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Numerous auto-scaling strategies have been proposed in the last few years for improving various Quality

of Service (QoS) indicators of cloud applications, e.g., response time and throughput, by adapting the
amount of resources assigned to the application to meet the workload demand. However, the evaluation of a

proposed auto-scaler is usually achieved through experiments under specific conditions, and seldom includes

extensive testing to account for uncertainties in the workloads, and unexpected behaviors of the system.
These tests by no means can provide guarantees about the behavior of the system in general conditions.

In this paper, we present PEAS, a Performance Evaluation framework for Auto-Scaling strategies in the

presence of uncertainties. The evaluation is formulated as a chance constrained optimization problem, which
is solved using scenario theory. The adoption of such a technique allows one to give probabilistic guarantees

of the obtainable performance. Six different auto-scaling strategies have been selected from the literature for

extensive test evaluation, and compared using the proposed framework. We build a discrete event simulator
and parameterize it based on real experiments. Using the simulator, each auto-scaler’s performance is

evaluated using 796 distinct real workload traces from projects hosted on the Wikimedia foundations’

servers, and their performance is compared using PEAS. The evaluation is carried out using different
performance metrics, highlighting the flexibility of the framework, while providing probabilistic bounds on

the evaluation and the performance of the algorithms. Our results highlight the problem of generalizing the
conclusions of the original published studies and show that based on the evaluation criteria, a controller

can be shown to be better than other controllers.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: distributed systems;
D.2.8 [Software Engineering]: Metrics—performance measures; G.1.6 [Mathematics of computing]:
Optimization—stochastic programming; H.4 [Information Systems Applications]: miscellaneous; K.6.4
[Management of Computing and Information Systems]: System Management

General Terms: Performance, Reliability, Theory

Additional Key Words and Phrases: Performance evaluation, Auto-scaling, Randomized optimization, Elas-
ticity, Cloud Computing

1. INTRODUCTION
Elasticity can be defined as the property of a cloud infrastructure (datacenter) or a
cloud application to dynamically adjust the amount of allocated resources to meet

This work was partially supported by the Swedish Research Council (VR) for the project “Cloud Control”,
by the Swedish Government’s strategic effort eSSENCE, the European Union’s Seventh Framework Pro-
gramme under grant agreement 610711 for the project CACTOS, and through the LCCC Linnaeus and
ELLIIT Excellence Centers.
Author’s address: A.V. Papadopoulos, Lund University, Department of Automatic Control, Ole Römers väg
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Umeå, Sweden; email:ahmeda@cs.umu.se.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2015 ACM. 2376-3639/2015/01-ARTA $15.00
DOI: 0000001.0000001

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January 2015.



A:2 Papadopoulos et al.

15-10 17-10 19-10 21-10
0

1 · 105

2 · 105

2007

R
eq

ue
st

s/
m

in

(a) Aggregate load on Wikipedia

04-07 24-07
0

2 · 105

4 · 105

6 · 105

8 · 105

2009

R
eq

ue
st

s/
ho

ur

(b) Michael Jackson’s Wikipedia page

04-05 14-05 24-05
0

20000

40000

60000

80000

2011

R
eq

ue
st

s/
m

in

(c) Tasks in a Google cluster

Fig. 1. Different workloads have different burstiness. Plot (a) shows a workload with little burstiness and
strong periodicity. Plot (b) shows sudden spikes in a mostly periodic workload due to an event. Plot (c) shows
a bursty workload.

changes in workload demands. In principle, resources allocated to a running service
should be varied such that the Quality of Service (QoS) requirements are preserved at
minimum cost. A large number of auto-scalers have been designed for this purpose, us-
ing different approaches such as control theory [Lim et al. 2009], neural networks [Is-
lam et al. 2012], second order regression [Iqbal et al. 2011], histograms [Urgaonkar
et al. 2008], time-series models [Herbst et al. 2013], the secant method [Meng et al.
2010], and look-ahead control [Roy et al. 2011]. While very different in nature, all of
these controllers have one thing in common: They are designed to provision resources
according to the changing workloads of the applications deployed in a cloud.

Cloud (and datacenter) workloads may have very different characteristics. They
vary in mean, variance, burstiness, periodicity, type of required resources, and many
other aspects. When studying workload periodicity and burstiness profiles, one can
find workloads that have repetitive patterns with daily, weekly, monthly and/or an-
nual cycles, e.g., the Wikipedia workload shown in Figure 1(a) has diurnal patterns
with small deviations in the pattern from one day to the other [Ali-Eldin et al. 2014a].
Other workloads may have uncorrelated spikes and bursts that occur due to an un-
usual event, e.g., Figure 1(b) shows the load on the Wikipedia page about Michael
Jackson with two significant spikes that occurred immediately after his death and
during his memorial service. On the other hand, some workloads have weak or no rec-
ognizable patterns at all, e.g., the workload shown in Figure 1(c) for tasks submitted
to a Google cluster [Wilkes 2011]. Most often, the characteristics of the workloads of
new applications are unknown in advance.

Unfortunately, most of the state-of-the-art auto-scalers have been evaluated using
less than three real workload traces – in a real deployment or in simulation – which
makes it impossible to generalize the obtained results [Lim et al. 2009; Urgaonkar
et al. 2008; Iqbal et al. 2011; Singh et al. 2010; Herbst et al. 2013]. In addition, the
traces used for testing are typically short spanning a few minutes, hours or days [Ur-
gaonkar et al. 2008; Roy et al. 2011; Herbst et al. 2013]. As the workload profile is
well known to affect the performance of a controller and the running application, it
is not possible to tell whether one auto-scaler is better than the other for a certain
workload [Almeida Morais et al. 2013; Feitelson 2014].

This paper presents PEAS (Performance Evaluation framework for Auto-Scaling
strategies), a framework for the evaluation of auto-scaling techniques. PEAS refor-
mulates the performance evaluation problem into a chance constrained optimization
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problem, whose solution requires an extensive yet targeted testing of the auto-scaling
techniques. The solution of the chance constrained optimization is carried out through
scenario theory [Calafiore and Campi 2005; Campi and Garatti 2011; Nemirovski and
Shapiro 2006], which has been recently applied to control theory problems related to
complex, stochastic, or uncertain systems [Calafiore and Campi 2006; Campi et al.
2009; Papadopoulos and Prandini 2014; Papadopoulos et al. 2016]. With the adoption
of the scenario theory, PEAS can be used to extensively evaluate the performance of
different auto-scaling strategies, providing probabilistic guarantees on the obtained
results.

To show the feasibility of using scenario theory to compare auto-scalers, we ob-
tained the implementations of three state-of-the-art auto-scalers from their design-
ers [Nguyen et al. 2013; Fernandez et al. 2014; Ali-Eldin et al. 2012]. In addition, we
reimplemented three other auto-scalers from the literature [Urgaonkar et al. 2008;
Chieu et al. 2009; Iqbal et al. 2011]. We used a publicly available workload from the
Wikimedia foundation spanning roughly six years [Mituzas 2007] to evaluate the six
algorithms. The workload traces are composed of more than 3500 streams comprising
all requests to all Wikimedia foundation’s projects with all 287 supported languages,
of which a subset of 796 streams is selected.

In summary, the contribution of this work is twofold. First, we introduce a frame-
work that provides probabilistic guarantees on the QoS achieved by auto-scalers while
permitting to compare their performance in worst-case scenarios. Secondly, we com-
pare six state-of-the-art auto-scalers using a large real workload spanning 6 years
from a production system. Thirdly, in order to allow the validation and replication of
our experiments, we have open-sourced the implementation of five of the algorithms
along with the simulation code, and the scripts used for downloading, and analyzing
the workloads. 1

The rest of the paper is organized as follows. Section 2 discusses the problem of eval-
uating different auto-scalers and comparing them along with the tradeoffs of choosing
one auto-scaler over another. Section 3 discusses some of the auto-scaling techniques
that have been proposed in the literature. We give special attention to the six algo-
rithms we evaluate with the proposed framework. Section 4 introduces PEAS, focusing
on its theoretical aspects. Section 5 discusses the experimental results. We conclude in
Section 6.

2. THE CASE FOR PEAS
While cloud computing is a relatively new technology that was enabled recently by the
advances in virtualization; elasticity control and auto-scaling of cloud resources is an
incarnation of the dynamic resource provisioning problems in clusters, grids and dat-
acenters. The dynamic resource provisioning problem – and its variants – have been
discussed over the past two decades with initially some patents in the early 1990s [Liu
and Silvester 1991; Dong and Treiber 1992], followed by an interest from the research
community later in the late 1990s and early 2000s [Chase et al. 2001; Vahdat et al.
1998]. During this period, many algorithms have been proposed for dynamic provision-
ing with different flavors before and after the term cloud computing was coined [Ur-
gaonkar et al. 2008; Chieu et al. 2009; Gandhi et al. 2012; Fernandez et al. 2014]. Since
then, many new auto-scaling techniques have been proposed.

1We have open sourced all the algorithms except for AGILE as we do not have the permission of its authors.
The codes are now available on a public repository with an obfuscated name. If the manuscript is accepted
we will copy it to a publicly accessible repository with the authors name. Link to the repository: https:
//bitbucket.org/snippets/sigmetricsreview/
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Fig. 2. There are tradeoffs when choosing which auto-scaler to use in order to control server provisioning.

As for the performance assessment of auto-scalers, many published solutions have
not been compared to previously proposed ones so far, but have been rather compared
with a predefined required response time for the tested application or against static
provisioning [Iqbal et al. 2011; Al-Shishtawy and Vlassov 2013; Chieu et al. 2009; Lim
et al. 2010; Roy et al. 2011; Herbst et al. 2013]. In addition, many of the published
work have not been tested with more than one real workload [Herbst et al. 2013; Al-
Shishtawy and Vlassov 2013; Fernandez et al. 2014; Islam et al. 2012; Mao et al. 2010;
Meng et al. 2010; Singh et al. 2010; Lama and Zhou 2012; Mahmud et al. 2014]. Even
when algorithms are tested with more than one workload, many of these workloads
are typically quite old, from systems and services that are not even used today [Gandhi
et al. 2012; Gong et al. 2010; Ali-Eldin et al. 2012]. While all published previous work
show that “the proposed algorithm” works in certain scenarios, the results in many of
these papers cannot be generalized.

Many proposed state-of-the-art auto-scalers use the desired response time or ser-
vice latency as a reference signal to a controller. A proposed approach then works if it
meets the experiments’ required response times, mostly set by the authors based on
some QoS studies. On the other hand, response time does not show under- and over-
provisioning, i.e., if the allocated capacity is too low or too high with respect to the
actually needed capacity to serve the incoming requests within the desired response
time. Under- and over-provisioning are indeed extremely important to compare the
performance of different controllers. Two controllers might be achieving the required
response time while one of them uses, for example, on average only one tenth of the
resources used by the other controller. Similarly, one controller can be dropping, on
average, fewer requests than another one [Gandhi et al. 2012]. In addition, latencies
are in general nonlinear with respect to the provisioned resources. To give an example,
suppose there are two workloads running on two different machines and each of them
experiences an average service latency of 50ms for a request. If the required QoS is to
keep the average service latency below 100ms, can then the two workloads be handled
by a single server? The answer is likely to be no, since service latencies do not depend
linearly on the amount of resources provisioned. This nonlinear relationship between
resources provisioned and response time has been observed in large-scale distributed
systems [Dean and Barroso 2013]. In addition, latency measurements are often ex-
tremely noisy with very high variance, even for constant workloads, [Bodik et al. 2010;
Bodik 2010; Wang et al. 2013]. To conclude, request response times and latencies are
by themselves not suitable metrics to compare auto-scalers [Bodik 2010].

There are tradeoffs between different auto-scalers in terms of over-provisioning,
under-provisioning, and the time and resources required to compute the required ca-
pacity. Figure 2 shows the output for four different controllers, [Ali-Eldin et al. 2012]
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in blue, [Chieu et al. 2009] in red, [Iqbal et al. 2011] in green, and [Urgaonkar et al.
2008] in cyan, when used to predict the number of servers required to serve the load
on the English Wikipedia pages between October 19th, 2010 and October 28th, 2010.
The figure also shows the theoretical optimal number of servers required to serve such
a workload (shown as the black line).2 The first peaks of the load are part of a bursty
period. The rest is when the load begins to settle down. One can see that during this
transient period, the four auto-scalers show different behaviors. The behavior does not
just depend on the selected auto-scaler, but also on how they are parameterized. The
same auto-scaler with another set of parameters will typically behave in a different
way.

2.1. Novelty of PEAS
In this work, we have been greatly inspired by the seminal work by Keogh and Kasetty
[2003] which shows that many of the proposed algorithms by the time series data
mining community are of very little use due to lack of testing on enough datasets
or due to hidden parametrization pitfalls. Our main motivation for PEAS is to help
organize the design space of auto-scalers. We believe that PEAS will help the research
community to establish a theoretical framework enabling the possibility of comparing
in a systematic way different auto-scalers while providing probabilistic guarantees
on their performance. Such guarantees allow service providers to choose a suitable
auto-scaler that fulfills a desired QoS metric for their infrastructure. We envision that
such an approach to testing auto-scalers may lead to a more mathematically grounded
definition of Service Level Agreements (SLAs), as defined by Sturm et al. [2000], and
better design of auto-scalers.

PEAS is well grounded in the theory of stochastic systems, as the framework is
based on recent advances in stochastic programming, aimed at solving chance con-
strained optimization problems. Chance constrained optimization problems arise when
one seeks to minimize a convex objective over solutions satisfying, with a given close to
one probability, a system of randomly perturbed convex constraints [Nemirovski and
Shapiro 2007], as described in Section 4.1.

An exact numerical solution of CCP is in general considered not possible due to both
modeling and numerical issues [Prékopa 2003]. CCP is typically NP hard but it is
considered as a very useful tool for robust and stochastic control, as solving chance
constraint optimization problems pursue a different probabilistic approach to robust-
ness in control problems [Calafiore and Campi 2006]. Roughly speaking, the scenario
approach approximates the solution of a CCP with the solution of a convex optimiza-
tion problem with a finite number of sampled instances of the uncertain quantities
(the scenarios). This approach basically reduces the problem from searching an infi-
nite space of possibilities to a much smaller tractable problem that gives guarantees
in probability.

The approach is well suited for server systems, where giving probabilistic guaran-
tees on the QoS of a system is important to service providers. From a theoretic point
of view, the novelty of PEAS is in transforming the auto-scaling performance evalua-
tion into a chance constraint optimization problem, which is solved using the scenario
approach. To the best of the authors’ knowledge, PEAS is the only framework avail-
able that provides theoretical bounds, thorough analysis, and hard guarantees on the
performance of auto-scalers in cloud systems.

2Section 4.2.1 explain in more details how the optimal and the predicted number of servers are obtained.
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3. RELATED WORK
3.1. Selected auto-scaling methods
A significant number of auto-scalers have been proposed in the literature [Lorido-
Botrán et al. 2014]. We choose six auto-scalers to extensively compare in this work.
These six are in our opinion a representative sample of the state-of-the-art. The se-
lected methods have been published in the following years 2008 [Urgaonkar et al.
2008] (with an earlier version published in 2005 [Urgaonkar et al. 2005]), 2009 [Chieu
et al. 2009], 2011 [Iqbal et al. 2011], 2012 [Ali-Eldin et al. 2012], 2013 [Nguyen et al.
2013] and 2014 [Fernandez et al. 2014]. They thus represent the development of the
field over a period of more than 7 years. The selected methods cover all major time-
series analysis methodologies. An extensive survey on auto-scaling strategies can be
found in [Lorido-Botrán et al. 2014], and papers quoted therein.

(1) Urgaonkar et al. [2008] propose a provisioning technique for multi-tier Internet
applications. The proposed methodology adopts a queuing model to determine how
many resources to allocate in each tier of the application. A predictive technique
based on building Histograms of historical request arrival rates is used to deter-
mine the amount of resources to provision at an hourly time scale. Reactive provi-
sioning is used to correct errors in the long-term predictions or to react to unantic-
ipated flash crowds. The authors also propose a novel datacenter architecture that
uses Virtual Machine (VM) monitors to reduce provisioning overheads. The tech-
nique is shown to be able to improve responsiveness of the system, also in the case
of a flash crowd. We refer to this technique as Hist. The authors test their approach
using two open source applications, RUBIS which is an implementation of the core
functionality of an auctioning site, and Rubbos a bulletin-board application modeled
after an online news forum. The testing is performed using 13 VMs running on Xen.
Traces from the FIFA 1998 worldcup servers are scaled in time and intensity and
used in the experiments. We have implemented this auto-scaler for our experiments.

(2) Chieu et al. [2009] present a dynamic scaling algorithm for automated provision-
ing of VM resources based on the number of concurrent users, the number of active
connections, the number of requests per second, and the average response time per
request. The algorithm first determines the current web application instances with
active sessions above or below a given utilization. If the number of overloaded in-
stances is greater than a predefined threshold, new web application instances are
provisioned, started, and then added to the front-end load-balancer. If two instances
are underutilized with at least one instance having no active session, the idle in-
stance is removed from the load-balancer and shutdown from the system. In each
case the technique Reacts to the workload change. For the rest of the paper, we
refer to this technique as React. The authors introduce the scaling algorithm but
provide no experiments to show the performance of the proposed auto-scaler. The
main reason we are including this algorithm in the analysis is that this algorithm
is the baseline algorithm in our opinion since it is one of the simplest possible work-
load predictors. We have implemented this auto-scaler for our experiments.

(3) Iqbal et al. [2011] propose a methodology for automatic detection of bottlenecks
in a multi-tier web application targeting maximum response time requirements.
The proposed technique uses a reactive approach for scaling up resources, and a
Regression model for predicting the amount of resources needed for the actual
workload, and possibly retract over-provisioned resources. The technique is tested
using RUBIS running on seven physical machines using a EUCALYPTUS cloud in-
stallation. httperf is used to generate a workload that increases and decreases in
predefined steps. The results are compared to static provisioning. We refer to this
technique as Reg. We have implemented this auto-scaler for our experiments.
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(4) Ali-Eldin et al. [2012] propose an autonomous elasticity controller that changes
the number of VMs allocated to a service based on both monitored load changes
and predictions of future load. The predictions are based on the rate of change of
the request arrival rate, i.e., the slope of the workload, and aims at detecting the
envelope of the workload. The designed controller Adapts to sudden load changes
and prevents premature release of resources, reducing oscillations in the resource
provisioning. Adapt tries to improve the performance in terms of number of delayed
requests, and the average number of queued requests, at the cost of some resource
over-provisioning. The algorithm was tested using a simulated environment using
a non-scaled version of the FIFA 1998 world cup server traces, traces from a Google
cluster and traces from Wikipedia. We refer to this technique as Adapt. We obtained
the original code from the authors for our experiments.

(5) Nguyen et al. [2013] propose AGILE, a wavelet-based algorithm to provide a
medium-term resource demand prediction with a lead time of about 2 minutes, a
time that allows AGILE to possibly start up new application server instances before
performance falls short. The framework also uses dynamic VM cloning to reduce
application startup times. Its accuracy has been proven to be better than previous
schemes in terms of true positives and false negatives. AGILE was implemented
on top of KVM on a cloud testbed having 10 physical machines. The algorithm was
evaluated using RUBIS and the Apache Cassandra key-value store. Four workloads
were used in the evaluation, namely, the FIFA World Cup 1998 webserver trace
starting at 1998-05-05:00.00; NASA webserver trace beginning at 1995-07-01:00.00;
EPA webserver trace starting at 1995-08-29:23.53; and ClarkNet web server trace
beginning at 1995-08-28:00.00. The prediction algorithm was also tested using real
system resource usage data collected on a Google cluster. The prediction results are
compared to two previously published algorithms, autoregression [Buneci and Reed
2008] and PRESS [Gong et al. 2010]. The provisioning results are compared also to
a reactive approach and a threshold based approach that increases and decreases
the number of machines based on preset resource usage levels. We obtained the
original code from the authors for our experiments.

(6) Fernandez et al. [2014] present a methodology that scales a web application in re-
sponse to changes in throughput at fixed intervals of 10 minutes. The proposed algo-
rithm is based on different components. The Profiler measures the computing capac-
ity of different hardware configurations when running an application. The predictor
forecasts the future service demand using standard time-series analysis techniques,
e.g., Linear Regression, Auto Regressive Moving Average (ARMA), etc. The dynamic
Load Balancer distributes the requests in the datacenter according to the capacities
of the provisioned resources. Finally, the Scaler uses the predictor and the profiler
to find the scaling plan that fulfills a prescribed Service Level Objective (SLO). For
evaluation, the authors test their technique on two cloud infrastructures, a private
one (the DAS-4, a multi-cluster system hosted by universities in The Netherlands
) and a public one (the Amazon EC2 cloud). The authors deployed MediaWiki ap-
plication instances on both environments using the WikiBench benchmark to run
the application. The benchmark uses a copy of Wikipedia, and replays a fraction of
the actual Wikipedia access traces. The experiments used up to 12 EC2 VMs of dif-
ferent types and up to 8 machines of varying configurations in the DAS-4 system.
In our work, we refer to this technique as PLBS. The code for this auto-scaler is
open-sourced. We downloaded the authors’ original implementation.

It is worth noticing that since regression models assume that the predicted sig-
nal is stationary, large deviations in workloads from stationarity affects the predic-
tions [Hastie et al. 2009; Hamilton 1994]. Similarly, PLBS uses a mixture of statistics
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that assume stationarity mostly in the predicted signal [Hastie et al. 2009; Hamil-
ton 1994]. AGILE uses wavelets to predict the workload dynamics. Wavelets are
suitable for non-stationary signal estimation, but not for signals with strong non-
linearity [Huang et al. 1998].

3.2. Performance evaluation methodologies
Whereas a significant effort was spent by many researchers on designing “efficient”
auto-scalers, not as much effort was spent on defining an evaluation methodology to
compare the designed algorithms. Typically, the designed auto-scalers are evaluated
in an ad hoc way, with a limited number of experiments, that may not be necessarily
representative of the actual workload of a cloud environment, or more generically, of a
service provider.

There is, however, an increasing interest in defining some common practices and
methodologies for the evaluation of auto-scaling techniques [Villegas et al. 2012; Iosup
2012; Li et al. 2010]. For example, Ferraris et al. [2012] present the results of stressing
the auto-scaling mechanisms implemented by Amazon and Flexiscale cloud providers.
Netto et al. [2014] introduce an index for evaluating the performance achieved by an
auto-scaling technique. The index is called “Auto-scaling Demand Index” (ADI), and it
is used for penalizing differences between the actual and the desired resource utiliza-
tion levels.

To the best of our knowledge, there is no standard methodology for the evaluation of
auto-scaling strategies, that allows also for the definition of probabilistic guarantees
on the performance. The evaluation is typically carried out through few experiments,
but by no means to quantify the confidence that the obtained results will hold also in
other situations. As a result, it is difficult, if not impossible, to use such results for the
definition of performance SLAs.

4. PEAS: THE EVALUATION FRAMEWORK
PEAS is a framework that is able to provide probabilistic guarantees on the perfor-
mance of auto-scaling strategies. The proposed framework is based on recent develop-
ments in the control and optimization community, related to the solution of Chance-
Constrained optimization Problems (CCPs) via scenario theory [Prékopa 2003; Ne-
mirovski and Shapiro 2006; Calafiore and Campi 2005; Campi and Garatti 2011]. Sce-
nario theory represents a systematic theoretical foundation of the “many-experiments”
approach, i.e., when one wants to evaluate the robustness of the system, a certain num-
ber of experiments is performed aimed at quantifying the confidence about the quality
of the system. The scenario optimization approach has been adopted to tackle sev-
eral problems in control theory, ranging from systems and control design [Campi et al.
2009], to robust control design [Calafiore and Campi 2006], from model order reduction
of stochastic hybrid systems [Papadopoulos and Prandini 2016] to game theory [Bopar-
dikar et al. 2013].

The steps of the framework can be summarized as follows.

(1) Definition of the performance measurements.
(2) Definition of a suitable performance metric.
(3) Formulation of the CCP.
(4) Application of the scenario theory.

(a) Choice of the parameters.
(b) Computation of the experimental results.
(c) Computation of the randomized solution.

The formulation of the performance evaluation problem as a CCP is a nontrivial task,
and is one of the contributions of this paper.
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4.1. Chance-constraint optimization and scenario theory
We provide a brief overview of CCP and the main results of the scenario theory before
going into the details of the framework. Consider the optimization problem

min
x∈Rn

φ(x) (1)

subject to: G(x, ξ) ∈ C.
where C ∈ Rm is a closed convex set, and φ(x) is a real valued function. The mapping
G : Rn × Rd → Rm depends on uncertain parameters ξ which vary in a set Ξ ∈ Rd.
For a fixed ξ the constraint is either satisfied or not. If we consider ξ as a random
vector with a probability distribution having support Ξ, finding the optimal value of
x would require to have the constraint G(x, ξ) ∈ C to be satisfied with probability 1.
Intuitively, this would mean to have an infinite number of constraints, one for each
possible realization of ξ. This is known in the stochastic programming literature as
the second stage feasibility problem that has to be solvable with probability 1 [Prékopa
2003]. However, this is too conservative in most practical situations. A more realistic
requirement is to ensure feasibility with probability close to 1, i.e., at least 1−ε. Hence,
we can formulate problem (1) as a Chance-Constrained optimization Problem (CCP)

CCP : min
x∈Rn

φ(x) (2)

subject to: P{G(x, ξ) ∈ C} ≥ 1− ε.
CCPs have been widely studied in the literature, and are known to be NP-
hard [Prékopa 2003; Nemirovski and Shapiro 2006], thus only approximate solutions
can be found.

Scenario theory or the “scenario optimization approach” is a technique for obtain-
ing approximate solutions to robust optimization and CCPs based on randomization
of the constraints [Nemirovski and Shapiro 2006; Calafiore and Campi 2005; Campi
and Garatti 2011]. Scenario theory enables one to decide what is the level of confi-
dence required, i.e., the value of the parameter ε in the CCP (2), and it tells how many
experiments one needs to perform in order to find a feasible estimate solution to the
problem. The chance constraints are then replaced with the realizations G(x, ξ(i)) ∈ C,
with ξ(i), i = 1, . . . , N , and thus an approximate solution can be easily found.

4.2. Performance evaluation
This section presents the theoretical foundations of PEAS. The framework is based on
the idea that one can re-formulate the problem of auto-scalers performance evaluation
as a CCP, that can be solved using scenario theory. The framework assumes that the
arrival rate λ (measured in request per time unit) is stochastic and the goal of the
auto-scaling strategy is to provision the least amount of resources able to serve the
incoming traffic with a required QoS. The proposed method involves using as input
of the different auto-scaling strategies some realizations of the stochastic input. In
practice, this means that either the distribution of the input is known, or some of its
realizations are available as historical time series. Our goal is to introduce a method
for evaluating the performance of different methods with some probability guarantees,
in order to understand which method is behaving better especially in critical scenarios.

4.2.1. Definition of the performance measurements. The cloud infrastructure is modeled as
a G/G/N stable queue in which the number of servers N is variable [Li and Yang
2000]. This is a generalization of the model proposed by Khazaei et al. where a cloud
is modeled as an M/G/m queue with a constant m [Khazaei et al. 2012]. It is assumed
that the servers are used to serve a non-stationary request mix with varying request
sizes [Singh et al. 2010]. Figure 3 shows the system model.
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Fig. 3. Queuing model for a service deployed in the cloud.

We denote with k ∈ N the discrete (slotted) time, that counts the decisions for the
auto-scaler. Let then y(k) be the current capacity allocated to the service at time k,
and y◦(k) the required capacity needed to serve the actual incoming traffic at time k.
The required capacity depends on the specific application and workload considered.
In determining the necessary capacity y◦(·), our model accounts for queuing effects,
load mix variations, and long running requests, i.e., requests requiring long processing
time. The required capacity at any time k is thus the total capacity required to process
the newly arriving load λ(k) , the number of requests that were not served during the
past and are queued q(k), and the requests that have already been assigned to a server
in a previous time unit, k−m,∀m < k, but are still being processed. The total required
capacity at time unit k is then computed as

y◦(k) =

⌈
λ(k) + q(k)

rapp

⌉
+ Clrr(k), (3)

where q(k) is the number of requests that are enqueued in the system and that will be
processed in the next time unit, rapp is the average number of requests per time unit
that a single VM can handle for the specific application with an acceptable service time,
and Clrr(k) is the capacity used for processing the long running requests that require
more than one time unit to be served. We denote with dxe the ceiling function that
returns the smallest integer number greater than or equal to x. An acceptable service
time for a request in this case is the maximum service time that the application can
tolerate and that the service user requires. For a web request to a static web-page,
an acceptable service time is in seconds or even milliseconds. For a Map-Reduce job,
the acceptable service time can be in minutes or even hours. This approach for finding
the required capacity is similar to what has been used in the literature [Gandhi et al.
2012; Urgaonkar et al. 2005; Urgaonkar et al. 2008], but it accounts also for queuing
effects and long running requests.

Long running requests are any requests that require more than the time interval
between two auto-scaler decisions. Since all auto-scaling algorithms calculate the re-
quired capacity on discrete intervals, e.g., AGILE and Adapt every time unit based on
the sampling interval of the monitoring data, PLBS every 10 minutes, and Hist ev-
ery hour with corrections on a minutes scale, a long running request is a request that
needs to be processed by the system for a period that extends beyond such an interval.
The addition of the long running requests effect to the model allows PEAS to take in
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to account the effect of workload mix changes [Singh et al. 2010] since a request that
sorts a Terabyte of data requires more time than a request that fetches a static web
page.

We note that Equation 3 does not represent the state of the system when any of the
auto-scaling algorithms is used but rather the requirement to maintain the system
with sufficient capacity to process all requests in the minimum required time. An auto-
scaling algorithm should at least provision y◦(k) resources in order to serve all requests
in an acceptable service time. If an auto-scaling algorithm provisions more capacity
than y◦(k), then it should be able to serve all requests but at a a higher cost. We
later discuss how we parameterize our experiments to choose all the parameters in
Equation 3 and how we handle the different assumptions in the designs of the different
algorithms.

4.2.2. Definition of a suitable performance metric. Having defined the required capacity
y◦(t), it is intuitive to define a distance of the actual allocated capacity y(t) with respect
to the ideal behavior of the system. Therefore, an auto-scaler with minimal distance is
better than all the other considered auto-scalers.
In order to appropriately evaluate the performance of an auto-scaling strategy, we
then define a distance dT (·, ·) that maps each pair of trajectories y(k), k ∈ T , and y◦(k),
k ∈ T , into a positive real number dT (y, y◦) that represents the extent to which y(·)
is far (as defined below) from the ideal behavior y◦(·) along the finite time interval
T . Note that dT (y, y◦) is a random quantity since it depends on the realization of the
stochastic input λ(k).

We consider different distance metrics in order to obtain synthetic results both on
the overall performance of the algorithms, and of specific aspects that one could be
interested in. The first distance metric that we choose is

dnorm
T (y, y◦) =

1

|T |
∑
k∈T
‖y◦(k)− y(k)‖2, (4)

where |T | is the number of samples contained in the time interval T of the experiment,
and ‖X‖2 denotes the squared 2-norm of the matrix X. This distance penalizes under-
provisioning (i.e., when the difference y◦ − y is positive) and over-provisioning (i.e.,
when the difference y◦ − y is negative) in the same way, accounting also for those sit-
uations where the allocated resources are oscillating around the ideal capacity. Notice
that the normalization with respect to |T | is used to account for scenarios with differ-
ent length. Notice also, that it is possible to modify (4) in order to weight differently
under- and over-provisioning. Whereas distance (4) is able to give synthetic informa-
tion about the overall performance, its value is difficult to interpret. This is the main
reason for introducing other more interpretable quantities.

As argued by Abate and Prandini [2011], the directional Hausdorff distance

dhaus
T (y, y◦) = sup

k∈T
inf
κ∈T
‖y◦(k)− y(κ)‖, (5)

is a sensible choice for dT (y, y◦) when performing probabilistic verification such as,
e.g., estimating the probability that y will enter some set within the time horizon T .
This distance disregards the time spent under- and over-provisioning, thus it cannot
be used for the evaluation of auto-scalers. Therefore, one can choose a slightly different
distance

dsup
T (y, y◦) = sup

k∈T
‖y◦(k)− y(k)‖, (6)

that accounts also for the maximum discrepancy between the ideal and the actual
behavior. This is the second distance that we use for the evaluation.
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We here consider also two other metrics that give information about how much the
auto-scaling strategy is over- and under-provisioning. These can be thus expressed as

dover
T (y, y◦) = sup

k∈T
‖max{y(k)− y◦(k), 0}‖, (7)

dunder
T (y, y◦) = sup

k∈T
‖max{y◦(k)− y(k), 0}‖. (8)

However, it is also desirable that y(·) converges towards y◦(·) as soon as possible, thus
producing an error converging to zero. This is extremely important from the service
provider perspective, since excessive over-provisioning for long time results in a waste
of resources, while excessive under-provisioning results in loss of revenue. In order to
account for the time aspect, we introduce two other metrics

doverT
T (y, y◦) =

1

|T |
∑
k∈T
‖max{y(k)− y◦(k), 0}‖∆k, (9)

dunderT
T (y, y◦) =

1

|T |
∑
k∈T
‖max{y◦(k)− y(k), 0}‖∆k. (10)

where ∆k is the time interval between two subsequent interventions of the auto-
scaling strategy. The interpretation of these two distance is thus, the average over-
and under-provisioning in a time unit.

The last distance the framework uses is an adapted version of the Auto-scaling De-
mand Index (ADI) proposed by Netto et al. [2014]. The utilization level can be defined
as

u(k) =
y(k)

y◦(k)
. (11)

Notice that u(k) ≥ 0, ∀k ∈ N but unlike the ADI measure proposed by Netto et al.
[2014], u(k) can be larger than 1, representing a situation of over-provisioning. The
adapted ADI is represented by σ, and defined as

σ =
∑
k∈T

σ(k), (12)

where

σ(k) =


L− u(k) if u(k) ≤ L,
u(k)− U if u(k) ≥ U,
0 otherwise.

(13)

with 0 ≤ L ≤ U representing the required lower and upper bound of the utilization.
The adapted ADI provides information analogous to (4), as it is evaluating over time
the discrepancy between the actual and required capacity. In the following, we set
L = 0.9 and U = 1.1, meaning that we are not penalizing strategies that oscillate in
an interval (L · y◦(k), U · y◦(k)). Since ADI penalizes longer workload traces, for a fair
comparison we consider its normalized version with respect to the length of the time
horizon |T |,

σT =
σ

|T | =
1

|T |
∑
k∈T

σ(k). (14)

4.2.3. Formulation of the CCP. Since both the required capacity y◦(t) and the the ac-
tual allocated capacity y(t) depend on the realization of different stochastic quantities,
it is not easy to find what is the minimum distance with respect to all the possible
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workload realizations for all the possible auto-scalers. The problem of evaluating the
performance of the different auto-scaling strategies can thus be formulated as the CCP,

CCP : min
ρ
ρ (15)

subject to: P{dT (y, y◦) ≤ ρ} ≥ 1− ε.
where the performance is evaluated in a “worst-case” fashion. This form for the CCP
is sometimes referred to as percentile optimization, where ρ can be interpreted as the
(1− ε)−percentile.

4.2.4. Application of the scenario theory. Irrespectively of the choice of dT (y, y◦), finding
the optimal solution ρ? of the CCP (15) is an NP-hard problem. Indeed, it involves
determining, among all sets of realizations of the stochastic input that have a proba-
bility 1 − ε, the one that provides the best (lowest) value for dT (y, y◦). We then head
for an approximate solution. Instead of considering all the possible realizations for the
stochastic input, we consider only a finite number N of them, called scenarios, ran-
domly extracted according to their probability distribution, and treat them as if they
were the only admissible uncertainty instances. This leads to the formulation of Al-
gorithm 1, where the chance-constrained solution is determined using an empirical
violation parameter η ∈ (0, ε). In the following we denote the realization of a scenario
with the superscript (i), with i = 1, 2, . . . , N .

ALGORITHM 1: Computation of the randomized solution.

1: extract N realizations of the stochastic input λ(i)(k), k = 1, 2, . . . , |T |, i = 1, 2, . . . , N , and let
κ = bηNc;

2: determine the N realizations of the output signals y(i)(k) k ∈ T , i = 1, 2, . . . , N , when the
policy to be evaluated is fed by the extracted input instances;

3: compute

ρ̂(i) := dT (y
(i), y◦,(i)), i = 1, 2, . . . , N ;

4: determine the indexes {h1, h2, . . . hκ} ⊂ {1, 2, . . . , N} of the κ largest values of
{ρ̂(i), i = 1, 2, . . . , N}

5: return ρ̂? = max
i∈{1,2,...,N}\{h1,h2,...,hκ}

ρ̂(i).

Hence, the CCP problem (15) is translated into a sample-based optimization pro-
gram

SP : min
ρ
ρ (16)

subject to: dT (y(i), y◦,(i)) ≤ ρ, i ∈ {1, 2, . . . , N} \ {h1, h2, . . . , hk},
where {h1, h2, . . . , hκ} ⊂ {1, 2, . . . , N} of the κ = bηNc largest values of dT (y(i), y◦,(i)).

Notably, if the number N of realizations is appropriately chosen, the obtained esti-
mate of ρ? is chance-constrained feasible, with a priori specified (high) probability.

THEOREM 4.1. Select a confidence parameter β ∈ (0, 1) and an empirical violation
parameter η ∈ (0, ε). If N is such that

bηNc∑
i=0

(
N

i

)
εi(1− ε)N−i ≤ β, (17)
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then, the solution ρ̂? to Algorithm 1 satisfies

P{dT (y, y◦) ≤ ρ̂?} ≥ 1− ε, (18)

with probability at least 1− β.

Theorem 4.1 provides theoretical guarantees that the chance constraints (18) are
satisfied, i.e., that the solution ρ̂? of the optimization program SP (16) obtained through
Algorithm 1 is feasible for the CCP (15). Theorem 4.1 is a feasibility theorem, it was
proven by Campi and Garatti [2011], and says that the solution ρ̂? obtained by inspect-
ing bηNc constraints only is a feasible solution for (15) with high probability 1 − β,
provided that N fulfills condition (17). As η tends to ε, ρ̂? approaches the desired opti-
mal chance constrained solution ρ?. In turn, the computational effort grows unbounded
since N scales as 1/(ε−η) [Campi and Garatti 2011], therefore, the value for η depends
in practice on the time available to perform experiments.

As for the confidence parameter β, one should note that ρ̂? is a random quantity
that depends on the randomly extracted input realizations and initial conditions. It
may happen that the extracted samples are not representative enough, in which case
the size of the violation set will be larger than ε. Parameter β controls the probability
that this happens and the final result holds with probability 1 − β. N satisfying (17)
depends logarithmically on 1/β [Alamo et al. 2010]. Therefore, β can be chosen as small
as 10−10 (and, hence, 1− β ' 1) without N growing significantly.

It is worth mentioning that the sensitivity of this methodology mostly depends on
the value of ε, rather than on β. Indeed, when β is chosen small enough, the number N
of experiments required is not significantly increased, and the only improvement that
we get is the confidence level of the feasibility. On the other hand, slightly changing ε
affects the number of experiments significantly, but it also means that we are changing
the CCP that one wants to solve. A typical use of (17) is thus deciding what is an
acceptable level of risk, ε, choosing a small enough value of β, and computing the
maximum number of experiments needed, according to the computational limits.

Notice that the guarantees provided by Theorem 4.1 are valid irrespectively of the
underlying probability distribution of the input, which may not even be known explic-
itly, e.g., when feeding Algorithm 1 with historical time series as realizations of the
stochastic input λ(i), as we are doing in this work. For the sake of completeness, we
performed a correlation analysis on the input realizations used in the experiments.
The results of the correlation analysis are presented in Appendix D.

5. EXPERIMENTS AND RESULTS
5.1. Solving the CCP
We assume that an acceptable risk is ε = 0.05, meaning that the probability that the
chance constraints are not satisfied is 5%. Since each experiment considers a workload
over almost six years, accepting that 5% of the time we might not able to fulfill (18),
is a reasonable choice for a regular web service. Among all the experiments, we can
choose a fraction η ∈ [0, ε) that can be discarded without affecting the feasibility of
the solution. We here set η = 0.01. As for the choice of the confidence level 1 − β that
we have in the obtained result, as discussed in Section 4.2.3, we can take β = 10−10,
without affecting too much the number of experiments required for the evaluation.

Having chosen these parameters, it is possible to compute N such that it satisfies in-
equality (17), yielding N = 796. It is thus trivial to compute the number κ = bηNc = 7
of scenarios that can be discarded according to Algorithm 1. Publicly available work-
loads are scarce [Bodik et al. 2010], and finding N = 796 workload traces to solve the
SP might not be always possible. However, one can easily adapt the above parameters
to fit the available dataset, yet keeping similar probabilistic guarantees. For example,
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choosing η = 0 and β = 10−6, but keeping ε = 0.05, one requires N = 270 workloads
traces, with no discarded trace. In order to have a high confidence in the feasibility of
the result, and in order to be able to discard possible traces containing sporadic events
that leads to bad performance, we used the parameters leading to N = 796.

5.2. The workloads
Since artificially generated workloads may not be a good representation of real work-
loads and would thus affect the results of our study, we choose to perform the eval-
uations with real workloads. Given the scarcity of publicly available workloads, it is
challenging to obtain 796 real commercial workload streams. On the other hand, the
sixth most popular website on the World Wide Web is Wikipedia the open and col-
laborative online encyclopaedia, according to Alexa [2015]. Wikipedia is hosted on the
servers of the Wikimedia foundation which hosts other projects such as Wikiquotes
and Wikibooks. The Wikipedia foundation provides publicly available workload traces
that logs the per page aggregate number of requests per hour to all services hosted by
the foundation [Barrett 2008; Ali-Eldin et al. 2014a].

This workload is interesting since the traces can be separated into independent
streams with each stream representing a project and a language, e.g., one stream can
have the requests to the German Wikipedia pages, another can be for the Swedish
Wikitionary project, and a third can be for the Zulu Wikibooks project, and so on. In
total, the Wikimedia foundation hosts over 888 projects and language combinations.
Many of these project streams can be divided even further into, for example, load from
Mobile users, load generated by editors, load generated on “talk pages” and so on.

We downloaded the Wikimedia foundation traces for the period between the 9th of
December, 2007 and the 16th of October, 2013. The traces were analyzed and all the
different streams that are present in the load during this period of almost six years
were extracted. The extraction yielded more than 3000 different workload streams. We
chose N = 796 streams to be used to validate our framework.3 The chosen streams are
mostly of long running projects spanning the whole period of the trace or are streams
which have high request arrival rates. We have performed a correlation analysis on
the selected workloads, and we found that they are practically not correlated. Further
details on the workloads used and the correlation analysis are given in Appendix B
and Appendix D respectively.

5.3. Simulating the cloud
Since it is not feasible to run 796 experiments per auto-scaler on a real testbed – mean-
ing 4776 experiments in total – each of them using a workload spanning around 6 years
with millions of requests per hour, we decided to use a simulator which we parameter-
ize. A summary of some of the main decisions in our experiments follows.

(1) We use a discrete event simulator that we parameterize using real server exper-
iments on our server testbed. The experiments use one real application and one
benchmark.

(2) Many of the techniques we test have more components other than auto-scaling and
capacity prediction algorithms for other functionalities. For example, PLBS does not
just predict the workload and the required capacity, but also tries to optimize the
choice of the size of the VMs deployed, AGILE also has components for VM cloning
and migration. Since our main target is to evaluate the accuracy of the prediction

3We have open sourced the workloads for other researchers to use. The 796 processed workloads can be
found at: http://zenky.cs.umu.se/PEAS/.
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of the capacity required, when needed we have only focused on evaluating this part
of the system as it is the core part of auto-scaling.

(3) The traces we have are logged on hourly bases with no smaller logging granularity
available. Using the data as is with the auto-scaling algorithms can undermine the
fairness of the experiments since, with the exception of Hist, the algorithms are
designed to operate on a seconds to few minutes interval. We have considered two
main approaches to use the traces in our experiments. The first one is to interpolate
the values for smaller time granularities based on either another workload that we
have with a finer logging granularity or some other method such as regression. This
approach is similar to the approach taken by Malkowski et al. [2011]. The second
approach is to scale down the workload intensity by dividing the number of requests
by a factor, e.g., scaling down the workload by a factor of 3600 gives for each hour
the average arrival rate per second.
The first approach has a clear disadvantage since the interpolation can distort the
actual workload and thus give wrong performance results. The second approach has
the disadvantage of not capturing the transient workload effects if the workload is
scaled down by a large factor, i.e., by dividing the workload by a factor, the effect of
some extreme spikes that happened at a smaller time granularity can be reduced
due to the down scaling of the workload. Since we did not want to introduce any
artificial behavior in our evaluation, we opted for the second solution, down sizing
the workload by a factor. To show that the results we obtain are still valid for bursty
workloads, we choose two factors to scale down the workload, with one of the two
factors small to capture the case of bursty workloads, as discussed later. Scaling-
down a workload is an approach taken typically to compensate for the limitations
of testbeds as done by Gandhi et al. [2012] and Urgaonkar et al. [2008].

To parameterize the simulator, we performed some experiments using C-Mart, an
open-source cloud computing benchmark designed by Turner et al. [2013] that em-
ulates modern cloud applications, and using a MediaWiki installation on which we
replicated the Spanish and German Wikipedia pages [Barrett 2008]. 4

C-Mart is chosen since it represents a modern and up-to-date web application.
Turner et al. compare C-Mart to RUBIS and TPC-W. They show through experimental
evaluation that their benchmark reflects a more realistic cloud application compared
to many benchmarks used in the literature. We have also used another widely used
web application, Mediawiki, to complement our results. There are a few motivations
behind using Mediawiki with a full replica of the Spanish Wikipedia beside the usage
of C-Mart to parameterize the simulator. First, the workloads we are using are work-
loads directed to web services using Mediawiki, e.g., Wikipedia, Wikibooks and Wiki-
tionary. In addition, this application has recently gained popularity in the literature
as a modern, real, and representative application of cloud and web services [Fernan-
dez et al. 2014; Krioukov et al. 2011; Casalicchio and Silvestri 2013; Blagodurov et al.
2013; Difallah et al. 2013]. C-Mart contains both stateful and stateless applications.
Some setups of MediaWiki can also be stateful. Since many of the algorithms tested
and most of the algorithms found in the literature consider stateless applications, we
choose to consider only the stateless case.

4The code for C-Mart is open-source and available by the authors. We have open-sourced the MediaWiki
images used in our parameterization to enable other researchers to replicate our results, and use the im-
ages with not much overhead. We have also open-sourced the workload generator used. The images and
the generator can be downloaded from: http://zenky.cs.umu.se/PEAS/. We note that there are two images,
The first one uses MediaWiki with no optimization, while the second one uses Memcached with Mediawiki
optimizing the performance considerably.
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The service rate of a VM is modeled to be a Poisson process. Using a set of experi-
ments where we have run multiple instances of both the chosen applications, we found
that the average number of requests that a VM can serve per second varies consider-
ably with the workload mix used in the experiment. For our experiments we set the
number of requests that a VM can serve per second to 22 requests for a VM with one
core assigned and two Gigabytes of RAM. Appendix A describes the experiments done
to obtain the average number of requests a VM can serve per second.

We performed additional experiments in order to estimate the startup time and shut-
down time of a VM. The average startup time resulted in 29.7s, with a very low stan-
dard deviation of 0.30s, while the average shutdown time resulted in 6.72s, with a stan-
dard deviation of 0.45s. In both cases the time required to startup or shutdown a VM
is fairly contained, and always less than 1 minute, i.e., the time unit considered in the
simulator. Therefore, without loss of generality, the simulator considers 1 time unit of
delay for the startup of a VM, and 0 time units of delay for shutting down a VM. All the
tested algorithms were tuned according to this information. A more detailed analysis
of the conducted experiments can be found in Appendix E. These experiments are then
used to parameterize a discrete-event python-based simulator to simulate the cloud
infrastructure5. All the auto-scalers are then evaluated using the simulator instead of
the actual application deployments.

When parameterizing the auto-scalers, we followed any guidelines set by the authors
in their published papers or any tips we received through direct communication with
the authors. If the authors did not provide such guidelines or tips, we performed some
simple parameter sweeping and sensitivity analysis for the algorithms, and tuned the
algorithms accordingly. The sheer volume of the experiments we conducted and the
length of the workloads allowed us to find logical errors in the codes we obtained or
implemented, such as not handling division by zero. Whenever we found such a prob-
lem, we tried to fix it, leaving the original algorithm untouched.

5.4. Three Case Studies
We consider three case studies to evaluate PEAS, in which we want to understand
which is the best algorithm among the ones selected in Section 3.1, according to the
metrics presented in Section 4.2.2. The three case studies are as follows:

(1) The first case study assumes that there are no queuing effects, i.e., that delayed
requests are dropped, and that all requests are short and homogeneous, i.e., they
require one time unit to be processed. As a result, q(·) = 0 and Clrr(·) = 0 in (3). As
discussed earlier, since the workload granularity we have is large, i.e., total number
of requests per hour, the workload is divided by a factor that corresponds to the
time granularity, get the average number of requests to be processed per second,
and reduce the magnitude of the total workload. For this case study, we choose this
factor to be 3600. This smooths the workload, and operates on the average number
of requests.

(2) The second case study considers the case when delayed requests are queued in an
infinite buffer. The requests are non homogeneous with some short requests and
some long running requests that can take up to 60 time units to process. Long run-
ning requests and buffered requests form a significant percentage of cloud work-
loads [Reiss et al. 2012]. While there are no infinite buffers, assuming an infinite
buffer in our simulations enables us to reason on the algorithm behavior and detect
possible software bugs in the implementation of the algorithms, e.g., both PLBS and

5The code of the simulator is open-sourced with the auto-scalers. Relevant technical details of the simulator,
can be found in Appendix A.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January 2015.



A:18 Papadopoulos et al.

AGILE exhibited very bad performance due to queuing effects, leading all the con-
sidered metrics to diverge to infinity in the second case study. After careful analysis,
we found that for some abrupt workload changes, AGILE was predicting negative
values for the workload. We have added a check on the predictions from AGILE to
make sure that when the predictor predicts a negative value, the predictions are
discarded. Spotting the problem with AGILE was simplified due to the use of PEAS
as the framework pointed us to where the errors occur in the predictions. The work-
load is divided by a factor 3600 like the first use case to get the average number of
requests per second.

(3) The third case study is similar to the first one. Again, there are no queuing effects.
It is assumed that all requests are short and homogeneous, and that, q(·) = 0 and
Clrr(·) = 0 in (3). The third case study differs in the considered workload which
we scale down by a factor of 60 only, while assuming that the machine can serve
22 requests per second. A smaller scaling factor for the workload means that the
workload is more bursty as the bursts in the scaled down workloads would now
require more machines to handle the bursts. This is also equivalent to having a VM
that can serve a lower number of requests per second. The scenario thus stresses
the auto-scalers to a greater extent and is interesting to show the tradeoffs when
all the workloads in the system are very bursty, an unlikely but interesting case to
study.

5.5. Experimental results
In the experimental evaluation, recall that we are considering distances with respect
to a desired behavior. Therefore, in all the presented results, the lower the value of
the distance, the better the algorithm is performing. The following figures (Figures 4
to 7) have on the x-axis the considered algorithms, and on the y-axis the value ρ̂?

obtained as a solution of the SP (16), after performing N = 796 experiments, and when
considering the specified distance. The raw numbers of all the presented results are
summarized in Table I.

The solution of the SP (16), when considering distance (4) for the considered auto-
scaling algorithms and for the three case studies is presented in Figure 4. As dis-
cussed above, this norm distance accounts for several aspects, i.e., over- and under-
provisioning, how much the assigned capacity oscillates around the ideal one, and also
for how long the auto-scaler is not behaving in an ideal way. As a result, dnorm

T gives a
general idea of the overall average performance. Adapt shows better performance than
the other algorithms in all three case studies, providing significantly lower values of
the considered distance. We note the difference in performance between case study 1
and case study 3. Since the scale down factor for the workloads is lower for case study
3, the workloads are much more bursty. While the performance of all algorithms for
the bursty workloads is much worse, the performance of both Reg and Hist has rela-
tively decreased more than the other algorithms while the performance of React has
relatively improved, i.e., the ordering of the performance of the algorithms. Reg and
Hist both depend on the regularity in the workload pattern in their predictions. For
very bursty workloads with a lot of unpredictable spikes, React performs well since
the predictions follow the spikes as they occur. Note the lighter blue columns in the
graphs are used to indicate that the value for this algorithm is quite high compared to
the other values.

However, from the service provider viewpoint, the information about the norm is dif-
ficult to interpret, and can only be used for ranking the algorithms. Therefore, other
quantities need to be used for a more interesting and informative evaluation. Indeed,
the service provider wants to know quantitatively how close to optimal the auto-scaling
algorithm is from assigning the ideal amount of resources. This information can be ob-
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Fig. 4. Results of the scenario approach with distance (4).

tained through distances (6), (7), and (8). If these distances are adopted for the solution
of the SP (16), the service provider can guarantee what will be the maximum over- and
under-provisioning, with a probability of 1− ε.

Figure 5 shows the obtained results with these three distances, and for the three
case studies. For the sake of presentation, we used −ρ̂? for the under-provisioning
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Fig. 5. Estimate of the maximum Over-Provisioning (OP) and Under-Provisioning (UP).
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case, indicating that the allocated resources are below y◦(·). The computed values can
thus be used similarly to confidence interval extremes.

Analyzing the obtained results, in the first case study Adapt is able to keep the
capacity fairly close to its ideal value, with a maximum bound of 4 servers more, and
of 13 server less than actually needed. On the other hand, in the second case study,
React is the algorithm that exhibits better performance, with a maximum bound of
51 servers more, and of 9 server less than actually needed. Reg and AGILE have very
high values of instantaneous over- and under-provisioning. The third case is similar
to the first two cases except for React which again performs relatively much better
than the first case. Dashed bars represent distances that are significantly higher than
the other methodologies, and for improving the readability of the graph, were left out.
For further details on the raw numbers see Table I. Notice that using PEAS, we can
guarantee that these bounds on over- and under-provisioning hold with a probability
1− ε with a confidence that is practically 1.

Whereas maximum over- and under-provisioning is of extreme importance, there
is however one aspect that must be considered, i.e., how long an auto-scaling tech-
nique spends in an over- or under-provisioning state. This aspect is somehow orthog-
onal to the one discussed above. Indeed, there may be situations in which, at every
time instant, the auto-scaling technique is close to the ideal behavior, but this is never
reached, resulting in losing revenue (in the case of under-provisioning), or wasted en-
ergy and resources (in the case of over-provisioning). On the other hand, a technique
may have some high yet short “spikes” in the capacity allocation, but generally being
extremely close to the ideal allocation. This last case presents poor performance, for ex-
ample, with respect to distance (6), while generally behaving better than the previous
approach.
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Fig. 6. Worst case average Over-Provisioning (OP) and Under-Provisioning (UP) in a time unit.

In order to take into account this aspect, we here consider distances (9), and (10),
that measure the average over- and under-provisioning in a time unit. Figure 6 shows
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the obtained results with the different algorithms. Also in this case we considered −ρ̂?
for distance (10) analogously to Figure 5. It is possible to see from Figure 6 that Adapt
is the algorithm providing better performance in both the case studies. However, if one
compares Figures 5 and 6, it is possible to see how AGILE might have bad instanta-
neous performance but, AGILE improves its performance in all the case studies when
considering this distance.

It is worth noting that the majority of the algorithms tends to over-estimate the
needed capacity, rather than under-estimate it. This behavior is desirable from an
auto-scaler, since under-estimation could cause large losses for the service provider,
especially if the auto-scaler keeps under-estimating for long periods. In this respect,
React and Adapt show the best performance in the second case study, which is also the
more realistic one.
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Fig. 7. Normalized adapted ADI for the considered auto-scaling strategies.

As a last metric, we consider the normalized adapted ADI (14). Figure 7 shows the
obtained results. As already mentioned, this metric is similar to the norm (4), since it
considers the overall performance, accounting both for over- and under-provisioning,
and possible oscillations around the desired value. The only qualitative difference is
that it considers an interval of values around the real target, it penalizes only when
the auto-scaler is outside that interval. We here considered L = 0.9 and U = 1.1, thus
not penalizing auto-scalers that are committing an error below 10%. According to this
metric, Adapt is the auto-scaler with the best performance in the first two case studies,
while React is the best one in the third case study.

5.6. Discussion
The experimental results suggest that newly published algorithms do not perform par-
ticularly better than the older ones. Interestingly, React, which is one of the simplest
auto-scalers possible, performs better than most of the other algorithms especially in
the second case study. These results hold for all the workloads similar to the ones we
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use. Since we considered 796 different workloads, each over about six years, the ob-
tained results can be generalized, and PEAS allows one to quantify the confidence in
the obtained performance. In particular, Adapt is the algorithm that is almost invari-
antly better than the other ones both in the first and in the third case study. On the
other hand, in the second case study, React is the auto-scaler showing better perfor-
mance in terms of under-provisioning. Since this is a relevant aspect from the service
provider viewpoint, this data would suggest that React could be a good alternative to
Adapt. A summary of the obtained results is presented in Table I.

Even though the six chosen controllers are not an exhaustive set of the algorithms
proposed of the state-of-the-art, they are a representative set. The framework is very
flexible in terms of what performance metrics can be integrated and the ease of use to
test an algorithm that has not been tested yet. The framework enables the research
community to compare the performance of published auto-scalers and the contribution
of newly proposed ones in the future.6 We believe that this is of great value for testing,
quantifying and comparing the performance of auto-scalers.

Table I. Summary of the obtained results. The best values are highlighted in bold.

Case study 1

d
(·)
T Hist React Reg Adapt AGILE PLBS

norm 7.82 15.2 10.9 1.94 5.78 19.7
sup 18.2 78 16.4 14 24 49
under 17.3 20 12.2 13 24 20
over 16.2 78 16 4 17 20
underT 0.0757 0.37 0.133 0.164 0.908 1.4
overT 2.27 1.57 2.22 0.577 0.773 0.939
σT 0.436 0.64 0.555 0.149 0.186 0.445

Case study 2

d
(·)
T Hist React Reg Adapt AGILE PLBS

norm 210 471 1.71×104 32.5 2.25×103 Inf
sup 76 51 5.08×103 86 2.49×103 Inf
under 76 9 4.24×103 14 2.49×103 Inf
over 62 51 5.08×103 86 514 Inf
underT 1.22 0.0356 2.59 0.181 3.13 Inf
overT 10.4 20.2 28.4 4.26 9.64 Inf
σT 0.275 0.181 0.819 0.0312 0.135 Inf

Case study 3

d
(·)
T Hist React Reg Adapt AGILE PLBS

norm 4.09×103 1.02×103 4.14×103 649 1.86×103 1.38×104

sup 462 389 355 324 386 1.34×103

under 420 316 309 286 331 512
over 290 366 347 90 366 1.1×103

underT 1.98 5.5 4.02 2.99 12.5 28
overT 49.9 17.1 41.5 10.5 18.3 26.2
σT 0.863 0.211 0.752 0.253 0.41 0.694

To provide some insights into which workloads result in the worst performance with
each auto-scaler, Table II shows the workloads causing the worst performance for each
auto-scaler with each of the metrics for case study 1. Analogous results can be obtained
by analyzing the other case studies, but we omit it due to space limitations. One can

6The code for the framework and for the simulator will be open-sourced.
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see that some workloads affect the performance of many of the auto-scalers negatively
due to their dynamics, e.g., the Polish Wikipedia, but this effect is stronger for some of
the auto-scalers as can be seen from Table I.

Table II. The workload causing the worst performance for each auto-scaler with each measure for the first case-
study.

Case study 1

d
(·)
T Hist React Reg Adapt AGILE PLBS

norm Polish Wikipedia Japanese Meta Wiki Polish Wikipedia Portuguese Wikipedia Portuguese Wikipedia Dutch Wikipedia
sup German Wiktionary Polish Wikipedia Portuguese Wikipedia French Wikipedia Polish Wikipedia German Wikipedia
under French Wikipedia Polish Wikipedia Japanese Wikipedia Japanese Wikipedia Polish Wikipedia Polish Wikipedia
over Polish Wikipedia Polish Wikipedia Polish Wikipedia Mediawiki commons Polish Wikipedia French Wikipedia
underT Portuguese Wikipedia Portuguese Wikipedia English Wikipedia Portuguese Wikipedia Portuguese Wikipedia Polish Wikipedia
overT Portuguese Wikipedia Portuguese Wikipedia Portuguese Wikipedia Dutch Wikipedia Portuguese Wikipedia Polish Wikipedia
σT Turkish Wikipedia Japanese Wiki Japanese Meta Wiki Finish Wikipedia Japanese Meta Wiki Dutch Wikipedia

6. CONCLUSION AND FUTURE WORK
In this paper we propose PEAS, a framework for the evaluation of auto-scaling strate-
gies that is able to provide probabilistic guarantees on the obtainable performance.
In particular, we consider three case studies, where we evaluate six different algo-
rithms and test them against 796 distinct real workload traces from projects hosted
on the Wikimedia foundations’ servers. The considered case studies show the need
for a deeper evaluation of the auto-scaling techniques proposed in the literature. The
results obtained using PEAS highlighted the problem of generalizing the conclusions
of the original published studies. As future work, we are developing a more compre-
hensive comparative evaluation of auto-scaling strategies using PEAS including more
algorithms.

On the other hand, although PEAS was conceived for evaluating auto-scaling strate-
gies, the approach is quite general and can be applied to different resource manage-
ment problems, especially when stochastic quantities hinder the possibility of provid-
ing performance guarantees for the considered methodologies. We envision that, in the
near future, the proposed framework can be successfully applied also to a larger class
of algorithms, by suitably defining application specific performance measurements and
metrics.

APPENDIX
A. PARAMETRIZATION OF THE SIMULATOR
In order to validate and parametrize our simulator, we used C-Mart, a recently pub-
lished cloud benchmark developed by Turner et al. [2013]. The benchmark is publicly
available [Payne 2014]. C-Mart has been designed with cloud performance testing in
mind. It utilizes modern web technologies, such as JavaScript, CSS, AJAX, HTML5,
SQLite, MongoDB and Memcache DHT, in order to build cloud web applications.

We deployed the benchmark on part of our local 640 cores cluster to emulate a mod-
ern two tiered web service running an online auction and shopping website. The back-
end server runs MySQL while the frontend runs Tomcat application servers. The web
application hosted utilizes technologies such as HTML5, AJAX, CSS, rich multimedia,
and SQLite. The utilization of these technologies to build C-Mart is the main reason
for selecting C-Mart over other widely used benchmarks such as RUBiS and TPC-W.

Both the frontend and backend servers are virtualized KVM images. We used the
images provided by the benchmark authors as is, but modified the workload generator
to accept the number of users from a trace file while keeping the average number of
requests per users bounded. The workload generator run as a standalone application
on a bare-metal server with 32 CPU cores and 56GB of memory. To better investigate
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the tradeoffs between the average number of requests, the average latencies and the
resources allocated to a machine, the database VM also runs on a separate physical
server in order to maintain no interference between the database VM and the applica-
tion VM. The database VM has 8 CPU cores and 10GB of memory, in order to ensure
that the database tier is not the bottleneck.

For the frontend VMs, we vary their sizes to obtain the average number of requests
a VM is able to serve per time unit. The load is mixed with 24 different pages a client
can access with a mixture of images, CSS, video, and text. In the beginning, the size
of the front-end machines was kept small, with one CPU and 1GB of memory. This
configuration corresponds to a t2.micro Amazon EC2 instance.

We ran several experiments to measure rapp (see Section 4.2.1), the average number
of requests one VM is capable of serving in an acceptable response time, i.e., below
500ms. This number changed based on the workload mix. For some experiments it
was as high as 100 to 150 requests per second per VM, while for other experiments the
number was as low as 5 to 10 requests per second per VM. These numbers conform with
multiple measurements from online deployed services, for example, Justin.tv backend
servers can handle 10 to 20 requests per second per VM on average [Hoff 2010]. Similar
numbers were also obtained for the Play framework on EC2 [Papauschek 2013].

We ran similar experiments using the MediaWiki server. In these experiments we
built a workload generator which generate GET requests for different pages on the
Spanish Wikipedia. Since the pages vary in size, we decided to run the experiment for
the worst case scenario when all requests are directed only to the largest page on the
Spanish Wikipedia, “Alsacia en 1789”. We then stress the VMs to find the maximum
number of requests that a VM can handle with an end-to-end response time – between
a workload generator running on a machine in Lund and the VMs located in Umeå,
that are located about 1000km far as the crow flies – of 4 seconds or less for the full page
to load. The average number of requests per second varied between 20 and 25 requests
per seconds in different experiments for a VM with 1 core and 2 GB of RAM. We thus
decided to consider the average service rate of a simulated server to follow a Poisson
process with an average of rapp = 22 requests per time unit per VM. In the simulations,
the number of VMs provisioned for a service is then computed using Equation (3).

B. WORKLOAD EXAMPLES
Figure 8 shows some examples of workload streams from the ones used for the eval-
uation. The workloads are very diverse in nature, in evolution, in burstiness, and in
magnitude. Almost all of the traces in the dataset show some form of diurnal pattern
where the number of requests increase during some hours of the day. Since these work-
loads contain very regional workloads, e.g., the requests on the Vietnamese Wikipedia,
the workloads also differ on when these diurnal patterns occur. The diversity in the
workloads shows the importance of evaluating the performance of an auto-scaler using
many different workloads. It also strengthen our argument for an evaluation frame-
work that can provide probabilistic guarantees on the evaluation number. Table III
gives more information about the workloads shown in Figure 8.

Table III. Description of some of the workloads used for the evaluation.

Name key Language Project Name key Language Project

a ar.q Arabic Wikiquote f it Italian Wikipedia
b de German Wikipedia g jp Japanese Wikipedia
c en English Wikipedia h nl.q Dutch Wikiquote
d es.mw Spanish Wikipedia Mobile i pl Polish Wikipedia
e fr.d French Wiktionary
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Fig. 8. Some of the workloads used for the experiments

C. WORKLOADS AT DIFFERENT GRANULARITIES
As the workloads used in the paper have a per hour granularity, a question arises if the
workloads are representative enough of workloads at a lower granularity. We have ac-
quired older Wikimedia traces that span a two months period in 2008, between the 1st
of September, and the 29th of October. These traces have a granularity of milliseconds.
The two months period has a non-uniform and non-Poissonian request arrival rate. In
order to test how the granularity of the workload changes the workload characteristics,
we have aggregated the workload from a milliseconds granularity, to a seconds gran-
ularity by summing all arrivals that occur in a second. We have also aggregated the
workload to an hour granularity summing all requests that arrived in a given hour. We
then divide the hour-granularity workload arrivals by 3600 to produce a case similar to
the workloads used in the first and the second use cases discussed in Section 5.4. We
then plotted the Auto-Correlation Functions versus time lags equal to a period of more
than one day as shown in Figure 9. Note the difference in the units on the X-axis. We
note that the two workloads have the same cycle with a clear daily cycle that has the
same correlation at roughly the same lag, every 12 hours as shown in Figure 9.

As the ACF does not show the burstiness profile for the workloads, we have calcu-
lated the normalized entropy and the Average Sample entropy (SampEn) of the work-
loads at different granularities as described in [Minh et al. 2010] and [Ali-Eldin et al.
2014b]. The entropy of the workload at the large granularity is 0.979 and at the small
granularity is 0.973. The SampEn for the workload at the large granularity is 0.08
and at the small granularity is 0.05. We note that SampEn is an unbounded measure,
i.e., it takes values between 0 for low burstiness and infinity for very bursty. This con-
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Fig. 9. The statistical characteristics of the same workload at different granularities is similar.

firms that the method we used to downsize the workload does not affect the workload
characteristics considerably. 7

D. CORRELATION ANALYSIS OF THE WORKLOADS
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Fig. 10. Distribution of the Pearson correlation coefficients (on the left), and of the p-values (on the right)
for the correlation analysis.

To provide a better understanding of how the workload streams used in this study
are related, we performed a correlation analysis on the 796 workload streams used.
We calculated the Pearson correlation coefficient between all possible pairs of work-
load streams, e.g., (jp, pl), (de, en) , (de, es) and so on. Figure 10 shows how the corre-
lation coefficients, and the corresponding p-values are distributed. Each of the figures
shows the distribution of correlations as a histogram and on top of the histogram a

7All scripts used for calculating the charctersitics at different granularities are available at
http://zenky.cs.umu.se/PEAS/.
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box-plot representing the spread of the obtained values. The figures indicate that the
correlation coefficients are mostly concentrated close to 0, which is highlighted also
by the box-plots. The p-values confirm that there is not statistical evidence of correla-
tion between the different workloads, since they are mostly concentrated close to zero:
The 75th percentile is 0.034. When analyzing the correlations more in detail, there are
surprising results. For example, The load on the German Wikipedia is highly corre-
lated with the load on the Spanish Wikipedia (Correlation coefficient greater than 0.7)
while both are not correlated with almost any other load on any European language
Wikipedia such as the load on the French Wikipedia, the load on the Italian Wikipeda,
the load on the Norwegian Wikipedia, the load on the Portuguese Wikipedia, or the
load on the Swedish Wikipedia.8

E. ANALYSIS OF STARTUP TIME AND SHUTDOWN TIME
To evaluate the statistical characteristics of the startup and shutdown time of VMs, we
have made an experiment where we installed MediaWiki [Barrett 2008] on an Ubuntu
Linux server VM. The VM was assigned 4 cores and 10 GB of RAM on an HP Elitedesk
G1 SFF machine with a quad-core hyper-threaded Intel Core I7 processor. The VM is
controlled using Vagrant [Palat 2012] running on Virtualbox. The VM is started and
stopped 200 times and the VM startup and shutdown times are recorded from the time
the startup command is issued till the MediaWiki application is responsive. To make
the experiments realistic, the physical machine hosting the MediaWiki VM has been
injected with varying background load. The frequency of the measured startup and
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Fig. 11. Histograms for startup and shutdown time.

shutdown times are shown in Figure 11. The average and standard deviation for the
measured startup times are 29.712s, and 0.310s respectively. The average and standard
deviation for the measured shutdown times are 6.721s, and 0.455s respectively. By in-
specting Figure 11, neither the startup nor the shutdown times appear to be normally
distributed. In both cases performing a normality test rejected the hypothesis that the
data is normally distributed. Figure 12 shows the empirical Cumulative Distribution
Function (CDF) and the standard normal CDF for the two quantities, indicating also
in the top right corner the p-value of the test. Note that the x axis indicates the nor-
malized time, i.e., the average have been subtracted to the data, and then divided by
the standard deviation. We tried to fit the data to four other distributions, namely,
power law, stretched exponential, exponential, and log-normal, but none of the tested

8The whole dataset related to the correlation analysis of the workloads will be made publicly available, in
case this manuscript is accepted.
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probability distributions is able to describe these data. For the purpose of this work,
the identification of the right probabilistic distribution is not relevant, since both the
startup and shutdown times are below the time scale in which the auto-scaler takes its
decisions. However, a probabilistic characterization of the startup and shutdown times
deserves deeper investigation, which is left to future work.

−2 0 2 4
0

0.2

0.4

0.6

0.8

1

time [s]

F
re

qu
en

cy

Start up – p = 1.13387× 10−5

Empirical CDF
Standard Normal CDF

−4 −2 0 2
0

0.2

0.4

0.6

0.8

1

time [s]

Shut down – p = 2.52531× 10−17

Empirical CDF
Standard Normal CDF

Fig. 12. Empirical cumulative distribution functions versus standard normal distribution.
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