
Real-Time Syst
DOI 10.1007/s11241-015-9224-1

Hard real-time guarantees in feedback-based resource
reservations

Alessandro Vittorio Papadopoulos1 ·
Martina Maggio1 · Alberto Leva2 · Enrico Bini3

© Springer Science+Business Media New York 2015

Abstract Resource reservation is a technique that allows isolating applications from
interfering among each other. In the most classic setting, this method requires the
periodic allocation of a given budget of resource over time. However, in reality, the
actual budget allocation may deviate from its ideal value. Examples of causes of this
deviation are: the presence of a system tick, the usage of shared resources, the self-
blocking on I/O operations, etc. Since control techniques are an effective mean to
deal with uncertainties and disturbances, unknown at design time but bounded, in
this paper we propose to use feedback to achieve the target budget allocation, which
may have deviated due to on-line events. The proposed scheme, called Self-Adaptive
Server (SAS), is described and analyzed. We prove that the controller gain, which

maximizes the resource delivered to the application, is 3−√
5

2 . We also implemented
the scheduler on a lightweight operating system for a microcontroller. Thanks to
the extremely simple implementation, SAS servers are well suited for low-overhead
resource isolation mechanisms with proved real-time guarantees.

B Enrico Bini
e.bini@sssup.it

Alessandro Vittorio Papadopoulos
alessandro.papadopoulos@control.lth.se

Martina Maggio
martina.maggio@control.lth.se

Alberto Leva
alberto.leva@polimi.it

1 Lund University, Ole Romers Väg 1, Lund, Sweden

2 Politecnico di Milano, Piazza Leonardo da Vinci 32, 20100 Milano, Italy

3 Scuola Superiore Sant’Anna, Via G. Moruzzi 1, 56124 Pisa, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-015-9224-1&domain=pdf

Real-Time Syst

Keywords Compositional analysis · Resource reservation · Feedback control ·
Hard real-time systems · Supply bound function · Minimizing �∞ gain

1 Introduction

In multi-tasking environments, it is necessary to share the computing capacity among
the demanding applications. In operating systems (OSes) such an arbitration is accom-
plished by the scheduler.

Since the initial work by Corbató et al. (1962), plenty of schedulers were proposed
to solve this problem, each one with different characteristics in terms of fraction of
allocated resource, management of shared resources, delay of the resource allocation,
overhead, etc.

One of the most popular technique is resource reservation (Mercer et al. 1993), in
which an application is assigned a server that is in charge to reserve a share of the
CPU time. Applications running within a server have the illusion of running over a
slower fully dedicated processor. Several schedulers are designed according to these
design principles: P-fair (Baruah et al. 1996) and the Constant Bandwidth Server
(CBS) (Abeni and Buttazzo 1998) are just two notable examples.

Servers can indeed provide the highly desired feature of isolation: if an application
misbehaves by entering, for example, in livelock, then the misbehavior is confined to
the application itself. Resource reservation servers, then, prevent possible misbehav-
iors of applications to affect the correctly functioning ones.

The basic principle of servers is the periodic allocation of a budget of CPU time.
For example, a server with budget 10 ms and period 100 ms provides 10 % of the
CPU time to the application. Servers of this type can today be easily be implemented
through the SCHED_DEADLINE Linux scheduling class (Faggioli et al. 2009), which
is now part of the kernel from version 3.14.

To enforce the isolation between applications and not to exceed the available com-
puting capacity, servers must release the CPU when the assigned budget is consumed.
However, there are a number of circumstances that may prevent the release of the CPU
at the precise budget exhaustion time. Examples of these situations are:

– the presence of a system tick, which enforces all scheduling events to be aligned
at a multiple of such a tick;

– the usage of shared resources: if the server budget expires when the application is
holding a lock, then either the server is allowed to temporarily exceed the budget
until the lock is released (Behnam et al. 2010), or it is suspended earlier if the
remaining budget is not enough to complete the critical section (Bertogna et al.
2009);

– if the application is waiting for some I/O event, then the server may release the
CPU even if there is still budget available.

To cope with the variability of the allocated budget at run-time, we propose to use
a feedback action. Regardless of the reasons of the variation from the target budget,
which are not the focus of this paper, feedback is capable to follow the target allocation
with guarantees of stability and adaptation rate.

123

Real-Time Syst

The use of feedback in server mechanisms is not new. To properly compare our
contribution with the existing literature, below we review the most relevant results in
the area.

In Sect. 2 we discuss the necessary background functional to the rest of the pre-
sentation. In Sect. 3 we present the proposed Self-Adaptive Server (SAS), while in
Sect. 4 we derive the formal real-time guarantees for it. Section 5 presents an optimal-
ity design principle for SAS. Section 6 discusses an implementation of SAS, while
Sect. 7 concludes the paper.

1.1 Related work

The application of feedback to the resource management is not new. The main motiva-
tion of feedback-based resource management is the necessity to cope with time-varying
and unpredictable loads. In presence of load variations, controllers may adjust the
amount of allocated resource. Also, the application may vary the QoS to adjust the
resource demand. Feedback was successfully applied to control the memory alloca-
tion (Storm et al. 2006) and delays in web servers (Ku et al. 2001). The application
of feedback to scheduling problems, which is more closely related to the presented
research, was also investigated by Stankovic et al. (1999), Cervin and Eker (2000), and
Abeni et al. (2002), just to mention a few. All these works applies to soft real-time tasks
only, in which deadlines may be occasionally missed. Our work, instead, assumes that
the load generated by the applications is known and has hard deadlines. The feedback
is used to compensate for run-time events, which may produce a deviation from the
target resource allocation.

When applications must be guaranteed to meet hard deadlines, a common model for
the time supplied by a server is the so-called supply function sbf(t), which represents
the minimum amount of time supplied by the server to the application in any interval
of length t (details on the supply function will be recalled in Sect. 2). After the supply
function sbf(t) is computed, the application deadlines are guaranteed, through a set
of inequalities, which ensure that the sbf(t) is never less than the time needed by
the application to be scheduled. This technique was extensively applied in different
research areas and sometime under different names. A sample of the earlier works
in this area is listed next. Mok et al. (2001) used the supply function to guarantee
fixed/dynamic priority tasks. Cruz (1991) introduced the network calculus, in which
the same supply/demand analysis was applied to network elements. Inspired by the
network calculus, Thiele et al. (2000) proposed the real-time calculus to analyze real-
time constraints.

The SAS is a simplification of the “I+PI” scheme recently proposed by Maggio et
al. (2014). The I+PI scheme applied control theory to the design of a scheduler based
on an equation-based model, that captured the dynamic of the CPU allocation. The
main contribution of the scheme was to relegate to disturbances to be counteracted any
action that was not under the scheduler control, for example yields on the application
side and critical sections. The scheme was proposed, implemented and validated with
some case studies. However, there was no guarantee on the scheduler behavior in the

123

Real-Time Syst

general case, i.e., no hard guarantee on the supply function of this scheme was given
for the I+PI scheme.

The original contributions of this paper are:

– the exact characterization of SAS servers in terms of supply function;
– the optimal design of the controller within the SAS server, which maximizes the

computation delivered to the application.

2 Background on supply functions

In the context of interest of this paper, applications are isolated from interfering with
each other by running within a server, which provides the illusion of a dedicated less
performing processor. Since the analysis of applications within servers is based on the
derivation of the supply bound function of a server (Mok et al. 2001), we allow any
application model translating the computational demand into a function over time.
Suitable application models range from a simple set of periodic tasks scheduled by
Fixed Priority (FP) or Earliest Deadline First (EDF), to the extended digraph task
model with k global constraints (k-EDRT) (Stigge et al. 2011), the event-stream task
model (Gresser 1993; Richter and Ernst 2002), or arrival curves in network/real-time
calculus (Cruz 1991; Thiele et al. 2000). Hence, we do not focus here on the model
of application demand, but rather on the resource provisioning on server side.

The supply bound function sbf(t) of a server (Mok et al. 2001) is defined, in words,
as the minimum amount of resource provided in any interval of length t . More formally,
let s(t) be the schedule function of the server that is

s(t) =
{

1 the server allocates resource att

0 the server does not allocate resource att,
(1)

then, the sbf(t) is such that it is

∀t0, t, sbf(t) ≤
∫ t0+t

t0
s(τ) dτ. (2)

Hence, in any interval of length t we are certain that there is at least sbf(t) resource
available to the application. Notice, that a valid function is sbf(t) = 0 for all t .
However, such a pathological case is not useful since it does not allow to schedule any
application. To guarantee applications with real-time constraints, the challenge is to
compute the largest sbf(t), satisfying (2).

A general model of the resource supply over time, which is convenient for the
purpose of this paper and to generalize various approaches, is given by a sequence
of supply intervals, interleaved with a sequence of idle intervals. The lengths of the
supply intervals are represented by the sequence {S(k)}k=1,2,..., while the lengths of
idle intervals is represented by the sequence {Z(k)}k=1,2,.... Without loss of generality,
we set the time t = 0 at the instant when the first resource supply S(1) starts. Fig-
ure 1 illustrates the resource provisioning over time according to the above introduced

123

Real-Time Syst

t = 0

S(1) S(2) S(3)

Z(1) Z(2)

Fig. 1 Budget provisioning in servers

notation. Also notice that any overhead for switching from one server to another can
be added to the idle intervals, without requiring any additional notation (measures of
this overhead are reported at the end of the paper in Sect. 6).

For pair of sequences S(k) and Z(k) (resulting from any server logic), we can
compute the schedule function s(t) of (1) in a straightforward way, which is

s(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 0 ≤ t −
n∑

k=1

(S(k) + Z(k)) < S(n + 1)

0 0 ≤ t −
n∑

k=1

(S(k) + Z(k)) − S(n + 1) < Z(n + 1)

(3)

for any n ∈ N.
The derivation of a valid supply function sbf(t) satisfying (2) is made by standard

techniques (Mok et al. 2001). Next Lemma, then, is a simple repetition of well known
results adapted to the newly introduced notation of S(k) and Z(k).

Lemma 1 A server characterized by a sequence of supply intervals of length
{S(k)}k=1,2,... interleaved by a sequence of idle intervals of length {Z(k)}k=1,2,...

has the following supply bound function

sbf(t) = min {t − σZ(n), σS(n)} , t ∈ In, n ∈ N (4)

with the sequence of intervals {In}n∈N defined as

In =
{[

0, σZ (1)
)

n = 0[
σZ(n) + σS(n − 1), σZ (n + 1) + σS(n)

)
n ≥ 1

(5)

and with

σS(n) = inf
n0

n0+n−1∑
k=n0

S(k),

σZ (n) = sup
n0

n0+n−1∑
k=n0

Z(k), (6)

properly extended at n = 0 with σS(0) = σZ (0) = 0.

123

Real-Time Syst

t0 t0 + t

n0 n0 + 1 n0 + n

Fig. 2 Illustrating the proof of Theorem 1

P0

P1

P2

I0 I1 I2

sbf(t)

t

σS(1)

σZ(1)

σS(2)

σZ(2)

σS(3)

σZ(3)

Fig. 3 An example of supply bound function

Proof With the definitions of (5), (6) in mind, we first observe that ∀t ∈ I0 we
have sbf(t) = 0 since σZ (1) is the length of the longest interval with no resource. If
t > σZ(1), then some resource must be available in any interval [t0, t0 + t].

For any t , we first observe that among the intervals [t0, t0 + t] of length t with
minimal amount of resource, there is always one interval with t0 coinciding with the
end of service time S(n0), at some round n0. Let then n0 +n, with n ≥ 1, be the index
of the round in which the instant t0 + t falls. We distinguish between two cases: some
resource is scheduled at t0 + t or not (see also Fig. 2 for an illustration of the two
cases).

If the resource is scheduled at t0 + t , then the resource available in [t0, t0 + t]
amounts to t − ∑n0+n−1

k=n0
Z(k), whose minimal value is t − σZ (n). If no resource is

scheduled at t0 + t , then the resource available in [t0, t0 + t] amounts to
∑n0+n

k=n0+1 S(k),
whose minimal value is σS(n). The minimum among the two cases is then given by (4),
which concludes the proof. �	

Notice that the expression of sbf(t) in (4) generalizes many other resource models.
For example, by setting the minimum sum of n consecutive budgets as σS(n) = nQ
and the maximum sum of n consecutive idle intervals as σZ (n) = n(P − Q)+ D − Q,
the resulting sbf(t) of (4) is equivalent to the supply function of the EDP resource
model (Easwaran et al. 2007) with budget Q, period P , and deadline D.

For convenience, an illustration of the sbf(t) of (4) is given in Fig. 3. In the figure,
we also draw on top the extent of the intervals In , as well as the points Pn at the
“bottom-right corners” of the curve {(t, sbf(t)) : t ≥ 0}.

123

Real-Time Syst

L z−1

z−1

Q(k)Q̄ + + + S(k)

−

εS(k)
+

+

Fig. 4 Block diagram of the controller of SAS servers

3 The self-adaptive server

In classic periodic servers, a budget Q̄ is allocated every period P̄ . However, a number
of causes may disturb such an ideal allocation. A non-exhaustive list of causes of this
disturbances are:

– the usage of shared resources, which may prevent the release of the processor at
the budget expiration instant, depending on the protocol adopted to manage shared
resources (Behnam et al. 2010; Bertogna et al. 2009);

– the self-suspension of the application occurring earlier than the budget expiration;
– the necessity for the application to synchronize with some I/O event, such as the

collection of a sensor measurement;
– the presence of a system tick, which force scheduling events to occur only at some

predetermined instants.

We propose to compensate for these variations with a feedback mechanism. We
propose the SAS, which is a variation of the “I+PI” server proposed by Maggio et
al. (2014). A SAS server aims to provide a budget Q̄, every period P̄ . However, the
actual amount of service time S(k) that the server provides at the k-th round may be
different than the set value Q(k), because of the above listed reasons. At round k, the
deviation between the desired budget allocation Q(k) and the actual allocated time
S(k), is denoted by εS(k) = S(k) − Q(k). We often call εS(k) disturbance. Also, at
every round SAS servers do allocate resource non-preemptively. From this property, it
follows that S(k) is both the service time and the length of the supply interval during
k-th round.

Figure 4 shows the control logic of a SAS server. The same logic is expressed by
the equations below.

S(0) = Q(0) = Q̄, (7)

S(k + 1) = Q(k) + εS(k), (8)

Q(k + 1) = Q(k) + L(Q̄ − S(k)). (9)

We choose such a simple control logic, not to consume too much computation
time in executing the control logic itself. In absence of disturbances (εS(k) = 0),
the allocated budget S(k) is constantly equal to the target value Q̄, as desired. The

123

Real-Time Syst

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

11

10

9

8

1

0

−1

ε(k)

S(k)

Q(k)

Q̄

Fig. 5 Example of dynamics for the allocated budget

S1(1) S2(1) SN (1)

S(1) Z(1)

S1(2) S2(2) SN (2)

S(2) Z(2)

S1(3)

S(3)

Fig. 6 N servers in loop

controller gain L adjusts the budget in response to deviations from the target value Q̄.
When L ∈ (0, 1), then the controlled system is stable (Leva and Maggio 2010) (see
also Sect. 5). For any stabilizing L , the controller is also capable to reject constant
disturbances (the step response from εS(k) to S(k) tends to zero Leva and Maggio
2010). In fact, if εS(k) = ε̄S and L ∈ (0, 1) then, after a transient, Q(k) → Q̄ − ε̄S

so that S(k) → Q̄. An example of resource provisioning is shown in Fig. 5. In this
figure, the target budget per round is Q̄ = 10 and the controller gain is L = 1/4.
In presence of a constant disturbance (ε(k) = 1 up to k = 11), the server is still
capable of allocating the desired target budget, by assigning Q(k) → 9 which implies
S(k) → 9+1 = Q̄. If, at some instant (k = 12 in the figure), the disturbance switches
from 1 to −1 and then sets to 0, then the allocated budget can suddenly decrease to 8
and then it will reach again the target budget.

Following the model introduced in Sect. 2, consecutive budgets S(k) and S(k + 1)

are separated by a time-varying sequence of idle intervals of length Z(k), as also
shown in Fig. 1. Depending on the logic of the server the sequence of idle intervals
may obey to different rules.

If, for example, the server enforces the start times of the supply intervals to be
separated by exactly P̄ , then it is simply Z(k) = P̄ − S(k). However, for the same
reasons that prevent an exact budget allocation and due to the interference with other
servers, such a condition is difficult to guarantee.

Another condition of interest is when N SAS servers coexist and are scheduled in
loop, as shown in Fig. 6. Let then the i-th server be characterized by a target budget
Q̄i , a computed budget Qi (k), an allocated budget Si (k), and a disturbance εi (k).
Then the dynamics of the i-th server is analogous to the one of (7)–(9), that is

123

Real-Time Syst

⎧⎨
⎩

Si (0) = Qi (0) = Q̄i ,

Si (k + 1) = Qi (k) + εi (k),

Qi (k + 1) = Qi (k) + L(Q̄i − Si (k)).

(10)

We assume, without loss of generality, that the first server is the one under analysis,
while the servers from the second to the N -th are the “adversaries”, meaning that the
time allocated to them is the idle time for the first server, then the intervals Z(k) of
idle time are exactly the sum of the N − 1 server budgets, from S2(k) to SN (k). The
dynamics of the sequence of idle intervals Z(k) can then be obtained by summing all
equations in (10) for i from 2 to N , that is

Z(0) = X (0) = P̄ − Q̄, (11)

Z(k + 1) = X (k) + εZ (k), (12)

X (k + 1) = X (k) + L((P̄ − Q̄) − Z(k)), (13)

in which we set ⎧⎪⎪⎨
⎪⎪⎩

P̄ − Q̄ =
N∑

i=2
Q̄i , εZ (k) =

N∑
i=2

εi (k),

X (k) =
N∑

i=2
Qi (k), Z(k) =

N∑
i=2

Si (k).

(14)

Hence, the control logic of the idle intervals is analogous to the one of (7)–(9) with
disturbance εZ (k), the same controller gain L , and target P̄ − Q̄. From now on, we
assume then that the idle time follows the dynamics of (14). Nonetheless, much of the
theory developed next can be borrowed also in the case of different logic of the idle
intervals.

Notice that the hypothesis of serving N servers in loop, as illustrated in Fig. 6,
implies that all the N servers share a common period, which limits to some extent
the applicability of the model. In this regard, we observe that by a properly selecting
the lengths S(k) and Z(k) of the supply and idle intervals, any resource schedule
can be replicated, even with servers with different periods. If, for example, three
servers have to be scheduled, with budget/period pair respectively equal to (1, 3),
(2, 4), and (1, 6), then their resulting EDF schedule is the one depicted in Fig. 7. The
very same resource schedule can be achieved by setting the sequence S(k) of target
budgets equal to {1, 1, 1, 2, 1, 1, 2, 1, 1, 2, . . .} and the sequence Z(k) of lengths of
idle intervals equal to {3, 2, 3, 3, 2, 3, . . .}. Notice, however, that this paper is not
aiming at translating the server parameters into patterns of resource schedule, nor,
more in general, at determining the budget allocation rule. Rather, we aim at making
any budget allocation policy robust against disturbances.

We conclude this introduction to SAS servers with some natural questions, which
needs to be investigated: Is the SAS server governed by (7)–(9) capable to provide the
target bandwidth Q̄/P̄? With bounded disturbances, what is the maximum deviation

123

Real-Time Syst

S(1) S(2) S(3) S(4)Z(1) Z(2) Z(3)

Fig. 7 Example of resource schedule of EDF servers

between the sequence of service/idle times S(k) and Z(k), from their ideal values
Q̄ and P̄ − Q̄, respectively? What is the best choice for the controller gain L? In
the following, we will start the investigation on the minimum amount of service time
guaranteed by SAS.

4 Supply function of SAS servers

The definition of sbf(t) of Lemma 1 does depend on the values of σS(n) and σZ (n)

of (6). However, it is unclear for the moment how to compute, or at least to estimate,
the expressions of (6) for SAS servers.

First of all, we must necessarily assume that disturbances εS(k) and εZ (k) are
bounded, as follows

∀k ∈ N, |εS(k)| ≤ ε̄S, |εZ(k)| ≤ ε̄Z . (15)

If disturbances are not bounded, it is not possible to guarantee any service time, with
any resource allocation policy. We remark that a bound on the disturbances can often
be provided. For example, in systems with system tick, in which the resource can be
allocated and released only at multiple of system tick, the bound is simply represented
by the size of the system tick. In protocols that manage shared resources by preventing
the preemption until the shared resource is unlocked, the disturbance is bounded by
the longest resource holding time (Bertogna et al. 2009).

If disturbances are bounded as in (15), then the quantities σS(n) and σZ (n), necessary
to define the supply function from (4), are:

σS(n) = inf|εS(k)|≤ε̄S ,n0

n0+n−1∑
k=n0

S(k),

σZ(n) = sup
|εZ (k)|≤ε̄Z ,n0

n0+n−1∑
k=n0

Z(k), (16)

The controller governing both the supply and idle intervals, described in Eqs. (7)–(9)
and (11)–(13) respectively, is a linear time-invariant (LTI) system. Then, the compu-
tation of σS(n) and σZ (n) of (16) is related to the maximum/minimum variation of the
output of a LTI system, in presence of bounded input. The analysis of this property is

123

Real-Time Syst

known in control theory as “bounded-input bounded-output (BIBO) stability”. Below,
we enunciate the following standard result on system theory, which is useful for our
purpose.

Lemma 2 Let u(k) ∈ R, h(k) ∈ R, and y(k) = u(k) ∗ h(k) be the input, impulse
response, and output of a LTI discrete-time causal system (with the symbol “∗” denot-
ing the signal convolution). Then,

sup
∀ j :|u(j)|≤1

|y(k)| =
∞∑
j=0

|h(j)|. (17)

Proof The interested reader can find the proof of the continuous-time equivalent prob-
lem in Sect. II.6 of the book “Feedback Systems: Input-Output Properties”, by Desoer
and Vidyasagar (1975). �	

In signal norm terminology, we say that the l∞ gain of a system is the l1 norm of
its impulse response.

Such a lemma, which relates the bound on the output to the bound on the input, is
exploited in the next theorem to find the values of σS(n) and σZ (n).

Theorem 1 Let g(k) be the step response of the SAS server of Eqs. (7)–(9), with
controller gain L, and let the disturbances εS(k) and εZ (k) be bounded by ε̄S and ε̄Z ,
respectively, as in (15). Then:

σS(n) = nQ̄ − ε̄S N (n, L) (18)

σZ (n) = n(P̄ − Q̄) + ε̄Z N (n, L), (19)

with

N (n, L) =
∞∑

k=0

|g(k) − g(k − n)|. (20)

Proof We first prove (18). Since the controller is linear, by the superposition principle
the output S(k) is equal to the sum of the output when εS(k) = 0, plus the output when
Q̄ = 0, that is

S(k) = Q̄︸︷︷︸
whenεS(k)=0

+ εS(k) ∗ h(k)︸ ︷︷ ︸
whenQ̄=0

where the symbol “∗” denoted the signal convolution and h(k) the response to an
impulse on the input εS(k).

123

Real-Time Syst

Then,
n0+n−1∑

k=n0

S(k) = nQ̄ +
n0+n−1∑

k=n0

εS(k) ∗ h(k) (21)

= nQ̄ +
n0+n−1∑

k=n0

∞∑
�=−∞

εS(�)h(k − �) (22)

= nQ̄ +
n−1∑
k=0

∞∑
�=−∞

εS(�)h(k + n0 − �) (23)

= nQ̄ +
n−1∑
k=0

∞∑
�=−∞

εS(� + n0)h(k − �) (24)

= nQ̄ +
∞∑

�=−∞
εS(� + n0)

n−1∑
k=0

h(k − �) (25)

= nQ̄ + εS(k + n0) ∗
n−1∑
k=0

h(k) (26)

= nQ̄ + εS(k + n0) ∗
(∞∑

k=0

h(k) −
∞∑

k=n

h(k)

)
(27)

= nQ̄ + εS(k + n0) ∗ (g(k) − g(k − n)) (28)

= nQ̄ + ε̄S

εS(k + n0)

ε̄S

∗ (g(k) − g(k − n)), (29)

where:

– from (21) to (26), we used the definition and the properties of the signal convolu-
tion;

– from (26) to (27), we wrote a finite sum as difference between two series; and
– from (27) to (28), by linearity of the system, we wrote the sum of impulse responses

as response to sum of impulses, which is the step response g(k).

Notice that the equations above prove the BIBO stability of the controlled system.
Now, by observing that:

1. the value of σS(n) to be found is a lower bound of (29); and
2. the signal εS(k + n0)/ε̄S is bounded by 1;

then Lemma 2 asserts that∣∣∣∣εS(k + n0)

ε̄S

∗ (g(k) − g(k − n))

∣∣∣∣ ≤ N (n, L), (30)

with N (n, L) defined as (20). Notice that the causality of the system implies that
g(k) = 0 for all k < 0.

123

Real-Time Syst

0 5 10 15 20 25
0

5

10

15

n

N
(n

,L
)

L = L L = 0
L = 1/4 L = 1/2
L = 3/4

Fig. 8 Value of N (n, L), for some L

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

t

sbf(t)
L = L
L = 1/4
L = 3/4
L = 0

Fig. 9 Supply function of SAS servers when P = 60, Q = 20, and ε̄S = ε̄Z = 3

Hence, the value of (18) follows immediately, by observing that σS(n) is a lower
bound to (29).

The expression σZ (n) of (19) follows by an analogous proof, reminding that:

– the reference value of Z(k) is P̄ − Q̄ (rather than Q̄);
– the disturbance εZ(k) is bounded by ε̄Z (rather than ε̄S);
– the controller gain is L;
– σZ (n) is the upper bound on the sum of n consecutive Z(k) (rather than the lower

bound on the sum of n consecutive S(k)).

This concludes the proof. �	
Theorem 1, finally, establishes the relationship between the controller gain L

of SAS servers and the delivered supply function. Such a relationship is given
through the quantity N (n, L) of (20). In Fig. 8, we plot N (n, L) for the values of

L ∈ {0, 1
4 , 1

2 , 3
4 , L�}, with L� = 3−√

5
2 , while in Fig. 9 the supply function sbf(t), as

characterized in Lemma 1, is drawn for L ∈ {0, 1
4 , 3

4 , L�} (the sbf(t) for L = 1
2 is

omitted as it overlaps significantly with the one for L = L�).
From Fig. 9, it can be observed that for small values of t , the supply function sbf(t)

is larger when L = 0, that is not to compensate for disturbances. However, such a
choice is not capable to asymptotically guarantee the target bandwidth of Q/P (see

123

Real-Time Syst

Eq. 35 in Sect. 5). Instead, as it will be demonstrated next in Sect. 5, any controller
with L ∈ (0, 1) can guarantee the asymptotic bandwidth of Q/P. Among these values,

the choice of L = L� = 3−√
5

2 achieves the lowest value for the limit limn N (n, L),
which in turn will produce the asymptotically largest possible supply bound function
sbf(t).

5 Optimal design of SAS servers

The last section was concluded with a result that establishes a link between the supply
bound function sbf(t) of a SAS server and controller gain L . In this section, we address
the problem of selecting the controller gain L .

First, we find the condition which guarantees that all budgets are always non-
negative. In fact, as it can be observed in (18), for large ε̄S the supply function can
indeed be negative meaning that, meaning that the necessary compensation may exceed
the budget. Next Lemma establishes an upper bound on the maximum controllable
disturbance.

Lemma 3 If the disturbance ε̄S and the budget Q are such that

ε̄S

Q
≤ 1

N (1, L)
, (31)

then it is always σS(n) ≥ 0.

Proof From (18), we have

∀n, σS(n) = nQ̄ − ε̄S N (n, L) ≥ 0 ⇔ Q̄

ε̄S

≥ sup
n

{N (n, L)

n

}
. (32)

If we denote by h(k) and g(k) the impulse and step response of a SAS server, respec-
tively, from its definition of (20), N (n, L) can be upper bounded as follows,

N (n, L) =
∞∑

k=0

|g(k) − g(k − n)| =
∞∑

k=0

∣∣∣∣∣
n−1∑
�=0

h(k − �)

∣∣∣∣∣ ≤
∞∑

k=0

n−1∑
�=0

|h(k − �)|

=
n−1∑
�=0

∞∑
k=0

|h(k − �)| =
n−1∑
�=0

∞∑
k=0

|h(k)| = n
∞∑

k=0

|h(k)| = n N (1, L).

Hence, it follows that supn

{N (n,L)
n

}
= N (1, L) and, by inverting (32), the Lemma

is proved. �	
Previous Lemma is a feasibility condition: if condition (31) does not hold, then the

control policy of SAS servers may produce a negative server budget. In Fig. 10 we
plot 1/N (n,L) as function of L .

Hence if the maximum disturbance ε̄S which needs to be compensated is larger than
half of the target budget Q, then SAS servers are not suited.

123

Real-Time Syst

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L

1/N (n,L)

Fig. 10 Maximum disturbance handled by SAS servers

Now we seek for the controller gain, which can guarantee the largest amount of
resource supply. We start by writing the asymptotic components of N (n, L), that is

N (n, L) = c1(L)n + c0(L) + o(1). (33)

In the case of SAS, the c1(L) component is equal to 0 for any value of L ∈ (0, 1),
due to the controller design that includes an integral action that is able to reject a
constant (or step-shaped) disturbance (Åström and Hägglund 2005).

Now we can start to answer to some of the questions stated at the end of Sect. 3.
For example, we can determine the bandwidth α provided by a SAS server. For this
purpose, let us define the following points along the sbf curve, as

Pn ∈ {(t, sbf(t)) : t = σZ (n + 1) + σS(n), n ∈ N},

which are the points at the “bottom-right corner” of the sbf, also denoted by black
dots in Fig. 3.

From the values of σS and σZ , of (18) and (19) respectively, and the expression of
N (n, L) with its asymptotic components of (33), we have

Pn ≡ (σZ(n + 1, ε̄Z) + σS(n), σS(n))

= (b1n + b0 + o(1), a1n + a0 + o(1)) (34)

with the coefficients a1, a0, b1, and b0 conveniently defined as

a1 = Q̄ − ε̄Sc1(L)

a0 = −ε̄Sc0(L)

b1 = P̄ − ε̄Sc1(L) + ε̄Z c1(L)

b0 = P̄ − Q̄ − ε̄Sc0(L) + ε̄Z (c1(L) + c0(L)).

Thanks to this notation, we can compute the bandwidth α of a SAS server as the
limit of the ratio of the coordinates of the points Pn of (34), that is

123

Real-Time Syst

α = lim
t→∞

sbf(t)
t

= lim
n

a1n + a0 + o(1)

b1n + b0 + o(1)
= a1

b1

= Q̄ − ε̄Sc1(L)

P̄ − ε̄Sc1(L) + ε̄Z c1(L)
. (35)

Equation (35) relates control characteristics, such as the linear coefficient c1(L)

of the quantity N (n, L) of (20), to real-time characteristics of the server, such as its
bandwidth α. In fact, if we choose L ∈ (0, 1), then the following facts hold:

1. the system controlled with an SAS policy is asymptotically stable,
2. limk g(k) tends exponentially to zero,
3. the effect of a constant disturbance is rejected with no oscillations when L ≤ 1/4,

with some oscillations otherwise,
4. N (n, L) tends to a constant, which implies
5. c1(L) = 0, and then
6. the bandwidth α is exactly equal to the target value Q̄/P̄.

Among the controllers with L ∈ (0, 1), which all provide the ideal bandwidth α =
Q̄/P̄ , what is the best one to be chosen?

A natural design choice is to select the controller gain L , which makes the supply
function sbf(t) as large as possible. Unfortunately, according to the actual uncertainties
and disturbances that are present in the system, different values of L may give the best
results at different instants t . Since, however, they are in principle unpredictable, a
worst-case approach is the only viable solution for the design of L .

In real-time applications, it is common to lower bound the supply bound function
sbf(t) by a linear function. It is then a natural choice to choose the controller gain L
for which such a linear lower bound is as large as possible. Following the terminology
and the notation by Mok et al. (2001), such a lower bound is written as α(t − �),
with the bandwidth α defined by the limit in (35) and � representing the delay of a
so-called “bounded-delay partition”. From the linear lower bound condition

∀t ≥ 0, sbf(t) ≥ α(t − �),

it follows that the smallest value of � satisfying this condition is

� = sup
t≥0

{
t − 1

α
sbf(t)

}
.

In our SAS server, the value � can be computed by the coordinates of the points
Pn of (34), along the supply function sbf(t). In fact, we have

� = lim
n

⎛
⎜⎝b1n + b0︸ ︷︷ ︸

t

−b1

a1
(a1n + a0)︸ ︷︷ ︸

sbf(t)

⎞
⎟⎠ = b0 − b1

a1
a0,

which is, in case of a choice of L ∈ (0, 1) and then c1(L) = 0,

123

Real-Time Syst

� = P̄ − Q̄ +
[
ε̄Z +

(
P̄

Q̄
− 1

)
ε̄S

]
c0(L). (36)

Let us now spend a few words to comment the value of � of (36). First, if there
is no disturbance (that is ε̄S = ε̄Z = 0) then the longest delay is � = P̄ − Q̄, in
accordance to well-known results on periodic resource model (Easwaran et al. 2007).
Not surprisingly, � grows with ε̄Z and ε̄Z : larger disturbances may have a greater
impact on the worst-case resource provisioning.

The impact of the controller gain on � is given by the constant c0(L), which is the
limit of N (n, L), as n → ∞. A natural design target, aimed at maximizing the time
available to real-time applications, would minimize � which is achieved by choosing
L such that c0(L) is minimal. For this purpose, we state the next Lemma.

Lemma 4 If L ∈ (0, 1), then

c0(L) = lim
n

N (n, L) = 2
∞∑

k=0

|g(k)| (37)

with g(k) being the response to a unitary step disturbance of the SAS server with
controller gain L.

Proof From the definition of N (n, L) of (20), we have

N (n, L) =
∞∑

k=0

|g(k) − g(k − n)|

=
n−1∑
k=0

|g(k) − g(k − n)| +
∞∑

k=n

|g(k) − g(k − n)|

=
n−1∑
k=0

|g(k)| +
∞∑

k=0

|g(k) − g(k + n)|. (38)

As n → ∞, the first term in (38) clearly tends to
∑∞

k=0 |g(k)|. Since ∀L ∈ (0, 1),
limn g(n) = 0, then the second term of (38) also tend to

∑∞
k=0 |g(k)|. The Lemma is

then proved. �	
Lemma 4 relates the coefficient c0(L) to the l1 norm of the step response g(k).

To find the characteristic polynomial and then the step response, we formulate the
dynamics of S(k) of (8)–(9) as follows

[
S(k + 1)

Q(k + 1)

]
=

A︷ ︸︸ ︷[
0 1

−L 1

] [
S(k)

Q(k)

]
+
[

1
0

]
εS(k).

The eigenvalues of matrix A dictate the system dynamics independently of the consid-
ered input, and can be easily found. We distinguish then the system analysis, depending
on the eigenvalues placement.

123

Real-Time Syst

If L < 1
4 , then the two eigenvalues are real-valued and distinct, and equal to:

λ1 = 1

2
+

√
1 − 4L

2
, λ2 = 1

2
−

√
1 − 4L

2
.

In this case, the analytic expression of the step response can be obtained as

g(k) = λk
1 − λk

2√
1 − 4L

,

with l1-norm

∞∑
k=0

|g(k)| =
∞∑

k=0

|λk
1 − λk

2|√
1 − 4L

=
∞∑

k=0

λk
1 − λk

2√
1 − 4L

=
1

1−λ1
− 1

1−λ2√
1 − 4L

= 1

L
.

If L = 1
4 the two eigenvalues are coincident at λ1 = λ2 = 1

2 , the step response is

g(k) = k21−k

with l1-norm
∑∞

k=0 |g(k)| = 4.
Finally, if L > 1

4 , then the two eigenvalues are complex conjugate that we write
for convenience as

λ1 = ρe jθ , λ2 = ρe− jθ (39)

with
ρ = √

L, θ = arctan
√

4L − 1, (40)

and the step response becomes

g(k) = 2ρk sin(kθ)

tan θ
. (41)

Computing the l1-norm of (41) requires a greater effort, since it is also negative,
depending on the sign of sin(kθ). We found an analytic expression of the l1-norm
of g(k) only in the case of θ being an integer divisor of π . In this case, in fact, the
periodicity of sin(kθ) in g(k) can be precisely determined. If we let θ = π

p for some
positive integer p, then from (40) it means to restrict to controller gains of the form

L = tan2 π
p + 1

4
, p ≥ 4. (42)

In this case, we have

123

Real-Time Syst

10

9

8

7

6

5
0.1 0.2 0.3 0.4 0.5 0.6 0.7

L = 3−√
5

2

31+17
√

5
11

Fig. 11 Coefficient c0(L) as function of L

∞∑
k=0

|ρk sin(kθ)| =
∞∑

k=0

p−1∑
�=0

∣∣∣ρ�+kp sin((� + kp)θ)

∣∣∣
=

∞∑
k=0

ρkp
p−1∑
�=0

ρ� sin(�θ)

=
∞∑

k=0

ρkp ρ(1 + ρ p) sin θ

1 − 2ρ cos θ + ρ2

= 1 + ρ p

1 − ρ p

ρ sin θ

ρ2 ,

where we also used the fact that ρ cos θ is the real part of the poles of (39), which is
1
2 . Then, the l1-norm of the step response is

∞∑
k=0

|g(k)| = 1 + ρ p

1 − ρ p

2ρ cos θ

ρ2 = 1 + ρ p

1 − ρ p

1

ρ2 = 1

L

1 + L
p
2

1 − L
p
2
. (43)

Although we are unable to compute the l1-norm of g(k) for all real values of
L > 1

4 , we can indeed compute it numerically. In Fig. 11, we report the coefficient
c0(L), which is two times the

∑∞
k=0 |g(k)| (Lemma 4), as a function of L . In the figure

we distinguish the two areas in which the system has complex conjugate poles (L > 1
4)

and real-valued poles (L ≤ 1
4). In the figure, we observe some corner points along the

function c0(L). The most evident occurs at L = 0.5, at which we have θ = π
4 . This

value of L belongs to those which can be found from (42), with p = 4 in this case.
Hence, we can compute the l1-norm of the step response g(k) from (43) that is 10

3 ,

123

Real-Time Syst

Table 1 Example: parameters
of the task set

i Ci Ti Ui = Ci/Ti

1 15 150 0.1

2 50 400 0.125

3 60 1000 0.06

and finally c0(0.5) = 6 + 2
3 , as shown in Fig. 11. The minimum, however, is taken

at the “corner” corresponding to p = 5. By replacing p = 5 in (42), we can find the
controller gain L�, which minimizes c0(L) and then delay �, that is

L� = tan2 π
5 + 1

4
= 3 − √

5

2
≈ 0.38197 (44)

and the corresponding minimal coefficient c0(L�)

c0(L�) = 2
1

L�

1 + (L�)
5
2

1 − (L�)
5
2

= 31 + 17
√

5

11
≈ 6.2739. (45)

In conclusion, we can assert that the controller gain which maximizes the linear

lower bound of the sbf(t) is L� = 3−√
5

2 . Notice that, although the linear lower bound
is used to drive the design of the SAS server, the exact sbf(t) of (4) can be used to
guarantee real-time tasks running within the SAS server. Hence, the guarantee test
does not suffer from the typical approximation error of the linear lower bound.

5.1 Example of SAS server design

In this section we illustrate an example of design of SAS server. Let us assume to have
a set of three tasks with execution time Ci and period Ti as indicated in Table 1. Tasks
are scheduled by a fixed priority scheduler with Rate Monotonic priority assignment.

The design of a server which guarantees the schedulability of a task set and mini-
mizes the server budget Q with a given period P has been already investigated in the
literature (Lipari and Bini 2005; Dewan and Fisher 2010).

We assume that server scheduling decisions can only occur at a multiple of a system
tick. The budget start and exhaustion times are computed according to the policy of
SAS servers. However, due to the presence of the system tick, the actual start and
completion times of the budget occur at the closest system tick. Hence, the difference
between the ideal budget Q(k) and the actually allocated one S(k) (called disturbance
in the terminology of this paper) is equal to the size of the system tick. A disturbance
of the same size also applies to the sequence of idle intervals Z(k). In Table 2 we show
the minimum budget Q, found with the technique described in Lipari and Bini (2005)
adapted to the supply function of (4), when the server period is set to P = 60. The
budget is designed in presence of system tick equal to 0, 1, 2, and 3 (varying over rows)
and controller gain L ∈ {0, 0.25, L�, 0.75} (varying over columns). In round brackets,
we also report the bandwidth increase of each case, compared to the condition with
no disturbance (no system thick), that is εS = εZ = 0.

123

Real-Time Syst

Table 2 Example: server budget Q (and bandwidth increase w.r.t. the case with no disturbance), when
period P = 60

ε̄S , ε̄Z L = 0 L = 0.25 L = L� ≈ 0.382 L = 0.75

3 22.23 (15.6 %) 21.08 (9.6 %) 20.68 (7.5 %) 22.98 (19.5 %)

2 21.23 (10.4 %) 20.46 (6.4 %) 20.20 (5.0 %) 20.84 (8.4 %)

1 20.23 (5.2 %) 19.85 (3.2 %) 19.71 (2.5 %) 20.04 (4.2 %)

0 19.23 (0 %)

In this example, it is confirmed that the controller gain L which provides

the smallest server budget is L� = 3−√
5

2 . The picture does not change sig-
nificantly for different sets of tasks, as the linear lower bound of the supply
function of a SAS server with L = L� is demonstrated to be larger than in other
cases.

5.2 Comments on the design of SAS servers

As demonstrated earlier, the selection of the controller gain L = L� = 3−√
5

2 maxi-
mizes the linear lower bound of the supply bound function sbf(t). Nonetheless, there
may be other design guidelines, which may suggest the selection of different controller
gains.

If, for example, it is desired not to have any oscillatory behavior, which appears
as soon as the eigenvalues (λ1, λ2) have a non-zero imaginary part, then it is recom-
mended to select L = 1

4 . As illustrated in Fig. 11, this gain provides the minimal
c0(L) among the ones with no imaginary part. In addition, the multiplication by the
gain L = 1

4 can be implemented by right-shifting the binary fixed-point representation
by two digits.

In addition, we remark that the optimal controller design described in Sect. 5
assumes that disturbances are allowed to be anything within the constraints (15).
In reality, it may well happen that:

– disturbances are only positive, for example, in the case in which the server logic
always prevents the release of the processor earlier than the expiration of the
allocated budget Q(k);

– disturbances may not occur at all rounds. For example, if disturbances are generated
by budget overrun due to critical sections in applications, then the minimal time
separation between two accesses to critical sections, may imply that disturbances
cannot occur at all rounds.

In the future, we will then investigate the exploitation of extra information about the
disturbances to improve the quality of the supply bound function sbf(t) and then,
in turn, to improve schedulability conditions of the application running within the
server.

123

Real-Time Syst

o0 o0o1

round

Fig. 12 Context switch overhead in SAS servers

6 Implementation

One of the main advantages of SAS servers is the simplicity of the control logic
(which is just a multiplication by the controller gain). This enables a lightweight
implementation. In fact, SAS servers were implemented in the Miosix kernel.1

Miosix is the kernel of an operating system designed to run on microcontrollers
(currently supporting STM32 microcontrollers2), that supports the standard POSIX
threads and it is distributed as free software. Among the kernel features, it exposes
a separate scheduling API that allows to plug in different schedulers and select at
compile-time the one to be used for the run. Currently, it implements the SAS sched-
uler described in the paper, together with EDF and a simple priority based scheduler.
Thanks to the simplicity of the SAS algorithm, the code implementing the scheduling
class is about 300 lines long, including comments and distribution license.3 The code
uses the fixed point arithmetic to compute the next budget to be assigned to the tasks
(which is the operation in 9).

One of the most important claims behind the SAS server logic is that due to the
simplicity of the controller, the benefits demonstrated in this paper in terms of pre-
dictability and capacity to adapt to deviations from the ideal, can be coupled with
a low-overhead implementation. In fact, the control logic relies on few mathemati-
cal operations (sums and multiplications) and the time complexity of the performed
calculations is constant for each thread.

The implementation introduces N SAS servers, one for each thread coexisting in
the operating system. The threads are scheduled in loop and the budget computed for
each of them is applied by the scheduler. Budgets are computed at the beginning of
each round, therefore the scheduler operates two different types of context switches,
as shown in Fig. 12. Before scheduling the first thread, the budget computation is
performed, therefore the context switch time is o0

o0 = o1 + octrl × N ,

where o1 is the actual time needed to perform the context switch operations (saving the
state of the current thread and restoring the state of the thread that should resume its
execution) and octrl is the time taken to perform the amount of necessary mathematical
operations (sums and multiplications) to compute the next budget to be assigned for

1 Miosix is available at https://gitorious.org/miosix-kernel.
2 http://www.st.com/web/en/catalog/mmc/FM141/SC1169.
3 The specific C++ file implementing the scheduler functionality can be found at http://goo.gl/mo0KOI.

123

https://gitorious.org/miosix-kernel
http://www.st.com/web/en/catalog/mmc/FM141/SC1169
http://goo.gl/mo0KOI

Real-Time Syst

each of the N threads, in accordance to the control law of (9). All the subsequent N −1
context switches take o1 to execute, since the budget has already been computed.

To experimentally evaluate the context switch overhead we performed some tests
as part of a more extensive experimental campaign Maggio et al. (2014) with a
stm3210-eval board, equipped with a 72 MHz ARM microcontroller and a 1
MB external RAM, from which the kernel code executes. To minimize the monitor-
ing overhead, the context switch time were evaluated with an oscilloscope reading an
input/output signal raised when the scheduler starts its execution and finishes it.

In a 10 min. run, where the scheduler was assigning budgets to N = 5 threads
and executing them accordingly, the average o0 was 205.6 µs while o1 was 43.4 µs.
The computation time of a single budget octrl results to be 32.64 µs. Moreover, the
scheduler execution overhead results to be very predictable. The difference between
the average o0 and the maximum value measured during the run is only 4 µs. More
precisely, the difference between the maximum o1 and its average value has an upper
bound of 1 µs and the maximum deviation from the average value for octrl is 3 µs.

The measured overhead is comparable with the direct context switch overhead
obtained with Linux on ARM platforms (David et al. 2007). Notice also that with the
SAS scheduler, the budget computation can be done only when necessary, therefore
keeping the overall overhead low.

7 Conclusion and future work

Motivated by the need of compensating run-time disturbances in budget allocation,
in this paper we have presented SAS servers. Together with the standard capability
to respond to variations of feed-back mechanisms, we demonstrated that SAS servers
can also guarantee hard real-time tasks, by computing its supply function. We showed
that the supply function of SAS servers is tightly related to the l1 norm of the response
to a unitary step disturbance. This observation, has lead to the solution of the server

design problem. In fact we demonstrated that by setting the controller gain L = 3−√
5

3 ,
the supply function is maximal.

In the near future, we plan to refine the supply function computation by taking into
account some constraints which may exist on the type of disturbance. For example, it
may happen that the server logic requires to always allocate at least Q(k) and possibly
exceed this budget if the application is unable to release the processor. This case can
be analyzed by constraining disturbances to be non-negative and the resulting optimal
controller gain may be different. In addition, in presence of time-varying load, some
adaptation may also be needed to adjust the target budget. Also this investigation may
be performed in the future.

On a longer perspective, we plan to analyze the multiprocessor case, by determining
the parallel supply function (Bini et al. 2009) of a set of SAS servers concurrently
running over a multiprocessor platform.

Acknowledgments The authors would like to acknowledge the help by Alessandro Biondi at Scuola Supe-
riore Sant’Anna for the fruitful discussion on existing protocols for the management of shared resources.
This work was partially supported by the Swedish Research Council (VR) for the projects “Cloud Control”
and “Power and temperature control for large-scale computing infrastructures”, through the LCCC Linnaeus

123

Real-Time Syst

and ELLIIT Excellence Centers, and the Marie Curie Intra European Fellowship within the 7th European
Community Framework Programme.

References

Abeni L, Buttazzo G (1998) Integrating multimedia applications in hard real-time systems. In: Proceedings
of the 19th IEEE Real-Time Systems Symposium, pp. 4–13. Madrid, Spain

Abeni L, Palopoli L, Lipari G, Walpole J (2002) Analysis of a reservation-based feedback scheduler. In:
Proceedings of the 23rd IEEE Real-Time Systems Symposium, pp. 71–80. Austix (TX), USA

Åström KJ, Hägglund T (2005) Advanced PID Control. ISA—the Instrumentation, Systems, and Automa-
tion Society

Baruah SK, Cohen NK, Plaxton G, Varvel DA (1996) Proportionate progress: a notion of fairness in resource
allocation. Algorithmica 15(6):600–625

Behnam M, Nolte T, Sjödin M, Shin I (2010) Overrun methods and resource holding times for hierarchical
scheduling of semi-independent real-time systems. IEEE Trans Ind Inf 6(1):93–104

Bertogna M, Fisher N, Baruah S (2009) Resource-sharing servers for open environments. IEEE Trans Ind
Inf 5(3):202–219

Bini E, Bertogna M, Baruah S (2009) Virtual multiprocessor platforms: specification and use. In: Proceed-
ings of the 30th IEEE Real-Time Systems Symposium, pp. 437–446. Washinghton, DC, USA

Cervin A, Eker J (2000) Feedback scheduling of control tasks. In: Proceedings of the 39th IEEE Conference
on Decision and Control, vol. 5, pp. 4871–4876

Corbató FJ, Merwin-Daggett M, Daley RC (1962) An experimental time-sharing system. In: Proceedings
of the Spring Joint Computer Conference, vol. 21, pp. 335–344

Cruz RL (1991) A calculus for network delay, part I: network elements in isolation. IEEE Trans Inf Theory
37(1):114–131

David FM, Carlyle JC, Campbell RH (2007) Context switch overheads for Linux on ARM platforms. In:
Proceedings of the 2007 Workshop on Experimental Computer Science. ACM, New York, NY, USA

Desoer CA, Vidyasagar M (1975) Feedback systems: input-output properties. Academic Press, New York
Dewan F, Fisher N (2010) Approximate bandwidth allocation for fixed-priority-scheduled periodic

resources. In: Proceedings of the 16th IEEE Real-Time and Embedded Technology and Applications
Symposium, pp. 247–256. Stockholm, Sweden

Easwaran A, Anand M, Lee I (2007) Compositional analysis framework using EDP resource models. In:
Proceedings of the 28th IEEE International Real-Time Systems Symposium, pp. 129–138. Tucson,
AZ, USA

Faggioli D, Checconi F, Trimarchi M, Scordino C (2009) An EDF scheduling class for the Linux kernel.
In: Proceedings of the Real-Time Linux Workshop

Gresser K (1993) An event model for deadline verification of hard real-time systems. In: Proceedings of
the 5th Euromicro Workshop on Real-Time Systems, pp. 118–123. Oulu, Finland

Leva A, Maggio M (2010) Feedback process scheduling with simple discrete-time control structures. Control
Theory Appl IET 4(11):2331–2342

Lipari G, Bini E (2005) A methodology for designing hierarchical scheduling systems. J Embed Comput
1(2):257–269

Lu C, Abdelzaber T, Stankovic J, Son S (2001). A feedback control approach for guaranteeing relative delays
in web servers. In: Proceedings of 7th IEEE Real-Time Technology and Applications Symposium, pp.
51–62

Maggio M, Terraneo F, Leva A (2014) Task scheduling: a control-theoretical viewpoint for a general and
flexible solution. ACM Trans Embed Comput Syst 13(4):76:1–76:22

Mercer CW, Savage S, Tokuda H (1993) Processor capacity reserves: an abstraction for managing processor
usage. In: Proceedings of the Fourth Workshop on Workstation Operating Systems, pp. 129–134

Mok AK, Feng X, Chen D (2001) Resource partition for real-time systems. In: Proceedings of the 7th IEEE
Real-Time Technology and Applications Symposium, pp. 75–84. Taipei, Taiwan

Richter K, Ernst R (2002) Event model interfaces for heterogeneous system analysis. In: Design, Automation
and Test in Europe (DATE), pp. 506–513. Paris, France

Stankovic JA, Lu C, Son SH, Tao G (1999) The case for feedback control in real-time scheduling. In:
Proceedings of the 11th Euromicro Conference on Real-Time, pp. 11–20. York, UK

Stigge M, Ekberg P, Guan N, Yi W (2011) On the tractability of digraph-based task models. In: Proceedings
of the 23rd Euromicro Conference on Real-Time Systems, pp. 162–171. Porto, Portugal

123

Real-Time Syst

Storm AJ, Garcia-Arellano C, Lightstone SS, Diao Y, Surendra M (2006) Adaptive self-tuning memory in
db2. In: Proceedings of the 32rd International Conference on Very Large Data Bases, VLDB ’06, pp.
1081–1092. VLDB Endowment

Thiele L, Chakraborty S, Naedele M (2000) Real-time calculus for scheduling hard real-time systems. In:
Proceedings of the IEEE International Symposium on Circuits and Systems, vol. 4, pp. 101–104.
Geneva, Switzerland

Alessandro Vittorio Papadopoulos is a postdoctoral researcher at
the Department of Automatic Control, Lund University, Sweden. He
is also a member of the Lund Center for Control of Complex Engi-
neering Systems (LCCC) Linnaeus Center. He received a BSc and a
MSc in Computer Engineering from Politecnico di Milano, Italy. In
2013, he received a PhD in Information Technology, Systems and
Control with honors from the Politecnico di Milano, Italy, and he
was awarded with the European doctorate certificate. His research
interests include model reduction for hybrid systems, event-based
control, and the application of control theory for the design and the
implementation of computing systems, with a particular focus on
cloud computing, and real-time systems.

Martina Maggio is an Assistant Professor at the Department of
Automatic Control, Lund University, where she started as a postdoc-
toral researcher in 2012. She was awarded her PhD from the Diparti-
mento di Elettronica ed Informazione at Politecnico di Milano under
the supervision of Alberto Leva, and she was a visiting PhD stu-
dent at the Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, supervised by Anant Agar-
wal. Her main research interest is the application of control theory
to computer engineering, especially to cloud computing and to the
design of operating systems and resource management framework.

Alberto Leva received the Laurea degree in Electronic Engineering
in 1989 at the Politecnico di Milano, where he is at present Associate
Professor of Automatic Control. His main research interest concern
methods and tools for the automatic tuning of industrial controllers,
process modeling, simulation and control, particularly within the
object-oriented paradigm, energy systems, and control education. In
the last years, he has been concentrating on control-based design of
computing systems, addressing in a system- and control-theoretical
manner problems like scheduling, resource allocation, time synchro-
nization, thermal and power/performance management, and service
composition. Alberto Leva is author or co-author of around 200 pub-
lications in peer-reviewed international journals and conferences.

123

Real-Time Syst

Enrico Bini is Assistant Professor at Scuola Superiore Sant’Anna.
In 2012–13, he was Marie-Curie fellow at Lund University (Swe-
den) investigating on Cyber-Physical Systems. In 2000 he received
the Laurea degree in Computer Engineering from University of Pisa.
In 2004, he completed the doctoral studies on Real-Time Systems
at Scuola Superiore Sant’Anna. During the PhD, he visited the Uni-
versity of North Carolina at Chapel Hill (under the supervision of
Sanjoy Baruah). In January 2010 he also completed a Master degree
in Mathematics with a thesis on optimal sampling for linear con-
trol systems. He has published more than 80 papers (two best-paper
awards) on real-time scheduling, and design and optimization meth-
ods for real-time and control systems. His recent research interests
are on optimal management of distributed and parallel resources.

123

	Hard real-time guarantees in feedback-based resource reservations
	Abstract
	1 Introduction
	1.1 Related work

	2 Background on supply functions
	3 The self-adaptive server
	4 Supply function of SAS servers
	5 Optimal design of SAS servers
	5.1 Example of SAS server design
	5.2 Comments on the design of SAS servers

	6 Implementation
	7 Conclusion and future work
	Acknowledgments
	References

