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Abstract Thiswork investigates theway humans plan their
paths in a goal-directed motion, assuming that a person acts
as an optimal controller that plans the path minimizing a
certain (unknown) cost function. Taking this viewpoint, the
problem can be formulated as an inverse optimal control one,
i.e., starting from control and state trajectories one wants to
figure out the cost function used by a person while plan-
ning the path. The so-obtained model can be used to support
the design of safe human–robot interaction systems, as well
as to plan human-like paths for humanoid robots. To test the
envisaged ideas, a set of walking paths of different volunteers
were recorded using a motion capture facility. The collected
data were used to compare two solutions to the inverse opti-
mal control problem coming from the literature to a novel
one. The obtained results, ranked using the discrete Fréchet
distance, show the effectiveness of the proposed approach.
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1 Introduction

In the last decade there was an increasing interest of robotic
researchers towards robot co-workers andhuman-robot coex-
istence and cooperation (Alami et al. 2006; Sisbot et al. 2007;
Schiavi et al. 2009; Zanchettin et al. 2013; Ceriani et al.
2013). These emerging research topics have shown their rel-
evance either in the industrial robotics and in the service
robotics scenarios.

In the former, the research aims at removing the fences
between human workers and robots allowing for a fruitful
cooperation, but keeping the interaction safe (Bascetta et al.
2011; Zanchettin et al. 2013; Ragaglia et al. 2014a, b, 2015).
In this context, the knowledge of how a human plans a walk-
ing path is of utmost importance, as it allows to predict where
a human is heading to, inferring a related danger level and
triggering a suitable safety reaction. Improving the accuracy
and reliability of the human walking model allows thus to
increase the safety of the system and to reduce the conser-
vatism of the safety controller.

In the latter, humanoid robots are getting closer to humans,
helping impaired and elderly people in their everyday life
duties, or receiving and guiding visitors in museums, exhi-
bitions, and shopping malls (Broekens et al. 2009). In these
contexts, predictingwhere a human is heading to, for example
to give him the appropriate description of a picture or suit-
able advertisings related to a shop, is still an important issue.
Nevertheless, developing a planner for humanoid robots in
such a way that the planned paths are perceived by humans as
human-like is even more important: increasing the human-
likeliness of the path improves the social acceptance of such
machines in everyday life.

The aforementioned motivations drove the research of the
last decade on investigating how humans plan their walking
paths. Researchers have been focused on the study of the
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so-called goal-oriented motion model (Arechavaleta et al.
2006, 2008; Mombaur et al. 2010; Chittaro et al. 2013;
Papadopoulos et al. 2014), i.e., where the humans walk from
an initial pose towards a predefined goal pose, assuming that
the process adopted by humans to plan their walking paths
can be represented as the solution of an optimal control prob-
lem. Adopting this framework, the problem can be converted
into the investigation of the cost function the human is sup-
posed to minimize.

The same framework is addressed in this paper and can
be formulated in more detail as follows: given a set of
experimentally recorded goal-directed walking paths, select
a motion model and a cost function in such a way that the
paths generated as solutions of the optimal control problems
(whose dynamic constraints and optimality criteria are the
aforementioned motion model and cost function), each one
having as initial and final conditions the human pose at the
first and last point of the experimental path, resemble asmuch
as possible the corresponding experimental ones.

In this paper we extend the work in Papadopoulos et al.
(2013), presenting a novel cost function that considers the
normalized energy and position of the human with respect
to the target. The results obtained with this cost function are
compared to others presented in the literature, adopting the
discrete Fréchet distance (Alt and Godau 1995) as a metric to
assess the similarity of a set of paths, as opposite to standard
approaches that use the Euclidean one, e.g., (Arechavaleta
et al. 2008; Hicheur et al. 2007; Pham et al. 2007). The over-
all objective of this work is not just to identify a motion
model and a cost function that can suitably interpolate a given
dataset, but to devise a model that is able, given a starting and
an ending pose, to generate a human-like walking path.

The approach has been investigated with reference to
about one thousand walking paths, recorded using a six-
cameramotion capture system adopted in biomedical posture
andmotion analysis.A statistical analysis of the errors among
the paths generated by the identified optimal control problem
and the experimental paths confirmed that the cost functions
here proposed, compared to other cost functions presented
in the literature, allow to achieve a significant improvement
in the reproduction of the human walking paths. In addition,
the cost functions here proposed are simpler and allow for a
more intuitive and physically-grounded interpretation.

It is worth mentioning that this improvement is not only
due to the proposed cost function. Indeed, one of the major
contributions of this work is to consider the problem in
the space domain. This choice allows for a simplification
in the solution of the inverse optimal control problem, and
represents a significant difference with respect to previous
approaches, e.g. (Arechavaleta et al. 2006; Mombaur et al.
2010; Puydupin-Jamin et al. 2012).

On the other hand, this work does not aim at proposing a
methodology to solve a generic inverse optimal control prob-

lem as on this specific topic a huge amount of literature exists
[the interest reader can make reference, e.g., to Jameson and
Kreindler (1973), Terekhov and Zatsiorsky (2011), Berret
et al. (2011), Casti (1980), Chittaro et al. (2013), Kalman
(1964), Hempel et al. (2015)].

The paper is organised as follows. First, a review of the
literature is discussed in Sect. 2. The problem statement is
outlined in Sect. 3. Section 4 describes the experimental setup
used to collect human walking paths. In Sect. 5 the reformu-
lation of the locomotor model in the space domain is intro-
duced, and some cost functions are proposed and discussed.
In Sect. 6 the solution of the inverse optimal control prob-
lem is outlined. Section 8 presents a comparison, based on the
experimental paths, among the three cost functions described
in Sect. 5 and among the results obtained with the time and
space formulations. Some conclusions are given in Sect. 9.

2 Review of the literature

An optimal control approach has been formerly applied in
the field of neuroscience (Todorov 2004) to predict motion
of limbs, i.e., by searching a control input according to some
performance criterion, such as minimization of jerk (Viviani
and Flash 1995), torque-change (Uno et al. 1989), maximiza-
tion of smoothness (Flash and Hogan 1985; Todorov and
Jordan 1998), and so forth.

Such an approach has been first adopted in Arechavaleta
et al. (2008), just to find the underlying principle explain-
ing the shape of human walking trajectories. First of all,
they assumed that goal-directed walkingmay be planned as a
whole at trajectory level, rather than on successive footsteps.
This implies that all biomechanical issues related to motion
generation can be neglected.As a consequence, they assumed
a purely kinematicmodel of human locomotion in the formof
a unicyclemodel, extended tomake the curvature a state vari-
able, in order to prevent curvature discontinuities. Finally,
they assumed the minimization of the control energy as the
optimality criterion, which comes down to the minimization
of the time derivative of the curvature for “reasonably” con-
stant forward velocities (this hypothesis has been confirmed
by a statistical analysis). Clothoid arcs were obtained as the
geometric shapes of the walking trajectories from the solu-
tion of the optimal control problem, i.e., minimum-length
continuous curvature paths under a centripetal peak-jerk con-
straint.1 The locomotor model has been further extended
in Mombaur et al. (2008) with an additional holonomic
(orthogonal) acceleration input, to account for sidewards
motion. The cost function has been also modified with the
inclusion of the total time, and its weights have been selected

1 This conclusion has been however the subject of some criticisms
in Bretl et al. (2010).
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based on empirical observations and numerical investiga-
tions,while anywaypenalizing the holonomicmotion, except
for near targets and similar initial and final orientations.

In Arechavaleta et al. (2008) and Mombaur et al. (2010)
the authors assume that decisions are optimal with respect
to a certain (unknown) cost function, and try to minimize
the difference between what is observed and what would
have been observed given a candidate cost function. The
cost function is represented as a linear combination of basis
functions weighted by an unknown parameter vector. Their
approach infers the parameter vector, solves the correspond-
ing optimal control problem, predicts what the resulting
observations would be, and then applies derivative-free opti-
mization to minimize the difference between predicted and
observed trajectories. This approach, however, is computa-
tionally expensive as it requires solving an optimal control
problem at each iteration of the optimizer.

Other approaches are presented inDvijothamandTodorov
(2010), in which the authors implement several algorithms,
based on inverse reinforcement learning, that do not
require solving the forward problem, and in Castelán and
Arechavaleta (2009), Ramirez et al. (2010), where statistical
analysis is applied over a set of recorded human trajecto-
ries, in order to extract a low dimensional linear model of
humanwalking trajectory planning. In particular, in Castelán
and Arechavaleta (2009) Principal Component Analysis has
been applied, showing that the span of in-training human
paths can be reasonably approximated by a linear subspace
of five modes only, while in Ramirez et al. (2010) a sta-
tistical technique based on multilinear algebra has been
performed for studying heterogeneous databases of human
motion behaviors.

3 Problem statement

It must be emphasized that, in all reviewed approaches, the
focus is on the geometric shape of the human walking trajec-
tories and, in this respect, the role of the forward velocity
should be put in question. On the one hand, it has been
observed that the forward velocity remains nearly constant
along the trajectories (Arechavaleta et al. 2008) [a constant
forward velocity has been even explicitly assumed in Bayen
et al. (2009)]. On the other hand, recently, Mombaur et al.
(2010) have noticed that the objective function of human
locomotion trajectories does not seem to depend on the for-
ward velocity, and the same observation has been made for
the jerk. Accordingly, it appears reasonable to assume that a
human being plans the shape of her/his trajectory in the space
domain, moving along it at a velocity consistent with her/his
particular biomechanical characteristics. Indeed, it has been
observed from the experiments that different subjects follow
similar paths with fairly different velocities.

This fact has suggested a reformulation of the unicycle
model in the space domain, assuming the natural coordinate
as the independent variable instead of time.

Apart from removing the dependence from the forward
velocity and lowering the number of model inputs to one, the
said reformulation has the advantage of avoiding the need of
rescaling the trajectories (Arechavaleta et al. 2008; Castelán
andArechavaleta 2009; Ramirez et al. 2010) since, of course,
even from trial-to-trial, the duration of the motion performed
by different subjects can be different,while producing similar
paths. Moreover, the only input of the reformulated model
is actually the curvature, whose continuity is assured by the
solution of the optimal control problem itself, rather than
from an extension of the unicycle model in order to make the
curvature a state variable (Arechavaleta et al. 2006a, 2008;
Bayen et al. 2009).

According to the space domain reformulation of the
motion model, in this work walking paths instead of walk-
ing trajectories are considered in the search of an optimality
criterion, adapting the approach proposed in Keshavarz et al.
(2011), Puydupin-Jamin et al. (2012) and already consid-
ered in Papadopoulos et al. (2013). This new formulation of
inverse optimal control assumes that the observations are per-
fect, while the system is considered to be only approximately
optimal. This allows to define residual functions based on the
Karush–Kuhn–Tucker (KKT) necessary conditions for opti-
mality (Luenberger and Ye 2008). Then, the inverse optimal
control problem can be solved by minimizing these resid-
ual functions, recovering the parameters that govern the cost
function. As a result, the inverse optimal control problem
reduces to a simple least-squares minimization, which can
be solved very efficiently.

This approach is also similar to the “analytical” one pre-
sented in Terekhov and Zatsiorsky (2011), which exploits the
Lagrange principle—thus analogous to the necessary con-
ditions of optimality of the KKT—and solves the weights
in closed form. This method is proven to converge always
to a unique global minimum in the case of linear con-
straints, reaching very accurate approximations of the true
cost function, while being 300 times faster than other
classical approaches. Unfortunately, due to the nonlinear-
ity in the dynamics of the walking person, the resulting
optimization problem cannot be formulated with linear con-
straints.

From the discussion above, it should be clear that there
are two key aspects that have to be considered in order to
address the planning problem.

First, as the problem of selecting a suitable cost function
given a set of experimental paths, can be considered as an
identification problem, collecting a dataset of humanwalking
paths is a fundamental step. Therefore, the first part of this
paper is dedicated to the description of the experimental setup
used for the process of human path recording.
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Fig. 1 Marker positions and barycenter

Second, as the identified cost function should be somehow
general, and not just tailored on the considered set of exper-
imental paths, in the authors’ opinion the procedure adopted
to select the structure andweights of this cost function should
guarantee that the optimality criterion has a straightforward
physical interpretation.

4 Collecting human walking paths

As previously mentioned, collecting human walking paths
is a preliminary but fundamental aspect of this work. In this
section, the experimental setup used to collect the dataset is
thus described.

About one thousand paths were recorded using a six-
camera motion capture system (SMART system by BTS
S.p.A.). Each subject was equipped with 3 light reflective
markers, two located on the hips—anterior superior iliac
spine (asis)—, and one located on the sacrum (Fig. 1). This
is not the optimal placement of markers in order to minimize
the oscillations induced by step alternation, in this respect the
shoulders’ midpoint would be a better choice (Arechavaleta
et al. 2006; Mombaur et al. 2010), but the consequences of
this choice on the regularity in the reconstruction of motion
were anyway negligible.

The experimental protocolwas inspired to the one adopted
in Arechavaleta et al. (2008). More specifically, the study
is restricted to the “natural” forward locomotion, excluding
goals located behind the starting position and goals requiring
side-walk steps.

Goals are defined both in position and orientation, and
in order to cover at best the accessibility region, a 4m ×
6m rectangle corresponding to the calibrated volume, was
sampled with 144 points defined by 12 positions on a 2D
grid (left side of Fig. 2) and 12 orientations each. The final
orientation varied from 0 to 2π in intervals of π/6 at each
final position (right side of Fig. 2). The starting position and
orientation were always the same (they are shown by a small
arrow in the 2D grid of Fig. 2).

Locomotor trajectories of 7 healthy people (both males
and females), who volunteered for participation in the exper-
iments, were recorded. Their ages, heights, and weights
ranged from 24 to 50 years, from 1.60 to 1.85m, and from
50 to 90kg, respectively. Each subject performed all the 144
trajectories. Subjects walked from the same initial configu-
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Fig. 2 Final porch positions (left) and orientations (right)

ration to a randomly selected final configuration. The target
consisted of a porch that could be rotated around a fixed posi-
tion in order to show the desired final orientation (Fig. 3).

The subjectswere instructed to freely cross over this porch
without any spatial constraint relative to the path they might
take. Further, they were allowed to choose their natural walk-
ing speed to perform the task. It is worth noticing that the
trajectory was recorded starting from the time instant when
the subject crossed the (0, 0) position in Fig. 2. This was
done in order to limit as much as possible holonomic behav-
iors that may arise in the case of the closer targets (Mombaur
et al. 2010).

A pre-processing phase on the paths collected by the opto-
electronic system was required in order to remove outliers,
fill in missing data and smooth the curves, interpolating each
marker with a smoothing spline. Then, considering the trian-
gle that the three markers form (Fig. 1), the path of a unique
“virtual” marker representing the human walking path was
computed as the barycenter of said triangle.

5 Walking path generation using optimal control

In the framework just introduced, the problem of planning
humanwalking paths can be formulated as an optimal control
problem, whose dynamic model and cost function have to be
selected in such a way that the planned paths are human-
like, i.e., resemble the paths walked by a human. These two
fundamental aspects, i.e., the selection of the walking model
and of the cost function, are discussed in detail in this section.

5.1 Locomotion model

A walking human can be represented by a rectangular box
(Fig. 4), that can translate and rotate around an axis parallel
to the vertical dimension of the box, and crossing the base in
its center.

The pose of the human is thus completely described by
the coordinate of the rectangular box base center P , with
respect to a reference frame fixed on the ground plane, and
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Fig. 3 An example of experiment

Fig. 4 Formalization of a human walking path

by the angle formed by the tangent to the walking path with
the x1-axis. Then, a human walking path is defined as the
curve followed by the point P through the ground plane.

As far as human path planning is concerned, the complex
activities performed during walking by muscles and brain in
commanding and coordinating many elementary motor acts
can be neglected, and the problem may be considered from
a high-level kinematic model perspective. Following this
approach, the walking human can be modeled (Arechavaleta
et al. 2006; Puydupin-Jamin et al. 2012) with the unicycle
kinematic model

⎧
⎪⎨

⎪⎩

ẋ1 = v cos (x3)

ẋ2 = v sin (x3)

ẋ3 = ω

(1)

where x1, x2 are the Cartesian coordinates of point P, v is the
linear (nonholonomic) velocity along the direction ofmotion,
x3 is the orientation, and ω is the angular velocity.

A solutionof the unicycle kinematicmodel (1) represents a
trajectory in the Cartesian space, including thus the geometry
of the path and the position of point P over time, as well.

In the authors’ opinion, however, the problem of generat-
ing human-like walking paths should be addressed focusing
only on the geometry of the path, instead of the complete
trajectory as a function of time. In fact, the forward velocity

v can vary with time along the path and it depends on a large
number of factors (Öberg et al. 1994; Knoblauch et al. 1996).
As an example, a statistical analysis of the dataset presented
in Sect. 4 shows that the average andmedianwalking velocity
are very close, i.e., 1.12 and 1.14m/s, respectively, but the
walking velocity, even neglecting possible outliers, spans the
range 0.61–1.69 m/s, exhibiting thus a very high variance.

Furthermore, in the absence of obstacles and environmen-
tal stimuli that can trigger unpredictable human reactions, the
velocity v can be considered independent from the geome-
try of the path, as at walking velocity the inertial effects are
almost negligible.

For these reasons, the remaining of this work is focused on
planning only the geometry of the path, assuming that once
a human-like path has been generated, one can superimpose
on this path any desired velocity profile, just holding the
constraint of “natural walking” introduced in Arechavaleta
et al. (2008). In addition, leaving out from the estimation
the forward velocity, in principle, reduces the dimension of
the inverse optimal control problem, thus making its solution
easier and more reliable (Jameson and Kreindler 1973; Casti
1980).

In order to study the geometry of the path, model (1) can
be rewritten with the natural coordinate s as the independent
variable, avoiding the explicit dependence of the model from
the velocity v, and lowering the number of input variables to
one. Thus, if v > 0 along the path, i.e., if the assumption of
“natural walking” introduced in Arechavaleta et al. (2008)
holds, the relation between the natural coordinate s and time
t is given by

s(t) =
∫ t

0
v(τ) dτ

and can be inverted, defining t = t (s). As a consequence,
model (1) can be rewritten as

⎧
⎪⎨

⎪⎩

x ′
1 = cos (x3)

x ′
2 = sin (x3)

x ′
3 = σ

(2)
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where σ = ω/v is a new input variable, and the notation ′
represents the derivative with respect to the natural coordi-
nate s: x ′ = dx/ds.

Considering now how complex are the activities per-
formedduringwalking, but howsimple aremodels (1) and (2)
herein introduced, a question naturally arises: is the unicy-
cle model well-suited to describe the dynamics of a human
that is walking in a free space? Or, alternatively, should it
be improved, adding the curvature as a further state vari-
able, as proposed in Bayen et al. (2009), Arechavaleta et al.
(2008), Arechavaleta et al. (2006a)2?

In order to reply to this question, it must be first
noticed that in Bayen et al. (2009), Arechavaleta et al.
(2008), Arechavaleta et al. (2006a) the authors extended the
unicycle model (1), including the path curvature as a further
state variable, in order to enforce its continuity along the path.

Considering the unicycle model in the space domain (2),
however, it can be easily verified that the path curvature κ

has the following expression

κ =
∣
∣
∣
∣
∣
∣

x ′
1x

′′
2 − x ′

2x
′′
1

(
x ′2
1 + x ′2

2

) 3
2

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

x ′
3 cos

2 (x3) + x ′
3 sin

2 (x3)
(
sin2 (x3) + cos2 (x3)

) 3
2

∣
∣
∣
∣
∣
∣
= ∣

∣x ′
3

∣
∣

being thus equal to the absolute value of the quantity σ , that
in the optimal control problem plays the role of the control
variable.

Further, under mild assumptions concerning the continu-
ity and differentiability of themodel equations and of the cost
function, it can be proved that the solution of the optimal con-
trol problem, i.e., the optimal state and control trajectories,
is continuous (Galbraith and Vinter 2003). The same conclu-
sion can be drawn even when state constrained problems are
considered and/or when the optimal control is constrained,
assuming that it belongs to a convex set.

As a consequence, if one considers the walking model in
the space domain, there is no need to introduce an extended
model, as even the simplest one, i.e., model (2), thanks to
the properties of the solution of the optimal control problem,
ensures the continuity of the path curvature.

On the other hand, in order to experimentally assess the
validity of model (2), each experimental path has been com-
pared with the corresponding one obtained integrating the
model fed by the velocities computed using the experimental
data. This comparison was based on the Fréchet metric (Alt
and Godau 1995), that the authors consider the best way to
measure the geometrical difference between two curves—a
deeper discussion is presented in Sect. 7.

Figure 5 and Table 1 show the results of a statistical com-
parison between the unicycle model (2) and the path dataset

2 Note that, considering the assumption of natural forward locomotion,
the unicycle and the extended unicycle are the onlymodels that appeared
in the literature on planning human walking paths.

0

2

4

6

8

Fr
éc
he

t
di
st
an

ce
[c
m
]

0 1 2 3

−1.5

−1

−0.5

x1 [m]

x
2
[m

]

Experimental data

Unicycle model

Fig. 5 A comparison between the paths generated using the unicycle
model and the experimental paths: on the left side the box-plot of the
validation error, on the right side the simulated (green line) and exper-
imental (blue line) paths corresponding to the worst outlier. The ‘o’
and ‘x’ indicate the initial and final position, respectively (Color figure
online)

Table 1 Statistical validation of the unicycle model

Fréchet distance (cm)

25th Percentile Median 75th Percentile

0.84785 1.4176 1.7982

introduced in Sect. 4. As it is clearly shown by the values
reported in Table 1, the error is almost negligible, in particu-
lar as it is very close to the resolution of the motion capture
system. The slight difference between the paths generated by
the model and the experimental one is also evident in the left
side of Fig. 5, where a path, corresponding to the worst out-
lier pointed out by the statistical analysis, is compared with
the corresponding experimental one.

5.2 Choosing the cost function

The multiplicity of different approaches to human planning
as an optimal control problem that have been devised in the
literature (Papadopoulos et al. 2013; Puydupin-Jamin et al.
2012; Bayen et al. 2009; Arechavaleta et al. 2008, 2006;
Berret et al. 2011) reveal that the choice of the cost function
is the most critical issue. In fact, apart from obvious criteria
such as minimization of the energy consumption or mini-
mization of the distance and the derivative of the curvature,
the way humans plan walking paths depends in general from
the situation, fromenvironmental constraints and stimuli, etc.

As already discussed in Sect. 3, this work is focused on the
definition of a cost function that, apart from obviously being
experimentally validated, it should be physically grounded
and as simple as possible. To this extent, three different cost
functions are presented in the following. The results achiev-
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able with such cost functions, in generating a human-like
walking path, are compared in Sect. 8.

5.2.1 Energy-based cost function

In Puydupin-Jamin et al. (2012), Bayen et al. (2009),
Arechavaleta et al. (2008), Arechavaleta et al. (2006) an
energy-based (EB) cost function was proposed. Considering
the unicycle model in the time domain (1), this cost function
can be rewritten in continuous time as follows

J = 1

2

∫ T

0

(
αv2 + ω2

)
dt, (3)

where T is the duration of the trajectory, and α is an unknown
parameter that has to be estimated through the solution of an
inverse optimal control problem.This parameter governs how
much we penalize control effort v relative to control effort
ω.

As previously mentioned, the cost function introduced
in Puydupin-Jamin et al. (2012), Bayen et al. (2009),
Arechavaleta et al. (2008), Arechavaleta et al. (2006) is
related to the energy needed to perform the path, and the
underlying rationale is that humans wants to minimize it.

5.2.2 Hybrid energy/goal-based cost function

Following the same approach already introduced in
Puydupin-Jamin et al. (2012), in Papadopoulos et al. (2013)
the authors proposed a new cost function, that is based on
the space domain unicycle model (2), and accounts either for
the energy related to the control effort σ , and for the distance
between the current state and the final state.

This cost function, we refer to as the hybrid energy/goal-
based (HEGB), can be formulated in continuous time as
follows

J = 1

2

∫ S

0
σ 2

(
1 + βTΓ 2

)
ds, (4)

where S is the length of the path, βT = [
β1 β2 β3

]
is a set of

unknown parameters that need to be estimated through the
solution of an inverse optimal control problem, and

(
Γ 2

)T =
[(
x1 − x1g

)2 (
x2 − x2g

)2 (
x3 − x3g

)2
]

(
x1g , x2g , x3g

) =: xg being the final pose of the human.
The rationale behind this cost function is that the distance

of the current state from the goal can be interpreted as a
space-varying weight on the control effort σ .

5.2.3 Normalized hybrid energy/goal-based cost function

A new cost function, is here considered, with the aim of
simplifying the identification of the β parameters, and of
improving the quality of the planned walking paths.

To this extent, two changes are introduced:

1. a reduction of the number of parameters, weighting the
Euclidean distance from the actual to the final human
position instead of separately weight the x1- and x2-
distances;

2. a normalisation of the Euclidean and angular distances
with respect to their boundary values.

The modified cost function, we refer to as the normalized
hybrid energy/goal-based (NHEGB), can be thus formulated
as follows

J = 1

2

∫ S

0
σ 2

(
1 + γ T Γ̃ 2

)
ds, (5)

where γ T = [
γ1 γ2

]
is a set of unknownparameters that need

to be estimated through the solution of an inverse optimal
control problem, and

(
Γ̃ 2

)T =
[ (

x1 − x1g
)2 + (

x2 − x2g
)2

(
x1s − x1g

)2 + (
x2s − x2g

)2

(
x3 − x3g

)2

(
x3s − x3g

)2

]

(
x1s , x2s , x3s

) =: xs and
(
x1g , x2g , x3g

) =: xg being the
initial and final pose of the human, respectively.

6 Solving the inverse optimal control problem

This section introduces the methodology used to solve the
inverse optimal control problem. This methodology extends
the work in Puydupin-Jamin et al. (2012), by suitably adapt-
ing and applying the solution of the inverse optimal control
problem to the proposed cost functions.

First of all, model (2) can be discretised yielding

⎧
⎪⎨

⎪⎩

x1(k + 1) = x1(k) + Δs(k) cos (x3(k))

x2(k + 1) = x2(k) + Δs(k) sin (x3(k))

x3(k + 1) = x3(k) + Δs(k)σ (k)

(6)

where Δs(k) = s(k) − s(k − 1) is a discrete space step, and
k is not a time, but a space index.

Considering, for the sake of an example, the cost func-
tion (4), the inverse optimal control problem can be formu-
lated as follows
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min
x(k),σ (k)

1

2

N−1∑

k=0

σ(k)2
(
1 + βTΓ 2

)
Δs(k)

s.t. x(0) − xs = 0

x(N − 1) − xg = 0

x1(k + 1) − [x1(k) + Δs(k) cos (x3(k))] = 0

x2(k + 1) − [x2(k) + Δs(k) sin (x3(k))] = 0

x3(k + 1) − [x3(k) + Δs(k)σ (k)] = 0

∀k = 0, . . . , N − 1

(7)

where x = [
x1 x2 x3

]T
is the state vector, xs and xg are the

initial and the final states, respectively, and N is the number
of samples. The only unknown parameter is vector β, that,
togetherwithΓ , acts as a space-varyingweight on the control
effort σ .

Solving the inverse optimal control problem associated
with (7) could be quite complex and computationally ineffi-
cient, due to its nonlinearities. For this reason, in Puydupin-
Jamin et al. (2012) a more efficient solution, based on the
KKT conditions for optimality, is proposed and here briefly
presented.

Let χ = [
xT σ

]T
, f (χ, β) ∈ R the cost function, and

g(χ) ∈ R
m the set of constraints.

For a given β, assuming that χ is a local minimum of
problem (7) and is regular, there exist a unique Lagrange
multiplier vector λ ∈ R

m (Luenberger and Ye 2008) such
that

⎧
⎪⎨

⎪⎩

∇χ f (χ, β) +
m∑

i=1

λT

i ∇χgi (χ
) = 0

g(χ) = 0

(8)

provided that f (·) and g(·) are continuously differentiable
functions. Equations in (8) are known as the KKT necessary
(and sufficient) conditions for equality constraint optimiza-
tion problems: the first one is the stationarity condition, while
the second equation ensures primal feasibility.

The KKT conditions for the Lagrangian of problem (7)
can be written as

∇(χ,λ)L(χ, β, λ) = ∇(χ,λ)

(

f (χ, β) +
m∑

i=1

λT
i gi (χ)

)

= 0

Assuming that the system is only “approximately opti-
mal”, while observations are perfect, the inverse optimal
control problem can be solved by minimizing the residual
function

min
β,λ

1

2
‖∇(χ,λ)L(χ, β, λ)‖2 = min

β,λ

1

2
‖J z − b‖2, (9)

where z = [
β λ

]T
, while J and b depend on the collected

data.
The same approach can be followed for each of the cost

functions introduced in Sect. 5.2. The corresponding expres-
sions for J and b are presented in Appendix.

As can be seen, the initial constrained optimization
problem (7) has been cast into a convex unconstrained least-
squares optimization, which is easier to solve than the initial
constrained optimization one, and reads as the classical nor-
mal equation, i.e., with the solution z = J †b, where J †

denotes the Moore–Penrose pseudoinverse of J .
One of the main limitations of the approach proposed

in Puydupin-Jamin et al. (2012), is that there is no guar-
antee that the value of β resulting from the normal equation
is actually positive. In fact, in many cases, starting from the
considered dataset, the solution is a negative value of β, mak-
ing the optimization problem non-convex.

To overcome this problem, the solution of the normal
equation is here taken as the initial guess for the solution
of a new optimization problem, i.e., a constrained version
of (9), which reads as

min
β,λ

1

2
‖J z − b‖2

s.t. β ≥ 0
(10)

Problem (10) can be easily solved using any optimization
software, selecting as initial guess the solution obtained with
the normal equation. It is quite intuitive that this modifica-
tion to the optimization problem (9) is simple yet extremely
important.

7 Choosing the performance metric

Another important aspect that must be taken into account
is how the performance of different methods are evaluated,
i.e., which is the similarity metric that is more suited for the
problem.

In the literature, the similarity metric that has been widely
adopted is the Euclidean distance (Arechavaleta et al. 2008;
Hicheur et al. 2007; Pham et al. 2007). However, with this
metric, the comparison of different paths depends on the
number of available samples. An extreme case is when two
paths generated by two people are compared. Even if the
geometry of the path is exactly the same, the computed
distance—e.g., the average trajectory errors (ATEs) andmax-
imal trajectory errors (MTEs) (Arechavaleta et al. 2008;
Pham et al. 2007)—is usually greater than zero, due to the
different walking velocities of the two persons, then due to
the different samplings. Even considering a parametrisation
of the two trajectories based on the natural coordinate, so as
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Fig. 6 Two paths used to compare different distance metrics

to be invariant with respect to the velocity, is not a viable
solution.

Consider, for example, the two curves depicted in Fig. 6.
They have been compared on the basis of the root-mean-
square error (RMSE), of the ATE and the MTE, using a
parametrisation based on the natural coordinate,with orwith-
out normalizing the curves with respect to their lengths, and
sampling each curve with a resolution of 1mm, 1 cm, and
1 dm. The resulting distances are reported in Table 2.

Varying the parametrisation the distance changes less than
10%, but comparing the same metric and parametrisation
with and without length normalization yields an error greater
than 30%. In principle, a good metric should be defined in
such a way to be as much invariant as possible with respect
to the chosen parametrisation.

For this reason, the Fréchet distance,3 that is by definition
independent of the chosen parametrisation, is here adopted
to evaluate the similarity between two curves, i.e., to state
how good are different models in replicating human walking
paths.

Furthermore, the Fréchet distance was indeed adopted to
compare parametric curves in different fields, ranging from
morphing and handwriting recognition (Efrat et al. 2002), to
protein structure alignment (Jiang et al. 2008), but especially
in computational geometry (Alt and Godau 1995; Bai et al.
2011). In particular, in Alt and Godau (1995) it has been
proven that the Fréchet distance is a better measure of simi-
larity for curves than other alternatives, such as theHausdorff
distance, for arbitrary point sets.

3 Given two curves φ : [a, b] → V and γ : [
a′, b′] → V , their Fréchet

distance is defined as

δF (φ, γ ) = inf
α,β

max
t∈[0,1] d (φ (α (t)) , γ (β (t))) (11)

where α and β are arbitrary continuous non-decreasing function from
[0, 1] onto [a, b] and

[
a′, b′] respectively.

Table 2 Comparison between different distance metrics

Metric Distance (mm)

RMSE sampling 1mm 37.59

RMSE sampling 1 cm 37.56

RMSE sampling 1 dm 37.29

RMSE sampling 1mm, normalized length 47.13

RMSE sampling 1 cm, normalized length 46.92

RMSE sampling 1 dm, normalized length 44.93

ATE sampling 1mm 34.27

ATE sampling 1 cm 34.49

ATE sampling 1 dm 36.58

ATE sampling 1mm, normalized length 44.00

ATE sampling 1 cm, normalized length 43.99

ATE sampling 1 dm, normalized length 43.42

MTE sampling 1mm 50.00

MTE sampling 1 cm 49.99

MTE sampling 1 dm 49.91

MTE sampling 1mm, normalized length 69.60

MTE sampling 1 cm, normalized length 69.59

MTE sampling 1 dm, normalized length 69.59

Fréchet 49.99

Though the computation of this distance is not trivial, there
are some efficient techniques to determine its discrete coun-
terpart over a polygonal curve, which has been proven to be
converging to (11) as the number of points goes to infinity
(Alt and Godau 1995).

8 Experimental results

This section presents a comparison, based on the experimen-
tal paths introduced in Sect. 4, among the three cost functions
described in Sect. 5.2.

The geometry of two curves is here compared using the
Fréchet metric.

In order to obtain a general cost function that can be used
for all the possible couple of initial and final position and
orientation different approaches can be adopted. In Terekhov
and Zatsiorsky (2011), the authors compute the residual for
each experiment, and they compute the weights through the
solution of least squares optimization for all of the residuals
jointly. However, adopting this approach would mean losing
the advantage of solving the inverse optimal control problem
as the solution of a system of linear equations. In Mombaur
et al. (2010), the general cost function is obtained on the basis
of 5 “scenarios”, i.e., 5 prescribed initial and goal conditions,
and of 5 subjects, for a total of 25 trajectories out of the 2040
trajectories available in their dataset. Still in Mombaur et al.
(2010), the authors performed also experiments with only a
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Table 3 Parameters of the cost
functions introduced in Sect. 5.2
estimated from the experimental
dataset

Cost function parameters

α β1 β2 β3 γ1 γ2

Energy-based 0.06 – – – – –

Hybrid energy/goal-based – 125 42.47 190 – –

Normalized hybrid energy/goal-based – – – – 7.55 0.27

single scenario for 5 subjects (out of the 10 considered in
their study) and they obtained that the “resulting parameters
in all cases were very similar”.

In this work, we choose to obtain the general cost func-
tion as follows. For each trajectory in the dataset, the optimal
value of the parameters is estimated by solving the inverse
optimal control problem, considering all the subjects in the
study. Then, the average of the weights is computed, see
Table 3. Then, the solution of the (direct) nonlinear optimiza-
tion problem (10) is performed using an interior point algo-
rithm (Luenberger and Ye 2008), and the the cost function
with the computed averageof theweights.Other studies in the
literature have used a similar approach, e.g., (Arechavaleta
et al. 2006a, 2008; Puydupin-Jamin et al. 2012).

It isworth noticing that the average of theweights is not the
solution to any of the solved inverse optimal control prob-
lems, but is a generalization of the obtained weights. The
results presented in this section are thus in validation, prov-
ing that the robustness of the proposed methodology is quite
highwith respect to the chosenweights, that the sensitivity of
the weights is fairly low, and also that there is no overfitting.

First, we consider and compare the paths generated with
the EB and HEGB methods. From Fig. 7 it is apparent that
the EB solution is not able to reliably reproduce the col-
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Fig. 7 The best and the worst path generated with the EB and with the
HEGB approaches. The solid lines represent the experimental paths, the
dashed lines are the optimal EB and HEGB solutions, and the ‘o’ and
‘x’ indicate the initial and final position, respectively
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Fig. 8 Statistical analysis (box-plot) of the distance between each gen-
erated path and the corresponding experimental one

lected data. Indeed, though Fig. 7 shows only the paths which
are characterized by the minimum and the maximum error
with respect to the experimental ones, this kind of behaviour
is also present in many other optimized trajectories, omit-
ted here for space limitations. A concise representation of
the performance of the method presented in Puydupin-Jamin
et al. (2012), in reproducing the dataset considered herein,
is given by the statistical analysis of the distance between
each generated path and the corresponding experimental one
(Fig. 8) and by the comparison of the paths that give rise to
the median distance (Fig. 9).

It is opinion of the authors that this kind of error in repro-
ducing the experimental paths is not only due to the fact that
the chosen value of the cost function parameter α is not the
optimal one, but also to the selected cost function (3) which
is inherently not able to replicate the human way of planning
paths.

In some cases both the EB and the HEGB methods man-
age to reproduce the human path, but also in those cases
the HEGB method seems to be closer. There are also sev-
eral other cases, however, in which the EB method fails. The
performance improvement achieved by the cost function (4)
is apparent, either from a qualitative comparison among the
paths generated by the two approaches and the corresponding
experimental ones (Fig. 7), and from the statistical analysis
of the error distances (Fig. 8). Further, the Fréchet distance
between the generated path and the experimental one (Fig. 7)
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Fig. 9 A comparison among the paths, corresponding to the median
distance error, generated with the EB (red line) and the HEGB (black
line) approach and the corresponding experimental path (blue line). The
‘o’ and ‘x’ indicate the initial and final position, respectively (Color
figure online)
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Fig. 10 The best and the worst path generated with cost function (5).
The blue lines represent the experimental paths, the ‘o’ and ‘x’ indicate
the initial and final position, respectively (Color figure online)

shows that the HEGB method outperforms the EB approach
in the worst case and in the best case as well.

The results achieved with the HEGB approach, can be fur-
ther improved by the cost function (5) herein proposed. The
reduction of the distance error is apparent from the qualita-
tive analysis of the best and the worst path (Fig. 10), and of
the path corresponding to themedian distance error (Fig. 11).

Further, the quantitative analysis shows that the Fréchet
distance between the generated path and the experimental
one has been reduced, with respect to the HEGB method, of
20% in the case of the worst path and 80% for the best path
(Figs. 7, 10).

Finally, the statistical analysis (Fig. 12) confirms that
the previous conclusions hold for the whole dataset. As it
is clearly shown by the comparison between the box-plots
obtained with the HEGB and with the NHEGB approaches,
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Fig. 11 A comparison between the path, corresponding to the median
distance error, generated with cost function (5) (black line) and the
corresponding experimental path (blue line). The ‘o’ and ‘x’ indicate
the initial and final position, respectively (Color figure online)
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Fig. 12 Statistical analysis (box-plot) of the distance between each
path, generated with the space method and with cost function (5), and
the corresponding experimental one

whatever distance measure is considered, the last one yields
a significant improvement in the reproduction of the human
walking paths.

In order to make the comparison between the three cost
functions herein analysed more clear, the results of the sta-
tistical analysis of the distances between each generated path
and the corresponding experimental one are summarized in
Table 4.

8.1 Discussion

In addition to the presented results, there are some other
important aspects that are worth discussing. The first prob-
lem is how the model behaves in the case of “close targets”.
In fact, inMombaur et al. (2010) it was proven that in the case
of targets really closed to the initial position, the nonholo-
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Table 4 A comparison between
the cost functions introduced in
Sect. 5.2

Fréchet distance [cm]

25th Percentile Median 75th Percentile

Energy-based 6.4652 19.177 51.526

Hybrid energy/goal-based 4.8189 6.8581 9.9262

Normalized hybrid energy/goal-based 2.3489 4.2763 6.6964
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Fig. 14 Porch at π orientation

nomic assumption may not hold. In this respect, it must be
recalled from Sect. 4, that the subjects started walking before
entering in the calibrated volume, thus the initial velocitywas
greater than zero. As a consequence, the holonomic assump-
tion holds from the beginning of the motion.

Figure 13 shows the trajectories for a single target, a
single subject, with all the orientations. Apparently, the
proposed method is able to reproduce accurately all the
trajectories.

Another interesting issue is represented in Fig. 14. In prin-
ciple, when the porch is to be crossed with a final orientation
of x3g = π (see Fig. 2), there are two different solutions that

are equivalent both from the cost function and from the kine-
maticmodel viewpoint. In thefigure, solid lines represent two
different paths chosen by the subjects, while dashed lines are
the solution of the NHEGB. Apparently the problem itself,
for its inherent symmetry, does not have a unique solution,
independently of the formulation. In the presented solution,
the initial guess is always the human trajectory, therefore
the solution to the optimization problem is converging to the
same side as the human path. On the other hand, from a prac-
tical viewpoint, in these special cases one can just consider
the solution that can be obtained on one side, and (easily)
compute the symmetric case. For example, if the goal is to
avoid the robot to collide with the walking person, the robot
can just compute the solution to the optimization problem,
and if it is in this situation, just consider also the symmet-
ric case for the planning. Figure 14 shows also the result of
this procedure. The NHEGB model has been used for gen-
erating the prediction of the trajectory on the bottom and its
symmetric has been computed. Apparently, the obtained per-
formance are still really good when compared to the human
trajectory.

As a last remark, it is important to remember that main
focus of the manuscript is to accurately describe, and thus
predict, the human trajectory. The obtained model can be
used in different ways. On one hand, one may use such a
model to predict the human trajectory in such way to enforce
a safer human-robot interaction. However, defining suitable
safety regions requires to measure or estimate the velocity
of the person and of the robot, and this is a problem that
can be solved on top of the trajectory obtained with the
presented approach. On the other hand, the model can also
be used for the robot motion planning, producing human-
like trajectories. The motion planner can generate the shape
of the trajectory by solving the optimal control problem,
and then decide a suitable velocity for reaching the final
goal. Human-like trajectory generation becomes critical for
improving the acceptance of robots inworking environments,
as well as for a safer human-robot interaction (Zanchettin
et al. 2013).

9 Conclusion

An inverse optimal control technique has been applied to
investigate the way humans plan their walking paths in a
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goal-directed motion. While this approach is widely consid-
ered in the robotics literature, some novelties are proposed
in this work. First of all, the kinematic model has been
reformulated in the space domain, assuming the natural
coordinate as the independent variable, thus avoiding the
dependence from the forward velocity and the need of rescal-
ing the trajectories performed by different subjects. The
only input of the reformulated model is just the curvature,
which enters directly in the cost function. Then, a recently
proposed approach to the solution of the inverse optimal
control problem has been adopted, based on simple least-
squares minimization. A novel cost function has been also
proposed and compared with other cost functions proposed
in the literature, adopting the discrete discrete Fréchet dis-
tance as a tool to assess the similarity of a set of paths, a
metric that was never used for the performance measure-
ment in the context of generation of human walking paths
to date. The approach has been investigated with reference
to about one thousand walking paths, recorded using a six-
cameramotion capture system adopted in biomedical posture
and motion analysis. A statistical analysis of the errors
among the paths generated by the identified optimal control
problem and the experimental paths confirmed a signifi-
cant improvement in the reproduction of the human walking
paths.
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10 Appendix

This appendix reports the calculation of thematrices required
to setup the least-squares optimization problem (10), for each
of the cost functions introduced in Sect. 5.2.

10.1 Energy-based cost function

First of all, the unicycle time model in (1) can be discretized
yielding

⎧
⎪⎨

⎪⎩

x1(k + 1) = x1(k) + Δt (k)v(k) cos (x3(k))

x2(k + 1) = x2(k) + Δt (k)v(k) sin (x3(k))

x3(k + 1) = x3(k) + Δt (k)ω(k)

(12)

where Δt is the discrete time step, and x1, x2, x3 are the
Cartesian coordinates of point P and the orientation, respec-
tively.

Then, considering a discretised version of the cost func-
tion (3) and the model in (12), the inverse optimal control
problem can be formulated as follows

min
x(k),v(k),ω(k)

1

2

N−1∑

k=0

(
αv(k)2 + ω(k)2

)
Δt (k)

s.t. x(0) − xs = 0

x(N − 1) − xg = 0

x1(k + 1) − [x1(k) + Δt (k)v(k) cos (x3(k))] = 0

x2(k + 1) − [x2(k) + Δt (k)v(k) sin (x3(k))] = 0

x3(k + 1) − [x3(k) + Δt (k)ω(k)] = 0

∀k = 0, . . . , N − 1

(13)

where x = [
x1 x2 x3

]T
is the state vector, xs and xg are the

initial and the final states, respectively, and N is the number
of samples.

Writing, now, the Lagrangian associated with (13), as
described in Sect. 6, the residual functions matrices in (10)
become where

z = [
α λ01 λ02 λ03 · · · λN−1

1 λN−1
2 λN−1

3

]T
b =

⎡

⎢
⎢
⎢
⎣

ζ(0)
ζ(1)

...

ζ(N − 1)

⎤

⎥
⎥
⎥
⎦

and

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ψ(0) I5×3 M(0) 05×3 05×3 · · · 05×3

ψ(1) 05×3 −I5×3 M(1) 05×3 · · · 05×3

ψ(2) 05×3 05×3 −I5×3 M(2) · · · 05×3
...

...
...

...
...

. . .
...

ψ(N − 1) 05×3 05×3 05×3 05×3 · · · −I5×3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

with

ζ(k) =

⎡

⎢
⎢
⎢
⎣

0
0
0
0

Δt (k)ω(k)

⎤

⎥
⎥
⎥
⎦

, I5×3 =
[
I3×3
02×3

]

, ψ(k) =

⎡

⎢
⎢
⎢
⎣

0
0
0

Δt (k)v(k)
0

⎤

⎥
⎥
⎥
⎦

,

M(k) =

⎡

⎢
⎢
⎢
⎣

1 0 0
0 1 0

−Δt (k)v(k) sin (x3(k)) Δt (k)v(k) cos (x3(k)) 1
Δt (k) cos (x3(k)) Δt (k) cos (x3(k)) 0

0 0 Δt (k)

⎤

⎥
⎥
⎥
⎦

.

10.2 Hybrid energy/goal-based cost function

Considering a discretised version of the cost function (4)
and the discretized unicycle space model in (6), the inverse
optimal control problem can be formulated as follows
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min
x(k),σ (k)

1

2

N−1∑

k=0

σ(k)2
(
1 + βTΓ 2

)
Δs(k)

s.t. x(0) − xs = 0

x(N − 1) − xg = 0

x1(k + 1) − [x1(k) + Δs(k) cos (x3(k))] = 0

x2(k + 1) − [x2(k) + Δs(k) sin (x3(k))] = 0

x3(k + 1) − [x3(k) + Δs(k)σ (k)] = 0

∀k = 0, . . . , N − 1

(14)

where x = [
x1 x2 x3

]T
is the state vector, xs and xg are the

initial and the final states, respectively, and N is the number
of samples.

Writing, now, the Lagrangian associated with (14), as
described in Sect. 6, the residual functions matrices in (10)
become

z = [
βT λ01 λ02 λ03 · · · λN−1

1 λN−1
2 λN−1

3

]T

b = [
ζ(0)T ζ(1)T · · · ζ(N − 1)T

]T

and

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ψ(0) I4×3 M(0) 04×3 · · · 04×3

ψ(1) 04×3 −I4×3 M(1) · · · 04×3

ψ(2) 04×3 04×3 −I4×3 · · · 04×3
...

...
...

...
. . .

...

ψ(N − 1) 04×3 04×3 04×3 · · · −I4×3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

with

ζ(k) =

⎡

⎢
⎢
⎣

0
0
0

Δs(k)σ (k)

⎤

⎥
⎥
⎦ , I4×3 =

[
I3×3
01×3

]

ψ(k) =Δs(k)σ (k)·
⎡

⎢
⎢
⎣

σ(k)
(
x1(k)−x1g

)
0 0

0 σ(k)
(
x2(k)−x2g

)
0

0 0 σ(k)
(
x3(k)−x3g

)

(
x1(k)−x1g

)2 (
x2(k)−x2g

)2 (
x3(k)−x3g

)2

⎤

⎥
⎥
⎦

M(k) =

⎡

⎢
⎢
⎣

1 0 0
0 1 0

−Δs(k) sin (x3(k)) Δs(k) cos (x3(k)) 1
0 0 Δs(k)

⎤

⎥
⎥
⎦

10.3 Normalized hybrid energy/goal-based cost function

Considering a discretised version of the cost function (5)
and the discretized unicycle space model in (6), the inverse
optimal control problem can be formulated as follows

min
x(k),σ (k)

1

2

N−1∑

k=0

σ(k)2
(
1 + γ T Γ̃ 2

)
Δs(k)

s.t. x(0) − xs = 0

x(N − 1) − xg = 0

x1(k + 1) − [x1(k) + Δs(k) cos (x3(k))] = 0

x2(k + 1) − [x2(k) + Δs(k) sin (x3(k))] = 0

x3(k + 1) − [x3(k) + Δs(k)σ (k)] = 0

∀k = 0, . . . , N − 1

(15)

where x = [
x1 x2 x3

]T
is the state vector, xs and xg are the

initial and the final states, respectively, and N is the number
of samples.

Writing, now, the Lagrangian associated with (15), as
described in Sect. 6, the residual functions matrices in (10)
become

z = [
γ T λ01 λ02 λ03 · · · λN−1

1 λN−1
2 λN−1

3

]T

b = [
ζ(0)T ζ(1)T · · · ζ(N − 1)T

]T

and

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ψ(0) I4×3 M(0) 04×3 · · · 04×3

ψ(1) 04×3 −I4×3 M(1) · · · 04×3

ψ(2) 04×3 04×3 −I4×3 · · · 04×3
...

...
...

...
. . .

...

ψ(N − 1) 04×3 04×3 04×3 · · · −I4×3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

with

ζ(k) =

⎡

⎢
⎢
⎣

0
0
0

Δs(k)σ (k)

⎤

⎥
⎥
⎦ , I4×3 =

[
I3×3
01×3

]

,

and, letting δsg,i = xis − xig , i ∈ {1, 2, 3} to lighten the
notation, the remaining matrices become

ψ(k) =Δs(k)σ (k)

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ(k)
x1(k) − x1g
δ2sg,1 + δ2sg,2

0

σ(k)
x2(k) − x2g
δ2sg,1 + δ2sg,2

0

0 σ(k)
x3(k) − x3g

δ2sg,3(
x1(k) − x1g

)2 + (
x2(k) − x2g

)2

δ2sg,1 + δ2sg,2

(
x3(k) − x3g

)2

δ2sg,3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

M(k) =

⎡

⎢
⎢
⎣

1 0 0
0 1 0

−σ(k) sin (x3(k)) σ (k) cos (x3(k)) 1
0 0 σ(k)

⎤

⎥
⎥
⎦
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