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ABSTRACT
As the complexity of industrial systems increases, it becomes
difficult to ensure the correctness of system requirements
specifications with respect to certain criteria such as con-
sistency. Automated techniques for consistency checking of
requirements, mostly by means of model checking, have been
proposed in academia. However, such approaches can some-
times be costly in terms of modeling and analysis time or
not applicable for certain types of properties. In this paper,
we present a complementary method that relies on pattern-
based formalization of requirements and automated consis-
tency checking using the state-of-the-art SMT tool Z3. For
validation, we apply our method on a set of timed compu-
tation tree logic requirements of an industrial automotive
subsystem called the Fuel Level Display.

CCS Concepts
•Computing methodologies → Model verifica-
tion and validation; Modeling and simulation; Model
development and analysis;

Keywords
System Requirements; Specification Patterns; TCTL; Con-
sistency Analysis; SMT; Z3

1. INTRODUCTION
The costs associated to the late detection of errors in the re-
quirements specifications of industrial systems are typically
high, as their mitigation might call for the redesign or reim-
plementation of certain parts of the system. For this reason,
industry has high demands for techniques that provide early
debugging of system specifications. This paper tackles the
problem of detecting inconsistencies within system specifi-
cations, which occurs whenever the set of requirements is
not realizable as such, due to internal contradictions. We
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Figure 1: SMT-based methodology for consistency checking
of requirements specifications.

propose a method for consistency checking of requirements
specifications, starting from their description in natural lan-
guage. We apply patterns to formalize the textual require-
ments, after which we employ Satisfiability Modulo Theories
(SMT) [6] to check the formalized requirements by using the
Z3 SMT solver [5]. The proposed method consists of four
steps, is shown in Figure 1.

In Step 1, the system requirements are specified in Con-
strained Natural Language (CNL) via the Specification Pat-
tern System (SPS) [7] [15]. Then, the CNL requirements are
automatically encoded into temporal formulas, expressed in
(Timed) Computational Tree Logic (TCTL) [1]. Next, in
Step 2, the (T)CTL patterns are transformed into First-
Order Logic (FOL) formulas by instantiating the semantics
of temporal and path operators. In Step 3, the FOL for-
mulas are encoded into Z3 assertions, which are later op-
timized for analyzability by using a number of abstraction
rules. The traceability between the steps is ensured by as-
signing unique identifiers to the requirements during Step
1, which remain the same throughout the process. Our Z3
encoding preserves the relevant information of the natural
language requirements, and complies with the technical lim-
itations of the analysis tool. Finally, in Step 4, SMT analysis
is conducted, resulting in a verdict that states whether the
system requirements specification is realizable as such. In
case the conjunction of the requirements is consistent (SAT
verdict), the tool returns a model that contains a valuation
of the system variables satisfying the analyzed requirements
specification; in the opposite case (UNSAT ), the tool gen-
erates the minimal inconsistent set (unsat-core command)
containing the conflicting requirements.

Our method can be seen as a complementary approach to
the already existing consistency analysis techniques based on
model checking [8] [13] [18]. Moreover, in this paper we aim
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Figure 2: Excerpt of the high-level architecture of the Fuel
Level Display system

to check the feasibility of the method for industrial systems
requirements. Therefore, we illustrate the applicability of
our approach on a real case study from the heavy-load ve-
hicle domain, namely the Fuel Level Display system of a
vehicle.

The paper continues as follows: in Section 2 we describe the
Fuel Level Display system, whereas in Section 3 we intro-
duce the concepts used in the paper. Steps 1, 2, 3 and 4 are
discussed in Sections 4, 5, 6 and 7, respectively. We com-
pare to related work in Section 8, and conclude the paper in
Section 9 as well as outline future research directions.

2. INDUSTRIAL CASE-STUDY: FUEL
LEVEL DISPLAY

In this section, we introduce the industrial system called
Fuel Level Display (FLD) on which we apply our method.

The FLD system is a function installed in all heavy-load ve-
hicles produced by Scania, Sweden. The core functionality
of the FLD is to correctly estimate the remaining fuel in the
vehicle and display the value to the driver. The fuel estima-
tion feature is implemented as a software function deployed
on the Coordinator (COO) Electronic Control Unit (ECU)
system. The remaining fuel is calculated based on of the
sensed fuel level obtained from the fuel tank provided by the
fuel sensor (fuelSensor) placed inside the fuel tank (FT) and
the current fuel consumption rate provided by the Engine
Management ECU system (EMS). The system is classified
as safety critical, meaning that its proper functioning must
be ensured at all times, otherwise it may lead to hazardous
situations that can endanger human lives.

A simplified architectural break-down of the FLD system,
including all fore mentioned parts is given in Figure 2. The
design description is based on the concept of element, which
represents an extension over Heterogeneous Rich Compo-
nents [20]. The elements represented as rectangles in Figure
2 (ex: FLD, PBS, etc.) are used to model all entities in the
system’s design description, including both physical and log-
ical ones. The interface of an element is represented via one
or more ports (ex: actualParkingBrake, actualFuelVolume,

etc.), which are used to model the tangible entities of the
element as seen by an external observer, that is, from the en-
vironment. The communication between different elements
is via their ports. The behavior of an element is defined
through a set of constraints over its ports. The requirements
for the FLD system are specified using the contract-based
approach, through assertions of type assumption-guarantee,
represented with dashed lines in Figure 2. A subset of the
FLD requirements that are used as the working example in
the rest of the paper includes the following:

SG If actualParkingBrake (aPB) is false, then
indicatedFuelVolume (iFV), shown by the fuel
gauge, is less than or equal to actualFuelVolume
(aFV).

FSRICL If it has not passed more than 1s since the
last time CAN message DashDisplay (DD)
appeared on CAN2 CAN bus, and the DD
message is valid, then the iFV, shown by the
fuel gauge, corresponds to FuelLevel (FL)
signal value from the DD message.

SSR1
DMAC The Direct Memory Access (DMA) channel

that corresponds to the input value of dmacCH
when Dmac enableCh() function is called,
is enabled when Dmac enableCh() function
finishes its execution.

SSR2
DMAC The DMA channel that corresponds to the in-

put value of dmacCH when Dmac disableCh()
function is called, is disabled when Dmac
disableCh() function finishes its execution.

The FLD system has been developed by a small team of
engineers physically located at the same site, who have fol-
lowed an agile development process that revolves around an
evolving prototype supported by obscure informal documen-
tation. The comprehensive documentation of the system, in-
cluding the requirements specification, is created only later
in the development to serve as a basis for verification. For
the FLD system, the requirements specification exists only
for the higher levels of abstraction, with no documentation
describing the concepts on lower abstraction levels. For
our study, the requirements specification at this level has
been reverse engineered from the various behavioral models
or the production code. Consequently, the system require-
ments specification embeds implementation details such as
Dmac enableCh() (see SSR1

DMAC). For the detailed func-
tional description of the system we redirect the readers to
other work [20].

3. PRELIMINARIES
In this section, we introduce the concepts that are used in
the rest of the paper. First, we briefly recall the temporal
logic used for encoding the system specification. Second, we
give the formal definition of consistency; finally we present
an overview of the SMT concept and the Z3 tool.

3.1 (Timed) Computation Tree Logic
Computation Tree Logic (CTL) is a branching time logic
[14] used for the formal specification of finite-state systems.
The interpretation of CTL is defined over a model M that



consists of a non-empty set of states S, a successor rela-
tion R and a labeling function Label that assigns a set of
atomic propositions to each state in the model. Timed CTL
(TCTL) is an extension of CTL for specifying real-time sys-
tems [1]. Time is a non-negative real-valued variable manip-
ulated by clock formulas expressing constraints over clocks.
The clocks are incorporated into the notion of state, which
includes the model’s location and clock valuation that de-
termines the validity of clock constraints.

The syntax of CTL consists of path quantifiers (All, Ex-
ists), and path-specific temporal operators. The universal
path quantifier “A” stands for “all paths”, while the existen-
tial quantifier “E” denotes that “there exists a path” from
the set of all future paths PM (s) starting from a given state
s. A valid CTL formula is of type ϕ U ψ, where U (“un-
til”) represents the basic path operator, which is combined
with either of the two path quantifiers. The “until” operator
serves at defining all other temporal operators. The F (Fu-
ture) operator denotes a formula that eventually becomes
true (Fϕ ⇔ true U ϕ), while the G (Globally) operator de-
notes that a given formula is valid in all states along a given
path (Gϕ ⇔ ¬F¬ϕ) [1]. There exists a weaker version of
the U operator called “weak-until” denoted as W , which is
used to capture formulas where the right hand side term
might never be satisfied. The semantics of W is defined as:
ϕ W ψ ≡ (ϕ U ψ) ∨Gϕ.

In TCTL, each of the path-specific temporal operators has
a timed version that uses clock constraints. In this paper,
we use the following syntax to express the timed operators:
Oper∼T , where Oper ∈ {U, F, G, W}; ∼ ∈ {=, <,>,≤,≥}
and T is a numeric bound of clock variables. For instance,
the formula EF≤Tϕ requires that there exists an execution
path along which ϕ eventually becomes true within T time
units. For more details we refer the reader to previous work
[1] [14].

3.2 Formal Definition of Consistency
Let us assume that the system requirements specification has
been formally encoded, that is, represented as a set of logical
formulas. For such specification we consider the following
definition of inconsistency:

Definition 1 (Inconsistent specification). Let Φ =
{ϕ1, ϕ2, ..., ϕn} denote the system requirements specifica-
tion, where each of the formulas (ϕ1, ϕ2, ..., ϕn) encodes a
requirement. We say that the set Φ is inconsistent if the fol-
lowing implication is satisfied: ϕ1∧ϕ2∧ ...∧ϕn =⇒ False.

From the definition above, it follows that a system require-
ments specification is inconsistent if there does not exist a
truth valuation of the conjunction of all the formulas in the
specification. To disprove the inconsistency, it is enough to
provide a witness set of valuations of variables which satisfies
the conjunction of all the formulas. Checking whether there
exists an interpretation that satisfies the Boolean conjunc-
tion given above represents a classical Boolean satisfiability
(SAT) problem.

3.3 Satisfiability Modulo Theories and Z3
The SAT problem requires to determine if a Boolean for-
mula can be made true by assigning true/false values to
the constituent Boolean variables. The solution to the SAT
problem is a model containing the values of the variables in

the formula. Satisfiability Modulo Theories (SMT) is an ex-
tension of SAT where the interpretation of some symbols is
constrained by a background theory [6]. One such example
is the theory of arithmetic that restricts the interpretation
of symbols to: {+, -, ≤, 0, 1}.
For performing SMT analysis we use the Z3 tool [5] devel-
oped by Microsoft, which is a state-of-the-art SMT solver
and theorem prover widely used in academia. The input to
the tool is a script composed of assertions that can be either
declarations or formulas. The assertions are specified using
the SMT-LIB language [3] or alternatively by using the var-
ious APIs for common programming languages such as C#,
Python, Java, etc. Declarations can be either constants or
functions. Constants are functions with arity 0, while func-
tions are n-ary. The data types in Z3 are called sorts, and
the set of predefined ones consists of: Int, Real, Bool and
Function. The set of sorts can be additionally extended by
user-defined data types. Z3 supports two types of quanti-
fiers: universal (ForAll) and existential (Exists). The tool
also provides a library with a number of tactics, which can
be used to optimize the decision procedures.

The command check-sat determines whether the current
formulas on the Z3 stack are satisfiable or not. If the formu-
las are satisfiable, Z3 returns SAT that in our case proves
the analyzed consistency. If they are unsatisfiable, Z3 re-
turns UNSAT thus proving that the set of requirements is
inconsistent. Z3 may also return UNKNOWN if it cannot
determine whether a formula is satisfiable or not. When
the command check-sat returns SAT, the command get-
model can be used to retrieve an interpretation that makes
all formulas on the Z3 internal stack true. In case of an UN-
SAT, the tool can generate the minimal inconsistent set of
formulas by calling the unsat-core command.

4. REQUIREMENTS SPECIFICATION:
TEXTUAL TO TCTL

The set of FLD requirements are originally specified in free
text using a general purpose text editor. Such specifica-
tions are readable and expressive, yet sometimes ambiguous
and definitely not amenable to automated analysis. The
first step towards a framework for automated analysis and
verification is to convert the natural language specification
into a formal counterpart. In this section, we describe Step
1 of the method proposed in Figure 1. We use TCTL to
formally express the system requirements. Such decision is
motivated by the fact that TCTL is suitable for capturing
time-constrained requirements, which are within those that
the FLD system is required to fulfill. Moreover, a simplified
subset of TCTL can be used for model checking eventual
system realizations, for instance by using UPPAAL [16].

To be able to automate the process of formalizing the
requirements, we use the Specification Pattern System
(SPS) [7] [15]. SPS represents a catalog of reusable solu-
tions called patterns, for specifying reactive and real-time
systems requirements, expressed in different formal nota-
tions (e.g., LTL, (T)CTL, MTL, etc.) but also in CNL.
The method has been shown expressive enough to formalize
requirements of automotive systems [10] [19]. We have
formalized the complete set of FLD requirements, by using
our SESAMM Specifier tool [9]. Below, we express (via
SPS) the requirements from Section 2 first in CNL and
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then in TCTL, as follows:

SG Globally, it is always the case that when the aPB =
False holds, then the iFV ≤ aFV holds as well.

FSRICL After CAN2 = DD & DD 6= ERR holds until CAN2 6=
DD, it is always the case that iFV = DD holds for 1s.

SSR1
DMAC Globally, it is always the case that when Dmac

EnableCh(chID) = True holds, then the dmacCH(chID)
= True holds as well.

SSR2
DMAC Globally, it is always the case that when Dmac

DisableCh(chID) = False holds, then the dmacCH(chID)
= False holds as well.

SG AG(¬ aPB ⇒ iFV ≤ aFV )

FSRICL AG(CAN2 = DD ∧DD 6= ERR⇒
iFV = DD W≤100 CAN2 6= DD)

SSR1
DMAC AG(Dmac enableCh(chU32)⇒ dmacCH(chID))

SSR2
DMAC AG(Dmac disableCh(chU32)⇒ ¬ dmacCH(chID))

The formalization results show that only five patterns are
enough to generate the complete set of FLD requirements
in TCTL. The list below contains the used patterns (P1 to
P5), while the percentage of FLD requirements covered by
each pattern is given in Figure 3. Our findings are aligned
with the earlier formalization attempts [10] [19], which re-
veal that, in principle, a small subset of SPS patterns suf-
fices to express the majority of automotive systems’ require-
ments.

P1: Globally, Universally: AG(ϕ)

P2: Timed Globally, Universally: AG(AG≤T (ϕ)⇒ ψ)

P3: Globally, Response: AG(ϕ⇒ AF≤Tψ)

P4: After ϕ Until θ Universally ψ: AG(ϕ⇒ A(ψ W≤T θ))

P5: Timed After ϕ Until θ Universally ψ: AG(AG≤T (ϕ)⇒
A(ψ W≤T θ))

5. REQUIREMENTS SPECIFICATION:
TCTL TO FOL

In this section, we present the transformation of the TCTL
patterns into FOL formulas. The importance of this trans-
formation is twofold: i) to bridge the semantic gap between
TCTL and Z3, and ii) to ensure the preservation of infor-
mation between the two. This activity is captured by Step
3 in Figure 1. Due to space limitations and similarity of
proofs, in this section we present only one lemma that shows

the structured derivation of two of the TCTL patterns into
equivalent FOL formulas.

The TCTL to FOL transformation is carried out by instanti-
ating the semantics of the TCTL operators according to the
definitions given by Katoen [14], assuming a timed transi-
tion system as the underlying semantic model of our system.
The semantics uses the following concepts: σ denotes a sin-
gle path from the set of all paths PM (s) starting from a
given state s. A position in the path is a pair (i, di), where
i is the location number, whereas di is the time delay, that
is, a real number that corresponds to the time elapsed dur-
ing the delay transitions; a set of such points characterizes
the states traversed along σ while going from state si to the
successor si+1 for any i ∈ N. Pos(σ) denotes the set of all
positions in a given path σ. The time elapsed on a path σ
from the initial state s0 to any state si is defined as:

∆(σ, 0) = 0,

∆(σ, i+ 1) = ∆(σ, i) +

{
0, for edge transition,

di, for delay transition.

We denote a clock valuation by v. Based on this, the action
(reset z in v) is defined as follows:

(reset z in v)(y) =

{
v(y), if y 6= z,
0, if y = z.

Lemma 1 below proves the conjectured equivalent FOL form
of pattern P4 in TCTL, as a structured derivation that uses
the FOL counterpart of P1, which is also stated by Lemma
1. The proof for (1) has been omitted due to space limitation
and the fact that similar proof exists in [14].

Lemma 1 (P1, P4 into FOL). Given a transition system
M, predicates ϕ, ψ, θ, s a state of M, and ω a clock valuation
formula, the following two equivalences hold:

s, ! |= AG�0(') (1)

,
8� 2 PM(s).(8(i, d) 2 Pos(�).(�(i, d), (z = �(�, i)) |= '))

s, ! |= AG�0(') A( WT ✓)) (2)

,
8� 2 PM(s).(8(i, d) 2 Pos(�).�(i, d), (z = �(�, i)) |= (¬' _ (8�0
2 PM(�(i, d)).(9(j, d0).(i<j _ (j = i ^ d  d0)) 2 Pos(�0).�0(j, d0),

(z = �(�0, j)) |= (✓ ^ z  T )) ^ (8(k, d00).(k<j _ (k = j ^ d00  d0))

2 Pos(�0).�0(k, d00), (z = �(�0, k)) |= ( ^ z < �(�0, j)))) _
(8�0 2 PM(�(i, d)).(8(j, d0)(i<j _ (j = i ^ d  d0  d + T )

2 Pos(�0).�0(j, d0), (z = �(�0, j)) |= ( ^ z  T ))))))

1

Proof:
Proof 1

(2)

s, ! |= AG�0(') A( WT ✓))

, {Rule: ')  , ¬' _  , definition of WT}
s, ! |= AG�0(¬' _ A( UT ✓) _ AGT ( ))

, {Rule: AGT', ¬EFT¬', definition of FT}
s, ! |= AG�0(¬' _ A( UT ✓) _ ¬E(True UT ¬ ))

, {Definition of UT ; let z be a ‘fresh’ clock}
s, ! |= z in AG�0(¬' _ A(( ^ z  T ) U ✓) _ ¬E(True

U (¬ ^ z  T )))

, {Semantics of z in '}
s, reset z in ! |= AG�0(¬' _ A(( ^ z  T ) U ✓) _ ¬E(True U

(¬ ^ z  T )))

, {Definition of AG�T , A(' U  ), E(' U  )}
8� 2 PM(s).(8(i, d) 2 Pos(�).�(i, d), (reset z in !)+

�(�, i) |= (¬' _ (8�0 2 PM(�(i, d)).(9(j, d0)>>(i, d)

2 Pos(�0).�0(j, d0), (reset z in !) + �(�0, j) |= (✓ ^ z  T )

^ (8(k, d00)<<(j, d0) 2 Pos(�0).�0(k, d00), (reset z in !)

+ �(�0, k) |= ( ^ z  �(�0, j)))) _ ¬(9�0 2 PM(�(i, d)).

(9(j, d0)>>(i, d) 2 Pos(�0).�0(j, d0), (reset z in !)+

�(�0, j) |= (¬ ^ z  T ) ^ (8(k, d00)<<(j, d0) 2 Pos(�0).

�0(k, d00), (reset z in !) + �(�0, k) |= True))))))

, {Logic, definition of total order, semantics of reset z in !}
8� 2 PM(s).(8(i, d) 2 Pos(�).�(i, d), (z = �(�, i)) |=
(¬' _ (8�0 2 PM(�(i, d)).(9(j, d0).(j>i _ (j = i ^ d  d0))

2 Pos(�0).�0(j, d0), (z = �(�0, j)) |= (✓ ^ z  T ))^
(8(k, d00).(k<j _ (k = j ^ d00  d0)) 2 Pos(�0).�0(k, d00),

(z = �(�0, k)) |= (z<�(�0, j) ^  ))) _ (8�0 2 PM(�(i, d)).

(8(j, d0).(j>i _ (j = i ^ d  d0  d + T ) 2 Pos(�0).

�0(j, d0), (z = �(�0, j)) |= ( ^ z  T )))))))

⇤



Proof 1

(2)

s, ! |= AG�0(') A( WT ✓))

, {Rule: ')  , ¬' _  , definition of WT}
s, ! |= AG�0(¬' _ A( UT ✓) _ AGT ( ))

, {Rule: AGT', ¬EFT¬', definition of FT}
s, ! |= AG�0(¬' _ A( UT ✓) _ ¬E(True UT ¬ ))

, {Definition of UT ; let z be a ‘fresh’ clock}
s, ! |= z in AG�0(¬' _ A(( ^ z  T ) U ✓) _ ¬E(True

U (¬ ^ z  T )))

, {Semantics of z in '}
s, reset z in ! |= AG�0(¬' _ A(( ^ z  T ) U ✓) _ ¬E(True U

(¬ ^ z  T )))

, {Definition of AG�T , A(' U  ), E(' U  )}
8� 2 PM(s).(8(i, d) 2 Pos(�).�(i, d), (reset z in !)+

�(�, i) |= (¬' _ (8�0 2 PM(�(i, d)).(9(j, d0)>>(i, d)

2 Pos(�0).�0(j, d0), (reset z in !) + �(�0, j) |= (✓ ^ z  T )

^ (8(k, d00)<<(j, d0) 2 Pos(�0).�0(k, d00), (reset z in !)

+ �(�0, k) |= ( ^ z  �(�0, j)))) _ ¬(9�0 2 PM(�(i, d)).

(9(j, d0)>>(i, d) 2 Pos(�0).�0(j, d0), (reset z in !)+

�(�0, j) |= (¬ ^ z  T ) ^ (8(k, d00)<<(j, d0) 2 Pos(�0).

�0(k, d00), (reset z in !) + �(�0, k) |= True))))))

, {Logic, definition of total order, semantics of reset z in !}
8� 2 PM(s).(8(i, d) 2 Pos(�).�(i, d), (z = �(�, i)) |=
(¬' _ (8�0 2 PM(�(i, d)).(9(j, d0).(j>i _ (j = i ^ d  d0))

2 Pos(�0).�0(j, d0), (z = �(�0, j)) |= (✓ ^ z  T ))^
(8(k, d00).(k<j _ (k = j ^ d00  d0)) 2 Pos(�0).�0(k, d00),

(z = �(�0, k)) |= (z<�(�0, j) ^  ))) _ (8�0 2 PM(�(i, d)).

(8(j, d0).(j>i _ (j = i ^ d  d0  d + T ) 2 Pos(�0).

�0(j, d0), (z = �(�0, j)) |= ( ^ z  T )))))))

⇤

The FOL formulas obtained by similar derivations, which
correspond to the rest of the patterns are given below.

P2 : 8� 2 PM(s).(8(i, d) 2 Pos(�).�(i, d), (z = �(�, i)) |=
((8�0 2 PM(�(i, d)).(8(j, d0).(i<j _ (i = j ^ d  d0) 2 Pos(�0).

�0(j, d0), (z = �(�0, j)) |= (z  T ^ ')) _  ))

P3 : 8� 2 PM(s).(8(i, d) 2 Pos(�).�(i, d), (z = �(�, i)) |=
(¬' _ (8�0 2 PM(�(i, d)).(9(j, d0).(i<j _ (i = j ^ d  d0)) 2
Pos(�0).�0(j, d0), (z = �(�0, j)) |= (z  T ^  ))))

P5 : 8� 2 PM(s).(8(i, d) 2 Pos(�).�(i, d), (z = �(�, i)) |=
(¬(8�0 2 PM(�(i, d)).(8(j, d0).(j>i _ (j = i ^ d  d0  T )

2 Pos(�0).�0(j, d0), (z = �(�0, j)) |=
(z  T ^ '))) _ (8�0 2 PM(�(i, d)).(9(j, d0).(j>i _ (j = i ^ d  d0)

2 Pos(�0).�0(j, d), (z = �(�0, j)) |= (z  T ^ ✓))) ^ (8(k, d00)

2 Pos(�0).(k<j _ (k = j ^ d00  d0) 2 Pos(�0).(�0(k, d00),

(z = �(�0, k)) |=
(z  �(�0, j) ^  ))) _ (8�0 2 PM(�(i, d)).(8(j, d0).(j>i_
(j = i ^ d  d0  d + T )) 2 Pos(�0).�0(j, d), (z = �(�0, j)) |=
(z  T ^  )))))

2

Returning to Definition 1, by instantiating the above pat-
terns in FOL, one obtains the conjunction of all requirements
that need to be fed to Z3 in order to check consistency.

6. REQUIREMENTS ENCODING IN Z3
FOL formulas can be abstracted as Z3-compliant formulas,
analyzable with Z3, by applying these three encoding rules:

R1: Directly map the FOL constructs into Z3 syntax ele-
ments. For instance, mapping the quantifiers (∀ into

ForAll, ∃ into Exists, etc.), modeling port values as
functions of time, etc.

R2: Reduce complexity by abstraction: (a) eliminate path
(σ) universal quantifiers, and (b) collect location (i)
and time in location (d) into a tuple position (pos).

R3: Abstract the universally quantified pos = (i, d) to the
universally quantified pos.d.

The process of applying the rules R1, R2 and R3 on the set
of patterns of Section 5 can be illustrated as follows:

Pi
R1,R2−−−−→ P

′
i

R3−−→ Pi Z3, i ∈ [1, 5]

The application of rule R1 results in a Z3 script where each
assertion corresponds to an individual requirement, with
quantifiers and Boolean expressions encoded in Z3. The
traceability between the requirements and the Z3 assertions
is ensured via unique identifiers. Recall that TCTL formu-
las are interpreted over a branching model (Section 3.1),
so the assertions are quantified over the following variables:
execution path (s-paths), locations and clock valuations.
However, only the clock quantifiers are bounded due to the
timed-constrained nature of the system specification.

The number of quantified variables negative impact the de-
cidability of the SMT procedure [17]. Our initial attempts
to verify the directly mapped Z3 assertions failed due to the
three quantified variables mentioned above. To remedy this,
we propose an abstraction technique (rules R2 and R3) that
reduces the number of quantified variables in the assertions,
while abstracting away only the information related to vari-
ables that cannot be sources of requirements inconsistency
(e.g., σ, and i). Further, we collect location and time vari-
ables into a tuple position, denoted by pos [14]. To access
the location component of the position we write pos.i. Sim-
ilarly, time valuation in that position is obtained by pos.d.

The abstraction relies on the interpretation of TCTL over a
model, according to which the progress in the system hap-
pens by changing position on a given path, either by making
a transition from one location to another or by delaying in
a given location [4]. In our case, the path component of
all FLD properties is always universally quantified because
all the requirements are safety requirements, meaning that
no inconsistency can occur due to path quantifiers, as exis-
tentially quantified path properties do not exist in our case
study. Therefore, proving consistency on an arbitrary path
(chosen via the“select”operator) suffices. Consequently, the
quantified path disappears in our Z3 encoding.

All our patterns rely on semantic models in which progress
is ensured by discrete transitions (in no time), in which loca-
tion index (pos.i) increases, or via delay transitions, in which
the time distance from the initial location (pos.d) increases.
The progress along the path is modeled by the binary op-
erator “<<” that compares positions, defined as: “pos <<
pos′ ⇐⇒ pos.i < pos′.j ∨ pos.i = pos′.j ∧ pos.d < pos′.d′”.
Possible inconsistencies can arise from contradicting formu-
las that should hold in/from each position, e.g. ϕ, ψ etc., at
or from a certain time point on.

By applying the rules R1 and R2 explained above we obtain
the following valid abstracted versions of patterns P1-P5:



P1
′

: select σ ∈ PM (s).(∀pos ∈ Pos(σ).pos.i, (z = ∆(σ, pos.i) |= ϕ)

P2
′

: select σ ∈ PM (s).(∀pos ∈ Pos(σ).pos.i, (z = ∆(σ, pos.i)) |=

(¬(select σ
′ ∈ PM (pos).(∀pos′.(pos << pos

′
<< pos+ T ) ∈

Pos(σ
′
).pos

′
.i, (z = ∆(σ

′
, pos

′
.i)) |= (z ≤ T ∧ ϕ)) ∨ ψ))

P3
′

: select σ ∈ PM (s).(∀pos ∈ Pos(σ).pos.i, (z = ∆(σ, pos.i) |=

(¬ϕ ∨ (select σ
′ ∈ PM (pos).(∃pos′.(pos << pos

′
<< pos+ T )

.pos
′
.i, (z = ∆(σ

′
, pos

′
.i)) |= (z ≤ T ∧ ψ)))))

P4
′

: select σ ∈ PM (s).(∀pos ∈ Pos(σ).pos.i, (z = ∆(σ, pos.i)) |=

(¬ϕ ∨ (select σ
′ ∈ PM (pos).(∃pos′.(pos << pos << pos

′
+ T

∈ Pos(σ′).pos′.i, (z = ∆(σ
′
, pos

′
.i)) |= (θ ∧ z ≤ T ) ∧ (∀pos′′

<< pos
′ ∈ Pos(σ′).pos′′.i, (z = ∆(σ

′
, pos

′′
.i)) |=

(z < ∆(σ
′
, pos

′
.i) ∧ ψ))) ∨ (select σ

′ ∈ PM (pos).(∃pos′.(pos′

>> pos) ∈ Pos(σ′).pos′.i, (z = ∆(σ
′
, pos

′
.i)) |= (ψ ∧ z ≤ T ))))))

P5
′

: select σ ∈ PM (s).(∀pos ∈ Pos(σ).pos.i, (z = ∆(σ, pos.i)) |=

(¬(select σ
′ ∈ PM (pos).(∀pos′.(pos′ >> pos ∈ Pos(σ′)).(pos′.i,

(z = ∆(σ
′
, pos

′
.i)) |= (z ≤ T ∧ ϕ)))) ∨ (select σ

′ ∈ PM (pos).

(∃pos′.(pos′ >> pos) ∈ Pos(σ′).pos′.i, (z = ∆(σ
′
, pos

′
.i)) |=

(z ≤ T ∧ θ))) ∧ (∀pos′′.(pos << pos
′′
<< pos

′
) ∈ σ′.(pos′′.i,

(z = ∆(σ
′
, pos

′′
.i)) |= (z ≤ ∆(σ

′
, pos

′
.i)− ∧ψ))))) ∨ (select σ

′

∈ PM (pos).(∀pos′.(pos << pos
′
<< pos+ T ) ∈ Pos(σ′).

(pos
′
.i, (z = ∆(σ

′
, pos

′
.i)) |= (z ≤ T ∧ ¬ψ))))))

Finally, we apply rule R3 on P1’,...,P5’ to abstract ∀pos and
∃pos into ∀pos.d and ∃pos.d as it is the only component of
the tuple that counts for the inconsistency checking. The
abstracted patterns can be encoded into Z3 assertions that
contain only one quantified variable, (pos.d) that is repre-
sented by“time”Z3 quantified variable. Also, the predicates
(ϕ, ψ, θ) in the FOL patterns are substituted with Boolean
expressions over the system ports represented as functions
over time denoted as vari(time), i ∈ Z. The complete set of
patterns expressed in Z3 is presented in the list below:

P1Z3 ForAll(time, ϕ(time) == val1)

P2Z3 ForAll(time, Implies(Implies(var1(time) == val1,

Not(Exists(time1, And(var1(time) 6= val1, time1 ≥ time,
time1 ≤ time+ T )))), var2(time) == val2))

P3Z3 ForAll(time, Implies(var1(time) == val1, Exists(time1,

And(time1 > time, time1 < time+ T, var2(time) == val2))))

P4Z3 ForAll(time, Implies(var1(time) == val1, Or(Exists(time1,

And(time1 > time, time1 6 time+ T, var2(time1) == val2),

Not(Exists(time2, And(time2 > time, time2 6 time1,

var2(time2) == val2, var3(time2) 6= val3))))), Not(Exists(

time1, And(time1 > time, time1 = time+ T, var2(time1) 6=
val2)))))

P5Z3 ForAll(time, Implies(Implies(var1(time) 6= val1, Not(Exists(

time1, And(time1 ≥ time, time1 ≤ time+ T, var1(time1) 6=
val1))))), Or(Not(Exists(time2, And(time2 ≥ time+ T, time2

≤ time+ 2T, var2(time2) 6= val2))), Exists(time2,

And(time2 ≥ time+ T, time2 ≤ time+ 2T, var3(time2) == val3,

Not(Exists(time3, And(time3 ≥ time+ T, time3 < time2,

var3(time3) == val3, var3(time3) 6= val3)))))))))

It is obvious that the original set of requirements expressed

via patterns P1,..., P5 are stronger than their counterparts
encoded in Z3. Therefore, theoretically, proving the incon-
sistency of the encoded versions means proving the inconsis-
tency of the original ones, but a similar inference does not
hold for the positive case in which the encoded versions are
proven consistent. However, practically, we can still infer
the consistency of the original requirements if the Z3 ones
are satisfiable, based on our argumentation around the only
possible sources of inconsistency.

7. CONSISTENCY ANALYSIS IN Z3
By applying the Z3 patterns of Section 6 we obtain the set of
assertions to be analyzed for consistency. The analysis pro-
cess can be additionally optimized by encoding the domain
knowledge that is not explicitly stated into the requirements.
Typical cases are the assertions encoding physical concepts
and limitations of the system, such as the actual fuel level
that cannot be less than zero or greater than the tank size,
or the speed that can be reached by the vehicle. The code
that follows shows an example of such optimization denoted
by assertion actualFuelBound that bounds the value of the
actualFuelVolume parameter to a set of allowed values used
in the FSR ICL requirement of Section 2.

FSR ICL = ForAll ( time , Imp l i e s (And(CAN2( time ) ==
DD( time ) , DD( time ) 6= ERR) , Or( Ex i s t s ( time1 ,
And( time1 ≥ time , time1 ≤ time + T,
CAN2( time1 ) == DD( time1 ) , DD( time1 ) == ERR,
Not ( Ex i s t s ( time2 , And( time2 ≥ time , time2 ≥
time1 , CAN2( time2 ) == DD( time2 ) , DD( time2 )
6= ERR, iFV( time2 ) 6= DD( time2 ) ) ) ) ) ) ) ) )

actualFuelBound = ForAll ( time , And(aFV( time ) ≥ 0 ,
aFV( time ) ≤ TANK SIZE) )

For performing the SMT analysis, we use an instance of the
Z3 SMT solver configured as follows:

s o l v e r = Then( ’ smt ’ , ’ s i m p l i f y ’ , ’ qe ’ ) . s o l v e r ( )
s o l v e r . set ( ’ mbqi ’ , True )
s o l v e r . set ( ’ mbqi . max i t e ra t i on s ’ , 1000)
s o l v e r . set ( ’ p u l l n e s t e d q u a n t i f i e r s ’ , True )
s o l v e r . set ( ’ unsa t co r e ’ , True )

Four out of five TCTL patterns include implication, which
can be trivially satisfied if the antecedent evaluates to false.
For example, FSR ICL is trivially satisfied if CAN2(time)
== DD(time) never evaluates to true. To eliminate trivial
satisfaction, we explicitly instruct the solver to check for sat-
isfiability when all of the antecedents hold, being careful not
to enable requirements that model complementary behavior
at the same time, to avoid false positive inconsistencies.

The SMT procedure for the whole set of FLD requirements
that includes 36 Z3 assertions is run on a Linux machine
with 2.4 GHz Dual Core processor and 4GB RAM. The pro-
cedure using the unbounded model-based quantifier instan-
tiation (mbqi) does not terminate within 48 hours, whereas
bounding the iterations (up to 1000) of the mbqi procedure
for generating the model yields the verdict UNKNOWN. To
determine the cause of non-termination of the SMT anal-
ysis, we incrementally insert the requirements one by one,
into the solver, and perform the consistency analysis on ev-
ery step. In this way, we are able to isolate the requirements
for which the SMT procedure cannot terminate. By apply-
ing this strategy, we discover two classes of requirements:
the ones for which the SMT procedure terminates (solvable)
and the ones for which it does not, called non-solvable. In



the following, we discuss the characteristics of both classes
and the mitigation strategy used for the non-solvable ones.

Solvable Requirements. The requirements formalized by
instantiating the patterns P1, P2 and P3, which represent
73% of the total requirements (see Figure 3) do not hinder
termination of the SMT analysis process; a Z3 input script
constructed exclusively from such requirements is analyzed
within seconds. This shows that the tool can handle pat-
tern instances with a maximum of two nested quantifiers
without difficulty. Pattern P1 contains only one univer-
sal quantifier (encoded as ForAll(time) in Z3), while P2
and P3 have two levels of nested quantifiers of the follow-
ing types ForAll(time, ForAll(time1)) or ForAll(time,
Exists(time1)). For optimization reasons, the nested uni-
versal quantifier is converted into an existential one by using
the conversion rule: ∀x : p(x)⇐⇒ ¬∃x : ¬p(x).

Non-solvable Requirements. The patterns P4 and P5
covering 27% of total requirements (see Figure 3) prevented
termination of the SMT procedure. Compared to the pat-
terns in the solvable category, P4 and P5 have a more com-
plex structure, arising from the nested TCTL formula of the
W operator, which is translated into two levels of nested
quantifiers in Z3. If the W operator is used within an in-
variant property (e.g. P4 in Section 4), an extra universal
quantifier is created, yielding three levels of nested opera-
tors. Even when the optimization is applied, that is, con-
version of universal into existential quantifiers, such Z3 as-
sertions cannot be solved by the tool as such.

Mitigating Non-solvable Requirements. In order to
tackle the requirements formalized using patterns P4 and
P5, one of the nested quantifiers must be eliminated. To
determine which of the nested quantifiers is to be elimi-
nated, we analyze the semantics of the patterns. We find
that an additional existential quantifier is added to model
the sporadic occurrence of events, over a variable bounded
from above. Such existential quantifiers can be eliminated
by providing a witness value from the set of allowed values.
In this way, all the sporadic events in the requirements are
modeled as periodic with their period equal to the upper
bound of the allowed interval. For illustration, let us recall
the FSRICL requirement (see Section 4) that captures the
sporadic occurrence of the event CAN2 = DD. By apply-
ing our mitigation strategy, we modify the requirement such
that the given event occurs every 100 time units after the
antecedent is satisfied. In the TCTL form, we replace the
W≤100 with U=100, which results in FSRICL : AG(CAN2 =

DD ∧ DD 6= ERR ⇒ iFV = DD U=100 CAN2 6= DD). This
model is pessimistic but still valid, since once a witness is
found, the satisfaction of the original formula follows.

After applying the mitigation technique, the SMT analysis
over the complete set of FLD system requirements returns
SAT with a valid model. The procedure terminates success-
fully within seconds on a standard workstation computer as
described in the text above. Since the consistency analysis
is performed on an operational industrial system, the SAT
verdict is expected. To validate that our approach can de-
tect temporal inconsistencies, we have deliberately injected
faulty assertions. Examples of such assertions include: en-
abling requirements expressing mutually exclusive behaviors
(SSR1

DMAC and SSR2
DMAC) at the same time, or assertions

that violate existing ones. All of the injected faults have

been detected by Z3, and the conflicting assertions (require-
ments) contained in the minimal inconsistent set have been
generated by the solver using the unsat-core command.

8. RELATED WORK
Various approaches for checking requirements consistency,
based on different definitions of consistency and different
analysis techniques, have been proposed in the literature. A
consistency checking procedure similar to ours has been pro-
posed by Barnat et al. [13]. The authors define a model-free
sanity-checking procedure including consistency for system
requirements specification in Linear Temporal Logic (LTL)
by means of model checking. The notion of consistency is
reduced to checking whether an automaton A obtained as
a conjunction of all the formulas in the specification has a
non-empty accepting language. The same has later been ex-
tended [2] to be able to generate a minimal inconsistent set of
requirements. Despite the exhaustiveness, the approach suf-
fers from the inherent complexity of transforming the LTL
formulas into automata, especially for complex systems, po-
tentially making it unusable in industrial settings. A similar
approach for consistency checking of requirements specified
in LTL is proposed by Ellen et al. [8]. The paper presents
a so-called existential definition, that is, the existence of at
least one run of the system that satisfies the complete set
of requirements - which is an approach close to ours. The
proposed technique is capable of generating a maximal set
of consistent requirements, as well as a minimal inconsistent
subset of requirements. Similar to our approach, the analy-
sis procedure has been tailored for an industrial application.

The work by Post et al. [18] defines the notion of rt-
(in)consistency of real-time requirements. The notion
covers cases where the requirements in the system’s re-
quirements specification can be inconsistent due to timing
constrains. The checking for rt-inconsistency is reduced to
model checking.

The notion of consistency is also checked for requirements
specified in domain-specific notations. Heimdhal and Leve-
son [11] provide an approach for consistency analysis for
requirements specified in RSML (Requirements State Ma-
chine Language). The proposed definition for consistency
is suitable only for requirements specified in RSML and is
not applicable for requirements expressed in any other no-
tation. Real-time embedded systems can also be specified
using the Software Cost Reduction (SCR) method. The SCR
method is suitable for specifying both functional and extra-
functional system requirements. A complete suite for ana-
lyzing system specifications in SCR has been developed by
Heitmeyer et al. [12]. The suite provides tools for require-
ments specification, symbolic execution and formal analysis.

Despite the fact that the approaches above [2] [13] [18] can
exhaustively check for the consistency of requirements speci-
fications, all of them suffer from one major limitation, which
is the verification time that grows exponentially with the
number of requirements. In the early phases of system re-
quirements specification, a more lightweight and consider-
ably faster procedure as proposed in this paper might be
more suited. Hence, our approach can be used as a comple-
mentary approach to the above listed methods for consis-
tency checking.



9. CONCLUSIONS
In this paper, we have presented an SMT-based method
for consistency checking of system requirements specifica-
tions, which, without demanding a behavioral system model,
checks whether the systems’ specification is realizable. Un-
like previous work mentioned in Section 8, our method is
suitable for early debugging of system specifications. The
application of our method prevents the propagation of in-
consistencies into the subsequent artifacts such as models
and code. It can also be used in more agile methods to in-
crease the confidence in the correctness of the specification,
thus reducing the likelihood of flawed verification results.
Additionally, the proposed technique can be applied when
the specification contains complicated temporal properties
with nested path and temporal operators that cannot be
verified using model checking.

To make SMT-based analysis possible, our method provides
means for transforming textual requirements into the input
language of the Z3 SMT solver input, using temporal log-
ics and FOL as intermediate representations to bridge the
semantic gap. Our findings show that, due to their complex-
ity, patterns with more than two levels of nested quantifiers
cannot be analyzed using existing SMT solvers. We propose
a mitigation strategy for three levels of nested quantifiers
that, based on the existence of a witness, eliminates the in-
nermost quantifier. The strategy relies on a straightforward
transformation from sporadic to periodic events, which is
possible due to the timed nature of the analyzed systems
(e.g. FLD). For more complex cases, appropriate witness-
selection heuristics should be investigated.

SMT-based approaches are suited for checking realizabil-
ity, i.e. the existence of a model that satisfies the system
specification. For instance, a system specified as: AG(ϕ) ∧
EF(¬ϕ) is not realizable. This could be regarded as a narrow
definition of inconsistency. For detecting more subtle incon-
sistencies in the specification, a broader definition coupled
with more exhaustive analysis should be applied. Conse-
quently, the proposed method cannot replace the model-
checking-based consistency analysis; rather, it should be
used as a complementary technique for detecting errors early
on, hence reducing verification efforts in later phases.

At present, we are working towards automating the com-
plete method, including the formalization, transformation
and analysis steps, to minimize the need for user interaction.
By providing automated tool support, we seek for more in-
dustrial penetration and analysis of new case studies.
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