPS is illustrated in Figure 3.9.

3.5 Conclusions and future work

In this paper we have presented a method that combines off-line schedule con-
struction with fixed priority run-time scheduling. We use off-line schedules and
target windows to express complex constraints and predictability for selected
tasks, and derive attributes for tasks, such that if applying FPS at run-time, the
tasks will execute within the specified target windows and fulfill the original
constraints.
Thus, the method solves issues arising from legacy systems, e.g., partition
scheduling for avionics applications, allows to handle constraints not covered
by FPS feasibility tests, while using standard FPS at runtime. Also it provides
for predictable flexibility, i.e., the restricted execution of selected tasks, e.g., for
sampling and actuating in control systems, while enabling runtime flexibility
for others.
Our method analyzes the off-line schedule and the target windows and derives

48 Conclusions and future work

TW (D1)︷ ︸︸ ︷ TW (D2)︷ ︸︸ ︷ TW (D3)︷ ︸︸ ︷
TW (E1)︷ ︸︸ ︷ TW (E2)︷ ︸︸ ︷ TW (E3)︷ ︸︸ ︷

TW (B1)︷ ︸︸ ︷
TW (A1)︷ ︸︸ ︷ TW (C1)︷ ︸︸ ︷

TW (B2)︷ ︸︸ ︷
TW (A2)︷ ︸︸ ︷ TW (C2)︷ ︸︸ ︷

N2

N1

F F F G G G G F F F G G G G

D D A A E E B C C C C C D D E E A A B C C C C C D D E E

0 ︸ ︷︷ ︸
TW (F1)︸ ︷︷ ︸

TW (G1)

15 ︸ ︷︷ ︸
TW (F2)︸ ︷︷ ︸

TW (G2)

30

Figure 3.6: Example 2: Off-line Schedule and Target Windows

priority relations between task instances, expressed in a set of inequalities. In
certain cases, the method splits tasks into instances, creating artifact tasks, as
not all off-line schedules can be expressed directly with FPS. We use stan-
dard integer linear programing to solve the priority inequalities and minimize
the number of artifact tasks created. Finally, we assign offsets and periods to
the task set provided by ILP in order to ensure the correct run-time execution
within the derived target windows.
In some cases, we have to perform additional splits, due to a violation of the
periodicity in the off-line schedule, which gives different offsets for different
instances of the same task. By minimizing the number of artifact tasks, our
method minimizes the number of offsets in the system as well. The number of
artifact tasks and offsets can be decreased by reducing target windows, if the
resulting loss in flexibility is acceptable.
Our method does not introduce artifacts or reduce flexibility unless required
by constraints: a set of FPS tasks, scheduled off-line according to FPS, and
transformed by our method executes in the same way as the original tasks.
To this point, we have concentrated on reconstructing the off-line schedule.
Using the flexibility of the ILP solver, we can add objectives by inclusion in
the goal function. Currently, we are investigating providing for trade-offs to
reduce the number of preemption and priority levels.
Furthermore, we assume that all task dependencies have been resolved off-line.

Acknowledgements 49

tk Node

{
current

inst.

}
tk

{
intf.
inst.

}
tk

SEQk inequalities

0 0 D1, E1 None D1, E1 prio(D1) > prio(E1)
1 F 1, G1 None F 1, G1 prio(F 1) > prio(G1)

2 0 A1, B1 E1 A1, E1, B1 prio(A1) > prio(E1)
prio(E1) > prio(B1)

4 0 C1 E1, B1 E1, B1, C1 prio(E1) > prio(B1)
prio(B1) > prio(C1)

10 0 D2, E2 C1 C1, D2, E2 prio(C1) > prio(D2)
prio(D2) > prio(E2)

15 0 None E2 E2 -
1 F 2, G2 None F 2, G2 prio(F 2) > prio(G2)

17 0 A2, B2 None A2, B2 prio(A2) > prio(B2)
20 0 C2, D3, E3 None C2, D3, E3 prio(C2) > prio(D3)

prio(D3) > prio(E3)

Figure 3.7: Example 2: Inequalities

Future work will address the issue of task relations at run-time as well.

3.6 Acknowledgements

The authors wish to express their gratitude to Iain Bate, Alan Burns, Krithi
Ramamritham, and Guillem Bernat for useful discussions and to the reviewers
for their helpful comments on the paper.

3.7 Proofs

We prove the method in two steps. First, we prove that FPS tasks will meet
their deadlines, and second, that we preserve the order of execution enforced
by the task constraints expressed in the off-line schedule.

3.7.1 Proof 1

Theorem: Any instanceT j
i of any taskTi, produced by the method described

in Section 3.3, execute at run-time within its derived target window, if sched-
uled by FPS together with all other FP tasks. In fact it complete its execution
before it’s off-line scheduled finishing time,R(T j

i) ≤ ft(T j
i).

50 Proofs

Ti p c o prio

A 15 2 2 5 (highest)
B 15 1 2 3
C 15 5 4 2
D1 30 2 0 5
D2 30 2 10 1
D3 30 2 20 1
E1 30 2 0 4
E2 30 2 10 0
E3 30 2 20 0
F 15 3 0 1
G 15 4 0 0 (lowest)

Figure 3.8: Example 2: FPS Tasks

F F F G G G G F F F G G G G

D1 D1 A A E1 E1 B C C C C C D2 D2 E2 E2 A A B C C C C C D3 D3 E3 E3

N2

N1

0 15 30

Figure 3.9: Example 2: FP Schedule

Proof: We want to prove that

∀tk, SEQk =<
k

S1,
k

S2, . . . , last(SEQk) >:

R(
k

Si) ≤ ft(
k

Si) ≤ dl(
k

Si) = end(TW (T j
i)),

∀i ∈ [1, nr of tasks in SEQk]

whereR(
k

Si) = est(
k

Si) + c(
k

Si) +
∑
∀j∈hp(i) c(Tj).

Tj is a task instance belonging to eitherSEQk or SEQk+n, n ≥ 1. All task
instances with earliest start times less or equal totk are included inSEQk

as eithercurrent instancestk
or interfering instancestk. However, there

might be an interference from task instances belonging to ’later’ sequences
SEQk+n that are not taken into account when deriving the priority inequalities

Proofs 51

corresponding toSEQk.
What do we know?

1. ∀ TWn, ∀ T j
i ∈ TWn,

est(T j
i) = begin(TWn) and dl(T j

i) = end(TWn)

2. ∀SEQk, ∀ i ∈ [1, nr of tasks in SEQk],

tk + c(
k

Si) + c(
k

Si−1) + . . . + c(
k

S1) ≤ ft(
end

S i),
(from the off-line schedule)

3. ∀SEQk,

prio(
k

S1) > prio(
k

S2) > . . . > prio(last(SEQk)),
(given by ILP)

4. ∀i ∈ [1, nr of tasks in SEQk],

ft(
k

Si) ≤ end(TW (
k

Si)),
(given by the off-line schedule)

We use induction.

(a) We prove it for the ’last’ sequence in the off-line schedule,SEQend cor-
responding to the timetend since in this case we don’t have interference
from task instances belonging to ’later’ sequences:

∀ i,
end

S i ∈ SEQend, R(
end

S i) ≤ ft(
end

S i)

Proof:

SEQend =<
end

S 1,
end

S 2, . . . , last(SEQend) >

∀i ∈ [1, nr of instances in SEQend].

From (2)⇒ tend + c(
end

S i) + c(
end

S i−1) + . . . + c(
end

S 1) ≤ ft(
end

S i)

From (3): c(
end

S 1) + c(
end

S 2) + . . . + c(
end

S i−1) =
∑
∀j∈hp(i) c(Tj),

since there is no interference from task instances belonging to ’later’
sequences.

⇒ tend + c(
end

S i) +
∑
∀j∈hp(i) c(Tj) ≤ ft(

end

S i)

Additionally we know thatest(
end

S i) ≤ tend (from the definition of the
sequences):

52 Proofs

est(
end

S i) + c(
end

S i) +
∑
∀j∈hp(i) c(Tj) ≤ ft(

end

S i)

⇒ R(
end

S i) ≤ ft(
end

S i), meaning that
end

S i complete its execution before
its off-line scheduled finishing time, and implicitly, before the end of its
target window (from (1) and (4)).

(b) We assumeSEQk =<
k

S1, . . . , last(SEQk) > ⇒ R(
k

Si) ≤ ft(
k

Si),
∀i ∈ [1, nr of inst. in SEQk]

We proveSEQk−1:

∀ i,
k−1

S i ∈ SEQk−1, R(
k−1

S i) ≤ ft(
k−1

S i)

We have two cases:
Case1:SEQk ∩ SEQk−1 = ∅ ⇒ No interference⇒ same proof as in
(a).

Case2:SEQk ∩SEQk−1 6= ∅, SEQk ∩SEQk−1 = common tasks,
where:
common tasks = {T j | T j ∈ SEQk∧ T j ∈ SEQk−1 ∧ st(T 1) <
< st(T 2) < . . . < st(Tm)} =< T 1, T 2, ..., Tm >

Then:

SEQk−1 =<
k−1

S 1, . . . ,
k−1

S n > ∪<
k−1

S n+1, . . . , last(SEQk−1) >︸ ︷︷ ︸
common tasks

=

=<
k−1

S 1, . . . ,
k−1

S n,
k−1

S n+1, . . . , last(SEQk−1)︸ ︷︷ ︸
common tasks

>

We know that:
∀Ti ∈ common tasks ⊆ SEQk ⇒
R(T i) ≤ ft(T i), (from the assumption), and:

prio(
k−1

S i) > prio(T j), ∀i ∈ [1, n], ∀T j ∈ {common tasks}, (from
the priority assignment and (3)).
Then,∀i ∈ [1, n] : (from(2))

R(
k−1

S i) = tk−1︸︷︷︸
≥est(

k−1
S i))

+c(
k−1

S i)+c(
k−1

S i−1) + . . . + c(
k−1

S 1)︸ ︷︷ ︸∑
∀j∈hp(i) c(Tj)

≤ ft(
k−1

S i)

Hence:

R(
k−1

S i) = est(
k−1

S i) + c(
k−1

S i) +
∑

∀j∈hp(i)

c(Tj) ≤ ft(
k−1

S i).2

Proofs 53

3.7.2 Proof 2

Theorem: If there is a precedence relation expressed in the original task con-
straints and/or the off-line schedule between any two instancesT i

m, T j
n of any

two tasksTm, Tn, T i
m → T j

n, thenT i
m execute beforeT j

n when scheduling
the FPS-task produced by the method described in 3.3 by FPS, assuming that
the precedence requirement is fulfilled in the off-line schedule.

Proof: We prove that if there is an overlapping, in terms of time, between
the target windows of the two instances,TW (T i

m) and TW (T j
n), thenT i

m

is assigned a higher priority thenT j
n, prio(T i

m) > prio(T j
n). Additionally,

we know that any instance of any FP task execute inside its target window if
scheduled by FPS (3.7.1) and, if there is an overlapping between the two target
windows, then the target window ofT i

m must begin before the beginning of the
target window ofT j

n:

begin(TW (T i
m)) ≤ begin(TW (T j

n))

We have two cases:

1. begin(TW (T i
m)) = begin(TW (T j

n)) = tk
thenT i

m, T j
n ∈ current instancestk

∈ SEQk, and the off-line execu-
tion ofT i

m is before the off-line execution ofT j
n (from the off-line sched-

ule). Then:prio(T i
m) > prio(T j

n), sinceprio(
k

S1) > prio(
k

S2) . . . >

prio(last(SEQk)), where the off-line execution of
k

Si is before the off-

line execution of
k

Si+1, ∀i ∈ [1, nr of instances inSEQk].

2. begin(TW (T i
m)) = tk < begin(TW (T j

n)) = tp

(a) ft(T i
m) ≤ begin(TW (T j

n)) = tp
no interference.T i

m finish its execution before the start of the target
window ofT j

n.

(b) ft(T i
m) > begin(TW (T j

n)) = tp, then:
T i

m ∈ {interfering instances}tp
∈ SEQp,

T j
n ∈ {current instances}tp

∈ SEQp, andT i
m is off-line sched-

uled to execute beforeT j
n (from the off-line schedule). Then:

prio(T i
m) > prio(T j

n), sinceprio(
p

S1) > prio(
p

S2) > . . . >

54 Proofs

> prio(last(SEQp)), where
p

Si is off-line scheduled to execute

before
p

Si+1, ∀i ∈ [1, nr of instances in(SEQp)].2

Bibliography

[1] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority Inheritance Protocols:
an Approach to Real-Time Synchronization.IEEE Transactions on Com-
puter, 39(9):1175–1185, Sept 1990.

[2] B. Sprunt, L. Sha, and J.P. Lehoczky. Aperiodic Task Scheduling for Hard
Real-Time Tasks.The Journal of Real-Time Systems, 1989.

[3] K. Tindell. Adding Time Offsets to Schedulability Analysis. Technical
report, Departament of Computer Science, University of York, January
1994.

[4] J.C. Palencia and M. Gonzalez Harbour. Schedulability Analysis for
Tasks with Static and Dynamic Offsets. InProceedings of 19th IEEE
Real-Time Systems Symposium, pages 26–37, 1998.

[5] M. Gonzalez Harbour and J.P. Lehoczky. Fixed Priority Scheduling of
Periodic Task Sets with Varying Execution Priority. InProceedings of
Real-Time Systems Symposium, pages 116–128, Dec. 1991.

[6] T. Carpenter, K. Driscoll, K. Hoyme, and J. Carciofini. ARINC Schedul-
ing: Problem Definition. InProceedings of Real-Time Systems Sympo-
sium, pages 165–169, 1994.

[7] N.C. Audsley. Optimal Priority Assignment and Feasibility of Static Pri-
ority Tasks With Arbitrary Start Times. Technical report, Departament of
Computer Science, University of York, 1991.

[8] R. Gerber, S. Hong, and M. Saksena. Guaranteeing Real-Time Require-
ments with Resource-Based Calibration of Periodic Processes.IEEE
Transactions on Software Engineering, 21(7), July 1995.

56 BIBLIOGRAPHY

[9] D. Seto, J.P. Lehoczky, and L. Sha. Task Period Selection and Schedula-
bility in Real-Time Systems. InProceedings of Real-Time Systems Sym-
posium, pages 188–198, 1998.

[10] G. Fohler. Flexibility in Statically Scheduled Hard Real-Time Systems.
PhD thesis, Technische Universität Wien, Austria, Apr. 1994.

[11] R. Dobrin, Y. Özdemir, and G. Fohler. Task Attribute Assignment of
Fixed Priority Scheduled Tasks to Reenact Off-line Schedules. InCon-
ference on Real-Time Computing Systems and Applications, Korea, De-
cember 2000.

Chapter 4

Paper C: Implementing
Off-line Message Scheduling
on Controller Area Network
(CAN)

Radu Dobrin and Gerhard Fohler
In Proceedings of the 8th IEEE International Conference on Emerging Tech-
nologies and Factory Automation, Antibes, France, 2001.

Abstract

Controller Area Network (CAN) is widely used in a number of industrial appli-
cations. The message scheduling on CAN is based on identifiers (ID) assigned
to the messages according to their priorities. Fixed priority scheduling pro-
tocols (FPS) have a number of advantages, some of them being the efficient
exploitation of the channel bandwidth, small overhead and the simple imple-
mentation. On the other hand, a number of industrial applications demand
temporal properties that are typically achieved by using off-line scheduling. In
addition, complex constraints can be solved off-line, such as distribution, end-
to-end deadlines, precedence, jitter, or instance separation, but this scheduling
strategy is not suitable for CAN.
In this paper we present a method that shows how off-line scheduled messages
can be scheduled on CAN. The paper assumes that a schedule, for a set of
tasks transmitting messages on CAN, has been constructed off-line. It presents
a method that analyzes the off-line schedule and derives a set of periodic mes-
sages with fixed priorities, which can be scheduled on CAN. Based on the
information provided by the off-line schedule, the method derives inequality
relations between the priorities of the messages under FPS. In case the priority
relations of the messages are not solvable, we split some messages into a num-
ber of artifacts, to obtain a new set of messages with consistent priorities. We
use integer linear programming to minimize the final number of messages.

Introduction 59

4.1 Introduction

Controller Area Network (CAN), has gained wider acceptance as a standard in
a large number of industrial applications. The priority based message schedul-
ing used in CAN has a number of advantages, some of the most important being
the efficient bandwidth utilization, flexibility, simple implementation and small
overhead. Early results on message scheduling on CAN have been presented in
[1] and [2], in which the authors focused on fixed priority scheduling based on
work presented in [3] and [4]. Later on, Zuberi [5] showed that static priority
scheduling is not always the most suitable strategy. Earliest Deadline (EDF)
can prove significantly better then fixed priority scheduling [6].
Off-line scheduling for time triggered systems, on the other hand, provides
determinism [7], [8], and, additionally, complex constraints can be solved off-
line, but this scheduling strategy is not suitable for CAN.
In this paper we present a method that transforms off-line scheduled transmis-
sion schemes into sets of messages that can be scheduled on CAN. It assumes a
schedule has been constructed for a set of off-line scheduled messages to meet
their complex constraints. Our method takes the off-line schedule with derived
time intervals in which messages must be transmitted, from now on referred to
asTarget Windows, and assigns FPS attributes, (i.e., priorities) to the messages.
It then, provides information about periods and offsets the messages have to be
sent with by the sending nodes, such that the message transmission at run-
time matches the off-line schedule. It does so by deriving priority inequalities,
which are then resolved by integer linear programming.
FPS cannot reconstruct all schedules with periodic messages with the same
priorities for all instances (invocations) directly. The constraints expressed via
the off-line schedule may require different message sequences for invocations
of the same message, as, e.g., by earliest deadline first, leading to inconsistent
priority assignment. This phenomenon can be expressed as a cycle of inequal-
ities. Our algorithm detects such situations, and circumvents the problem by
splitting a message into its invocations. Then, the algorithm assigns different
priorities to the newly generated ”artifact” messages, the former invocations.
Key issues in resolving the priority conflicts are the number of artifact mes-
sages created. Depending on where a priority conflict circle is ”broken”, the
number may vary, depending on the periods of the split messages. Our algo-
rithm minimizes the number of artifact messages by solving the priority in-
equalities with integer linear programming (ILP).
Priority assignment for FPS tasks has, for example, been studied in [9], [10]
and [11]. [12] study the derivation of task attributes to meet a overall con-

60 Controller Area Network (CAN) and message scheduling

straints, e.g., demanded by control performance. Instead of specific require-
ments, our algorithm takes an entire off-line schedule and all message require-
ments to determine message attributes. A method to transform off-line sched-
ules into earliest deadline first tasks has been presented in [13]. A related paper
[14] deals with priority assignment for off-line CPU scheduled tasks. It uses
a constructive, heuristic approach, potentially creating large numbers of arti-
facts, while the approach presented here presents a general algorithm applied
to message scheduling on CAN using ILP for optimum solutions.
The rest of the paper is organized as follows. In section 4.2 we give a brief
overview of message scheduling on CAN. The method we are proposing is
presented in section 4.3 and, then, illustrated with an example in section 4.4.
Section 4.5 concludes the paper.

4.2 Controller Area Network (CAN) and message
scheduling

CAN consists of the physical and data link layers. Each CAN frame consist of
seven fields. In this paper we focus on the identifier field (ID). The identifier
field may have two lengths: 11 bits, which is the standard format, and 29 bits,
the extended format, and it controls message addressing and bus arbitration . In
this paper we focus only on the former since the nodes can set message filters
in order to receive only the identifiers they are interested in.
The nodes are connected via a wired OR (or wired AND) CAN bus. The time
axis is divided in slots which must be larger or equal to the time it takes the
signal to propagate back and forth the bus,t = 2L

V , whereL is the bus length
and V is the propagation speed of the signal. When a node has to send a
message, it calculates the message ID which may be based on the priority of
the message. The message ID must be unique in order to prevent eventually
ties. The message is then sent to the bus interface chips, which, further on,
write the message ID on the bus, bit by bit, whenever the bus is idle at the
beginning of a time slot. After writing a bit on the bus, the chip waits for the
signal to propagate along the bus and, then, reads the bus. If the bit read is
different from the bit sent, then there is another message on the bus with a
higher priority, and the sending node aborts the transmission. Otherwise the
node gets the right to send the message without being pre-empted.
In our paper, we assume a schedule has been constructed for a set of off-line
messages. The proposed method transforms the off-line scheduled messages
into as set of messages suitable for priority-based CAN message scheduling.

Attribute assignment algorithm 61

Since we do not want to assign any other attributes then priorities to the mes-
sage ID’s (e.g., periods and offsets), due to the restrictions enforced by the ID
format, we rather provide information about attributes that have to be assigned
by the programmer to the sending nodes and messages (periods, offsets and pri-
orities) in order to ensure the run-time transmission of the messages according
to the specifications expressed in the off-line schedule. Furthermore, we as-
sume that the nodes are clock synchronized and the off-line schedule has been
constructed by taking into account the increased bandwidth consumption due
to the exchange of messages required by the time synchronization method.

4.3 Attribute assignment algorithm

4.3.1 Overview

Figure 4.1 gives an overview of the algorithm.
1) and 2) Initially, the off-line schedule table for a set of messages with con-
straints, is given.
3) Target windows for each invocation of each message are derived from the
original message constraints and the off-line schedule.
4) Sequences are now straightforward to derive from the target windows and
the transmission order expressed in the off-line schedule.
5) The analysis of each sequence provides a set of inequalities between priori-
ties of invocations of different messages.
6) We use integer linear programming to solve the system of inequalities and
the result is the final set of messages with fixed priorities.
Off-line schedule:The input to our method is the off-line schedule expressing
the constraints specified for the messages to be sent on CAN. The schedule is
usually created up to the least common multiple,LCM , of all message periods.
We haveLCM/T (Mi) invocations of each messageMi with periodT (Mi) in
the off-line schedule.
The off-line scheduler resolves constraints such as distribution, end-to-end
deadlines, precedence, etc, and creates scheduling tables for each node in the
system, listing start- and finishing-times of all message invocations. These
scheduling tables are more fixed than required by the original constraints, so
we can replace the exact sending- and receiving-times of messages with target
windows, taking the original constraints into account.
Target windows (TW (M j

i)) of each invocationM j
i of each messageMi,are

derived from the off-line schedule and the original constraints transformed into

62 Attribute assignment algorithm

Figure 4.1: Algorithm overview.

earliest start times and deadlines.

TW (M j
i) = [tm, tn]

where
tm = begin(TW (M j

i)) and tn = end(TW (M j
i))

Theearliest transmission start time, est(M j
i), of an invocationM j

i of a mes-
sageMi, is provided by the message constraints expressed in the off-line sched-
ule. Thescheduled receiving time, srt(M j

i), of an invocationM j
i of a mes-

sageMi, is the time whenM j
i is received by the receiving node according

to the off-line schedule. Thescheduled transmission start time, start(T j
i), of

an invocationM j
i of a messageMi, is the time whenM j

i is sent on the bus,
according to the off-line schedule.
A sequenceS(tk) consists of invocations of messagesM j

i ordered by in-
creasing scheduled transmission start times according to the off-line sched-
ule. A sequence may contain invocationsM j

i such thatbegin(TW (M j
i)) =

est(M j
i) = tk, current invocations ofTW (M j

i), and invocationsMq
p from

Attribute assignment algorithm 63

overlapping target windows such thatest(Mq
p) < tk andstart(Mq

p) > tk,

interfering invocations ofTW (M j
i). Additionally: first(S(tk)) = S(tk)1 =

first message invocation in the sequenceS(tk), andlast(S(tk)) = S(tk)N =
last message invocation inS(tk). The derivation of a sequence corresponding
to a timetk is illustrated in figure 4.2. Note that, in figure 4.2, message ’E’
is not included in the sequence corresponding to the timetk, since it’s earliest
transmission start time is greater thentk. ’E’ will be instead acurrent invoca-
tion in the sequence corresponding to the timetk+1.

{current invoc.}tk
{intf. invoc.}tk

�� @@@
@

@@
TW (A,B)

TW (C,D)

TW (E)

A B

C D

E

tk−1 tk tk+1

S(tk) =< S(tk)1, S(tk)2, S(tk)3 >=< D, A,B >

Figure 4.2: Sequence of messages.

We refer to antransmission window, Wtrans(M
j
i), of an invocationM j

i of
a messageMi, as the time interval in whichM j

i will be sent and received
at runtime. We want to find fixed priorities, offsets, and deadlines such that
the transmission window of each message invocationM j

i , Wtrans(M
j
i), will

be contained within the respective target windowTW (M j
i), and transmission

order specified off-line, kept.

4.3.2 Priority inequalities

Our algorithm derives relations (inequalities of priorities) among the invoca-
tions of the messages by traversing the off-line schedule represented by the
series of target windows in increasing order of time. It determines priority
inequalities between invocations according to the sequencesS(tk) associated

64 Attribute assignment algorithm

with target windows, such that:

P (S(tk)1) > P (S(tk)2) > . . . > P (S(tk)N)

where
S(tk)1 = first(S(tk)) and S(tk)N = last(S(tk))

Note that the inequalities have to take into account relations between priori-
ties of invocations of the current target window and possibly interfering target
windows.

4.3.3 Attribute assignment - conflicts

Our goal is to provide messages with fixed priorities periodically sent on the
bus. It may happen, however, that we have to assign different priorities or/and
offsets to different invocations of the same message in order to reenact the off-
line schedule at run time. These cases cannot be expressed directly with fixed
priorities and fixed offsets and are the sources foroffset assignment conflictsor
priority assignment conflicts. In both cases, we split the conflicting message
into artifacts, such that, further on, each artifact will be considered an inde-
pendent message, invoked only once during LCM. Thus we create a number of
artifact messages equal to the number of invocations during LCM of the mes-
sage to be split minus one (since the original message will be replaced by a
number of messages equal to the number of its invocations).

By offset assignment conflictwe mean that different invocations of the same
message may have to be invoked at different points in time, relative to the
sending task period, in order to ensure the run-time transmission of each one
of them in the derived target window.

for 1 ≤ i ≤ nr of off − line sched messages
for 1 ≤ j ≤ n, where n = LCM/T (Mi)

if begin(TW (M j
i))− (j − 1) ∗ T (Mi) 6=

6= begin(TW (M j+1
i))− j ∗ T (Mi),

(whereT (Mi) is the period of the messageMi)
then splitMi into Mi,1,Mi,2, . . . ,Mi,n

By splittingMi, we remove it from the original set of messages,orig messages,
and we insertMi,1, Mi,2, . . ., Mi,n into orig messages.

Attribute assignment algorithm 65

Priority assignment conflictsare detected after the derivation of the sequences,
and occurs in the cases when two different invocations of the same task may
have to be sent with different priorities in order to ensure the run-time trans-
mission of each one of them in the derived target window, and in the right
position in the sequence the message belongs to. In this case, since a prior-
ity assignment involves more than one message, there is typically a choice of
which message to split.

In our method, we split messages that causes offset assignment conflicts
into artifactsbeforederiving the sequences of invocations. By that, we reduce
the probability of priority assignment conflict eventually caused by the same
messages since the new created messages will be invoked only once during
LCM.

4.3.4 Minimizing the final number of messages

In order to minimize the number of artifact messages, we create an integer lin-
ear programming problem from the derived system of priority inequalities to
first identify which messages to split, if any, and to derive priorities for the
resulting fixed priority messages. We aim for the minimum amount of arti-
fact messages, and implicitly priorities, due to the limited amount of priorities
available when scheduling messages on CAN.
The inequalities obtained from the execution order within the sequences, may
form a circular chain of priority relations between messages invocations, e.g.,

P (M j
i) > P (Mn

m) > . . . > P (M j+k
i) > . . . > P (Mn+q

m)

We use a higher value to represent a higher priority.
In this case we cannot assign the same priority to both invocationsj and(j+k)
of Mi, nor to invocationsn and(n + q) of Mm. We have to break the chain
by splitting eitherMi or Mm into artifacts and considering each one of them
as individual messages, which will result in a larger number of messages com-
pared to the number of original off-line scheduled messages. We formulate a
goal function for an integer linear programming solver to identify the minimum
amount of messages with fixed priorities.

G = #final msgs = #orig msgs +
N∑

i=1

(|Mi| − 1) ∗ bi

66 Example

where#final msgs is the number of final messages,#orig msgs is the
number of original messages,|Mi| = number of invocations ofMi in LCM
andbi is a boolean variable associated to each messageMi, bi ∈ {0, 1}. bi =
1 means thatMi needs to be split into|Mi| messages. Additionally, the solver
provides priority values for the messages (split or non-split).
At this point we have a set of messages with fixed priorities,final msgs, pro-
duced by the LP-solver. Finally, we assign periods and offsets to each mes-
sage (i.e., provide information about when the messages are to be sent by the
controller interface) provided by the LP-solver in order to ensure the run time
transmission of the messages within their respective target windows, as follow-
ing:

for 1 ≤ i ≤ #(final msgs)

T (Mi) =
LCM

nr of invocations(Mi)
offset(Mi) = begin(TW (M1

i))

4.4 Example

We illustrate the method with an example. Assume that we have the set of
messages, sent from two nodes, shown in figure 4.3. Additionally we assume

Message Node message size period (T)

A 1 1 5
B 2 3 10
C 1 4 20

Figure 4.3: Original set of messages

that we have a precedence constraint between the(4m + 1)th invocation of A
and the(2m + 1)th invocation of B,

A4m+1 → B2m+1

Example 67

wherem = 0, 1, 2, . . . , and a precedence constraint between the(2n + 2)th

invocation of B and the(4n + 3)th invocation of A,

B2(n+1) → A4n+3

wheren = 0, 1, 2,
The off-line schedule for the messages and the derived target windows are il-
lustrated in figure 4.4.

TW (C1)︷ ︸︸ ︷
TW (B1)︷ ︸︸ ︷ TW (B2)︷ ︸︸ ︷

A B B B C C C C A B B B A A
0 ︸ ︷︷ ︸

TW (A1)

5 ︸ ︷︷ ︸
TW (A2)

10 ︸ ︷︷ ︸
TW (A3)

15 ︸ ︷︷ ︸
TW (A4)

20

Figure 4.4: Off-line Scheduled Messages and Target Windows

The derivation of the inequalities, performed as described in section 4.3.2, is
illustrated in the figure 4.5.

tk Message S(tk) inequalities
invocations

0 A1, B1, C1 A1, B1, C1 P (A1) > P (B1)
P (B1) > P (C1)

5 A2 A2

10 A3, B2 B2, A3 P (B2) > P (A3)

15 A4 A4

Figure 4.5: Inequalities

At time tk=10, we have the inequalityP (B2)>P (A3) added to the relations
obtained att1=0 andt2=5: P (A1)>P (B1), andP (A2)>P (C2). That gives a
circular chain of priorities that must be solved:

P (A1) > P (B1) > . . . > P (B2) > P (A3)

In this case, we can either choose to split message A, or message B.
Splitting B will create two artifact messages, while splitting A will result in
four. The integer linear programming solver with the goal function described
in section 2.3 provides the solution:

68 Conclusions and future work

• bA = bC = 0

• bB = 1, meaning message B is to be split,

• pA = 2

• pB1 = 3

• pB2 = 1

• pC = 4

• #final msg = #orig msg +
∑N

i=1(|Ti| − 1) ∗ bi = 4

After assigning offsets and periods to the artifact messages (i.e., B1 and B2),
as described in section 4.3.3, the final set of messages is shown in figure 4.6.
The lowest value represents the highest priority.

msg node msg size T offset dl prio

A 1 1 5 0 5 2
B1 2 3 20 0 10 3
B2 2 3 20 10 20 1
C 1 4 20 0 20 4

Figure 4.6: FP messages

4.5 Conclusions and future work

In this paper we have presented a method that shows how off-line scheduled
messages can be scheduled on CAN. We use off-line schedules and target win-
dows to express complex constraints and predictability for selected messages.
We, then, derive attributes for the off-line scheduled messages, such that the
messages will be transmitted within the specified target windows while fulfill-
ing the original constraints, when scheduled on CAN.
Our method analyzes the off-line transmission scheme and the target windows
and derives priority relations between the invocations of the messages, ex-
pressed in a set of inequalities. In certain cases, the method splits messages
into instances, creating artifact messages with fixed priorities, as not all off-
line schedules can be expressed directly with FPS. We use standard integer
linear programing to solve the priority inequalities and minimize the number

Acknowledgements 69

of artifact messages created. Finally, offsets and periods can be assigned in the
implementation, to the set of sending tasks provided by ILP in order to ensure
the run-time transmission of the messages within the derived target windows.
In same cases, we may perform additional splits, due to violation of the peri-
odicity in the off-line schedule, which gives different offsets at which different
instances of the same message have to be sent. The number of artifact mes-
sages caused by offset assignment conflicts, could be decreased by reducing
target windows, if the resulting loss in flexibility is acceptable. The priority
inversion phenomenon, due to the non-preemption of message transmission,
can be solved by modifying the start of the target windows of the messages
with precedence relations considering the precision achieved in the global time
synchronization.
Our method does not introduce artifacts or reduce flexibility unless required
by constraints: the fixed priority messages provided by our method, with input
consisting of a set of messages with fixed priorities, scheduled off-line accord-
ing to FPS, will be transmitted within the derived target windows and in the
off-line specified transmission order.
To this point, we have concentrated on reconstructing the off-line scheduled
messages. Using the flexibility of the ILP solver, we can add objectives by
inclusion in the goal function. Future work will address the issue of message
relations at run-time as well.

4.6 Acknowledgements

The authors wish to express their gratitude to the reviewers for their useful
comments on the paper.

Bibliography

[1] K. Tindell, H. Hansson, and A.J. Wellings. Analizing Real-Time Commu-
nications: Controller Area Network (CAN). InProceedings of Real-Time
Systems Symposium, pages 259–263, Dec. 1994.

[2] K. Tindell, A. Burns, and A.J. Wellings. Calculating Controller Area Net-
work (CAN) message response times.Contr. Eng. Practice, 3(8):1163–
1169, 1995.

[3] C.L. Liu and J.W. Layland. Scheduling Algorithms for Multiprogram-
ming in Hard Real-Time Environment.Journ. of the ACM, 20, 1, Jan.
1973.

[4] J.Y-T. Leung and J. Whitehead. On the Complexity of Fixed-Priority
Scheduling of Periodic, Real-Time Tasks.Performance Evaluation,
2(4):237–250, Dec. 1982.

[5] K.M. Zuberi and K.G. Shin. Scheduling Messages on Controller Area
Network for Real-Time CIM Applications. IEEE Transactions on
Robotics and Automation, 13(2):310–314, Apr. 1997.

[6] M. Di Natale. Scheduling the CAN Bus with Earliest Deadline Tech-
niques. InProceedings of the 21st IEEE Real-Time Systems Symposium,
pages 259–268, Dec 2000.

[7] H. Kopetz. Why Time-Triggered Architectures will Succeed in Large
Hard Real-Time Systems. InProceedings of the Fifth IEEE Computer
Society Workshop on Future Trends of Distributed Computing Systems,
pages 2–9, 1995.

[8] H. Kopetz and G. Grunsteidl. TTP - a Protocol for Fault-Tolerant Real-
Time Systems.Computer, 27(1):14–23, 1994.

[9] N.C. Audsley. Optimal Priority Assignment and Feasibility of Static Pri-
ority Tasks With Arbitrary Start Times. Technical report, Departament of
Computer Science, University of York, 1991.

[10] N. Audsley, K. Tindell, and A. Burns. The End Of The Line For Static
Cyclic Scheduling? InProceedings of the Fifth Euromicro Workshop on
Real-Time Systems, pages 36–41, 1993.

[11] R. Gerber, S. Hong, and M. Saksena. Guaranteeing Real-Time Require-
ments with Resource-Based Calibration of Periodic Processes.IEEE
Transactions on Software Engineering, 21(7), July 1995.

[12] D. Seto, J.P. Lehoczky, and L. Sha. Task Period Selection and Schedula-
bility in Real-Time Systems. InProceedings of Real-Time Systems Sym-
posium, pages 188–198, 1998.

[13] G. Fohler. Flexibility in Statically Scheduled Hard Real-Time Systems.
PhD thesis, Technische Universität Wien, Austria, Apr. 1994.

[14] R. Dobrin, Y. Özdemir, and G. Fohler. Task Attribute Assignment of
Fixed Priority Scheduled Tasks to Reenact Off-line Schedules. InCon-
ference on Real-Time Computing Systems and Applications, Korea, De-
cember 2000.

