Simulink to UPPA AL Statistical Model Checker:
Analyzing Automotive Industrial Systems

Predrag Filipovikj!, Nesredin Mahmud!, Raluca Marinescu!, Cristina
Seceleanu!, Oscar Ljungkrantz?, and Henrik Lonn?

! Maélardalen University, Visteras, Sweden,
{first.last}Omdh.se
2 Volvo Group Trucks Technology, Gothenburg, Sweden,
{oscar.ljungkrantz, henrik.lonn}@volvo.com

Abstract. The advanced technology used for developing modern auto-
motive systems increases their complexity, making their correctness as-
surance very tedious. To enable analysis, but also enhance understanding
and communication, by simulation, engineers use MATLAB/Simulink
modeling during system development. In this paper, we provide further
analysis means to industrial Simulink models by proposing a pattern-
based, execution-order preserving transformation of Simulink blocks into
the input language of UPPAAL Statistical Model checker, that is, timed
(hybrid) automata with stochastic semantics. The approach leads to be-
ing able to analyze complex Simulink models of automotive systems, and
we report our experience with two vehicular systems, the Brake-by-Wire
and the Adjustable Speed Limiter.

1 Introduction

Features for automating driving tasks, such as the Adjustable Speed Limiter
(ASL) that enables drivers to set a maximum speed in order to reduce the risk
of over speeding, as well as trends like the drive-by-wire technology, in which
standard vehicle operations such as braking are carried out by electronic com-
ponents rather than mechanical ones, make the assurance of a modern vehicle’s
correct operation extremely challenging.

Model-based design enables industry to create executable specifications in
the form of MATLAB/Simulink [1] models that can be simulated and formally
analyzed [2] to detect hidden design errors and requirement violations.

In this paper, we introduce a pattern-based approach (Section 3) that cap-
tures formally the behaviors of a large set of Simulink blocks, as networks of
stochastic timed/hybrid automata, and report our experience with analyzing
two industrial systems from Volvo Group Trucks Technology, the Brake-by- Wire
(BBW) prototype and the operational Adjustable Speed Limiter (ASL), with UP-
PAAL SMC (Statistical Model Checker) [3] (Section 4). The crux of our method
is twofold: (i) using patterns in the transformation, which eases the modeling
process while preserving the execution semantics of Simulink blocks, and (ii) ver-
ifying the encodings of the Simulink blocks behaviors as C routines in UPPAAL,
with the program verifier Dafny [4].

Our endeavor is justified by the industrial needs of ensuring correctness with
respect to both functional and timing behaviors of automotive embedded sys-
tems. Moreover, an initial investigation of verifying ASL’s Simulink models with
the Simulink Design Verifier (SDV) shows limitations in terms of verifying large
models and that a substantial part of the requirements cannot be directly con-
cluded due to, for instance, translation problems and boundaries not being de-
fined. The application of our approach to BBW and ASL (specifically ASL’s En-
gine Manager) shows improved scalability in the sense of being able to function-
ally analyze via statistical model checking the complete transformed Simulink
models, but it also reveals limitations in tackling timing requirements, due to
using only information from Simulink models.

Related work. Several works have already tackled the formal analysis of
Simulink models. Barnat et al. [5] and Meenakshi et al. [6] propose transfor-
mations that target only Simulink blocks with discrete-time behavior. The work
of Agrawal et al. [7] focuses on the transformation of Simulink into networks
of automata, without providing concrete means for formal verification. Miller
[8] investigates how translating Simulink to Lustre enables formal verification
with a constellation of model checkers and provers. Transformation frameworks
for Stateflow into timed and hybrid automata are presented in [9] and [10],
respectively, with the former one applicable on a restricted class of Stateflow
diagrams. Compared to these frameworks, our approach covers both continuous-
and discrete-time blocks, and we show how our transformation leads to the for-
mal verification of industrial automotive systems models, against a wide set of
requirements. This is an endeavor not really carried out before. One other solu-
tion is the use of PLASMA-Lab [11], a tool that is able to take as input different
Simulink simulations and provide statistical model checking results. Compared
to this approach, we generate a formal model that can be extended further (e.g.,
with extra-functional information) to provide additional verification results.

2 Preliminaries

In this section, we present the two tools used in our framework: (i) Simulink,
which is used to model the automotive systems, and (ii) UPPAAL SMC, which
is used to analyze the systems.

Simulink. Simulink [1] is a graphical programming environment for modeling,
simulation and code generation targeting multi-domain dynamic systems. The
tool provides a set of libraries with predefined blocks that can be combined to
create a hierarchical diagram of the system. A block represents an atomic dy-
namic system that computes an equation or another modeling concept to produce
an output, either continuously (continuous-time block), or at specific points in
time (discrete-time block). Besides these atomic blocks, Simulink supports def-
inition of custom blocks via Stateflow diagrams or user-defined functions called
S-Functions written in MATLAB, C, C++ or Fortran. The hierarchical diagram
is achieved through the implementation of subsystem, a block that contains a

set of atomic blocks and possibly other subsystem blocks. Such subsystems can
be wvirtual (blocks are evaluated according to the overall model), or non-virtual
(blocks executed as a single unit). A non-virtual subsystem can also be condi-
tionally executed based on a predefined triggering function. During simulation,
Simulink determines the order in which to invoke the blocks. This block invoca-
tion order is done based on a predefined sorted order. In Simulink, the dynamic
models can be simulated and the results can be displayed as simulation runs.

UPPAAL SMC. The UPPAAL SMC [12] tool provides statistical model check-
ing for stochastic hybrid systems. A hybrid automata (HA) is defined as a tuple:

HA=(Lly,X,%,E,FI) (1)

where L is a finite set of locations, Iy € L is the initial location, X is a finite set
of continuous variables, X = X; W X, is a finite set of actions partitioned into
inputs (X;) and outputs (Xy), F is a finite set of edges of the form (I, g, a, ¢,1’),
where [and I’ are locations, g is a predicate on RX, action label a € X, and ¢ is
a binary relation on R*, F(I) a delay function for the location | € L, and I as-
signs an invariant predicate I(l) to any location [. With this definition, UPPAAL
SMC extends the timed automata (TA) tuple used by UPPAAL [13] with the
delay function F' that allows the continuous variables to evolve according to or-
dinary differential equations. In UPPAAL SMC, the automata have a stochastic
interpretation based on: (i) the probabilistic choices between multiple enabled
transitions, and (ii) the non-deterministic time delays that can be refined based
on probability distributions, either uniform distributions for time-bounded de-
lays or user-defined exponential distributions for unbounded delays.

A model in UPPAAL SMC consists of a network of interacting stochastic
HA that communicate through broadcast channels and shared variables. In the
network, the automata repeatedly race against each other, that is, they inde-
pendently and stochastically decide how much to delay before delivering the
output, and what output to broadcast at that moment, with the “winner” being
the component that chooses the minimum delay.

UPPAAL SMC uses an extension of WMTL [14] to provide probability eval-
uation (Pr(xy<c@)), where * stands for ¢(eventually) or O(always), which cal-
culates the probability that ¢ is satisfied within cost < C, but also hypothesis
testing and probability comparison.

3 Simulink to UPPAAL SMC: Transformation Approach

There are two major aspects of transforming Simulink models into a network of
stochastic timed /hybrid automata: (1) transforming the individual blocks, and
(2) synchronizing their execution to preserve the behavior of the model. In this
section we present how we transform Simulink models into a network of TA
with stochastic semantics, suitable for statistical model checking with UPPAAL
SMC.

Discrete-time blocks execute their computational routine on a predefined ob-
servable time interval called sample time, whereas continuous-time ones execute

the routine over infinitely small time intervals. The same classification applies
for the S-Functions that are masked, preserving only the specification of their
input-output relation. For the subsystem blocks, the transformation is reduced
to a flattening procedure which eliminates a subsystem block from the model
and replaces it with its inner content with preserved atomicity of execution. The
details and algorithm for flattening are given later in the section. The flattening
procedure, however, does not apply for Referenced models given as as executa-
bles only, as no Simulink model is available for them. Such blocks are treated as
atomic.

In the following, we provide a formal definition of a Simulink block as a tuple
and patterns for transforming both discrete- and continuous-time blocks into TA
with stochastic semantics.

Each atomic Simulink block can be formally defined as a tuple:

B = (Vin, Vout, Vb, ts, Init, block Routine) (2)

where: V;,,, Vour and Vp denote the set of input, output and data variables, re-
spectively; t; denotes the sample time, Init is the initialization function, whereas
the blockRoutine is a function that maps inputs and state variables onto out-
put values. Our transformation is basically a semantic anchoring of tuple B of
equation (2) onto the HA tuple given by equation (1).

The automata patterns corresponding to discrete and continuous categories
is given in Figures la and 1b, respectively. Each of them is composed out of
three locations, namely Start, Offset and Operate, with Start being the initial
one. The Offset location is used to model the delay of the block execution. The
last location is Operate, in which the automaton produces output either at pre-
defined time intervals, or continuously. A local clock ¢ is used to model the delay
of the execution in both cases, and also to trigger the periodic behavior of the
discrete blocks, whereas the continuous behavior is modeled via assigning ezpo-
nential rates on the Operate location. The exponential rate is a mechanism used
to specify the probability of the automaton to leave a location, according to an
exponential distribution [3]. Simulation time is represented via the global clock
gtime, which is used as part of the synchronization mechanism. The input pa-
rameters relevant for the pattern and its instantiation for a particular Simulink
block are passed as array called param. The start time of the atomaton is cal-
culated as a combination of the block execution order (sn) and the inter-arrival
time of the block (IAT).

Preserving Block Execution Order. The execution order (sorted order) of
the Simulink model blocks is generated by calling the “slist” function while
Simulink is in debug mode. Simulink uses the assigned execution order to invoke
blocks during simulation, with smaller execution order number denoting higher
priority. We perform the flattening of the sorted order automatically, using Al-
gorithm 1, which parses the “slist” output and assigns execution order number
to atomic blocks nested arbitrary deep inside a subsystem.

We use this execution order to release the discrete and continuous time blocks
during initialization in the UPPAAL model, and to arbiter their execution at

Start Offset
@ gtime >= sn*IAT_a t >= param[OFFSET]
initialize() N\ t=0,
gtime <= sn*IAT t <= param[OFFSET] blockRoutine()

Start Offset
@)atime >= snIAT _ @y t>= param[OFFSET]
initialize() blockRoutine()
gtime <= sn*IAT t <= param[OFFSET] 1000

Operate

blockRoutine() blockRoutine()

(a) Pattern for discrete blocks (b) Pattern for continuous blocks

Fig.1: Our used TA patterns

Algorithm 1 Flattening algorithm for slist.

1: function flatten(String currentBlockld, String currentBlockOrderNo, String parentBlockO-

rderNo)
orderedList <— emptyList > Ordered list containing blocks IDs.
if isAtomicBlock(currentBlockId) then > The current block is atomic.
orderedList.append(parent BlockOrder No.concat(current BlockOrderNo))
else > The current block is a subsystem.

currentChildren <+ getChildren(currentBlockId)
concatenatedParentld < parentBlockOrderNo.concat(currentBlockOrderNo)
for all child in currentChildren do

orderedList.append(flatten(child.id, child.order No, concatenatedParentlId))

return orderedList

times when two or more blocks are ready to execute. Also, to assure the data
integrity and predictability in the model we provide transformation for the Rate-
Transition blocks.

Verifying UPPAAL Simulink Block Routines With Dafny. We use Dafny
[4], a language and program verifier, to prove the functional correctness of the
block routines encoded as C functions in UPPAAL. Below we present an example
that shows verification of simple block routine using Dafny.

Rounding is one of the fundamental operations in Simulink, with several
variants including rounding to floor, ceiling, fix, etc. In this example, we consider
the floor variation of the function for non-negative real numbers. Due to space
limitation, we omit the encoding of the function and present only the assertions
that are used for proving the correctness. By using the Dafny, we establish the
correctness of the function by checking the following pre- and postconditions,
denoted as requires and ensures, respectively: “requires input > 0.0", “ensures 0.0
< (input - output) < 1.0, where output € Z>(. We use the same approach to verify
the correctness of all Simulink block behaviors that we encode as C functions in
UPPAAL.

4 Application on Industrial Use Cases: Results

The proposed transformation has been validated on two industrial use cases,
namely the Brake-by-Wire (BBW) industrial prototype, and the Adjustable
Speed Limiter operational system. In this section we provide a brief overview of
our results.

The BBW Use Case. The BBW system is a braking system equipped with an
ABS function, and without any mechanical connection between the brake pedal

and the brake actuators. A sensor reads the pedal’s position, which is used to
compute the desired brake torque. At each wheel, the ABS algorithm decides
whether to apply the brake torque based on the slip rate. When the slip rate
increases above 0.2, the friction coefficient of the wheel starts decreasing. For
this reason, if the slip rate is greater than 0.2 the brake actuator is released and
no brake is applied, otherwise the requested brake torque is used. The BBW
system has a set of 13 functional and 4 timing requirements that need to be
verified. Here, we present two such requirements, in natural language:

R1psw (End-to-end deadline): The time needed for a brake request to prop-
agate from the brake pedal sensor to the wheel actuator should not exceed
200 ms.

R2ppw (Functional requirement): If the slip rate exceeds 0.2, then the ap-
plied brake torque shall be set to 0.

Transformation. The hierarchical Simulink model for the BBW system con-
sists of 320 blocks, out of which only 174 are computational blocks. The re-
maining 146 blocks define the structure of the model (e.g., Subsystem, Inport,
Outport, From, Goto, Reference) and they are removed during the flattening.
Consequently, the transformation provides a network of 174 TA. In this network,
only 10 automata have continuous-time behavior, while the rest compute output
only at sample times.

trigg[localdetect_RR_so]?
torque:=localdetect_out_RR

s<=0.2 trigg[rt5_so]?

. ” trigg[releasebrdke_RR_so]? trigg[threshold10kmph_RR_so]?
trigg[driverbrake_so] ’ ’

trigg[relationaloperator_RR_so¥
s:=relationaloperator_out_RR trigg[localdetect_RR_so]?

rgue: =Ioca\detec!,o%t\RR
o

rigg(rtp_so]?
s>0.2
trigg[releasebrake_RR_so]?

trigg[threshold10kmph_RR_so]?

Fig.2: BBW’s Monitor Automaton.

Verification. In order to verify the system properties mentioned above, we
have implemented a Monitor automaton that follows the propagation of data
throughout the system, from sensors to actuators. It relies on the definition of
an array of broadcast channels trigg[N], with N € [1, 174]. Each TA in the net-
work broadcasts the message trigglown_id]! when it performs a new computation
blockRutine(), and the Monitor receives these messages in a predefined order. For
own_id we have used the predefined sorted number, since it is unique for each
TA. Figure 2 presents an excerpt of the Monitor implemented for requirements
Rlgpw and R2paw.

For the BBW system we have verified all functional and timing requirements.
In Table 1 we provide concrete verification results for requirements R1ggw and
R2ppw.

Table 1: Overall Results of Statistical Model Checking.

Req. |Query Result Runs
R1gsw|Pr[Monitor.z <= 200](<> Monitor.End) |Probability € [0.902606, 1]|36
with confidence 0.95
R2gpw|Pr[Monitor.x <= 200]([] Monitor.W heel |Probability € [0.900924, 1]|42
and Monitor.slipRate > 0.2 and with confidence 0.975
Monitor.torque == 0)

The ASL Use Case. ASL is used to limit the truck speed to not exceed a
maximum speed set by the driver. The driver normally enables and disables
the function using control buttons located on the dashboard, and the freewheel.
However, ASL can also be disabled when the accelerator pedal is pressed beyond
a hard point, or the truck is subjected to overspeed, for example, in downhill,
or becomes faulty during operation. ASL implements around 300 requirements,
and is modeled using 4845 Simulink blocks, of which 2835 are non virtual blocks.
We limit our verification to ASL Engine Manager (ASL-EM), which is a logical
component, and an interface to the power-train of the truck’s engine. It en-
ables several functions of the truck, e.g., engine start and stop, climate control,
fuel economy strategy, and road speed limitation. In our case study, we have
transformed 94 non-virtual Simulink blocks, and verified all their functional and
timing requirements. Examples of the ASL requirements are: (i) R14g7(Min.
speed limit): The ASL-EM controller shall be able to handle road speed limit
requests down to 5 km/h, (ii) R245y (Lowest speed limit): When several road
speed limit sources are active at the same time, ASL-EM shall use the low-
est speed limit value, (iii) R3 457, (Max. latency): The maximum latency of the
ASL-EM block shall be 20 ms.

5 Discussion and Conclusions

In this paper, we have introduced a pattern-based transformation of discrete- and
continuous-time Simulink blocks into networks of stochastic timed automata.
The approach is motivated by the industry’s need of increasing the assurance of
vehicular systems developed using Simulink, and the limited coverage obtained
by employing the SDV for verification. Applying our approach on the BBW
and ASL-EM systems has provided improved scalability for verification, that is,
we have analyzed statistically the complete Simulink models, but we have also
encountered concrete challenges and limitations, as follows:

1. The formal model needs to obey the same execution order as the Simulink one.
For this, we have enforced the sorted order as generated by Simulink, which is
usually respected during execution, except for block methods (blocks operating at
the same rate and in the same task). These exceptions need to also be taken into
account during the transformation.

2. Simulink allows for the integration of code in the model by using S-function. In
our transformation, we do not provide direct means to verify this code. We view
such components as “black boxes”, modeled based on their defined mask and not
the code itself.

3.

Simulink lacks the possibility for modeling the timing behavior of the system (be-
yond the sample time), thus limiting the formal verification of extra-functional
requirements. By pairing the Simulink model with an architectural model that
allows for the representation of a wide set of extra-functional properties (such as
timing behavior and possibly resource consumption), the transformation and the
verification could provide a deeper insight to the engineers. Moreover, in the current
version of our transformation, we have not exploited the full power of UPPAAL
SMC. We have used TA with stochastic behavior, rather than stochastic HA. This
is due to the fact that for more complex blocks (e.g., Derivative, Integrator) we
have chosen to use the numerical approximation performed by Simulink, instead
of implementing the function directly in UPPAAL SMC. This modeling decision
will be further investigated.

Acknowledgement

This work was funded by the Swedish Governmental Agency for Innovation Systems
(VINNOVA) under the VeriSpec project 2013-01299.

References

1.
2.

3.

4.

10.

11.

12.

13.

J. B. Dabney and T. L Harman. Mastering Simulink. Pearson/Prentice Hall, 2004.
B. Boyer, K. Corre, A. Legay, and S. Sedwards. Plasma-lab: A flexible, distributable
statistical model checking library. In QEST, pages 160-164. Springer, 2013.
Alexandre David, K.G. Larsen, A. Legay, M. Mikuéionis, and D.B. Poulsen. Uppaal
smc tutorial. STTT Journal, 17(4):397-415, 2015.

K. Rustan M. Leino. Dafny: An automatic program verifier for functional correct-
ness. In LPAR’10, pages 348-370. Springer, 2010.

J. Barnat, J. Beran, L. Brim, T. Kratochvila, and P. Rockai. Tool chain to Support
Automated Formal Verification of Avionics Simulink Designs. In FMICS, pages
78-92. Springer, 2012.

B Meenakshi, A. Bhatnagar, and S. Roy. Tool for Translating Simulink Models
into Input Language of a Model Checker. In ICFEM, pages 606—620. Springer,
2006.

A. Agrawal, G. Simon, and G. Karsai. Semantic Translation of Simulink/Stateflow
Models to Hybrid Automata using Graph Transformations. ENTCS Journal,
109:43-56, 2004.

Steven P. Miller. Bridging the Gap Between Model-Based Development and Model
Checking. In TACAS, pages 443-453. Springer, 2009.

K. Manamcheri, S. Mitra, S. Bak, and M Caccamo. A Step Towards Verifica-
tion and Synthesis From Simulink/Stateflow Models. In HSCC’11, pages 317-318.
ACM, 2011.

Y. Jiang, Y. Yang, H. Liu, H. Kong, M. Gu, J. Sun, and L. Sha. From Stateflow
Simulation to Verified Implementation: A Verification Approach and A Real-Time
Train Controller Design. In RTAS’16, pages 1-11, April 2016.

A. Legay and L.M. Traonouez. Statistical Model Checking of Simulink Models
with Plasma Lab. In FTSCS’15, pages 259-264. Springer, 2015.

A. David, D. Du, K.G. Larsen, A. Legay, M. Mikucionis, D.B. Poulsen, and S. Sed-
wards. Statistical Model Checking for Stochastic Hybrid Systems. arXiv preprint
arXi:1208.3856, 2012.

K.G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. STTT Journal,
1(1):134-152, 1997.

14. P. Bulychev, A. David, K.G. Larsen, A. Legay, G. Li, and D.B. Poulsen. Rewrite-
based Statistical Model Checking of WMTL. In RV Conference, pages 260-275.
Springer, 2012.

