A Comparative Study of Manual and Automated
Testing for Industrial Control Software

Eduard Enoiu, Adnan (VjauEevié, Daniel Sundmark, Paul Pettersson
Milardalen University, Visteras, Sweden

Abstract—Automated test generation has been suggested as
a way of creating tests at a lower cost. Nonetheless, it is not
very well studied how such tests compare to manually written
ones in terms of cost and effectiveness. This is particularly
true for industrial control software, where strict requirements
on both specification-based testing and code coverage typically
are met with rigorous manual testing. To address this issue,
we conducted a case study in which we compared manually
and automatically created tests. We used recently developed
real-world industrial programs written in the IEC 61131-3, a
popular programming language for developing industrial control
systems using programmable logic controllers. The results show
that automatically generated tests achieve similar code coverage
as manually created tests, but in a fraction of the time (an
average improvement of roughly 90%). We also found that the
use of an automated test generation tool does not result in better
fault detection in terms of mutation score compared to manual
testing. Specifically, manual tests more effectively detect logical,
timer and negation type of faults, compared to automatically
generated tests. The results underscore the need to further study
how manual testing is performed in industrial practice and the
extent to which automated test generation can be used in the
development of reliable systems.

I. INTRODUCTION

Testing is an important activity in engineering of industrial
control software. To support developers in testing their soft-
ware, researchers have proposed different approaches for pro-
ducing good test cases. In the last couple of years a wide range
of techniques for automated test generation [15] have been
explored with the goal of complementing manual testing. Even
though there is some evidence suggesting that automatically
generated test suites may even cover more code than those
manually written by developers [8], this does not necessarily
mean that these tests are effective in terms of detecting faults.
As manual testing and automated code coverage-directed test
generation are fundamentally different and each strategy holds
its own inherent limitations, their respective merits or demerits
should be analyzed more extensively in comparative studies.

In this paper, we empirically evaluate automated test gen-
eration and compare it with test suites manually created by
industrial engineers on 61 programs from a real industrial train
control system. This system contains software written in IEC
61131-3 [10], a popular language in safety-critical industry
for programming control software [12]. We have applied a
state-of-the-art test generation tool for IEC 61131-3 software,
COMPLETETEST [5], and investigated how it compares with
manual testing performed by industrial engineers in terms of
code coverage, cost and fault detection.

Our case study indicates that for IEC 61131-3 safety-
critical control software, automated test generation can achieve
similar code coverage as manual testing performed by in-
dustrial engineers but in a fraction of the time. The use of
automated test generation in IEC 61131-3 software develop-
ment can potentially save around 90% of testing time. Even
when achieving full code coverage, automatically generated
test suites are not necessarily better at finding faults than
manually created test suites. In our case study, 56% of the test
suites generated using COMPLETETEST found less faults than
test suites created manually by industrial engineers. Overall, it
seems that manually created tests are able to detect more faults
of certain types (i.e, logical replacement, negation insertion
and timer replacement) than automatically generated tests.
Using the detection of these specific mutations in addition
to structural properties as the coverage criterion used by
an automated test generation tool, we could generate more
effective test suites.

II. RELATED WORK

In the context of developing industrial control software,
IEC 61131-3 [12] has become a very popular programming
language used in different control systems from traffic control
software to nuclear power plants. Several automated test
generation approaches [19], [5], [4] have been proposed in
the last couple of years for IEC 61131-3 software. These
techniques can typically produce test suites for a given code
coverage criterion and have been shown to achieve high
code coverage for different IEC 61131-3 industrial software
projects. While high code coverage has historically been used
as a proxy for the ability of a test suite to detect faults,
recently Inozemtseva et al. [11] found that coverage should
not be used as a measure of quality mainly because of the
fact that it is not a good indicator for fault detection. In
other words, the fault detection capability of a test suite might
rely more on other test design factors than the extent to
which the structure of the code is covered. There are studies
investigating the use of both manual testing and automated
coverage-based test generation of real-world programs. Several
researchers have performed case studies [21], [13], [17] and
focused on already created manual test suites while others
performed controlled experiments [8] with human participants
manually creating and automatically generating test suites.
These results kindled our interest in studying how manual
testing compares to automated coverage-based test generation
in an industrial safety-critical control software domain. For

such systems, there are strict requirements on both traceable
specification-based and implementation-based testing. Is there
any evidence on how these code coverage-directed automated
tools compare with, what is perceived as, rigorous manual
testing?

III. METHOD

From a high level view we started the case study by consid-
ering: (i) manual test suites created by industrial engineers and
a tool for automated test generation named COMPLETETEST,
(ii) a set of IEC 61131-3 industrial programs from a recently
developed train control management system (TCMS), (iii) a
cost model and (iv) a fault detection metric.

We aimed to answer the following research questions:

e RQI: Are automatically generated test suites able to
detect more faults than tests suites manually created by
industrial engineers for IEC 61131-3 control software?

o RQ2: Are automatically generated test suites less costly
than tests suites manually created by industrial engineers
for IEC 61131-3 control software?

For each selected program, we executed the test suites
produced by both manual testing and automated test generation
and collected the following measures: code coverage in terms
of achieved code coverage, the cost of performing testing and
the mutation score as a proxy for fault detection.

A. Case Description

The studied case is an industrial system actively developed
in the safety-critical domain by Bombardier Transportation,
a leading, large-scale company focusing on development and
manufacturing of trains and railway equipment. The system is
a train control management system (TCMS) that has been in
development for several years and is engineered with a testing
process highly influenced by safety standards and regulations.
TCMS is a distributed control system with multiple types of
software and hardware components, and is in charge of much
of the operation-critical, safety-related functionality of the
train. TCMS runs on Programmable Logic Controllers (PLC)
which are real-time controllers used in numerous industrial
domains, i.e., nuclear plants and avionics. An IEC 61131-3
program running on a PLC [12] executes in a loop where every
cycle contains the reading of input values, the execution of the
program without interruption and the update of the outputs.
IEC 61131-3 programs contain particular types of blocks, such
as timers that provide the same functions as timing relays and
are used to activate or deactivate a device after a preset interval
of time. For more details on this programming language we
refer the reader to the work of John et al. [12].

B. Test Suite Creation

We used manual test suites created by industrial engineers
in Bombardier Transportation from a TCMS project delivered
already to customers. Manual test suites were collected by
using a post-mortem analysis [3] of the test data available. In
testing programs in TCMS, the engineering processes of soft-
ware development are performed according to safety standards

and regulations. Specification-based testing is mandated by the
EN 50128 standard [2] to be used to design test cases. Each
test case should contribute to the demonstration that a specified
requirement has indeed been covered and satisfied. Executing
test cases on TCMS is supported by a test framework that
includes the comparison between the expected output with
the actual outcome. The test suites collected in this study
were based on functional specifications expressed in a natural
language.

In addition, we used test suites automatically generated
using an automated test generation tool. For the programs in
the TCMS system, EN 50128 recommends the implementation
of test cases achieving a certain level of code coverage on
the developed software (e.g., decision coverage which is also
known as branch coverage). To the best of our knowledge,
COMPLETETEST [5] is the only available automated test
generation tool for IEC 61131-3 software that produces tests
for a given coverage criterion. It should be noted that in case
COMPLETETEST is unable to achieve full coverage for a given
program (which may happen since some coverage items may
not be reachable, or that the search space is too large), a
cutoff time is required to prevent indefinite execution. Based
on discussions with engineers developing TCMS regarding
the time needed for COMPLETETEST to provide a test suite
for a desired coverage, we concluded that 10 minutes was
a reasonable timeout point for the tool to finish its test
generation. As a consequence, the tests generated after this
timeout is reached will potentially achieve less than 100%
code coverage.

C. Subject Programs

We used a number of criteria to select the subject programs
for our study. We investigated the industrial library contained
in TCMS provided by Bombardier Transportation. Firstly,
we identified a project containing 114 programs. Next, we
excluded 32 programs based on the lack of possibility to
automatically generate test cases using COMPLETETEST, pri-
marily due to the fact that those programs contained data types
or predefined blocks not supported by the underlying model
checker (i.e. string and word data types). The remaining 82
programs were subjected to detailed exclusion criteria, which
involved identifying the programs for which engineers from
Bombardier Transportation had created tests manually. This
resulted in 72 remaining programs, which were further filtered
out by excluding the programs not containing any decisions
or logical constructs (since these would not be meaningful
to test using logic criteria). A final set of 61 programs was
reached. These programs contained on average per program:
18 decisions (i.e., branches), 10 input variables and 4 output
variables.

For each of the 61 programs, we collected the manually
created test suites. In addition we automatically generated test
suites using COMPLETETEST for covering all decisions in
each program. As a final step we generated additional test
cases for all 61 programs using random test suites.

D. Measuring Fault Detection

Fault detection was measured using mutation analysis. For
this purpose, we used our own tool implementation to generate
faulty versions of the subject programs. To describe how this
procedure operates, we must first give a brief description
of mutation analysis. Mutation analysis is the technique of
creating faulty implementations of a program (usually in an
automated manner) for the purpose of examining the fault
detection ability of a test suite [1]. A mutant is a new version
of a program created by making a small change to the original
program. For example, in an IEC 61131-3 program, a mutant
is created by replacing a block with another, negating a signal,
or changing the value of a constant. The execution of a test
suite on the resulting mutant may produce a different output
as the original program, in which case we say that the test
suite kills that mutant. A mutation score is calculated by
automatically seeding mutants to measure the mutant detecting
capability of the written test suite. We computed the mutation
score using an output-only oracle (i.e., expected values for
all of the program outputs) against the set of mutants. For
all programs, we assessed the fault-finding capability of each
test suite by calculating the ratio of mutants killed to the total
number of mutants.

In the creation of mutants we rely on previous studies
that looked at commonly occurring faults in IEC 61131-3
software [14], [18]. We used these common faults in this study
for establishing the following mutation operators:

e Logic Block Replacement Operator (LRO). Replacing a
logical block with another block from the same function
category (e.g., replacing an AND block with an OR
block).

o Comparison Block Replacement Operator (CRO). Re-
placing a comparison block with another block from the
same function category (e.g., replacing a Greater-Than
(GT) block with a Greater-or-Equal (GE) block).

o Arithmetic Block Replacement Operator (ARO). Replac-
ing an arithmetic block with another block from the same
function category (e.g., replacing a maximum (MAX)
block with a subtraction (ADD) block).

o Negation Insertion Operator (NIO). Negating an input
or output connection (e.g., an input variable ¢n becomes
NOT@in)).

o Value Replacement Operator (VRO). Replacing a value of
a constant variable connected to a block (e.g., replacing
a constant value (const = 0) with its boundary values
(e.g., const = —1)).

o Timer Block Replacement Operator (TRO). Replacing a
timer block with another block from the same function
category (e.g., replacing a Timer-On (TON) block with a
Timer-Off (TOF) block).

To generate mutants, each of the mutation operators was
systematically applied to each program element wherever
possible. In total, for all of the selected programs, 5161
mutants (faulty programs based on ARO, LRO, CRO, NIO,

VRO and TRO operators) were generated by automatically
introducing a single fault into the original implementation.

E. Measuring Efficiency

Ideally, the test effort is captured by measuring the time
required for performing different testing activities. However,
since this is a post-mortem study of a now-deployed system
and the development was undertaken a few years back, this
was not practically possible in our case. Instead, efficiency
was measured using a cost model that captures the context
that affects the testing of IEC 61131-3 software. We focused
on the unit testing process as it is implemented in Bombardier
Transportation for testing the programs selected in this case
study. In the cost model, we concentrated on the following
components: the cost of writing the necessary test suite, the
cost of executing a test suite, the cost of checking the result
of the test suite, and the cost of reporting a test suite. The
cost estimation does not include the required tool preparation.
However, preparation entails exporting the program to a format
readable by COMPLETETEST and opening the resulting file.
This effort is comparable to that required for opening the
tools needed for manual testing. To formulate a cost model
incorporating each cost component, we must measure costs in
identical units. To do this, we recorded all costs using a time
metric. For manual testing all costs are related to human effort.
Practically, we measured the costs of these activities directly
as an average of the time taken by three industrial engineers
(working at Bombardier Transportation implementing some
of the IEC 61131-3 programs used in our case study) to
perform manual testing. For automated test generation the cost
of checking the test result is related to human effort with the
other costs measured in machine time needed to compute the
results. For more details on this cost model we refer the reader
to the extended technical report of Enoiu et al. [6].

IV. RESULTS

This section provides an analysis of the data collected in
this case study. For each program and each testing technique
considered in this study we collected the produced test suites.
The overall results of this study are summarized in the form
of boxplots in Figure 1. In Table I we present the mutation
scores, coverage results and the number of test cases in each
collected test suite (i.e., MT stands for manually created test
suites and ATG is short for test suites automatically gener-
ated using COMPLETETEST). This table lists the minimum,
median, mean, maximum and standard deviation values. As
our observations are drawn from an unknown distribution,
we evaluate if there is any statistical difference between MT
and ATG without making any assumptions on the distribution
of the collected data. We use a Wilcoxon-Mann-Whitney U-
test [9], a non-parametric hypothesis test for for checking if
there is any statistical difference among each measurement
metric. In addition, the Vargha-Delaney test [20] was used
to calculate the standardized effect size, which is a non-
parametric magnitude test that shows statistical significance.

100 — — 100 - =—— — >
2 w0 8 ° 40
S £ T —_ —
= 80 . o o : 2 —_
= ' —_ 2 80—+ ° ! L} , o
g ' ' ' ! 5 8 ° t 30 !
o 60 | ! ' S 704 o 5 | o
[2) R — i ' o 5 i o
c ' ' O) 8 20 '
15 . : : S 60 - : 2
5 40 - - T 5 . E .
g ! @ i ! z !
: R ;= : 10- -
204 o - 0 40 - o ' E
[}
| T T I T T T T T
MT ATG Rand ATG++ MT ATG Rand MT ATG

(a) Mutation score comparison

(b) Decision coverage achieved

(c) Number of Test Cases

Fig. 1: Mutation score, achieved code coverage and number of test cases comparison between manually created test suites
(MT), automatically generated test suites (ATG), pure random test suites (Rand) of the same size as the ones created manually,
and coverage-adequate tests with equal size as manual tests (ATG++); boxes spans from Ist to 3rd quartile, black middle lines
mark the median and the whiskers extend up to 1.5x the inter-quartile range and the circle symbols represent outliers.

TABLE I: Results for each metric. We report several statistics
relevant to the obtained results: minimum, median, mean,
maximum and standard deviation values.

Metric Test Min Median Mean Max SD
Mutation MT 18.51 94.73 86.30 100.00 19.66
Score(%) ATG 25.00 89.47 82.93 100.00 18.37
Coverage MT 63.63 100.00 96.33 100.00 8.08
(%) ATG 54.16 100.00 97.45 100.00 8.65
Tests MT 2.00 8.00 12.80 47.00 10.57
ATG 2.00 4.00 7.42 31.00 7.35

A. Fault Detection

How does the fault detection of manual test suites compare
with that of automatically generated test suites based on
decision coverage? For all programs, as shown in Figure
la, the mutation scores obtained by manually written test
suites are higher in average with 3% compared with the
ones achieved by automatically generated test suites. However,
there is no statistically significant difference at 0.05 as the p-
value is equal to 0.087 (effect size 0.600). Consequently, a
larger sample size, as well as additional studies in different
contexts, would be needed to obtain more confidence to claim
that automatically created test suites are actually worse than
manually created test suites.

The difference in effectiveness between manual and auto-
mated testing could be due to differences in test suite size.
As shown in Figure lc, the use of automated test generation
results in less number of test cases than the use of manual
testing (a difference of roughly 40%). To control for size,
we generated purely random test suites of equal size as
the ones manually created by industrial engineers (Rand in
Figure 1a) and coverage-adequate test suites with equal size
as manual test suites (ATG++ in Figure la). Our results

suggest that fault detection scores of manually written test
suites are clearly superior to random test suites of equal
size, with statistically significant differences (effect size of
0.897). In addition, even coverage-adequate test suites with
equal size as manual test suites are not showing better fault
detection than the ones manually created. This shows that the
effect of reduced effectiveness for automated test generation
is not only due to smaller test suites. This is not an entirely
surprising result. Our expectation was that manual test suites
would be similar or better in terms of fault detection than
automatically created test suites based on decision coverage.
Industrial engineers with experience in testing IEC 61131-3
programs would intuitively write good test cases at detecting
common faults. Our results are not showing any statistically
significant difference in mutation score between manual test
suites and COMPLETETEST-based test suites.

B. Fault Detection per Fault Type

To understand how automatically generated test suites can
be improved in their fault detection capability, we examined if
these tests suites are particularly weak or strong in detecting
certain fault types. We concern this analysis to what type
of faults were detected by both manual testing and CoOM-
PLETETEST. For each mutation operator described in Section
III-D, we examined what type of mutants were killed by tests
written using manual testing and COMPLETETEST. The results
of this analysis are shown in Figure 2 in the form of box plots
with mutation scores broken down by the mutation operator
that produced them. There are some broad trends for these
mutation operators that hold across all programs considered
in this study. The fault detection scores for arithmetic (ARO),
value (VRO) and comparison (CRO) replacement fault types
are not showing any significant difference between manually

100 - |:||:|_____

0\080— DDOI

£ g . ©° o °

o = + 5

S 60 ° ;

(&) ' o !

(] :I OeC)C) -

S 40+ 1 . o o

= H)

g o

2 20 | °

0 -:—oo o o o o o o

1T 1T 1T 1T T T T T T T 1
o000 o0o0o0oo0ooooo
Fxrecsss¥CK e x o
:‘,\—',9,9,\,:‘6?,?,5555';';
E O E 0O E O O E O
s E =k
k=g <232k =k

Fig. 2: Mutation analysis results per fault type.

created test suites and automatically generated test suites. On
the other hand, test suites written using manual testing detect,
on average, 12% more logical type of faults (LRO) than test
suites generated automatically using COMPLETETEST. The
increase is slightly similar for negation (NIO) and timer (TRO)
replacement type of faults with manually written test suites
detecting, in average, 13% more NIO and TRO fault types
than automatically generated test suites. Overall, it seems that
one of the reasons behind manual testing success, seems to do
with its strong ability to kill mutants from certain operators.

To identify the reasons behind the differences in muta-
tion score per fault type between manual testing and COM-
PLETETEST, we investigated deeper the nature of each muta-
tion operator. For both the negation insertion and the timer
replacement fault type it seems that COMPLETETEST with
branch coverage as the stopping criterion, achieves a poor
selection of test input conditions with too few test cases being
produced; a certain input value that fails to kill the NIO and
TRO type of mutant could have been made more robust with
further test inputs. Logical replacement type of faults where
an AND block is replaced by an OR block and vice versa
tends to be relatively trivial to detect by both manual testing
and COMPLETETEST. This comes from the fact that these
faults are detected by any test cases where the inputs evaluate
differently and the change is propagated to the output of the
program. This does not mean that all logical faults can be
easily detected. Consider an LRO type of mutant where OR
blocks are replaced by XOR. The detection of this type of fault
is harder, with manual test suites detecting 24% more LRO
type of mutants where a logical block is replaced by XOR
than test suites generated automatically. The detection in this
case happens only with one specific test case that propagates
the change in the outputs. It seems that manual testing has
a stronger ability to detect these kind of logical faults than
automated test generation because of its inherent limitation of
only searching for inputs that are covering the branches of the
program.

C. Coverage

As seen in Figure 1b, for the majority of programs con-
sidered, manually created test suites achieve 100% decision
coverage. Random test suites of the same size as manu-
ally created ones achieve lower decision coverage scores
(in average 61%) than manual test suites (in average 96%).
The coverage achieved by manually created test suites is
ranging between 63% and 100%. As shown in Table I, the
use of COMPLETETEST achieves in average 97% decision
coverage. Results for all programs show that differences in
code coverage achieved by manual versus automatic test
suites are not strong in terms of any significant statistical
difference (with an effect size of 0.449 and a p-value of 0.192).
Even if automatically generated test suites are created by
COMPLETETEST having the purpose of covering all decisions,
these test suites are not showing any significant improvement
in achieved coverage over the manually written ones.

D. Cost Measurement Results

This section aims to answer RQ2 regarding the relative cost
of performing manual testing versus automated test generation.
The conditions under which each of the strategies is more
cost effective were derived. The cost is measured in time (i.e.,
minutes) spent. For manual testing (MT) the total cost involves
only human resources. We interviewed three engineers work-
ing on developing and manually testing TCMS software and
asked them to estimate the time (in minutes) needed to create,
execute, check the result and report a test suite. All engineers
independently provided very similar cost estimations. We
averaged the estimated time given by these three engineers
and we calculated each individual cost (165 minutes in total
on average). In addition, for automated test generation the
total cost of performing automated test generation involves
both machine and human resources. We calculated the cost of
creating, executing and reporting test suites for each program,
by measuring the time required to run COMPLETETEST and
the time required for test execution. For the cost of checking
the test result we used the average time needed by three
industrial engineers to check the results using manual testing.
The total cost for performing automated test generation was
estimated to be 19 minutes on average. The cost of performing
testing using COMPLETETEST is consistently significantly
lower than for manually created tests; automatic generated
tests have a shorter testing cost (146 minutes shorter testing
time on average) over manual testing. Based on these results,
we can clearly see that when using automatic test generation
tools, the creation, execution and reporting costs are very low
compared to manual testing. While these cost are low, the cost
of checking the results is human intensive and is a consequence
of the relative difficulty to understand each created test. A
further detailed account of the cost evaluation can be found in
the extended report [6].

V. THREATS TO VALIDITY

There are many tools (e.g., EVOSUITE [7]) for automatically
generating tests and these may give different results. The use

of these tools in this study is complicated by the transformation
of IEC 61131-3 programs directly to Java or C, fact shown
to be a significant problem [16] because of the difficulty to
transform timing constructs and ensure the real-time nature
of these programs. Hence, we went for a tool specifically
tailored for testing IEC 61131-3 programs. To the best of
our knowledge, COMPLETETEST is the only openly available
such tool.

A possible risk on evaluating test suites based on mutation
analysis is the equivalent mutant problem in which these faults
cannot show any externally visible deviation. The mutation
score in this study was calculated based on the ratio of killed
mutants to mutants in total (including equivalent mutants).
Unfortunately, this fact introduces a threat to the validity of
this measurement.

The results are based on a case study in one company
using 61 programs and manual test suites created by industrial
engineers. Even if this number can be considered quite small,
we argue that having access to real industrial test suites created
by engineers working in the safety-critical domain can be
representative. More studies are needed to generalize these
results to other systems and domains.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we investigated, in an industrial context, the
quality and cost of performing manual testing and automated
test generation. The study is based on 61 IEC 61131-3
programs from a recently developed industrial control software
and manual test suites produced by industrial professionals.
Our results suggest that automated test generation can achieve
similar decision coverage as manual testing performed by
industrial engineers but in a fraction of the time. However,
these automatically generated test suites are not showing better
fault detection in terms of mutation score than manually
created test suites. The fault detection rate between automated
code coverage-based test generation and manual testing was
found, in some of the published studies [8], [13], [21], to
be relatively similar to our results. Interestingly enough, our
results indicate that COMPLETETEST-based test suites might
even be slightly worse in terms of fault detection compared
to manual test suites. However, a larger empirical study is
needed to statistically confirm this hypothesis. We found that
there are more manually created test suites that are effective
at detecting certain type of faults than automatically generated
test suites. By considering generating test suites that are
detecting these fault types one could improve the goals of
automated test generation for industrial control software by
using a specialized mutation testing strategy.

ACKNOWLEDGMENTS

This research was supported by The Knowledge Foundation
(KKS) through the following projects: (20130085) Testing of
Critical System Characteristics (TOCSYC), Automated Gen-
eration of Tests for Simulated Software Systems (AGENTS),
and the ITS-EASY industrial research school.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

Paul Ammann and Jeff Offutt.
Cambridge University Press, 2008.
CENELEC. 50128: Railway Application: Communications, Signaling
and Processing Systems, Software For Railway Control and Protection
Systems. In Standard Official Document. European Committee for
Electrotechnical Standardization, 2001.

Reidar Conradi and Alf Inge Wang. Empirical methods and studies
in software engineering: experiences from ESERNET, volume 2765.
Springer, 2003.

Kivanc Doganay, Markus Bohlin, and Ola Sellin. Search based Testing
of Embedded Systems Implemented in IEC 61131-3: An Industrial Case
Study. In International Conference on Software Testing, Verification and
Validation Workshops. 1EEE, 2013.

Eduard Enoiu, Adnan Cau§evic’, Thomas J Ostrand, Elaine J Weyuker,
Daniel Sundmark, and Paul Pettersson. Automated Test Generation using
Model Checking: an Industrial Evaluation. In International Journal on
Software Tools for Technology Transfer. Springer, 2014.

Eduard Enoiu, Adnan Causevi¢, Daniel Sundmark, and Paul Pettersson.
An Industrial Study on Automated Test Generation and Manual Testing
of IEC 61131-3 Software. In Technical Report, MDH-MRTC-313/2016-
1-SE. MRTC, Milardalen University, 2016.

Gordon Fraser and Andrea Arcuri. Evosuite: Automatic Test Suite
Generation for Object-oriented Software. In Conference on Foundations
of Software Engineering. ACM, 2011.

Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank
Padberg. Does Automated Unit Test Generation Really Help Software
Testers? A Controlled Empirical Study. In Transactions on Software
Engineering and Methodology. ACM, 2014.

David Howell. Statistical Methods for Psychology. Cengage Learning,
2012.

IEC. International Standard on 61131-3 Programming Languages. In
Programmable Controllers. IEC Library, 2014.

Laura Inozemtseva and Reid Holmes. Coverage is Not Strongly
Correlated with Test Suite Effectiveness. In International Conference
on Software Engineering. ACM, 2014.

Karl-Heinz John and Michael Tiegelkamp. [EC 61131-3: Program-
ming Industrial Automation Systems: Concepts and Programming Lan-
guages, Requirements for Programming Systems, Decision-Making Aids.
Springer, 2010.

Jeshua S Kracht, Jacob Z Petrovic, and Kristen R Walcott-Justice.
Empirically Evaluating the Quality of Automatically Generated and
Manually Written Test Suites. In International Conference on Quality
Software. 1IEEE, 2014.

Younju Oh, Junbeom Yoo, Sungdeok Cha, and Han Seong Son. Software
Safety Analysis of Function Block Diagrams using Fault Trees. In
Reliability Engineering & System Safety, volume 88. Elsevier, 2005.
Alessandro Orso and Gregg Rothermel. Software testing: a research
travelogue (2000-2014). In Proceedings of the on Future of Software
Engineering. ACM, 2014.

Tolga Ovatman, Atakan Aral, Davut Polat, and Ali Osman Unver. An
Overview of Model Checking Practices on Verification of PLC Software.
In Software & Systems Modeling. Springer, 2014.

Sina Shamshiri, René Just, José¢ Miguel Rojas, Gordon Fraser, Phil
McMinn, and Andrea Arcuri. Do Automatically Generated Unit Tests
Find Real Faults? An Empirical Study of Effectiveness and Challenges.
In International Conference on Automated Software Engineering. ACM,
2015.

Donghwan Shin, Eunkyoung Jee, and Doo-Hwan Bae. Empirical
Evaluation on FBD Model-based Test Coverage Criteria using Mutation
Analysis. In Model Driven Engineering Languages and Systems.
Springer, 2012.

Hendrik Simon, Nico Friedrich, Sebastian Biallas, Stefan Hauck-
Stattelmann, Bastian Schlich, and Stefan Kowalewski. Automatic Test
Case Generation for PLC Programs Using Coverage Metrics. In
Emerging Technologies and Factory Automation. IEEE, 2015.

Andras Vargha and Harold D Delaney. A Critique and Improvement of
the CL Common Language Effect Size Statistics of McGraw and Wong.
In Journal of Educational and Behavioral Statistics, volume 25. Sage
Publications, 2000.

Xiaoyin Wang, Lingming Zhang, and Philip Tanofsky. Experience
Report: How is Dynamic Symbolic Execution Different from Manual
Testing? A Study on KLEE. In International Symposium on Software
Testing and Analysis. ACM, 2015.

Introduction to Software Testing.

