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a b s t r a c t

This paper addresses model reduction and extends balanced truncation to the class of switched affine
systems with endogenous switching. The switched affine system is rewritten as a switched linear one
with state resets that account for the affine terms. Balanced truncation can then be applied to each
mode dynamics, independently. As a result, different reduced state vectors are associated with the
differentmodes, and resetmaps are here appropriately redefined so as to account and compensate for this
mismatch, possibly preserving the continuity of the output. The overall behavior of the reduced switched
system is determined by both the selected reduction per mode and the adopted reset maps. In this paper,
we consider a stochastic setting and propose a randomized method for the selection of the reduced
order. The performance of the proposed approach is illustrated through amulti-room temperature control
example.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

This paper addresses the design of an approximate model for
a hybrid system (see e.g. Girard, Julius, & Pappas, 2008; Girard
& Pappas, 2007; Girard, Pola, & Tabuada, 2010; Julius & Pappas,
2009; Mazzi, Sangiovanni Vincentelli, Balluchi, & Bicchi, 2008;
Prandini, Garatti, & Vignali, 2014; Shaker & Wisniewski, 2012).
The study of hybrid systems is typically challenging since they are
characterized by intertwined continuous and discrete dynamics,
Lunze and Lamnabhi-Lagarrigue (2009). Indeed, many problems
that have been solved for purely discrete or purely continuous
systems still lack an effective solution for hybrid systems. In
particular, this is the case for the design of a reduced model.

In this paper, we focus on continuous-time Switched Affine
(SA) systemswith endogenous switching, and address the problem
of obtaining a model that is simpler to analyze than the original
system, and that is able to mimic its output behavior over a finite
horizon T . This is of interest when dealing with verification of
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properties that depend on the behavior of the system output
over a finite horizon. Verification of properties related to the
system response, like, e.g., safety and reach/avoid properties, is
typically addressed in the literature through numerical methods in
both the deterministic, Frehse (2005), Girard and Guernic (2008),
Kurzhanski and Varaiya (2005) and Tomlin, Mitchell, Bayen, and
Oishi (2003), and the stochastic, Abate, Amin, Prandini, Lygeros,
and Sastry (2007) and Abate, Katoen, Lygeros, and Prandini (2010),
settings. These methods scale exponentially with the dimension
of the continuous state space component. One can then conceive
a two-step procedure where an approximate abstraction with a
reduced order continuous state space component is built first, and
then a numerical verification method is applied to this abstraction
in place of the original system.

When the input signal of the system is stochastic, the notion of
approximate simulation introduced in Julius and Pappas (2009) for
stochastic hybrid systems (Lygeros & Prandini, 2010) can be used
to quantify the model performance over the output realizations.
A randomized approach for assessing the performance of a given
abstracted model according to this notion was proposed in
Prandini et al. (2014). The approach also extends to model design.
However, no constructive procedure is given on how to select and
parameterize the model class. On the contrary, in this paper we
provide a constructive procedure to build an approximate model
of a SA system in the form of a reduced order Switched Linear (SL)
systemwith appropriately defined state resetmaps. The SA system
is first rewritten as a SL one with state reset, and then Balanced
Truncation (BT) (Antoulas, 2005) is adopted for reducing the order
of the linear dynamics governing the evolution of the continuous
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state component in each mode. State reset maps are suitably
redefined accounting for the mismatch in the continuous state
vectors associated with different modes. A randomized method
is also proposed to determine the order of the reduced linear
dynamics in each mode, while accounting for the effect of discrete
transitions and state resets on the hybrid system evolution. The
overall methodology is extended to the case when a Dwell Time
(DT) is present.

Note that BT is applied to switched linear systems in Petreczky,
Wisniewski, and Leth (2013) which however deals with the case
of externally induced switching. Our approach is inspired by
Mazzi et al. (2008) which uses BT for hybrid systems with linear
dynamics and endogenous switching. The main advances with
respect to Mazzi et al. (2008) are the following: (1) the extension
to the class of SA systems, (2) the introduction of novel state
reset maps that provide better performance than the one adopted
in Mazzi et al. (2008), and of variants of these maps able to
preserve continuity. Correspondingly, different initializations of
the approximate model are derived based on the same logic
underlying the reset maps definition, (3) the introduction of a
randomized approach to select the order of the reduced linear
dynamics in each mode, when the input is stochastic, and (4) the
extension to the case of SA systems with DT. As a matter of
fact, mode transitions and resets may strongly affect the system
evolution. Indeed, the state reset map determines the new value
of the continuous state after a discrete transition between modes
has just occurred; while for a linear asymptotically stable system
the contribution of the initial state becomes negligible in the
long run, in a SA system this is generally not the case. One
would in fact need to guarantee that the time between discrete
transitions is sufficiently large to make the zero-input response
(ZIR) vanish,which cannot be guaranteed a-priori, unless a suitable
DT triggering the discrete transitions is enforced.

The choice of the order of the approximate model should then
account for the influence of the state reset map on the quality of
the approximation. Hence it cannot be based only on the analysis
of the Hankel Singular Values (HSVs) of the linear dynamics in
each mode, as suggested in Mazzi et al. (2008). The proposed
randomized approach serves this purpose, since it accounts for the
hybrid evolution of the candidate approximate model including
mode transitions and resets. The quality of the approximation is
determined also by the domains triggering the mode transitions of
the SA system.Notably, redesigning the domains is quite a complex
issue, Geyer, Torrisi, and Morari (2008), and it is not addressed in
this paper but left for further investigation.

A preliminary version of this work appeared in Papadopoulos
and Prandini (2014). Additional contributions are the introduction
of resetmaps that preserve the output continuity, the initialization
of the approximate model derived from these maps, the extension
to the case of SA systems with DT, and a more thoughtful
benchmark example that includes the analysis of the new reset
maps and the effect of the DT.

The scope of this work does not include the problem ofminimal
realization. To the best of our knowledge, minimal realization
theory has been mainly developed for linear and bilinear switched
and hybrid systems with externally induced switching, while it
is still an open problem for continuous-time hybrid systems with
endogenous switching (Petreczky, 2015).

2. Switched affine systems modeling framework

A SA system is an instance of a hybrid system, whose dynamics
are characterized through a discrete state component qa (mode)
taking values in Q = {1, 2, . . . ,m} and a continuous component
ξa ∈ Ξa = Rn evolving according to affine dynamics that depend
on the value taken by qa. The output ya ∈ Ya = Rp of the systems
is an affine function of the state and of the input u ∈ U = Rm that
depends on qa as well. The continuous dynamics of a SA system
within a given mode qa ∈ Q are given by

Sa :


ξ̇a(t) = Aqaξa(t)+ Bqau(t)+ fqa
ya(t) = Cqaξa(t)+ gqa .

(1)

Assumption 1. For any i ∈ Q , matrix Ai is Hurwitz, (Ai,Bi) is
controllable, and (Ai,Ci) is observable. �

As for the discrete state evolution, a collection of polyhedra
{Doma,i ⊆ Ya × U, i ∈ Q } is given, which covers the whole set
Ya×U , i.e.,∪i∈Q Doma,i = Ya×U .Doma,i is defined through ri linear
inequalities, i.e., Doma,i = {(ya, u) ∈ Ya × U : Gya

i ya + Gu
i u ≤ Gi},

with Gya
i ∈ Rri×p, Gu

i ∈ Rri×m and Gi ∈ Rri .
Mode i ∈ Q is active as long as (ya, u) keeps evolving within

Doma,i and a transition to mode j ≠ i ∈ Q occurs as soon as (ya, u)
exits Doma,i and enters into Doma,j (endogenous switching).

Assumption 2. The switched affine system (1) admits a unique
solution from any initial state. �

Note that the considered switched system can be rephrased
in the hybrid automata framework described in Tomlin, Lygeros,
and Sastry (2000), where a precise notion of execution is given
and conditions for well-posedness (existence and uniqueness)
are mentioned. Moreover, if the collection {Doma,i, i ∈ Q } is a
polyhedral subdivision of Ya ×U ,2 then the SA system reduces to a
standard piecewise affine system.

Remark 1. If the transition condition depends on the state ξa, then
one can include ξa as output variable to get back to the considered
modeling framework where domains are defined as a function of
the output (and input).

3. System reduction: an approach based on BT

The proposed procedure unfolds into the following steps:
(1) the SA system is rewritten as a SL system with state reset
(Section 3.1); (2) a reduced order model of the SL system is
introduced by first applying BT to the continuous dynamics in each
mode (Section 3.2), and then introducing appropriate maps for the
reset of the reduced continuous state component when a mode
transition occurs (Section 4); (3) the output of the SA system is
reconstructed based on the reduced SL systemoutput (Section 3.3).

3.1. Reformulation as a SL system with state reset

We next build a SL system with state reset that is equivalent
to the original SA system, in that (ξa, qa) and ya can be recovered
exactly from the state and output variables of the SL system.

Let y ∈ Y = Ya, and ξ ∈ Ξ = Ξa evolve according to linear
dynamics that depend on the operating mode q ∈ Q as follows:

S :


ξ̇ (t) = Aqξ(t)+ Bqu(t)
y(t) = Cqξ(t).

(2)

Set ȳa,q = Cqξ̄a,q + gq, where ξ̄a,q = −A−1
q fq, with Aq invertible

by Assumption 1. A transition from mode i ∈ Q to mode j ∈ Q
occurs as soon as (y + ȳa,i, u) exits Domi and enters Domj, where
Domq = Doma,q, q ∈ Q .

2 This requires that each polyhedron Doma,i is of dimension p + m, and the
intersection Doma,i ∩ Doma,j , i ≠ j, is either empty or a common proper face of
both polyhedra.
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When a discrete transition from mode i ∈ Q to mode j ∈ Q
occurs at time t−, then, ξ is reset as follows

ξ(t) = ξ(t−)+∆
ξ

ji, with∆ξji = ξ̄a,i − ξ̄a,j. (3)

Proposition 1. Suppose that the SA and SL systems are initialized
with initial conditions ξa(0), qa(0), and ξ(0) = ξa(0) − ξ̄a,qa(0),
q(0) = qa(0), respectively, and are both fed by the same input u(t),
t ∈ [0, T ]. Then, the executions of ξa, qa and ya over [0, T ] can be
recovered from those of ξ , q and y as follows:

qa(t) = q(t),

ξa(t) = ξ(t)+ ξ̄a,q(t), (4)
ya(t) = y(t)+ ȳa,q(t).

Remark 2. The reset condition (3) is such that ξa reconstructed
from ξ according to (4) is continuous. Continuity of ξa is generally
not guaranteed if ξ is approximated through a reducedordermodel
of the SL system.

3.2. Reduction of the SL system

A reduced ordermodel of the SL systemwith state reset defined
in Section 3.1 can be obtained by applying BT with the state
residualization approach (Antoulas, 2005), to each single linear
dynamics in (2). If the mode of the system were fixed, then, BT
would be effective in reproducing the response y, at least in the
long run, when the ZIR has vanished.

We associate with each mode q ∈ Q a reduced model of order
nr,q < n:

Sr :


ẋr,q(t) = Ar,qxr,q(t)+ Br,qu(t)
ŷ(t) = Cr,qxr,q(t)+ Dr,qu(t)

(5)

and define transitions between modes, say from mode i to mode j,
by evaluatingwhen (ŷ+ ȳa,i, u) exits from domainDomi and enters
into Domj. Indeed, ŷ + ȳa,i represent the output ya reconstructed
using (4). As for the state reset map (3) associated with a mode
transition from i ∈ Q to j ∈ Q , we shall reformulate it as

xr,j(t) = Ljixr,i(t−)+ Mjiu(t−)+ Nji∆
ξ

ji, (6)

where xr,i(t−) ∈ Rnr,i is the value of the reduced state in mode
i, prior to the transition to mode j, xr,j(t) ∈ Rnr,j is the updated
reduced state value, and Lji, Mji, Nji are matrices of appropriate
dimensions. In Section 4, we present different methods to define
them.

3.3. Reconstruction of the SA system output

The output of the SA system is reconstructed based on (4) using
the output ŷ of the SL reduced system as an estimate of the output
y of the SL system. This leads to

ŷa(t) = ŷ(t)+ ȳa,q(t). (7)

4. State reset maps: alternative choices

In this section, we introduce different reset maps that can be
used for the approximate model. The choice of the reset map is
of utter importance, since it strongly affects the quality of the
approximated solution.

4.1. Preliminary definitions

Consider a transition from mode i ∈ Q to mode j ∈ Q . One can
determine an expression for ξ̂j, representing the SL system state as-
sociated with mode j as reconstructed from the reduced state xr,i.
Recall first that ξ̂i can be obtained by applying the balanced
transformation matrix Ti to the reconstructed continuous state x̂i
of the SL system, i.e., ξ̂i = T−1

i x̂i. In turn, x̂i can be reconstructed as
x̂i =


x′

r,i x
′

nr,i

′, where xnr,i is the part of the state that is neglected
in the reducedmodel (5), and that can be recovered as a function of
xr,i and u by assuming an equilibrium condition in the original not-
reduced linear dynamics (BT with state residualization) (Antoulas,
2005). This leads to

x̂i = Hixr,i + Kiu,

where Hi and Ki are suitable defined matrices (Papadopoulos &
Prandini, 2014). Plugging the expressions of ξ̂i and x̂i into (3), yields

ξ̂j(t) = ξ̂i(t−)+∆
ξ

ji

= T−1
i Hi xr,i(t−)+ T−1

i Ki u(t−)+∆
ξ

ji. (8)

We next shall define the reset maps for the state of the reduced SL
system when a mode transition occurs from i ∈ Q at time t− to
j ∈ Q at time t .

4.2. SR map: a reset map based on state reconstruction

The State Reconstruction-based reset map (SR map for brevity)
was proposed in Mazzi et al. (2008) and relies the following idea:
reconstruct thewhole state x̂j(t) in balanced form and then extract
its firstnr,j components corresponding to the reducedorder state in
mode j. In formulas, xr,j(t) = Enr,j x̂j(t), where Enr,j is a matrix that
extracts the first nr,j rows from x̂j(t), nr,j being the dimension of xr,j
in mode j. Now, x̂j(t) can be obtained as x̂j(t) = Tjξ̂j(t). Plugging
the expression of xr,j(t) into the expression of x̂j(t), and using (8),
we finally obtain

xr,j(t) = Enr,jTj

T−1
i Hixr,i(t−)+ T−1

i Kiu(t−)+∆
ξ

ji


. (9)

Matrices Lji,Mji, and Nji can be obtained by direct comparison with
(6). According to a similar reasoning, the system is initialized as
follows

qr(0) = qa(0) = q0, xr,q0(0) = Enr,q0 Tq0

ξa(0)− ξ̄a,q0


,

with the understanding that (ya(0), u(0)) is an interior point of
Doma,q0 , for any admissible u(0).

4.3. OG map: a reset map to reproduce the output ZIR

Model reduction techniques for asymptotically stable linear
systems aim at finding a model that best reproduce the forced
response of the system, while neglecting the ZIR. However, in SA
systems, the system response depends on the mode transitions,
which, in turn, depends on the continuous output behavior (forced
plus ZIR). We here introduce a reset map that minimizes the
L2-norm of the error when reproducing the ZIR of the output y.
As we shall see next, its expression depends on the Observability
Gramians (OG) of the linear systems associated with the different
modes.

In formulas, we set xr,j = Ψjξ̂j and choose Ψj so as to minimize

J(Ψj) =


+∞

0
∥yzir,j(t)− ŷzir,j(t)∥2 dt, (10)

where yzir,j and ŷzir,j respectively denote the ZIR of the original
linear dynamics (2) initialized with ξ̂j and that of the reduced
order dynamics (5) initialized with xr,j = Ψjξ̂j. The solution to
this optimization problem can be found analytically as shown in
Proposition 2, which proof can be found in Papadopoulos and
Prandini (2014).
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Proposition 2. Suppose that the reduced order model (5) with q = j
is observable. Then, matrix Ψ ⋆

j minimizing (10) for any ξ̂j is given by
Ψ ⋆

j = W−1
r,o,jW×,j, where

Wr,o,j =


+∞

0
(eAr,jt)′C ′

r,jCr,jeAr,jt dt

W×,j =


+∞

0
(eAjt)′C ′

jCr,jeAr,jt dt.

Remark 3. Note that the observability assumption in Proposition 2
is satisfied under mild conditions as detailed in Antoulas (2005).

Matrix Wr,o,j can be obtained by solving the Lyapunov equation

Ar,jWr,o,j + Wr,o,jA′

r,j + C ′

r,jCr,j = 0,

while matrix W×,j is the solution to the Sylvester equation

A′

r,jW×,j + W×,jAj + C ′

r,jCj = 0.

Now, plugging the expression (8) for ξ̂j(t) into xr,j = Ψjξ̂j and
setting Ψj = Ψ ⋆

j , we get

xr,j(t) = Ψ ⋆
j


T−1
i Hixr,i(t−)+ T−1

i Kiu(t−)+∆
ξ

ji


. (11)

Matrices Lji,Mji, and Nji can be obtained by direct comparison with
(6). As for the system initialization, we set

qr(0) = qa(0) = q0, xr,q0(0) = Ψ ⋆
q0


ξa(0)− ξ̄a,q0


. (12)

Instead of considering an infinite horizon when evaluating the ZIR
output error, one can take into account the switching nature of the
system and consider the error only during the finite horizon [0, τ ].
Correspondingly, the error function to be minimized becomes

Jτ (Ψ τ
j ) =

 τ

0
∥yzir,j(t)− ŷzir,j(t)∥2 dt.

The resulting optimal Ψ τ⋆
j matrix is given by Ψ τ⋆

j = W−1
r,o,j(τ )W×,j

(τ ), where

Wr,o,j(τ ) =

 τ

0
(eAr,jt)′C ′

r,jCr,jeAr,jt dt

W×,j(τ ) =

 τ

0
(eAjt)′C ′

jCr,jeAr,jt dt.

The proof of this result is analogous to that in the infinite horizon
case. Still, observability of the reduced order model (5) with q = j
is required for Wr,o,j to be invertible and Remark 3 applies.

The finite horizon quantities involved in the expression of Ψ τ⋆
j

can be computed as

Wr,o,j(τ ) = Wr,o,j −


+∞

τ

(eAr,jt)′C ′

r,jCr,jeAr,jt dt

= Wr,o,j − W
(τ ,∞)
r,o,j ,

W×,j(τ ) = W×,j −


∞

τ

(eAjt)′C ′

jCr,jeAr,jt dt

= W×,j − W (τ ,∞)
×,j ,

where W
(τ ,∞)
r,o,j and W

(τ ,∞)
×,j can be obtained as the solution of the

Lyapunov and Sylvester equations

Ar,jW
(τ ,∞)
r,o,j + W

(τ ,∞)
r,o,j A′

r,j +

eAr,jτ

′
C ′

r,jCr,jeAr,jτ = 0,

A′

r,jW
(τ ,∞)
×,j + W

(τ ,∞)
×,j Aj +


eAr,jτ

′
C ′

r,jCjeAjτ = 0.

Note that well-posedness of the above equations is guaranteed by
the fact that Aj and Ar,j are Hurwitz.
The matrices in the reset map (6) and the system initialization
are analogous to the case of infinite horizon, but with Ψ τ⋆

j in place
of Ψ ⋆

j .
The choice for τ depends on the settling times of the different

mode dynamics. A sensible choice is to set τ equal to the settling
time of the neglected dynamics.

To distinguish between the two OG reset maps, we shall refer
to the one with the infinite horizon as OG∞ and the one with finite
horizon [0, τ ] as OGτ .

4.4. Variants that preserve the output continuity

In certain application contexts, it may be desirable to preserve
the continuity of the output of the original system. This is not
guaranteed when adopting the reset maps defined above and
motivates the derivations hereafter.

To get continuity, the value of the output ŷa(t) reconstructed
based on (7) before and after the reset should be identical. This
leads to the following equation

Cr,jxr,j(t)+ Dr,ju(t)+ ȳa,j = Cr,ixr,i(t−)+ Dr,iu(t−)+ ȳa,i.

Under the assumption that the input u is a continuous signal, and
letting∆y

ji = ȳa,i − ȳa,j, this simplifies to

Cr,jxr,j(t) = Cr,ixr,i(t−)+ (Dr,i − Dr,j)u(t−)+∆
y
ji.

The values of xr,j(t) that satisfy the above condition can be
expressed as xr,j(t) = x̃r,j(t)+ wj, with

x̃r,j(t) = CĎ
r,j


Cr,ixr,i(t−)+ (Dr,i − Dr,j)u(t−)+∆

y
ji


where CĎ

r,j is the pseudo-inverse of Cr,j and wj ∈ Rnr,j is in the null
space of Cr,j, here denoted as ker(Cr,j). If ker(Cr,j) ≠ {0}, we have
some degrees of freedom to spend and we can choose wj so that
the resulting value for xr,j(t) best matches some given reference
value x̄r,j(t). If instead ker(Cr,j) = {0}, then, wj = 0, and the reset
matrices are derived by a direct comparison with (6).

Let us consider now the case when ker(Cr,j) ≠ {0}. If we let
{v1, v1, . . . , vnv,j} be a basis of ker(Cr,j), and set Vj =


v1 v2

. . . vnv,j

, then, wj = Vjα with α ∈ Rnv,j and we can select α by

solving the least squares problem

α⋆ = argmin
α

∥x̃r,j(t)+ Vjα − x̄r,j(t)∥,

which leads to α⋆ = V Ď
j x̄r,j(t), since it holds that V Ď

j C
Ď
r,j = 0. We

then finally have the following:

xr,j(t) = x̃r,j(t)+ VjV
Ď
j x̄r,j(t), (13)

which, depending on the chosen x̄r,j(t) leads to different expres-
sions for the matrices Lji, Mji, and Nji in the reset map (6).

If we adopt the expression in the SR map (9) for x̄r,j(t), then
we can define the Continuous State Reconstruction-based reset
map (CSR map). If we instead set x̄r,j(t) equal to the OG∞ map
expression (11), we obtain the Continuous Observability Gramian-
based map with infinite horizon (COG∞ map). Analogously, we
can define the Continuous Observability Gramian-based map with
finite horizon [0, τ ] (COGτ ).

As for the initialization, q(0) = qa(0) = q0, whereas the value
for xr,q0(0) is obtained by setting the value of the output ŷa(0)
reconstructed based on (7) equal to that of ya(0) obtained based
on the system initialization. This leads to the following equation

Cr,q0xr,q0(0)+ Dr,q0u(0)+ ȳa,q0 = ya(0),

where ya(0) is given by the initial conditions of the system, i.e.,
ya(0) = Cqaξa(0)+ gq0 .
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From this equation, by following similar steps than those used
for deriving (13), we get that

xr,q0(0) =


x̃r,q0(0), ker(Cr,j) = {0}
x̃r,q0(0)+ Vq0V

Ď
q0 x̄r,q0(0), ker(Cr,j) ≠ {0},

where we set x̃r,q0(0) = CĎ
r,q0(−Dr,q0u(0) − ȳa,q0 + ya(0)), and

x̄r,q0(0) is the initialization of the SR, OG∞, or OGτ reset map.

5. A randomized method for order selection

In Mazzi et al. (2008), following an approach that is quite
standard for linear systems (Antoulas, 2005), a threshold value γ is
chosen, and the order of the reduced SL system (5) in mode q ∈ Q
is set equal to

nr,q = min{i ∈ {1, 2, . . . , n} : ψq(i) < γ }, (14)

where ψq : {1, 2, . . . , n} → [0, 1) is given by ψq(i) = 1 −i
j=1 σj,q/

n
j=1 σj,q, σ1,q ≥ σ2,q ≥ · · · ≥ σn,q being the HSVs of

the SL system dynamics (2) in mode q.
Our goal here is to introduce a sound method for making an

appropriate selection of the threshold value γ , when the input u
is stochastic and one has to verify a property that depends on the
behavior of the SA system output ya along a finite time horizon
T . For the resulting stochastic hybrid system and its executions to
be well-defined according to the notion in Hu, Lygeros, and Sastry
(2000), we shall assume in the following that input u is a white
noise with a given power spectral density.

A randomized method for order selection is proposed, which
involves feeding the candidate reduced order models and the
system with the same realizations of the stochastic input and
comparing their outputs over T . If the number of realizations is
appropriately chosen, then the quality of the model assess over
them generalizes to the unseen instances, except for a set of
a-priori defined probability ϵ. Notably, this can be reinterpreted
as an ϵ-robust assessment result.

Let us denote by Γ the (finite) set of possible threshold values
γ , those that result in a different choice for {nr,q, q ∈ Q }, and by ŷγa
the estimate of ya obtained through the reduced SL system when
the threshold value is set equal to γ .

The approximation error can be quantified through a function
dT (·, ·) that maps each pair of trajectories ya(t), t ∈ T , and ŷγa (t),
t ∈ T , into a positive real number dT (ya, ŷ

γ
a ) that represents the

extent to which the output ya of the SA system differs from its
estimate ŷγa along the time horizon T . Function dT (·, ·) satisfies
dT (ya, ŷ

γ
a ) = 0 if γ = 0, since in that case no reduction is

performed and, hence, ŷγa (t) = ya(t), t ∈ T .
In order to make an appropriate selection of γ , we adopt the

notion of approximate simulation in Abate and Prandini (2011),
Garatti and Prandini (2012), Julius and Pappas (2009) and Prandini
et al. (2014) to assess the quality of the reduced order model with
threshold value γ . This involves computing the maximal value ρ⋆γ
taken by dT (ya, ŷ

γ
a ) over all realizations of the stochastic input

u(t) and the (possibly) stochastic initialization ξa(0) of the SA
system, except for a set of probability at most ϵ ∈ (0, 1). An
‘optimal’ value for γ can then be chosen by inspecting the values
of ρ⋆γ as a function of γ ∈ Γ and selecting the appropriate
compromise between quality of the approximation and tractability
of the resulting reduced order model.

More precisely, we introduce the following family of chance-
constrained optimization problems (CCPs) parametrized by γ ∈

Γ :

CCPγ :min
ρ
ρ (15)

subject to : P{dT (ya, ŷγa ) ≤ ρ} ≥ 1 − ϵ.
By directly inspecting the solution of (15) as a function of γ , one
can then select the appropriate compromise between accuracy and
simplicity of the model, respectively expressed through ρ⋆γ , and
nr,q, q ∈ Q , in (14).

Remark 4. As argued in Abate and Prandini (2011), the directional
Hausdorff distance dT (ya, ŷ

γ
a ) = supt∈T infτ∈T ∥ya(t) − ŷγa (τ )∥

is a sensible choice for dT (ya, ŷ
γ
a ) when performing probabilistic

verification, e.g., when estimating of the probability that ya will
enter some set within T .

Solving CCPs like (15) is known to be difficult, and even NP-
hard in some cases, Campi and Garatti (2011). We then head for an
approximate solution where instead of considering all the possible
realizations for the stochastic uncertainty, we consider only a
finite number N of them called ‘‘scenarios’’, extracted at random,
and treat them as if they were the only admissible uncertainty
instances. This leads to the formulation of Algorithm 1, where the
chance-constrained solution is determined based on the extracted
scenarios and a empirical violation parameter η ∈ (0, ϵ). Notably,
in Proposition 3 it is proven that, if the number N of extractions
is appropriately chosen, the obtained estimate of ρ⋆γ is chance-
constrained feasible, uniformly with respect to γ ∈ Γ , with
a-priori specified (high) probability. The proof of Proposition 3 can
be found in Papadopoulos and Prandini (2014), and rests on results
from the scenario approach (Campi & Garatti, 2011; Campi, Garatti,
& Prandini, 2009).

Proposition 3. Select a confidence parameter β ∈ (0, 1), and an
empirical violation parameter η ∈ (0, ϵ). If N satisfies

⌊ηN⌋
i=0


N
i


ϵ i(1 − ϵ)N−i

≤
β

|Γ |
, (16)

where |Γ | denotes the cardinality of Γ , then, the solution ρ̂⋆γ , γ ∈ Γ ,
to Algorithm 1 satisfies P{dT (ya, ŷ

γ
a ) ≤ ρ̂⋆γ } ≥ 1 − ϵ, ∀γ ∈ Γ , with

probability at least 1 − β . �

If we discard the confidence parameter β for a moment, this
proposition states that for any γ ∈ Γ , the randomized solution
ρ̂⋆γ obtained through Algorithm 1 is feasible for the chance-
constrained problem (15). As η tends to ϵ, ρ̂⋆γ approaches the
desired optimal chance constrained solution ρ⋆γ . In turn, the
computational effort grows unbounded since N scales as 1

ϵ−η
,

Campi and Garatti (2011), therefore, the value for η depends in
practice from the available computational resources. As for β , one
should note that ρ̂⋆γ is a random quantity that depends on the
randomly extracted input realizations and initial conditions. Itmay
happen that the extracted samples are not representative enough,
in which case the size of the violation set will be larger than ϵ.
Parameter β controls the probability that this happens and the
final result holds with probability 1−β . N satisfying (16) depends
logarithmically on |Γ |/β , Campi and Garatti (2011), so that β can
be chosen as small as 10−10 (and, hence, 1 − β ≃ 1) without
growing significantly N .

Interestingly, the guarantees provided by Proposition 3 are
valid irrespectively of the underlying probability distribution of
the input, which may even not be known explicitly, e.g., when
running Algorithm 1 with historical time series as realizations of
the stochastic input u.

Remark 5. Note that even in the case of stable continuous
dynamics, switching can produce unstable behaviors. However, if
some reduced order model presents an unstable behavior, which
makes the distance between ya and ŷγa large, that model is not
selected.
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Algorithm 1

1: extract N realizations of the stochastic input u(i)(t), t ∈ T ,
i = 1, 2, . . . ,N , and N samples of the initial condition ξa(0)(i),
i = 1, 2, . . . ,N , and let k = ⌊ηN⌋;

2: for all γ ∈ Γ do
2.1: determine theN realizations of the output signals y(i)a (t) and

ŷγ ,(i)a (t), t ∈ T , i = 1, 2, . . . ,N , when the SL system and
the reduced order model with parameter γ are fed by the
extracted u(i)(t);

2.2: compute ρ̂(i) := dT (y
(i)
a , ŷ

γ ,(i)
a ), i = 1, 2, . . . ,N , and

determine the indexes {h1, h2, . . . hk} ⊂ {1, 2, . . . ,N} of the
k largest values of {ρ̂(i), i = 1, 2, . . . ,N}

2.3: set ρ̂⋆γ = maxi∈{1,2,...,N}\{h1,h2,...,hk} ρ̂
(i).

6. Numerical example

In this section, a multi-room heating system with a switching
control policy is presented. The example is inspired to a benchmark
for hybrid system verification presented in Fehnker and Ivancic
(2004).

Consider the problem of controlling the temperature in a
number of rooms of a building. Each roomhas one heater, but there
is a constraint on the number of heaters in the building that can
be ‘‘active’’ (i.e., that can be used and turned on if needed) at the
same time. Differently from the original benchmark in Fehnker and
Ivancic (2004), we model also the dynamics of the heaters.

The temperature Ti in a room i ∈ {1, . . . ,Nr} depends on Ti
itself, on the temperature of the adjacent rooms Tj with j ≠ i, on
the outside temperature Text, and on hi, a Boolean variable that is 1
when the heater is on in room i, and 0 otherwise. The heat transfer
coefficient between room i and room j is kij, and the one between
room i and the external environment is ke,i. We assume that the
heat exchange is symmetric, i.e., kij = kji. Rooms i and j are adjacent
when kij > 0, otherwise kij = 0.

The volume of the room is Vi, and the wall surface between
room i and room j is Sr,ij, while that between room i and the
environment is Se,i. Air density and heat capacity are ρa =

1.225 kg/m3 and c = 1005 J/(kg K), respectively. Letting φi =

ρacVi, we can formulate the following dynamic model for room i
and its heater:

φiṪi =


j≠i

Sr,ijkij

Tj − Ti


+ Seike,i (Text − Ti)+ κiθi

τh,iθ̇i = −θi + hi · pi − χiText

which is an affine system, with κi representing the maximum heat
flow rate that the heater can provide, while pi ∈ {0, 1} is a binary
variable indicating if the heater is active in room i (pi = 1) or
not (pi = 0). The heater dynamics is represented by a first-order
system with a time constant τh,i. If we neglect the term −χiText in
the heater dynamics and set hi = pi = 1, the heater state variable
θi will tend to 1 so that the heater will provide its maximum heat
flow rate κi to the roomwhen it is active and on. The term−χiText is
introduced to account for the influence of the external temperature
on the heating system. Notice that pi = 1 just indicates that the
heater is active in room i, while hi is the variable that indicates
whether it is actually turned on (hi = 1).

The physical nature of the considered system is not switching.
However, the switching control policy presented in Fehnker and
Ivancic (2004) is used to control the temperature in the rooms.

A room policy decides whether to switch the heater on in the
room: each room has a thermostat that switches the heater on if
Ti ≤ oni, and off when Ti ≥ offi.
Table 1
The multi-room physical system parameters.

Sr,ij 12 m2 ke,i 1 W/(m2 K) τh,3 45.00 s
Se,i 24 m2 κ1 0.373 τh,4 47.25 s
Vi 48 m3 κ2 0.395 χ1 1.0 × 10−4

φi 59094 J/K κ3 0.417 χ2 2.0 × 10−4

k12 2 W/(m2 K) κ4 0.439 χ3 3.0 × 10−4

k23 5 W/(m2 K) τh,1 40.50 s χ4 4.0 × 10−4

k34 2 W/(m2 K) τh,2 42.75 s

A building policy decides and limits the number of heaters that
are jointly active, by setting the constraint

Nr
i=1 pi = P , with

P ≤ Nr . The heater of room i is turned active, and the heater of
room j becomes not active when: (1) the heater of some room, say
room i, is not active, i.e., pi = 0, (2) room j is adjacent to room i
and has an active heater, i.e., pj = 1, (3) temperature Ti ≤ geti, and
(4) the difference Tj − Ti ≥ difi.

Each room is identified by an integer index, and whenever
a room has more than one adjacent room fulfilling the above
condition, the heater is always set active in the room with higher
index.

In the following we consider Nr = 4 adjacent rooms, with the
constraint that only P = 3 heaters can be active at the same time.
The values of the physical system parameters for the considered
instance of the problem are reported in Table 1. The external
temperature Text is modeled as a sinusoidal source of period 24 h
with an offset of 4 °C, affected by an additive white noise. Note
that the resulting stochastic hybrid system and its execution are
still well-defined (see Koutsoukos, 2005).

We assume deterministic initial conditions, i.e., Ti(0) = 20,
θi(0) = 0, i = 1, . . . ,Nr , h(0) = p(0) = [0 1 1 1]′. The condition
that only 3 out of 4 heaters are active at the same time is satisfied
by p(0). As for the control policy parameters, we set offi = 21,
oni = 20, geti = 18, difi = 1, with i = 1, . . . ,Nr . Due to
the switching policy, the control system can be described as a SA
system with continuous state ξa =


T ′ θ ′

′, input u = Text, and
output ya = T :
ξ̇a = A ξa + B u + fqa
ya = Cξa.

(17)

As for the mode qa, it is identified by the values of the binary
variables hi and pi, which determine the affine term fqa entering
the dynamics of ξa. The polyhedral sets Doma,qa are determined
by the building and room control policies through the chosen
thresholds. Note that only the affine term fqa in (17) depends on the
discrete mode qa ∈ Q , while the state-space matrices (A,B,C)
are constant. Therefore, the BT can be computed only once, and
applied identically for each discrete mode. Still, when selecting
the order of the reduced model one should consider the impact of
the selected order on the switched system approximation, which
involves also mode transitions. Using standard approaches for the
order selection, as the one used in Mazzi et al. (2008) relying on
classical HSV analysis, can be misleading. Indeed, the obtained
HSVs are σ1 = 0.993, σ2 = 0.026, σ3 = 0.001, σ4 = 4.514×10−5,
σ5 = 1.897 × 10−6, σ6 = 6.995 × 10−7, σ7 = 1.805 × 10−8,
σ8 = 3.534 × 10−10. The HSV analysis suggests that most of the
dynamics can be caught by reducing the continuous dynamics of
the SA system to a first-order one. Indeed, computing the distance
ψ(nr) used in Mazzi et al. (2008) results in ψ(1) · 100 = 2.64%.

Care has to be taken when applying HSV analysis to the context
of SA systems. In fact, classical BT techniques are typically based
on the assumption that the ZIR of the system can be neglected
since it vanishes in an asymptotically stable linear system, a fact
that notoriously does not always holdwhendealingwith switching
systems. Moreover, HSV analysis does not take into account the
impact of the reset map.
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The multi-room control system is next reduced by means of
the constructive methodology proposed in this paper, and the
randomized approach for order selection based on the directional
Hausdorff distance evaluated over a finite horizon T = [0, 200]
min is applied. In particular, we set ϵ = 0.1 in the CCP (15) and
solve it via Algorithm 1. The number of extractions in Algorithm 1
is N = 778 and is obtained through the implicit formula (16) with
η = 0.05, β = 10−6 and |Γ | = 7.

Sincewe adopt the sameorder for the reduced dynamics in each
mode, 7 model order reductions are examined, and, according to
Proposition 3, the results on the quality assessment of the reduced
order models hold with probability 1 − 10−6.

The length τ of the finite horizon [0, τ ] adopted in OGτ and
COGτ is set to the settling time of the neglected dynamics. Eq.
(14) maps each threshold value γ ∈ Γ into the order nr,q of
the reduced dynamics within mode q ∈ Q of the SL system
with state reset. In this example, we adopt the same order for
the reduced dynamics in each mode. Hence, we can simplify the
notation to nr , dropping the dependence from mode q. The values
for ρ̂⋆γ obtained with the different reset methods are presented
in Fig. 1 as a function of nr . Some interesting considerations can
be made by analyzing the results presented in Fig. 1. First of
all, one can compare the reset maps that do preserve continuity
with those that do not. The plots in Fig. 1 show that preserving
continuity leads to worse performance in terms of accuracy of the
approximation. This holds despite of the fact that, for the maps
that do not preserve output continuity, a drastic order reduction
may yield discontinuities in the state reset that possibly produce
chattering behaviors. Furthermore, Fig. 1 shows that the OG reset
maps exhibit better performance with respect to the SR maps.
In particular, for the OGτ map ρ̂⋆γ is reduced on average over nr
by 10.03% in the discontinuous map case, and by 2.68% in the
continuous map case.

Notice also that when a reduced order nr ≤ p = 4 is used
and the output continuity is enforced, then, the same results are
obtained with the different reset maps. This is due to the fact that
whenever nr ≤ p, there are no degrees of freedom left by the
continuity constraint to match the originally introduced SR or OG
reset maps (see the derivations in Section 4.4), so that all maps just
enforce continuity and become identical.

From the randomized analysis in Fig. 1, it appears that one
can push the reduction up to a fifth order without significantly
deteriorating the accuracy of the model when the goal of the
approximation is the analysis of reachability properties for which
the directional Hausdorff distance is a suitable accuracy measure.
Reducing the system to a first-order approximation as suggested
by the analysis based on the HSV only would instead result in a
quite significant degradation of the reduced model performance.

7. Extension to SA systems with DT

The approach that we proposed in Section 6 for model order
reduction can also be applied to the case when the mode
transitions of the SA system are subject to a DT constraint, which
means that a transition from mode i ∈ Q to mode j ≠ i ∈ Q is
enabled when (ya, u) exits Doma,i and enters into Doma,j, but can
actually occur only if a certain minimum amount of time δ̄i ∈ R+

(the so-called dwell time) has elapsed. Note that DT can be present
in a system for two different reasons: either is due to an intrinsic
characteristic of the system that presents some delay/inertia when
commuting, or it is introduced when designing a control strategy,
as in DT switching control, see e.g. Hespanha andMorse (1999) and
Liberzon (2003).

An extension of the SA modeling framework is needed if a DT
constraint is present. If we start from a SA system of the form (1),
we can introduce the DT constraint as described next. DT can be
Fig. 1. Performance of different reduced models as a function of the order nr and
of the adopted reset maps.

accounted for by adding to each mode a continuous state variable
δ ∈ R that represents a clock with the dynamics of an integrator.
The dynamics (1) then is augmented as follows:
ξ̇a(t)
δ̇(t)


=


Aqa 0
0 0

 
ξa(t)
δ(t)


+


Bqa 0
0 1

 
u(t)
v(t)


+


fqa
0



yδ(t)
ya(t)


=


0 1

Cqa 0

 
ξa(t)
δ(t)


+


0
gqa


with v(t) = v̄ = 1∀t ≥ 0, and the extended domain of a discrete
mode qa ∈ Q is modified as

Dome
a,qa = R+

× Doma,qa × {1} ∪

0, δ̄qa


× Rp×m

× {1}

so as to impose the DT constraint.
Within this extended framework, mode i ∈ Q is active as long

as

[yδ y′

a]
′, [u′ v]′


keeps evolving within Dome

a,i, and a transition
to mode j ≠ i ∈ Q occurs as soon as


[yδ y′

a]
′, [u′ v]′


exits Dome

a,i,
and enters into Dome

a,j. The reset map δ(t) = 0 needs to be added
as soon as a mode transition occurs at time t−.

Note that the augmented dynamics within each mode is still
affine. However, the resulting dynamic matrix is not Hurwitz
due to the presence of the clock. Yet, under Assumption 1, the
procedure in Section 3 for model order reduction can be still
adopted, in that it can be applied to the original SA system. The
clock dynamics and its reset can be considered separately, and only
affect themode transitions of the reduced system via the extended
domains definition.

As a consequence to the introduction of the DT, dynamics that
decay in a time scale that is larger than the DT itself will be
unlikely to be removed when selecting the model order through
the proposed randomized approach: This is because of their
contribution at the switching times when the state is reset. Finally,
the length τ of the time horizon in OGτ and COGτ can be tailored
to the DT value.

7.1. Numerical example: the multi-room heating system

We consider the example of the multi-room heating system in
Section 6 and introduce a DT to the switching policy. This means
that, we require that the time elapsing between two subsequent
switches (heater activated/de-activated and heater turned on/off
when active) must be greater than or equal to the DT. We thus
increase the state vector with a clock δ(t) with dynamics δ̇ = 1,
that is reset to 0 whenever a switch occurs.

Note that since the unstable dynamics of the clock do not affect
the dynamics of the remaining state variables, one can apply BT
to the original system without the clock. Therefore, even if the
(augmented) continuous state variable of the multi-room heating
system has dimension 9, the reduction must be performed only on
the original state of dimension 8 as in the example of Section 6.
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Fig. 2. Quality of the reduced order model when a DT is introduced in the control
policy (light bars) and when it is not adopted (dark bars).

The results obtained when the neglected dynamics has order 1
are reported in Fig. 2. The value of the optimal directionalHausdorff
distance ρ̂⋆γ is computed through Algorithm 1 for the different
reset maps, but just for a value of γ corresponding to an unitary
order reduction of the asymptotically stable part of the system. The
same parameter values of Section 6 are here adopted. The DT is set
equal to 5 min (which is also the settling time of the continuous
dynamics) and the time horizon length τ in the OGτ reset map
is set equal to the DT. The OGτ map gives the best performance
in terms of ISE with respect to the other reset maps (see Fig. 2).
Indeed, the DT is long enough to let the ZIR of the asymptotically
stable continuous component vanish.

Not surprisingly, a comparative analysis with the values of the
directional Hausdorff distance obtained without the adoption of
the DT in the switching policy (see Fig. 2) reveals that the quality of
the reduced order model deteriorates when the DT is present, and
this occurs irrespectively of the adopted reset map.

8. Conclusions

In this work, we proposed to extend BT to the model reduction
of SA systems with endogenous switching. This involved introduc-
ing appropriate state reset maps and integrating the reduced order
model design with a randomized procedure for model order selec-
tion. A comparative analysis of different maps, possibly preserving
the output continuity, was performed on a benchmark example of
a multi-room heating system. The approach was extended to the
case of switched affine systems with DT.

The proposed order selection is based on the discrepancy
between the real and approximated output trajectories. If the
obtained discrepancy is zero, then the reduced ordermodel exactly
reproduces the input–output behavior of the system, and it is
possibly a minimal realization. A rigorous approach to exact
model reduction for piecewise-affine hybrid systems is proposed
in Petreczky and van Schuppen (2010).

The considered class of switched systems is characterized by
an endogenous switching signal. However, our method can be
applied also to the case when transitions are determined by some
exogenous switching signal, possibly probabilistic as in the case of
Markov jump linear systems.
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