
A Comparison of Multiprocessor Real-Time Operating Systems

Implemented in Hardware and Software

Tobias Samuelsson Mikael Åkerholm, Peter Nygren, Johan Stärner, Lennart Lindh
ABB Robotics Department of Computer Engineering, Mälardalen University

Väster̊as, Sweden Väster̊as, Sweden
tobias.samulesson@se.abb.com {mikael.akerholm, peter.nygren, johan.starner, lennart.lindh}@mdh.se

Abstract

In this paper we present a performance comparison

between a real-time multiprocessor kernel implemented

in hardware and a corresponding kernel implemented

in software. The hardware kernel showed overall bet-

ter performance. For instance the speedup achieved

with the hardware kernel was up to 2.6 times. We

also present an optimization that has been applied to

the software kernel, which in some cases showed even

better performance than the hardware kernel.

1 Introduction

As real-time applications become larger and more
complex every year the demands on real-time platforms
also increase, which motivates moving real-time ap-
plications onto multiprocessor systems. One method
to obtain even more performance is to utilize spe-
cial purpose hardware, an example Real-Time Unit
(RTU) [8]. The RTU contain Real-Time Operating
System (RTOS) services implemented in hardware.
The work in this paper investigates the gain with uti-
lizing the RTU in a specific multiprocessor system,
through a benchmark with a corresponding software
kernel. The benchmark is composed by parts from
well-known benchmarks and the focus is on perfor-
mance of basic OS functionality. The software kernel
has been especially implemented for this comparison;
it offers the same but slightly reduced Application In-
terface (API) as the RTU. The gain with utilizing the
same API is that we can execute the same benchmark
code and thereby eliminate implementation differences
and strive towards a fair comparison. Furthermore we
apply an optimization to the software kernel, which
should minimize some of the weaknesses. To explore
the potential with the new version of software kernel,
some of its benchmark results are compared with the
results achieved with the former version as well as with

the RTU. The purpose is to find the differences with
implementing kernels in software and hardware. The
expectation is clearly that the hardware kernel out-
performs the software kernel. But how much can we
assume to gain when utilizing a hardware RTOS? Can
we unveil any weaknesses with the current hardware
implementation?

A similar comparison has been made in [1]. The dif-
ferences are firstly divergent hardware/software API;
furthermore the author relies on executing one cover-
ing workload. In [9], a comparison between a software
kernel and a hardware kernel on a single processor sys-
tem has been done. In [4] the authors present a simula-
tion based comparison. The remaining part of section
1 firstly introduces the common hardware platform fol-
lowed by descriptions of the two kernels. Section 2 de-
fines the benchmark method and section 3 presents and
discusses the results. In section 4 we shortly present an
optimization of the software kernel. In section 5 we dis-
cuss the paper and the 6th section contains suggestions
for future work.

1.1 Common Hardware Platform

In order to obtain comparable results, it is impor-
tant that the hardware configuration is equivalent. The
hardware platform used by both kernels in this paper is
the SARA system described in [5]. The hardware archi-
tecture of the SARA system can be divided into local
CPU boards, bus-arbitrator, global RAM and I/O. Fig-
ure 1 shows a schematic picture of the SARA system.
Each board has a Motorola PPC750 processor, running
at 367 MHz and the boards are connected to each other
with a Compact PCI bus (CPCI). The CPCI bus offers
eight slots for CPU boards, of which one is a special
system slot hosting the system board. Communica-
tion and synchronization between different processes
in the system is performed through a global memory
that resides on the system board. This implies that
all communication between tasks go through the sys-



 Figure 1. block diagram of the SARA system with RTU

tem board, even if two tasks residing on the same slave
board are communicating.

1.2 Hardware Kernel

The RTU is a RTOS kernel implemented in a Field
Programmable Gate Array (FPGA) with purpose to
increase the performance and predictability. As shown
in figure 1, the RTU is attached to the local PCI bus
on the system board. The RTU moves scheduling,
Inter Process Communication (IPC), semaphore han-
dling and time management from software to hardware.
The task scheduling algorithm is premptive and based
on Fixed Priority Scheduling (FPS). The RTU has one
ready queue for each CPU and there are two events that
can perform a taskswitch. The task itself can signal a
taskswitch and the scheduler can interrupt an execut-
ing task when a task with higher priority is ready to
execute. To communicate with a slave board the RTU
generates an interrupt through the doorbell register on
the slave CPU board. The interrupts to the system
board is generated through the standard interrupt lines
provided by the PCI bus.

The IPC and synchronization between tasks that
the RTU provides, consist of a Virtual Communica-
tion Bus (VCB) [6], which is integrated with the RTU.
The VCB provides a message passing mechanism that
allows task-to-task communication locally on one CPU
as well as between different CPUs. The VCB consists of
two layers; one hardware layer and one software layer.
The hardware layer contains message transaction func-
tionality and is implemented in the same FPGA as
the RTU. The software layer runs on the CPU on the
system board and contains the API against the hard-
ware layer. The message queues are priority based and
placed in the global memory on the system board, but
handled by the RTU. If an incoming message has higher
priority than the receiving task, the priority of the re-
ceiving task is raised during the message transaction.

The interface to the RTU is read- and writeable reg-
isters, which makes it easy to port to different plat-

forms. The RTU has registers that store information
about the different CPUs and tasks. Each task in the
system has a Task Control Block (TCB). One part of
each TCB is implemented in software, and another in
hardware in the RTU. The RTU has a maximum of 256
TCBs so the maximum number of tasks that the RTU
supports is 256 tasks. The TCBs in the RTU have reg-
isters to store state, priority, round robin time, pointer
to a function, stack pointer, stack size and which CPU
the particular task will execute on. The round robin
time is an extension to FPS scheduling, the purpose
it that tasks with equal priority can utilze this mech-
anism to share a processor. If the round robin time is
set, the associated task will execute the specified time
and then it is interrupted by the RTU to leave time
for other tasks with equal priority. For further details
related to the RTU, please refer to [8].

1.3 Software Kernel

The software kernel acts like the RTU, with respect
to API and general semantics. The CPU on the system
board executes ordinary tasks as well as the software
kernel. The software kernel utilizes the same platform
as shown in figure 1, except that there is no RTU at-
tached to the system board. The software kernel is
written in PPC750 assembler, C and C++, compiled
with GNU Compiler Collection version 2.95.1.

The software kernel is centralized, thereby the kernel
on the system board schedules the whole system. The
scheduling algorithm is priority driven and premeptive
like the algorithm in the RTU. Scheduling decisions are
enforced through interrupts. Each task executes only
on the node where it was created and registered, so
no task migration is allowed. The scheduler holds the
current priority and state of all tasks in the system,
while each node has a TCB associated with each of its
own tasks. The TCB is the same as in the RTU except
that the complete TCB is implemented in software, i.e.
the TCB registers in the RTU are moved to software.
The message-queues are placed in the global memory
on the system board and to protect them, a priority
driven semaphore-protocol has been implemented.

With a centralized implementation costly clock syn-
chronization and clock-tick interrupts on the slave
boards can be avoided. Clock-tick interrupts are used
only on the master board, and the resultion differs
from the RTU. The RTU has configurable clock-tick
resolution, however the default and used interval be-
tween two interrupts is 10 s. Using such a resolution
in the software version leaves no time to other activi-
ties. Instead the interval between two ticks is set to 100
ms. This seems to be too long during normal circum-



stances, since a kernel should be able to handle delays
for about 10 ms. But as a consequence of many system
calls, such as sleep, send and receive the kernel executes
the scheduling algorithm and can postpone any pend-
ing clock-tick interrupts another 100 ms. As a result
when executing system-call intensive applications, the
software kernel becomes completely event driven. All
benchmarks in this paper are system-call intensive or
measure only the time for a specific system-call. The
motivation for using a 100 ms period in a benchmark
situation is that it is possible to manually start differ-
ent tasks and nodes during the same period.

2 Benchmark Methods

Both kernels in the benchmark have the same API,
although the software kernel has a slightly reduced ver-
sion. The benchmark series is built with own ideas
and parts from the benchmarks: Rhealstone [3], SSU
[4] and Distributed Hartstone [2]. All tests have been
repeated five times in order to compute the average re-
sult. Five times was regarded as enough to constitute
basis for the comparison since each observation point
had a very small variation range.

2.1 Create Task

This test case is taken from the SSU benchmark and
it is the time it takes to create one task that is mea-
sured. The timekeeping starts when a task is going to
be created and stops when the task has been created.
One condition that may affect the task creation time
are the number of already created tasks if the RTOS
has to traverse list structures with existing tasks, an-
other is where in the system the task is located due to
access time variations caused by physically varying dis-
tances. Therefore the number of already created tasks
is varied between 0 and 16 and the test is performed
on both the master and a slave node independently. In
complex multiprocessor systems, 16 tasks are still very
low number of tasks. The aim for this benchmark is
to find out if the number of already created tasks af-
fects the create task time, therefore the maximum of
16 tasks has been considered as enough.

2.2 Taskswitch

This test case has been influenced by the Rhealstone
benchmark and it measures the time to switch between
two independent and active tasks with equal priority.
The taskswitch time is crucial to the performance in a
real-time system. In this test the terms for variation
are the number of simultaneously active tasks and the

placement of tasks, i.e. on master or slave node. Prac-
tically we measure the time between that a task calls
for a manual taskswitch, until the next task becomes
executing. The number of active tasks is varied be-
tween 2 and 16, and the tests are performed on both
the master and a slave node independently.

2.3 Communication Bandwidth

Variants of this measurement are included in Rheal-
stone and Distributed Hartstone. This measurement
aims to measure the number of bytes per second one
task can send to another. The communication band-
width may be different for tasks hosted by different
processors and tasks hosted by the same processor. For
this reason independent benchmarks with the receiving
and sending task hosted by different processors are per-
formed. Because this benchmark focuses on effective
bandwidth, which is the bandwidth a user can utilize,
bytes and processing that belongs to the RTOS or com-
munication protocol are redundant. Therefore the ef-
fective bandwidth in most systems depends of the mes-
sage size, the same amount of data divided into more
messages gives more redundant bytes, and the message
size must be a target for variation. The experimental
setup used for this benchmark relies on measuring the
time it takes to send a fixed amount of raw data be-
tween two tasks, with no other communication present.
The timekeeping starts when the first message is sent
by the sending task, and ends when the last message is
received by the receiving task.

2.4 Communication Latency

The end-to-end communication latency is also mea-
sured in Distributed Hartstone. Using different mes-
sage sizes between 1 and 128 bytes with regular inter-
vals between the two extremes, tests the effect of mes-
sage size. The effect of task placement is considered
by letting the sending and receiving tasks be hosted by
different nodes in independent test series. The imple-
mentation of this benchmark simply consists of mea-
suring the time from which the message is sent by the
sending task until it is received by the receiving task,
in this implementation it was most suitable to measure
the roundtrip delay. Since we have no accurate external
clock and no clock synchronization between the nodes.
The first timestamp is taken on the sender side when
a message is sent and the second timestamp when the
sender receives an acknowledgement from the receiver.



 Figure 2. create task benchmark on slave node

Figure 3. taskswitch benchmark on slave node

3 Result

In the following subsections the results are pre-
sented, but due to space limitations we discuss a subset.

3.1 Create Task

As shown in figure 2, the hardware kernel is faster
than the software kernel. A task that is created has to
be registered to the scheduler, in both cases and this is
achieved by a synchronous system call. By synchronous
we mean that the caller has to wait for an acknowledge-
ment that is delivered after the call is processed. Also
as predicted the software kernel has longer latencies
with increasing number of already created tasks. That
depends on the list management latencies that increase
with increasing number of tasks. The cache memory
effects are also visible in the test, since the first call
is more time consuming than the second. As figure 2
shows, the effect of caches are bigger with the software
kernel than with the RTU (greater slope). The RTU is
implemented in a separate hardware module and can-
not be affected by the processor caches, but still RTU
interface code and parts of the tasks TCBs are affected
by caches. The create task benchmark on the mas-
ter node resulted in another relationship, the form of
the graphs were essentially the same but the software
kernel was faster than the hardware kernel. In the soft-
ware case the tasks are created completely locally on
the master node, but when using the hardware kernel

Figure 4. communication bandwidth benchmark, sender
on slave and receiver on master node

we suffer of PCI access latencies.

3.2 Taskswitch

When switching tasks on a slave node the hardware
kernel is much faster than the software kernel as we
can see in figure 3. This is explained by the fact that
functionality implemented in hardware often are faster
than corresponding software solutions. Notice that the
software kernel is not affected by the number of tasks
in this test, because the two tasks that are involved in
the taskswitch, have the highest priorities in the system
and therefore no list traversing has to be done. When
this benchmark was executed on the master node, the
difference between the two kernels was much smaller.
The software kernel was faster, due to the PCI latencies
of the RTU against local switches on the master node.

3.3 Communication Bandwidth

When meassuring the bandwidth between two tasks
on the master node the software kernel shows best re-
sult. But as figure 4 shows the bandwidth is greater
with the hardware kernel when communicating across
node boundaries. The software kernel seems to be more
efficient with increasing number of messages, in relation
to the hardware kernel. The reason is that the sched-
uler in the software kernel performs a speculation after
many system-calls, when the result is to not switch task
it is a waste of time. A situation when the speculations
are successful is when many send and receive calls are
processed in a rapid sequence.

3.4 Communication Latency

Figure 5 shows the communication latencies between
tasks hosted by different nodes. The sending task re-
sides on a slave node and the receiving task resides
on the master node. The test makes clear that the



 Figure 5. communication latency benchmark, sender on
slave and receiver on master node

Figure 6. queues in the optimized software kernel

end-to-end delay also referred as the transmission la-
tency is shorter with the hardware kernel in this test
case. But as earlier the result depends on the locality
of the involved tasks, the software kernel has shorter
latency when both the sending and the receiving tasks
are hosted by the master node which also hosts the
kernel. The observed latencies for the hardware kernel
are almost equal in all test cases, whereas the software
kernel has shorter latencies when both tasks are resid-
ing on the master node and longer latencies when at
least one of the two tasks resides on a slave node.

4 Optimization of The Software Kernel

As we could see in the benchmark results presented
in the previous section, the main drawback with the
software kernel seems to be time consuming system-
calls from tasks on slave nodes. As long as tasks are
executing on the system board which hosts the kernel,
the software solution is often faster than the hardware
and its enclosed PCI-access latencies. An optimiza-
tion that should increase the performance of both ker-
nels is to increase the locality of data and try to avoid
PCI-accesses. In the remaining part of this section we
will present an optimization of the software kernel that
strives for higher utilization of data locality.

A central part of a multiprocessor RTOS is the

 Figure 7. create task benchmark on slave node

Figure 8. taskswitch benchmark on slave node

placement of the processor schedulers and different task
queues. Unlike the centralized RTU and the original
software version, the improved software kernel consists
of several schedulers. The system board has a complete
scheduler while the slave boards have simpler sched-
ulers or dispatchers. This quality makes the improved
version semi-distributed, i.e. not pure centralized and
not fully distributed. The idea with several different
schedulers can for instance be found in the Spring sys-
tem [7]. Each slave board has a local ready queue and
local blocked queue, while the system board also has
semaphore queues and a waiting queue, see figure 6.

Figure 7, 8 and 9 show three examples of bench-
mark tests when the semi-distributed kernel shows bet-
ter performance than the centralized software kernel.
The semi-distributed software kernel shows even bet-
ter performance than the hardware kernel in figure 7
and 9. The result in figure 7 is expected, since the
tasks are created locally and we do not need any com-
munication with PCI devices in the optimized software
case. The hardware kernel on the other hand is a PCI
device with enclosed latencies. Also as predicted the
optimized software kernel has longer latencies with in-
creasing number of created tasks, since and the list
management overhead increases with increasing num-
ber of tasks.

The motivation to figure 8, when the semi-
distributed software kernel is faster than the hardware
kernel, is that taskswitches can be handled locally on a
slave node. Each node manages its own queue of active



Figure 9. communication latency benchmark, sender on
slave and receiver on master node

tasks. But in the hardware case the kernel queues are
managed centrally in the kernel-core, residing as a PCI
device, which causes access latencies to the queues. As
shown in figure 9, the optimized software kernel has
shorter communication latencies than the centralized
software kernel, but the hardware kernel still shows the
best result.

5 Discussion

In this paper we presented the results of a compari-
son between a centralized software kernel and the hard-
ware kernel RTU, both upon the same multiprocessor
system. The comparison was performed with different
micro benchmarks. We showed that the performance of
the RTU was in general better than the corresponding
software solution.

We also showed an improvement of the software ker-
nel. The improved software kernel showed better or
equal performance results in comparison with the cen-
tralized software kernel. In some benchmark tests the
improved software kernel showed even better perfor-
mance than the RTU. It was not a fair comparison
between hardware and software kernels since the im-
plementation details differs, still it shows that poten-
tial to improve the RTU exist since it was possible to
improve the corresponding software solution.

6 Future Work

As a future work section we present some sugges-
tions to improve the RTU. Firstly we showed that it
was possible to achieve a more efficient kernel by mov-
ing some of the intelligence closer to the tasks, and
thereby get shorter access latencies. This is an essen-
tial part of an RTOS kernel since it interacts frequently
with the tasks, but also a weakness with the RTU as
combined with the SARA system today. One way is to
move some of the functionality back into software so

that some decisions can be made without PCI access
latencies. Another way would be to provide a RTU for
each processor in some form. A third option would be
to find a better target system that in some way pro-
vides shorter access latencies, as for instance a System
On Chip (SOC), where the RTU would have almost
insignificant access latency compared to a PCI-device.
Also since the scheduling algorithm does not load the
application processors, it should be possible to use a re-
ally fancy and effective algorithm that cannot be used
in software implementations.

Acknowledgements Thanks to all personnel at the
department.Special thanks go to Leif Enblom for fruit-
ful discussions and to Raimo Haukilahti and Tomas
Lennvall for peer reviewing this paper.

References

[1] J. Furunäs. Benchmarking of a Real-Time System that
Utilises a Booster. In International Conference on Par-
allel and Distributed Processing Techniques and Appli-
cations (PDPTA200), June 2000.

[2] N. I. Kamenoff and N. H. Weiderman. Hartstone dis-
tributed benchmark: requirements and definitions. In
Proceedings of the 12th IEEE Real-Time Systems Sym-
posium, IEEE Computer Society Press, pages 199–208,
Dec 1991.

[3] R. Kar and K. Porter. Rhealstone - a Real-Time Bench-
marking Proposal. Dr. Dobbs Journal, (2), Feb 1989.

[4] J. Lee, V. J. Mooney III, K. Ingström, A. Daleby,
T. Klevin, and L. Lindh. A Comparison of the RTU
Hardware RTOS with a Hardware/Software RTOS. In
Proceedings of the ASP-DAC 2003, Design Automation
Conference, pages 683 –688, Jan 2003.

[5] L. Lindh and T. Klevin. Scalable Architecture for
Real-time Applications and use of bus-monitoring. In
Proceedings of Sixth International Conference on Real-
Time Computing Systems and Applications, RTCSA
’99, pages 208–211, December 1999.

[6] P. Nygren and L. Lindh. Virtual Communication Bus
with Hardware and Software Tasks in Real-Time Sys-
tem. In Proceedings for the work in progress and indus-
trial experience sessions, 12th Euromicro conference on
Real-time systems, page 3, June 2000.

[7] K. Ramamritham and J. A. Stankovic. The Spring Ker-
nel: A new paradigm for Real-Time Systems. IEEE
Software, 8(3), May 1991.

[8] RF RealFast AB. Real-Time Unit, A New Concept to
Design Real-Time Systems with Standard Components.
Technical report, RF RealFast AB, Dragverksg 138, S-
724 74 Vasteras, Sweden, 2000.

[9] L. Rizvanovic. Comparison between Real time Opera-
tive systems in hardware and software. Master’s thesis,
Malardalen University, Vasteras, Sweden, 2001.


