
A dynamic modelling framework for control-based computing
system design

Alessandro Vittorio Papadopoulosa*, Martina Maggioa, Federico Terraneob

and Alberto Levab

aDepartment of Automatic Control, Lund University, Ole Römers väg 1, SE 223 63 Lund, Sweden;
bDipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Via Ponzio 34/5,

20133 Milano, Italy

(Received 2 May 2013; accepted 5 July 2014)

This manuscript proposes a novel viewpoint on computing systems’ modelling. The
classical approach is to consider fully functional systems and model them, aiming at
closing some external loops to optimize their behaviour. On the contrary, we only
model strictly physical phenomena, and realize the rest of the system as a set of
controllers. Such an approach permits rigorous assessment of the obtained behaviour in
mathematical terms, which is hardly possible with the heuristic design techniques, that
were mainly adopted to date. The proposed approach is shown at work with three
relevant case studies, so that a significant generality can be inferred from it.

Keywords: computing systems; feedback control; scheduling; memory management;
resource allocation

1. Introduction

The complexity of many computing system functionalities is nowadays abruptly increas-
ing [1]. For example, consider the Linux scheduler. In the Kernel version 2.4.37.10
(September 2010), all of its code was contained in a single file of 1397 lines. In version
2.6.39.4 (August 2011), the scheduler code is spread among 13 files for a total of 17,598
lines.

Indeed, when such ‘explosions’ are experienced, the overall design approach to the
functionalities is to be somehow reconsidered. The presented research proposes to adopt a
design approach, entirely based on the systems and control theory. This would allow the
reduction of heuristics that are widely present in modern operating (and computing)
systems. The main advantage of the abolition of heuristics is that the properties of interest
could then be formally assessed [2]. If a control-theoretical design is carried out, the
formal tools of stability, observability, reachability and so forth can be brought into play,
to state that the system will behave as expected in the presence of unpredictable situations
and disturbances. It is worth noticing that to the best of our knowledge this approach has
not yet been attempted, that is, no computing system functionality has to date been
conceived and developed based on a dynamic model of some physical phenomenon to
be controlled.1

The lack of a system- and control-theoretical attitude in the design of computing
system components has quite clear historical reasons, see again [2]. For the purpose of this

*Corresponding author. Email: alessandro.papadopoulos@control.lth.se

Mathematical and Computer Modelling of Dynamical Systems, 2015
Vol. 21, No. 3, 251–271, http://dx.doi.org/10.1080/13873954.2014.942785

© 2014 Taylor & Francis

paper, one fact is most important to notice in this respect. While in any other context
controlled objects can be modelled based on physical (first) principles, this is not the case
for computing systems, because in such systems the ‘physics’ is created by the designer
him/herself. This is well exemplified by a famous quote by Linus Torvalds [3], who wrote

I’m personally convinced that computer science has a lot in common with physics. Both are
about how the world works at a rather fundamental level. The difference, of course, is that
while in physics you’re supposed to figure out how the world is made up, in computer science
you create the world. Within the confines of the computer, you’re the creator. You get to
ultimately control everything that happens. If you’re good enough, you can be God. On a
small scale.

In the absence of a modelling framework, however, system design (or according to Linus,
creation) is invariantly carried out directly in an algorithmic setting, without any means to
formally assess its behaviour. As ‘more physics’ is created, the absence of a rigorous
dynamic description may thus, sooner or later, pose intractable problems as for its
governance: the scheduler explosion just mentioned is a notable example of this trend.

As a consequence, the non-system-theoretical scenario sketched out above could to
date be tolerated, but it cannot be assured that said tolerability will carry over to the future.
Rigorous – and possibly simple – modelling frameworks to ground system design upon
are becoming a necessity, since there is much to do in this direction before problems
exacerbate [4].

The main message this paper wants to convey is that if one accepts to redesign part of
said system – that has been conceived in an algorithmic way – such a framework can be
found by (usefully) limiting the model scope to describe the real physical phenomenon on
which the addressed aspects of the system behaviour depend. If this is done, surprisingly
simple formalisms can be used – a noticeable example indeed of process/control co-
design, and in the authors’ opinion, a step forward with respect to previous research.

This paper concentrates on the modelling side of the problem, by showing the ideas
above at work, extending [5] with an additional and deeper analysis of the examples
treated therein, and proposing a novel framework dealing with memory management.
Some words are spent on the consequent advantages in terms of system (and control)
design, limiting however the depth to sketching out possible solutions, and referring the
interested reader to the convenient literature when this is applicable. On a similar front, a
comprehensive presentation of the current state of this research, specialized however to
the context of operating systems, can be found in [2].

In this paper, the formalism of discrete-time dynamic systems is exploited. An
alternative – and in some cases also coordinated – approach for the control of computing
system could be based on supervisory control and discrete event systems [6,7]. However,
in the authors’ opinion, the modelling effort carried out in this paper would greatly
simplify the design of the controllers also if supervisory control was the control paradigm
of choice, since it provides with more insights in the problem to be solved and in what
influences the dynamics to be controlled.

2. The quest for physics

Before going into details, in this section we spend some words to show that many typical
problems in the computing system domain can be addressed with a general viewpoint by

252 A.V. Papadopoulos et al.

adopting a dynamic modelling framework. In the next sections, the ideas presented below
in general, are specialized and declined in some representative examples.

At the very core of any computing system behaviour, there is some strictly physical
phenomenon. For example, in the case of an operating system scheduler, that phenomenon
has the form

accCPU kð Þ ¼ accCPU k � 1ð Þ þ burst kð Þ þ disturbance kð Þ

where k counts discrete-time instants, accCPU �ð Þ is the CPU time accumulated by a task,
burst �ð Þ is the CPU time slice allotted to the task and disturbance �ð Þ accounts for any
difference between burst �ð Þ and the actual CPU use by the task.

Similar models can be obtained for many other problems. For example, suppose that
an application needs to accomplish its task at a specified rate, like a video encoder that
needs to process a desired number of frames per second. Suppose that the application
speed depends on some resources, like the number of processing units, and these
resources are shared with other applications, so that some arbitration mechanism is
required to manage them. In such a case, the present state of the application’s progress
towards its goal depends on the progress state before the last resource arbitration instant
and on the allotted resources at that instant.

In the most general case, the behaviour of a computing system ultimately depends on
extremely fine-grained facts, down to the detailed behaviour of any single assembler
instruction and electronics transient. This is one of the main differences between model-
ling computing systems or purely physical objects. The fine-grained physical level is often
the only level that can be rigorously defined in computing system modelling.

On the contrary, in physical systems, there is usually a more abstract modelling level.
In thermal systems, for example, one can avoid treating fine-grain phenomena (in that
case, molecular motions) since there exist suitable macro-physic entities (e.g., temperature
or enthalpy) that allow to write rigorous balances (e.g., of energy) to base dynamic models
upon.

In the development of computing systems, in addition, no set of ‘first principles’ has
de facto ever been sought. Sticking again to the scheduling example, action policies are
typically defined as ‘give the CPU to the task with the earliest deadline’ by foreseeing
their effect in some nominal conditions (for a schedulable task pool, doing so there will be
no misses). Alternatively, in the control of the application’s progress, the action policy can
be expressed as ‘give an additional core if the application is too slow, remove a core if the
application is too fast’. Apparently, the algorithmic attitude to the problem hinders the
possibility to formally address dynamic properties of the system at hand, as it attempts to
find a (control) solution without a modelling phase.

In the addressed domain, in other words, there is classically no distinction among the
behaviour of the system in the absence of such actions, the desired behaviour of the same
system and the way actions are to be determined based on the above. There is no evidence
of the fundamental elements of a (control-oriented) modelling process.

Deepening the analysis, one may object that many works deal with computing system
control, and do use control-theoretical methodologies, see, for example, [8–11] and,
particularly, [12]. This is true, but virtually all of them take the computing system as is
and close loops around it (e.g., aiming at a certain Central Processing Unit (CPU)
distribution by altering task deadlines). Doing so however requires to model the core
phenomenon plus all the ‘created physics’ around it (e.g., the existing deadline-based
scheduler).

Mathematical and Computer Modelling of Dynamical Systems 253

In the authors’ opinion, the presence of such ‘unconsciously created’ physics is a
major reason for the complexity of most computing systems’ models, at least as far as the
ultimate scope of said models is to design parts of those systems in the form of controllers.
To circumvent the problem, one should thus in the first place evidence the core phenom-
enon, that is, that part of the system behaviour that really relies on physics and cannot be
altered. Most often, modelling that phenomenon is enough to describe the system in a
view to suitably control it [5,13]. In some cases, in addition, the so obtained models will
be natively (almost) uncertainty free, making control design and assessment very straight-
forward. In other cases, there may be relevant uncertainty, or – in other words – some
aspects of the system behaviour will not admit a clear physical interpretation. In such
cases, the advice is to figure out some convenient grey box description – as opposite to the
black box approaches that the literature dominantly presents [10,12] – based on qualitative
considerations on input–output relationships. As will be shown, this approach generally
leads to more complex but still tractable models: control design may be correspondingly
harder, but still there will be the possibility of a rigorous assessment.

In the following section, some examples are shown of how the proposed approach
leads to dynamic models of computing system components that can successfully serve the
evidenced needs, while being very simple and thus suitable for powerful and rigorous
analysis and control result assessment.

3. A unified framework for task scheduling

This section shows how the task scheduling in a pre-emptive single-processor system can
be fully treated having as model class that of discrete-time dynamic systems, in some
cases even linear and time invariant. A few words are also spent on the natural attitude of
said modelling formalisms to scale up towards, for example, multicore or multiprocessor
contexts, where any other modelling formalism and design approach do experience severe
difficulties. The reader interested in more details on the problems encountered by litera-
ture approaches can refer, for example, to [14].

Consider a single-processor multitasking system with a pre-emptive scheduler, pre-
emptive meaning that the scheduler can interrupt the current task and substitute it with
another one. Let N be the number of tasks to schedule. Define the round as the time
between two subsequent scheduler interventions. Let the column vectors τp kð Þ 2 RN ,
τr kð Þ 2 R , ρp kð Þ 2 RN , b kð Þ 2 Rn kð Þ and δb kð Þ 2 Rn kð Þ , 1 � n kð Þ � N"k represent,
respectively,

● the CPU times actually allocated to the tasks in the kth round,
● the time duration of the kth round,
● the times to completion (i.e., the remaining CPU time needed by the task to end its

job) at the beginning of the kth round for the tasks that have a duration assigned
(elements corresponding to tasks without an assigned duration will be þ1 ,
therefore allowing for the presence of both batch and interactive tasks),

● the bursts, that is, the CPU times allotted by the scheduler to the tasks at the
beginning of the k-th round,

● the disturbances possibly acting on the scheduling action during the kth round (e.g.,
because one of the tasks release the CPU before its burst has expired or because of
an interrupt management amidst the task operation),

254 A.V. Papadopoulos et al.

where n(k) is the number of tasks that the scheduler considers at each round. In the
traditional scheduling policies, n(k) is constant and equal to one – an example of
aprioristic constraint that in principle can be relaxed, maybe resulting in better perfor-
mances. Denote by t, the total time actually elapsed from the system initialization.

A very simple model for the phenomenon of interest is then

τp kð Þ ¼ Sσb k � 1ð Þ þ δb k � 1ð Þ
τr kð Þ ¼ 11�N τp k � 1ð Þ
ρp kð Þ ¼ max ρp k � 1ð Þ � Sσb k � 1ð Þ � δb k � 1ð Þ; 0

� �
t kð Þ ¼ t k � 1ð Þ þ τr kð Þ

8>>><
>>>:

(1)

where 11�N is a row vector of length N with unit elements, and Sσ 2 � a N � n kð Þ
switching matrix. The elements of Sσ are zero or one, and each column contains at most
one element equal to one. Matrix Sσ determines which tasks are considered in each round,
to the advantage of generality (and possibly for multiprocessor extensions). Notice that,
since n(k) is bounded, the set � is finite for any N.

Several scheduling policies can be described with the presented formalism, by merely
choosing n(k) and/or Sσ kð Þ . For example

● n = 1 and a N-periodic Sσ with

Sσ kð Þ�Sσ k � 1ð Þ; 2 � k � N (2)

produce all the possible Round Robin (RR) policies having the (scalar) b(k) as the
only control input, and obviously the pure RR if b(k) is kept constant,

● generalizations of the RR policy are obtained if the period of Sσ is greater than N,
and Equation (2) is obviously released,

● n = 1 and a Sσ chosen so as to assign the CPU to the task with the minimum row
index and a ρp greater than zero produces the First Come First Served (FCFS)
policy,

● n = 1 and a Sσ that switches according to the increasing order of the initial ρp vector
produces the Shortest Job First (SJF) policy (notice that this is the same as SRTF if
no change to the task pool occurs, as can be seen in Figure 1),

● n = 1 and a Sσ selecting the task with the minimum ρp yields the Shortest
Remaining Time First (SRTF) policy.

The capability of model (1) to reproduce the mentioned policies is shown in Figure 1,
in the case of n(k) = 1, N = 5 and Sσ kð Þ chosen as described above.

In all these policies, the core phenomenon can be noticed in the form

τp kð Þ ¼ Sσb k � 1ð Þ þ δb k � 1ð Þ:

Also the ‘added physics’ can be noticed, as the algorithm used to select n(k) and/or
Sσ kð Þ .

If one attempts to model both things together, to close the loop around the existing
scheduler, then switching systems must be brought into play.

If, on the contrary, one models the core phenomenon only, and treats all the rest as part
of the controller, the single and trivial equation just written is enough. Notice that here in

Mathematical and Computer Modelling of Dynamical Systems 255

modelling the core phenomenon no uncertainty is present, nor is there any measurement
error, since the only required operation is to read the system time.

Based on model (1) one can thus abandon ‘non control theoretical’ (and often not even
closed-loop) choices of Sσ as in the examples just sketched, and synthesize schedulers as
controllers with very simple blocks, for example, of the proportional integral or Model
Predictive Control (MPC) type [15,16]. The so conceived policies are tendentiously less
computational intensive than those where a control loop is conversely closed around an
already functional scheduler, that is, not around the core phenomenon only.

For example, some works introduce controllers to adjust the bursts, with the purpose
of keeping the entire system utilization below a specified upper bound [17–19]. In these
works, the burst duration is adjusted according to the results of the execution of a
controller, built to optimize different cost functions. Each of these cost functions requires

R
R

Bursts to processes Disturbances

0

5

10

15

20

Execution time

F
SF

C

0

5

10

15

20

SJ
F

0

5

10

15

20

0 20 40
Rounds

SR
T

F

0 20 40
Rounds

0 20 40
0

5

10

15

20

Rounds

Figure 1. Capability of the presented single model of reproducing classical scheduling policies
such as RR, FCFS, SJF and SRTF.

256 A.V. Papadopoulos et al.

to redesign the control strategy, and no control-based selection of the next task is
envisioned. On a different page, the authors of [20] reorder the list of tasks to be
scheduled with a RR algorithm in an embedded device, with the aim of reducing cache
misses. Control is introduced to meet a system requirement by acting on a parameter of a
fully functional scheduler, rather than to simplify the design of the entire scheduler.

The approach proposed here, instead, models the core phenomenon and uses that
model to pursue a real control theoretical solution, where properties of the closed-loop
system could be formally proved. In this respect, a possibility is to endow (Equation (1))
with a cascade control structure, aimed at controlling both τr , that is, the round duration,
and the distribution of said duration among the active tasks. This can be done with very
simple controllers, as shown in [15], and allows to specify the desired behaviour as a
certain level of responsiveness (corresponding to a round duration setpoint) and fairness
(related to the mentioned distribution). The paper just quoted also contains comparisons
with some major (non-control-centric) scheduling policies, witnessing the advantages of
the proposed approach. Note that the said approach allows to give a control-theoretical
sense to terms like ‘responsiveness’ and ‘fairness’, that are widely used and well under-
stood in the computing system community.

4. A unified framework for memory management

In this section, the proposed approach is applied to another core functionality of operating
systems, namely that of memory management.

The operation of a memory manager works can be (roughly) described as follows. The
Random Access Memory (RAM) in a computing system is divided in pages of fixed size.
Those pages can be allocated to processes running in the operating system, which make
memory requests. Of course, the quantity of available memory is limited by the total
amount of RAM, and situations in which the processes are requiring more than the said
upper bound may occur. The memory manager needs to be able to handle such cases, by
temporarily saving some pages on disk, that is, by ‘swapping’ out pages through a
specified policy, most frequently the so called ‘Least Recently Used’ (LRU). Those
swapped pages can be requested in a different moment by an application (such an event
being termed a ‘page fault’), and the memory manager is in charge of retrieving the
appropriate pages and swap them back in RAM.

The relevance of the problem stems from several reasons. Even if the advances of
technology make much more memory available for running applications, these are
steadily more demanding in terms of memory pages. Memory is thus still a limited,
thus critical, resource. Furthermore, memory is continuously requested and relinquished
by processes over time, in an a priori hardly predictable manner; as such, the time scale of
memory usage – thus management – is quite fast.

The LRU-based ‘traditional’ attitude towards memory management, sketched out
above and dating back to works like [21–23], has two major issues. One is related to
the system-wide nature of the LRU scheme, the other to the purely demand-based (or in
other terms, event-triggered) activation of the memory manager. As a result, its behaviour
is not optimal in many significant use cases.

A typical example is when a memory-intensive background task is run concurrently
with some interactive ones, which can easily happen, for example, when using the same
machine for running both heavy batch jobs and a window manager to provide a graphical
user interface. When the background task’s memory allocations cause the exhaustion of
the available RAM, the LRU scheme will swap out pages from arbitrary processes, most

Mathematical and Computer Modelling of Dynamical Systems 257

probably including the interactive ones, thus causing a significant reduction in their
responsiveness. This is caused by the lack of a memory manager that can act on a per-
process basis, so as to control which are the processes that have exceeded their memory
limit, and have to be selected as targets for swap-outs.

The negative impact of swapping out pages onto application responsiveness is a
widely known fact; however at present (at least, to the best of the authors’ knowledge)
no systematic attempts to model the problem have emerged, and only ad hoc algorithmic
solutions have been introduced.

Another limitation of current memory management systems, as mentioned, is their
purely event-triggered nature. A typical example that exacerbates this limitation is when a
process transiently allocates a large amount of memory, as it frequently happens for the
linking phase at the end of the compilation of large software projects. In this case, part of
that process will be swapped out and, due to the system-wide LRU scheme, part of other
processes also most likely will. When the complex task ends, the memory occupation
drops sharply, resulting in a large amount of free RAM. If in this situation the system is
left idle, it will not recover responsiveness as fast as it could, due to swap-in being only
triggered by application page faults. Therefore, it may happen that memory pages remain
swapped out for a long time even if RAM is available. Subsequently, when a process
requests those pages, a disk access will be triggered, stalling the process and decreasing its
responsiveness. Moreover, the swap-in of those pages may occur when the CPU is highly
loaded, while from the swap-out instant till the page faults there may have been plenty of
time with a low CPU load.

Summarizing, there are two fundamental questions that current memory management
schemes fail to address, which are what to swap and when to do it. The first question
addresses per-process memory limits, and could be used to achieve memory access
temporal isolation [24]. The second question opens the door to transfers between swap
and RAM that are time triggered instead of event triggered by process page faults. In the
opinion of the authors, this is another problem for which hardly any modelling effort has
been spent to date, having as result a practically ubiquitous use of pure heuristics, and thus
a management (i.e., control) that falls significantly short of perfection. When control-
based techniques were applied by closing loops around a memory manager conceived in
the traditional way rather than around the core phenomenon alone, the same attitude has
often given rise to quite complex solutions, see, for example, [25].

Analysing the situation with the proposed approach, on the contrary, it is quite
straightforward to state memory management as a feedback control problem, by posing
for it the following objectives:

(1) use as much RAM as possible without saturating,
(2) give each process a (soft) quota to make it a candidate for swap-outs when this is

exceeded (not forbidding anyway its allocation, whence the ‘soft’ adjective
above), and

(3) un-swap memory back to RAM when this is possible, based on a time-, not only
event-triggered mechanism.

Adopting this viewpoint, here too the core phenomenon physics is quite simple, as the
generic (ith) process can be represented by the discrete-time, linear and time-invariant
model

258 A.V. Papadopoulos et al.

mi kð Þ ¼ mi k � 1ð Þ þ ai k � 1ð Þ � dmi k � 1ð Þ þ pfi k � 1ð Þ þ ui kð Þ
si kð Þ ¼ si k � 1ð Þ � dsi k � 1ð Þ � pfi k � 1ð Þ � ui k � 1ð Þ

�
(3)

where the state variables mi and si are respectively the quantity of allocated RAM and
swap memory. The index k counts the memory-affecting operations, making Equation (3)
discrete-time but not sampled-signals. The other quantities are either process-generated
requests – that is, ai, dmi, pfi, dsi, treated here as disturbances – or memory-manager
decisions – i.e, ui, that is the input of the model (explained below).

In detail, ai and dmi are respectively the allocated and deallocated quantity of memory
in RAM, and dsi is the deallocated memory from swap. The term pfi represents the page
faults that a process can generate (in a highly unpredictable manner, depending on its
memory use pattern) and acts symmetrically on RAM and swap.

Note that all the quantities mentioned so far (except for ui) are physically bound to be
nonnegative. Also note that all are known by the memory manager, and are therefore
measurable without error.

As for ui, this is the only variable on which the memory manager can act, and
represents the amount of memory that is moved from RAM to swap or vice versa; ui is
thus the only quantity that can take both positive and negative values. The resulting model
is composed of two discrete integrators per process, subject to physical constraints, and
reads as

mi kð Þ � 0 "i ¼ 1; . . . ;NPN
i¼1

mi kð Þ � β �M

si kð Þ � 0 "i ¼ 1; . . . ;NPN
i¼1

si kð Þ � �S

8>>>>>><
>>>>>>:

(4)

where �M and �S are the maximum amount of memory and swap in the system, while β
takes into account that some of the physical memory may be reserved, for example, by the
operating system itself. The β �M term is here called global maximum memory occupation.
For completeness, if both memory and swap are exhausted, there is another component of
the operating system – named the out of memory killer – that terminates processes to free
up memory. Such an event is however considered a pathological system condition,
indicating a malfunction of some process – that should occur very sporadically – or an
erratic swap space configuration on the part of the system administrator [26]. Both cases
are apparently not to be dealt with by the memory manager, thus not addressed herein: for
our purposes, in other words, the swap space can be considered infinite.

The physical constraints (Equation (4)) are partly naturally enforced by the system.
For example, if a process has no swap, it cannot generate page faults, and it cannot
deallocate memory it does not have (if programming errors causes a program to attempt
that, the kernel detects the error and terminates the process before the memory system is
set to an inconsistent state).

Memory allocations are conversely unconstrained, hence the system cannot work in
the total absence of control, here represented by ui(k), that is constrained by

Mathematical and Computer Modelling of Dynamical Systems 259

uiðkÞ � �miðkÞ � aiðkÞ þ dmiðkÞ � pfiðkÞ
uiðkÞ � siðkÞ � dsiðkÞ � pfiðkÞPN
i¼1

uiðkÞ � βM �PN
i¼1

ðmiðkÞ þ aiðkÞ � dmiðkÞ þ pfiðkÞÞ

8>><
>>:

Finally, the kernel handles memory in terms of pages, which are a set of contiguous
memory locations, with a typical size being 4 kb. Therefore, all quantities in the model are
expressed in memory pages, and are meaningful only if integers. From such a model, it is
quite straightforward to design a feedback controller enforcing the objectives above:
details on how to do that can be found in [27].

For the purpose of this work, it is however worth pointing out which are the benefits
of the proposed modelling approach. First, the problem was naturally split into a how
much and a what part. The proposed control policy decides how much to swap in or out
and on this basis achieves its goal. Deciding what to swap in or out is here irrelevant, and
can be devoted to any underlying mechanism without hampering the mentioned
achievements.

The same could be stated about resource allocation. Indeed, the authors came to
suspect that, quite in general, a major reason why simple and powerful control theories
seem unnatural to apply to computing systems design is that problems are formulated in
such a way that the how much and the what part stay intertwined, while when the former
is isolated, most often it can be treated with simple formalisms, and normally the results
can be realized in a transparent manner with respect to how the latter is addressed. For
example, once how much to swap out is decided, one can transparently use LRU, possibly
on a per-process basis, or any other policy. In one word, there is room for virtually any
high-level (i.e., nearer to the software application) policies, pretty much like a well-
designed layer of peripheral simple controllers that eases the set-up of more complex,
centralized regulations in hierarchical, plant-wide process control.

Finally, notice that here too the model is virtually uncertainty free, which is quite a
common situation in the particular case of computing systems, and definitely worth
exploiting with a control-theoretical design approach.

To witness the usefulness of the approach, Figure 2 shows how a model based on
Equation (3) can lead to an effective memory management when complemented with the
simple control policy described in the following list.

● Each process has a memory use limit, the sum of these limits not exceeding the
available RAM minus a small amount reserved for the operating system, see
Equation (4).

● When the requested RAM exceeds the available one, only processes exceeding
their limit can be swapped out.

● When there is free RAM and used swap, a time-triggered mechanism is invoked to
swap pages into RAM, based, for example, on a Least Recently Swapped policy
(with obvious meaning).

As can be seen in Figure 2, there are at the beginning three active processes. All of them
allocate memory, until the RAM is exhausted (around k = 100). However, since Process 1
is below its memory limit, it is still allowed to allocate RAM, and only the other two are
subject to swap-out; only the memory limit change for Process 1 at k = 300 makes it too
subject to swap-out. Also, when some RAM is available and some swap is used (from

260 A.V. Papadopoulos et al.

k = 600), the swap space is emptied by time-triggered swap-in, that co-operate with the
(event-based) memory reclaim caused by the termination of Process 1. The interested
reader can refer to [27] for further details on the control policy sketched above.

Contrary to the scheduling case, comparing the proposed control strategy to others is
not possible here, however. In fact, the present state of the art is practically composed of
system-wide policies only. These do not allow any memory usage control on a per-process
basis, and therefore one could at most compare aggregate data at the machine level.

600

400

200

0

600

400

400

200

200

0

0

1500

1000

500

0 100 200 500

k

700 800600400

Global memory swap and limit

Process 3

Process 2

Process 1

Memory limit
Memory used

M
em

or
y

pa
ge

s
M

em
or

y
pa

ge
s

M
em

or
y

pa
ge

s
M

em
or

y
pa

ge
s

Memory swapped
Total memory

300
0

Figure 2. An example of model-based memory management.

Mathematical and Computer Modelling of Dynamical Systems 261

Independently of ‘who is the best’ in this respect, the reasons why a certain memory
management policy could adversely impact the behaviour of a process, reside precisely in
the inability of system-wide controls to respond to individual process requirements.

5. A unified framework for resource allocation

Up to this point, the focus was set on the management of specific resources, namely CPU
and memory, for which one could envision ad hoc optimization techniques. In this
section, a wider viewpoint is conversely taken, to illustrate how the proposed approach
is suited also for the generic ‘resource allocation’ problem, that has been gaining a lot of
attention in the last years.

In this wider context, the term resource may assume different meanings. In a single
device, an application may receive computational units or disk space, while in a cloud
infrastructure, a resource can be a server devoted to responding to some requests. Each
manageable resource is here a touchpoint in the sense given to this term in [28]. Some
proposals to address the management of a single resource were published in the literature.
However, the management of multiple interacting resources is still an open research
problem and solutions are more rare [29]. Intuitively, the number of ways the system
capabilities can be assigned to different applications grows exponentially with the number
of resources under control, and the need for a model is apparent.

In this section, we show that, also in the case of resource allocation, a core phenom-
enon can be identified and modelled. In this case, however, the dynamic relationship
between the resource allocated to a system and the performance obtained by the usage of
said resources is far from being trivial, and uncertainties are generally present. If one
installs additional sensors in the system so as to measure exactly what pertains to the core
phenomenon, the resulting models are still much simpler and reliable than those obtained
by attempting to describe the system as is.

Generally speaking, the resource allocation problem consists in dynamically modify-
ing the amount of system resources (memory, disk, bandwidth, number of computing
units and so forth) allotted to an application, in such a way the said application progresses
towards its goal at the desired rate. Recalling the example of Section 2, one may want a
video encoder to process exactly 30 frames per second, despite different amount of
computational resources needed by the individual frames, and the overall system load.
Quite intuitively, the progress rate – that in this work is measured in WorkLoad Units
(WLU) per second – is defined on a per-application basis (e.g., for a video encoder it
could be the completion of one frame).

In most cases, however, a measure of the mentioned progress rate is not available,
since usually hardware performance counters are used [30,31]. The relationship between
the progress rate and typically measured quantities is another clear example of added
physics – or better, in this case, physics that should not be in the control loop – as the core
phenomenon is here ‘how the progress rate dynamically reacts to resources’.

On a time scale suitable for evaluating (and possibly controlling) an application
behaviour, the effect of allotting more or less resources to that application, can be viewed
as practically instantaneous. However, the efficacy of a given resource on the application
progress may vary over time. For example, if an application is presently executing
operations that do not require parallelism, the effect of allotting more computational
units is modest. Similar considerations hold for memory, disk space or other resources.

Contrary to the remark above, the time scale of resource-to-performance effects is
almost invariantly comparable to that suitable for monitoring and controlling.

262 A.V. Papadopoulos et al.

Therefore, if one accepts to introduce a progress rate measurement, it turns out that
many relevant problems can be treated with discrete-time, non-linear dynamic systems of
simple structure, obtained with a grey box approach.

For example, when the resources to allot are computational units c and clock fre-
quency f while the application progress rate pr is measured with the Application
Heartbeats framework [32], a vast campaign of experiments and data analysis indicated
that a model that is simple enough to be used for control but still describes the system in a
fairly complete way is

pr kð Þ ¼ p � pr k � 1ð Þ þ 1� pð Þ � kcc k � 1ð Þαc þ ocð Þ kf f k � 1ð Þαf þ of
� �

(5)

where parameter p 2 ½0; 1Þ is essentially related to the sampling time used for the
performance measurements, thus not application specific; the other (time-varying) para-
meters account for resource response of the application. Specifically, kc, αc and oc denote
how the application responds to changes in the number of computational units c while
kf, αf and of take care of the responses to clock frequency variations. Note that Equation
(5) contains a non-linear static (multi-)input characteristic cascaded to a linear dynamics,
in accordance with the idea that the control time scale is very slow with respect to the
actuation one, and complexity resides essentially in the actuators’ influence on the
process.

Model (5) is apparently of the grey box type, as its structure is envisioned a priori
based on ‘physical’ considerations, while its parameters come from an identification
process.

In fact, in most of the addressed situations [33], parameter p (the discrete-time pole)
typically takes low values in the [0, 1) interval, indicating that at the control time scale,
the action of actuators is non-linear but practically instantaneous. Some exceptions may
arise, for example, when some actuating action requires to negotiate resources with the
operating system, for example, posting requests that may be fulfilled at a time scale
comparable to that of control, but nonetheless the modelling hypotheses introduced hold
reasonably true in all the cases of interest, and in most of them the system to be controlled
actually behaves as a non-linear static one cascaded to a pure one-step delay.

As a possible objection, application behaviour variabilities can be present and depend
on many factors, including, for example, the processed data. Hence, the proposed model-
ling approach may not seem very useful. However, its usefulness can be perceived by
observing that, with a sufficiently wide – yet in general affordable – number of profiling
tests, one can obtain range and rate bounds for parameter variations. By generating
parameter behaviours based on that information, one can then simulate a potentially
infinite number of possible application behaviours in much less time than the same
number of real runs would require, which is very useful in a view to synthesize and
assess controllers. Notice that attempting to do the same thing with classical black box
identification applied to linear models – a widely used approach – is for the problem at
hand less effective, as such models are structurally inadequate, and any order selection
procedure would eventually produce very complex structures.

Needless to say, reverting for a moment to control, the simplicity of Equation (5) –
once that model was tested for the capability of actually replicating application runs –
suggests correspondingly simple regulators, contrary to what one would conclude based
on standard black box models.

Mathematical and Computer Modelling of Dynamical Systems 263

Coming to some examples referring to benchmark applications, Figure 3 shows the
bodytrack and vips measured progress rate and the one estimated with the identified
simulation model (5) for a particular run, where the parameters’ behaviour was obtained
by means of an Extended Least Squares procedure. The used applications are body-
track and vips, taken from the PARSEC benchmark suite. The rationale behind the
suite, together with its use, is presented in [34], to which the interested reader is referred
for details.

Figure 4 conversely shows the outcome of the classical black box identification
process, using the ARX (AutoRegressive with eXogenous input) and the ARMAX
(AutoRegressive and Moving Average with eXogenous input) model structures for a
run of the vips application.

Figure 3 illustrates that Equation (5) is actually capable of replicating the data, by
catching main variabilities and trends in a way suitable for control design – its sole
purpose here. Figure 4 also suggests that AR(MA)X models are not keen to capture the
relevant application behaviour. In fact, if one tries to identify the same data with the
Matlab Identification toolbox, performing an order selection for the ARX(na, nb) model,
the result is that the identification procedure tries to give to the model as much higher an
order as it can, indicating that the structural choice is not adequate.

For completeness, the grey box model (5) used in the presented examples, denoting
with #̂ the estimated parameter vector is parametrized for vips as

0 10 20 30 40 50 60 70
0

2

4

6

time (s)

p
r

(W
L
U

/s
)

bodytrack

pr data
estimated pr

0 5 10 15 20 25 30 35
0

2000

4000

time (s)

p
r

(W
L
U

/s
)

vips

pr data
estimated pr

Figure 3. Collected data from the specified software application (black solid line) and simulation
with the grey box identified model (blue dashed line).

264 A.V. Papadopoulos et al.

#̂
vips

¼
kc
αc
oc

2
4

3
5 ¼

258:75388
1:1930687
681:67218

2
4

3
5;

and for bodytrack as

#̂bodytrack ¼

kc
αc
oc
kf
αf
of

2
6666664

3
7777775
¼

0:1931659
1:613834
3:5964752
2:3736936
0:1609101
�1:9965658

2
6666664

3
7777775
:

0

2000

4000

p
r

(W
L
U

/s
)

pr data
ARX(1,1)

0

2000

4000

p
r

(W
L
U

/s
)

pr data
ARX(10,10)
ARX(20,20)

0 5 10 15 20 25 30 35
0

2000

4000

time (s)

p
r

(W
L
U

/s
)

pr data
ARX(30,30)
ARMAX(10,10,10)

Figure 4. Identification results for the vips software application with different model structures.
The data used for the identification are denoted with a solid line, the simulation results of the
ARMAX (10, 10, 10) with a dashed-dotted line, the ARX (30, 30) with a densely dotted line, the
ARX (20, 20) with a densely dashed line, the ARX (10, 10) with a densely dotted line, and the ARX
(1, 1) with a dashed line.

Mathematical and Computer Modelling of Dynamical Systems 265

In addition, by introducing a fit measure, the obtained models can be ranked. The fit
measure allows to determine how close the output of the estimation is to the real process
that it models. Here, the measure is set to

1� Y � Ŷ
�� ��

2

Y � �Yk k2

" #
� 100

where Ŷ is the output of the estimators and Y is the measure of the real data. Table 1
shows the obtained results in the vips case.

Notice that, starting from the system insight induced by the grey box model, success-
ful adaptive control could be achieved with an ARX(1,1) structure.

To end this section with some control-related material, an example is presented on
what can be achieved in that respect. Figure 5 shows experimental results performed on

Table 1. Results obtained with the Matlab identification Toolbox for
the vips application with various model structures.

Model Delay Best Fits

ARMAX (l0, l0, l0) L 62.24
ARX (30, 30) 9 6l.63
ARX (20, 20) 9 6l.53
ARX (l0, l0) 9 6l.36
ARX (l, l) L 58.98

p
r

(W
L
U

/s
)

p
r

(W
L
U

/s
)

0
0

2000

4000

3000

1000

4.5 5
.104

0.5 1 1.5 2 2.5 3 3.5 4

200
0

2

4

6

40 8060 100 120 160 180 220 240200140

bodytrack

vips

time (s)

time (s)

pr
pr°

pr
pr°

Figure 5. Experimental control results with bodytrack and vips: the application progress rate
is required to attain a specified set point value.

266 A.V. Papadopoulos et al.

the same real applications, that is, bodytrack and vips, when their progress is
regulated by an adaptive predictive controller based on model (5).

As can be seen, the required set point is well attained also in the presence of
application behaviour’s variations, thus proving the effectiveness of the underlying
modelling approach.

It is worth mentioning that in the resource allocation literature, using mathematical
models for the allocator design is not the typical case, and heuristics or reinforcement
learning – model-free – techniques are preferred [33]. This is an acceptable approach
whenever the problem at hand is quite complex or difficult to manage, but if a (relatively
small) effort in the modelling phase is spent, many model-based control techniques can be
adopted obtaining much better results. Figure 6 shows the results that can be obtained

4000

3000

1000

0

2000

4000

3000

1000

0

2000

4000

3000

1000

0

2000

4000

3000

1000

0
0 100 200 400 500 0300 100 200 400 500300

2000

time (s) time (s)

MPC - MR

Control Adaptive - MRControl Adaptive - SR

SARSA - SR SARSA - MR

Heuristic - SR Heuristic - MR

MPC - SR

Figure 6. Experimental results with different model-based/non-model-based techniques.
Note: SARSA, State-Action-Reward-State-Action; MPC, Model Predictive Control.

Mathematical and Computer Modelling of Dynamical Systems 267

with vips controlled with different techniques [33], that is, a heuristic one (top row), a
State-Action-Reward-State-Action algorithm (second row), an adaptive control scheme
(third row) and a MPC technique (bottom row). Those techniques were designed to
manage both Single Resource (SR) and Multiple Resource (MR) case.

As can be noticed, in the case of model-free techniques, the achieved performance are
worse than in the case of model-based ones, evidencing that spending some effort in the
modelling phase can significantly improve the control results – recall that the experiments
were conducted on real applications. It is also evident that in the MPC example, the
controller adapts to exploit the presence of multiple resources, and will need more time to
accomplish its task. On the contrary, using a single resource (SR) greatly improve the
convergence rate. However, it has to be noted that the multiple resource (SR) controllers
tend to settle in states that are more power hungry than its multiple resource counterparts.
However, minimizing power consumption falls outside the scope of this paper and should
be investigated more.

6. Retrospect and future directions

We have presented different case studies on the use of discrete-time dynamic models for a
control-oriented design of computing system components. It is now the time to collect and
organize the so gathered experience and make some general statements.

If one approaches computing systems for modelling – and possibly control – purposes,
the paradigms that naturally appear most keen to be applied are undoubtedly event-based.
A vast literature is available on the use of queue networks, automata and the like
[11,35,36]. In our opinion, this is less general than one may think at a first glance.
There are cases – probably more than those mentioned herein – where it is more
convenient to identify some phenomenon that can be described with discrete-time models,
and proceed accordingly as here exemplified. Quite frequently, the involved models are
simple, sometimes even linear and time invariant. Such simple models (think again to the
linear case) allow for a rigorous analysis of stability, reachability, controllability and
similar structural properties.

Furthermore, this simplification is also based on the idea of using discrete-time but not
(necessarily) sampled-signals models. One could well say that this is a viable way of
dealing with events by using a modelling paradigm with more powerful design and
assessment tools.

Finally, since we aim at modelling phenomena occurring in computing systems more
than components of those systems, the approach naturally leads to address both control
and design problems – or more precisely, to view the matter as process/control co-design.

The considerations above allow to establish quite a deep relationship between model-
ling and control for computing systems, and for other application domains like industrial
processes. Sticking to this example, it is well known that some phenomena and control
objectives are best dealt with time-driven models, while others call for event-based ones.
Correspondingly, a vast literature is available on how to structure a complete (process)
control strategy comprising both time- and event-based elements, coordinated in a view to
attaining the general objectives for the problem at hand. We suggest that the same
approach be applied to computing systems, as attempting to stick to only one of the
two mentioned paradigms quite often makes the problem hard to tackle, and often limits
the achievable results.

268 A.V. Papadopoulos et al.

7. Conclusions and future work

This work proposed a novel approach to the modelling of computing systems. The main
idea behind this approach is to capture the relevant dynamics of computing systems with
the simplest possible models, grounded on some ‘physical’ principles. The approach was
shown at work with three case studies, and some general ideas were drawn from that
experience.

Along this research line, future developments can be foreseen as the application of the
presented ideas to other computing system problems, like, for example, bandwidth
allocation. Much further work is required, but an innovative attempt was here made to
circumvent one of the main obstacles for co-design success. This attempt is possibly a
starting point to rethink from scratch core functionalities of computing systems with a
model-based and control-theoretical attitude.

Funding
This work was partially supported by the Swedish Research Council (VR) [grant number C0590801
(2012-5908)] for the projects ‘Cloud Control’ and ‘Power and temperature control for large-scale
computing infrastructures’, and through the LCCC Linnaeus and ELLIIT Excellence Centers.

Note
1. In the scheduler case, to stick to the example, the phenomenon is how the CPU is distributed

among the running tasks. Such distribution depends on control actions, that is, on the time slice
allotted to each task at each scheduler’s intervention and on exogenous disturbances, such as
task blockings, resource contentions and so on.

References
[1] J.O. Kephart and D.M. Chess, The vision of autonomic computing, Computer 36 (1) (2003),

pp. 41–50. doi:10.1109/MC.2003.1160055.
[2] A. Leva, M. Maggio, A.V. Papadopoulos, and F. Terraneo, Control-Based Operating System

Design, IET Control Engineering Series, IET, London, June 2013. ISBN 978-1-84919-609-3.
[3] L. Torvalds and D. Diamond, Just for Fun: The Story of an Accidental Revolutionary,

HarperBusiness, New York, 2002.
[4] S. Dobson, R. Sterritt, P. Nixon, and M. Hinchey, Fulfilling the vision of autonomic comput-

ing, Computer 43 (1) (2010), pp. 35–41. doi:10.1109/MC.2010.14.
[5] A.V. Papadopoulos, M. Maggio, and A. Leva, Control and design of computing systems: What

to model and how, in Proceedings of the 7th International Conference of Mathematical
Modelling, MATHMOD’12, Vol. 7, I. Troch and F. Breitenecker, eds., IFAC, Vienna,
February 2012, pp. 102–107. Available at http://www.ifac-papersonline.net/Detailed/58551.
html

[6] P. Ramadge and W. Wonham, Supervisory control of a class of discrete event processes, SIAM
J. Control Optim. 25 (1) (1987), pp. 206–230. doi:10.1137/0325013.

[7] W. Wonham and P. Ramadge, Modular supervisory control of discrete-event systems, Math.
Control Signal. 1 (1) (1988), pp. 13–30. doi:10.1007/BF02551233.

[8] T. Abdelzaher, J. Stankovic, C. Lu, R. Zhang, and Y. Lu, Feedback performance control in
software services—Using a control-theoretic approach to achieve quality of service guaran-
tees, IEEE Control Syst. Magazine 23 (2003), pp. 74–90. doi:10.1109/MCS.2003.1200252.

[9] Y. Diao, J. Hellerstein, S. Parekh, R. Griffith, G. Kaiser, and D. Phung, A control theory
foundation for self-managing computing systems, IEEE J. Selected Area. Commun. 23 (12)
(2005), pp. 2213–2222. doi:10.1109/JSAC.2005.857206.

[10] T. Patikirikorala, A. Colman, J. Han, and L. Wang, A systematic survey on the design of self-
adaptive software systems using control engineering approaches, in 2012 ICSE Workshop on

Mathematical and Computer Modelling of Dynamical Systems 269

http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1109/MC.2010.14
http://www.ifac-papersonline.net/Detailed/58551.html
http://www.ifac-papersonline.net/Detailed/58551.html
http://dx.doi.org/10.1137/0325013
http://dx.doi.org/10.1007/BF02551233
http://dx.doi.org/10.1109/MCS.2003.1200252
http://dx.doi.org/10.1109/JSAC.2005.857206

Software Engineering for Adaptive and Self-Managing Systems (SEAMS), IEEE, Zurich, 2012,
pp. 33–42. doi:10.1109/SEAMS.2012.6224389.

[11] M. Shor, K. Li, J. Walpole, D. Steere, and C. Pu, Application of control theory to modeling
and analysis of computer systems, Proceedings of Japan-USA-Vietnam Workshop on Research
and Education in Systems, Computation and Control Engineering, HoChiMinh City, 7–9 June
2000. Available at http://archives.pdx.edu/ds/psu/10394.

[12] J.L. Hellerstein, Y. Diao, S. Parekh, and D.M. Tilbury, Feedback Control of Computing
Systems, Wiley, New York, 2004.

[13] K. Lindqvist and H. Hjalmarsson, Identification for control: adaptive input design using
convex optimization, Proceedings of the 40th IEEE Conference on Decision and Control,
2001, Vol. 5, 2001, pp. 4326–4331.

[14] M. Pinedo, Scheduling Theory, Algorithms, and Systems, 3rd ed., Springer, Berlin, 2008.
[15] A. Leva and M. Maggio, Feedback process scheduling with simple discrete-time control

structures, IET Control Theory Appl. 4 (11) (2010), pp. 2331–2342. doi:10.1049/iet-
cta.2009.0260.

[16] M. Maggio, A.V. Papadopoulos, and A. Leva, On the use of feedback control in the design of
computing system components, Asian J. Control. 15 (1) (2013), pp. 31–40. ISSN 1934–6093.
doi:10.1002/asjc.509.

[17] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole, Analysis of a reservation-based feedback
scheduler, in 23rd IEEE of Real-Time Systems Symposium, RTSS 2002, IEEE, San Juan, 2002,
pp. 71–80. doi:10.1109/REAL.2002.1181563.

[18] B. Alam, M. Doja, and K. Biswas, Finding time quantum of round robin CPU scheduling
algorithm using fuzzy logic, in International Conference on Computer and Electrical
Engineering, 2008. ICCEE 2008, IEEE, Phuket, 2008, pp. 795–798. doi:10.1109/
ICCEE.2008.89.

[19] G. Buttazzo and L. Abeni, Adaptive workload management through elastic scheduling, Real-
Time Syst. 23 (2002), pp. 7–24. doi:10.1023/A:1015342318358.

[20] K.W. Batcher and R.A. Walker, Dynamic Round-Robin Task Scheduling to Reduce Cache
Misses for Embedded Systems, in Proceedings of the Conference on Design, Automation and
Test in Europe, DATE ’08, ACM, New York, 2008, pp. 260–263.

[21] W. Chow and W. Chiu, An analysis of swapping policies in virtual storage systems, IEEE
T. Softw. Eng. 3 (2) (1977), pp. 150–156.

[22] R. Jones, Factors affecting the efficiency of a virtual memory, IEEE Trans. Comput. C-18 (11)
(1969), pp. 1004–1008. doi:10.1109/T-C.1969.222570.

[23] L. Levy and P. Lipman, Virtual memory management in the VAX/VMS operating system,
Computer 15 (3) (1982), pp. 35–41. doi:10.1109/MC.1982.1653971.

[24] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, Memguard: Memory bandwidth
reservation system for efficient performance isolation in multi-core platforms, in 19th IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS), IEEE,
Philadelphia, PA, 2013. doi:10.1109/RTAS.2013.6531079.

[25] E. Mumolo and G. Bernardis, A novel demand prefetching algorithm based on volterra
adaptive prediction for virtual memory management systems, in Proceedings 30th Hawaii
International Conference on System Sciences, Vol. 5, IEEE, Wailea, HI, 1997, pp. 160–167.
doi:10.1109/HICSS.1997.663171.

[26] J. Corbet, 2.6 Swapping Behavior. Available at http://lwn.net/Articles/83588/ (Accessed 3 June
2014).

[27] F. Terraneo and A. Leva, Feedback-based memory management with active swap-in, Control
Conference (ECC), 2013 European, IEEE, Zurich, July 2013, pp. 620–625. Available at http://
ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6669385&tag=1.

[28] IBM, An architectural blueprint for autonomic computing, Tech. Rep., IBM Corp.,
Hawthorne, NY, June 2005. Available at http://www-03.ibm.com/autonomic/pdfs/AC%
20Blueprint%20White%20Paper%20V7.pdf (Accessed 22 July 2014).

[29] A.V. Papadopoulos, M. Maggio, S. Negro, and A. Leva, General control-theoretical frame-
work for online resource allocation in computing systems, IET Control Theory Appl. 6 (11)
(2012), pp. 1594–1602. ISSN 1751-8644. doi:10.1049/iet-cta.2011.0632.

[30] R. Kufrin, Measuring and improving application performance with PerfSuite, Linux J. 2005
(2005), pp. 4–10.

270 A.V. Papadopoulos et al.

http://dx.doi.org/10.1109/SEAMS.2012.6224389
http://archives.pdx.edu/ds/psu/10394
http://dx.doi.org/10.1049/iet-cta.2009.0260
http://dx.doi.org/10.1049/iet-cta.2009.0260
http://dx.doi.org/10.1002/asjc.509
http://dx.doi.org/10.1109/REAL.2002.1181563
http://dx.doi.org/10.1109/ICCEE.2008.89
http://dx.doi.org/10.1109/ICCEE.2008.89
http://dx.doi.org/10.1023/A:1015342318358
http://dx.doi.org/10.1109/T-C.1969.222570
http://dx.doi.org/10.1109/MC.1982.1653971
http://dx.doi.org/10.1109/RTAS.2013.6531079
http://dx.doi.org/10.1109/HICSS.1997.663171
http://lwn.net/Articles/83588/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6669385&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6669385&tag=1
http://lwn.net/Articles/83588/
http://lwn.net/Articles/83588/
http://dx.doi.org/10.1049/iet-cta.2011.0632

[31] B. Sprunt, The basics of performance-monitoring hardware, IEEE Micro. 22 (4) (2002),
pp. 64–71. doi:10.1109/MM.2002.1028477.

[32] H. Hoffmann, J. Eastep, M.D. Santambrogio, J.E. Miller, and A. Agarwal, Application heart-
beats: a generic interface for specifying program performance and goals in autonomous
computing environments, Proceeding of the 7th International Conference on Autonomic
Computing, ACM Press, New York, 2010, pp. 79–88.

[33] M. Maggio, H. Hoffmann, A.V. Papadopoulos, J. Panerati, M.D. Santambrogio, A. Agarwal,
and A. Leva, Comparison of decision-making strategies for self-optimization in autonomic
computing systems, ACM Trans Auton. Adap. Syst. 7 (4) (2012), pp. 1–32. ISSN 1556-4665.
doi:10.1145/2382570.2382572.

[34] C. Bienia, S. Kumar, J.P. Singh, and K. Li, The PARSEC benchmark suite: Characterization
and architectural implications, in Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques, ACM, Toronto, October 2008.
doi:10.1145/1454115.1454128.

[35] M.A. Kjær and A. Robertsson, Analysis of buffer delay in web-server control, American
Control Conference (ACC), 2010, Baltimore, MD, June 2010, pp. 1047–1052. doi:10.1109/
ACC.2010.5530756.

[36] A. Robertsson, B. Wittenmark, M. Kihl, and M. Andersson, Design and evaluation of load
control in web server systems, in Proceedings of the 2004 American Control Conference,
Vol. 3, IEEE, Boston, MA, 2004, pp. 1980–1985.

Mathematical and Computer Modelling of Dynamical Systems 271

http://dx.doi.org/10.1109/MM.2002.1028477
http://dx.doi.org/10.1145/2382570.2382572
http://dx.doi.org/10.1145/1454115.1454128
http://dx.doi.org/10.1109/ACC.2010.5530756
http://dx.doi.org/10.1109/ACC.2010.5530756

Copyright of Mathematical & Computer Modelling of Dynamical Systems is the property of
Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted
to a listserv without the copyright holder's express written permission. However, users may
print, download, or email articles for individual use.

	Abstract
	1. Introduction
	2. The quest for physics
	3. A unified framework for task scheduling
	4. A unified framework for memory management
	5. A unified framework for resource allocation
	6. Retrospect and future directions
	7. Conclusions and future work
	Funding
	Note
	References

