
Using Servers to Provide Bandwidth Isolation on the Controller Area Network

Thomas Nolte, Mikael Sjödin, and Hans Hansson
Mälardalen Real-Time Research Centre

Department of Computer Science and Engineering
Mälardalen University, Västerås, SWEDEN

http://www.mrtc.mdh.se

Abstract

We present a new share-driven server-based method for
scheduling messages sent over the Controller Area Network
(CAN) [8]. Share-driven methods are useful in many ap-
plications, since they provide both fairness and bandwidth
isolation among the users of the resource. Our method is
the first share-driven scheduling method proposed for CAN,
and it is based on Earliest Deadline First (EDF), which al-
lows higher utilization of the network than CAN’s native
fixed-priority scheduling (FPS). We use simulation to show
the performance and properties of server-based schedul-
ing for CAN. The simulation results show that the band-
width isolation property is kept, and that with our method a
good Quality-of-Service (QoS) is provided, where virtually
all messages are delivered within their deadline.

1 Introduction

The Controller Area Network (CAN) [8] is widely used
in automotive and other real-time applications. CAN uses
a fixed-priority based arbitration mechanism that provides
timing guarantees and that is amenable to timing analysis
[11].

Today, distributed real-time systems become more and
more complex and the number of micro controllers attached
to CAN buses continue to grow. CAN’s maximum speed of
1 Mbps remains, however, fixed; leading to performance
bottlenecks. This bottleneck is further accentuated by the
growing computing power of CPUs. Studies have shown
that CAN’s priority mechanism allows for lower network
utilization than the Earliest Deadline First (EDF) mecha-
nism [6]. Hence, in order to reclaim some of the scarce
bandwidth forfeited by CAN’s native scheduling mecha-
nism, novel approaches to scheduling CAN are needed.

In optimising the design of a CAN-based communica-
tion system (and essentially any other real-time communi-
cation system) it is important to both guarantee the time-
liness of periodic messages and to minimize the interfer-
ence from this traffic on the transmission of aperiodic mes-
sages. Therefore, in this paper we propose the usage of
an EDF server-based scheduling technique, which improves

on existing techniques, since: (1) Fairness among the mes-
sages is guaranteed (i.e., “misbehaving” aperiodic processes
cannot starve well-behaved processes), and (2) in contrast
with other proposals, aperiodic messages are not sent “in
the background” of periodic messages or in separate time-
slots [5]. Instead, all messages are jointly scheduled using
servers. This substantially facilitates meeting response-time
requirements for both aperiodic and periodic messages.

In the real-time scheduling research community there
exist several different types of scheduling. We can divide
the classical scheduling paradigms into the following three
groups: (1) Priority-driven, (2) Time-driven, and (3) Share-
driven. For CAN, priority-driven scheduling is the most
natural scheduling method since it is supported by the CAN
protocol, and FPS response-time tests for determining the
schedulability of CAN message frames have been presented
by Tindell et al. [11]. This analysis is based on the stan-
dard fixed-priority response-time analysis for CPU schedul-
ing presented by Audsley et al. [3]. TT-CAN [7] provides
time-driven scheduling for CAN, and Almeida et al. present
Flexible Time-Triggered CAN (FTT-CAN) [2], which sup-
ports priority-driven scheduling in combination with time-
driven scheduling. The server-based scheduling presented
in this paper provides the first share-driven scheduling ap-
proach for CAN. By providing the option of share-driven
scheduling of CAN, designers are given more freedom in
designing an application.

As a side effect, by using servers, the CAN identifiers
assigned to messages will not play a significant role in the
message response-time. This greatly simplifies the process
of assigning message identifiers (which is often done in an
ad-hoc fashion at an early stage in a project). This also al-
lows migration of legacy systems (where identifiers cannot
easily be changed) into our new framework.

Outline: In Section 2 we present the server scheduling,
and in Section 3 we discuss an approach to analysis. We
evaluate the server scheduling in Section 4 and conclude in
Section 5.

2 Server-Based Scheduling on CAN

In order to provide bandwidth isolation for CAN, we pro-
pose the usage of server-based scheduling techniques.By

using servers, the whole network will be scheduled as a
single resource, providing bandwidth isolation as well as
fairness among the users of the servers. However, in order
to make server-scheduling decisions, the server must have
information on when messages are arriving at the different
nodes in the system, so that it can assign them a deadline
based on the server policy in use. This information should
not be communicated by message passing, since this would
further reduce the already low bandwidth offered by CAN.
Our method, presented below, will provide a solution to this.

2.1 Server Scheduling (N-Servers)

In real-time scheduling, a server is a conceptual entity
that controls the access to some shared resource. Some-
times multiple servers are associated with a single resource.
For instance, in this paper we will have multiple servers me-
diating access to a single CAN bus.

A server has one or more users. A user is typically a pro-
cess or a task that requires access to the resource associated
with the server. In this paper, a user is a stream of messages
that is to be sent on the CAN bus. Typically, messages are
associated with an arrival pattern. For instance, a message
can arrive periodically, aperiodically, or it can have a spo-
radic arrival pattern. The server associated to the message
handles each arrival of a message.

In the scheduling literature many types of servers are de-
scribed. Using FPS, for instance, the Sporadic Server (SS)
is presented by Sprunt et al. [9]. SS has a fixed priority
chosen according to the Rate Monotonic (RM) policy. Us-
ing EDF, Spuri and Buttazzo [10] extended SS to Dynamic
Sporadic Server (DSS). Other EDF-based schedulers are the
Constant Bandwidth Server (CBS) presented by Abeni [1],
and the Total Bandwidth Server (TBS) by Spuri and But-
tazzo [10]. Each server is characterized partly by its unique
mechanism for assigning deadlines, and partly by a set of
variables used to configure the server. Examples of such
variables are bandwidth, period, and capacity.

In this paper we will describe a general framework for
server scheduling of the CAN bus. As an example we will
use a simplified version of TBS. A TBS, � , is characterized
by the variable

���
, which is the server utilization factor,

i.e., its allocated bandwidth. When the nth request arrives
to server � at time ��� , it will be assigned the deadline ���
	
max ���
���������������������� where � � is the resource demand (can
be execution time or, as in this paper, message transmission
time). The initial deadline is ��!"	$# .

2.1.1 Server Characterization

Each node on the CAN bus will be assigned one or more
network servers (N-Servers). Each N-Server, � , is charac-
terized by its period % � , and it is allowed to send one mes-
sage every server period. The message length is assumed to
be of worst-case size. A server is also associated with a rel-
ative deadline & � 	'% � . At any time, a server may also be
associated with an absolute deadline � � , denoting the next

actual deadline for the server. The server deadlines are used
for scheduling purposes only, and are not to be confused
with any deadline associated with a particular message.

2.1.2 Server State

The state of a server � is expressed by its absolute dead-
line � � and whether the server is active or idle. The rules
for updating the server state is according to the following
3 cases: (1) when an idle server receives message (at
time �
� it becomes active and the server deadline is set to
� � � 	 max ���
�)�*& � ��� ������ � , (2) when an active server sends
a message and still has more messages to send, the server
deadline is updated to � � � 	+� ������ �,& � , and (3) when an
active server sends a message and has no more messages to
send, the server becomes idle.

2.2 Medium Access (M-Server)

The native medium access method in CAN is strictly
priority-based. Hence, it is not very useful for our purpose
of scheduling the network with servers. Instead, we intro-
duce a master server (M-Server) which is a piece of soft-
ware executing on one of the network nodes. Scheduling the
CAN bus using a dedicated “master” has been previously
proposed [6], although in this paper the master’s responsi-
bilities are a bit different. Here the M-Server is responsible
for keeping track of the state of each N-Server and for al-
locating bandwidth to N-Servers. The first responsibility is
handled by guessing whether or not N-Servers have mes-
sages to send. The initial guess is to assume that each N-
Server has a message to send (e.g., initially each N-Server� is assigned a deadline � � 	$& �). Later we will see how to
handle erroneous guesses.

In fact, the N-Servers’ complete state is contained within
the M-Server. Hence, the other nodes do not maintain N-
Server states, they only have to keep track of when band-
width is allocated to them (as communicated by the M-
Server).

The M-Server divides time into Elementary Cycles
(ECs), similar to the FTT-CAN approach, and we use %.- �
to denote the nominal length of an EC. %.- � is the temporal
resolution of the resource scheduled by the servers, in the
sense that N-Servers can not have their periods shorter than
%/- � . When scheduling a new EC, the M-Server will (using
the EDF principle based on the N-Servers’ deadline) select
the N-Servers that are allowed to send messages in the EC.
Next, the M-Server sends a Trigger Message (TM). The TM
contains information on which N-Servers that are allowed to
send one message during the EC. Upon reception of a TM,
the N-Servers that were granted permission will send their
message. The messages will be sent using CAN’s native
priority access protocol. Due to the arbitration mechanism,
we do not know when inside an EC a specific message is
sent. Hence, from the reception of a granting TM, the delay
of message transmissions will be bounded by the size of the
EC.

Once the TM has been sent, the M-Server has to deter-
mine when the bus is idle again, so the start of a new EC
can be initiated. One way of doing this is to send a stop
message (STOP) with the lowest possible priority. After
sending STOP to the CAN controller, the M-Server reads all
messages sent on the bus. When it reads STOP it knows that
all N-Servers have sent their messages, since by the CAN
arbitration mechanism all higher priority messages will be
sent before STOP.

After reading STOP the EC is over and the M-Server has
to update the state of the N-Servers scheduled during the EC
before starting the next EC. The following section describes
how this is done.

2.2.1 Updating N-Server States

At this point it is possible for the M-Server to verify whether
or not its initial guess that all N-Servers had messages to
send was correct, and to update the N-Servers’ state accord-
ingly. For each N-Server that was allocated a message in
the EC we have two cases: (1) the N-Server sent a mes-
sage. In this case the guess was correct and the M-Servers
next guess is that the N-Server has more messages to send.
Hence it updates the N-Server’s state according to rule 2 in
Section 2.1.2, and (2) the N-Server did not send a message.
In this case the guess was incorrect and the N-Server was
idle. The new guess is that a message now has arrived to the
N-Server, and the N-Server state is set according to rule 1
in Section 2.1.2.

2.2.2 Reclaiming Unused Bandwidth

It is likely that not all bandwidth allocated to the EC has
been completely used. There are three sources for unused
bandwidth (slack): (1) an N-Server that was allowed to
send a message during the EC did not have any message to
send, (2) one or more messages that were sent was shorter
than the assumed worst-case length of a CAN message, and
(3) the bit-stuffing that took place was less than the worst-
case scenario. To not reclaim the unused bandwidth would
make the M-Server’s guessing approach of always assum-
ing that N-Servers have messages to send extremely ineffi-
cient. Hence, for our method to be viable we need a mech-
anism to reclaim this bandwidth.

In the case that the EC ends early (i.e., due to unused
bandwidth) the M-Server reclaims the unused bandwidth by
reading the STOP message and immediately initiating the
next EC so no bandwidth is lost.

3 Approach to Analysis

The server-based scheduling proposed in this paper pro-
vides a high level of Quality-of-Service (QoS), in the sense
that an N-Server, � , almost always delivers its messages
within the bound % � � %/- � . A condition for providing this
QoS is that the N-Servers in the system have a total utili-

sation that is less than the theoretical upper bound for this
protocol as presented in [4].

3.1 Message Delivery

Since the deadline of an N-Server may not be on the
boundary between ECs and we have no control of mes-
sage order within an EC it may be the case that an N-Server
misses its deadline. Thus, even if an N-Server is scheduled
within the EC where its deadline is, it may be the case that
the N-Server misses its deadline with as much as %.- � .

Also affecting the message delivery time is the effec-
tiveness of the M-Server’s guesses about N-Server states.
When the system is not fully utilised (e.g., when one or
more N-Servers do not have any messages to send), the EC
will terminate prematurely and cause a new EC to be trig-
gered. This, in turn, increases the protocol overhead (since
more TM and STOP messages are being sent). However, it
should be noted that this increase in overhead only occurs
due to unutilised resources in the system. Hence, when the
system is fully utilised no erroneous guesses will be made
and the protocol overhead is kept to a minimum.

However, when a system goes from being under-utilised
to being fully utilised (for instance when a process that was
sleeping is woken up and starts to send messages to its
server) we may experience a temporary overload situation
due to the protocol overhead. If the total system utilisa-
tion is less than the theoretical upper bound, then we are
guaranteed that this overload will eventually be recovered.
However, during the time it takes for the overload to be re-
covered the M-Server may be unable to schedule each N-
Server in the EC where its deadline is. Hence, occasionally
an N-Server may miss its deadline with as much as

��� %.- � .

4 Evaluation

In order to evaluate the performance of our server ap-
proach we have performed simulations. We chose to per-
form two different experiments and, for each experiment,
investigate three different scenarios. We have investigated
both close to maximum usage of the bandwidth, and some-
what lower than maximum usage of the bandwidth. Hence,
the difference between the two experiments is the total
bandwidth usage by the N-Servers. For the details and fig-
ures from the experiments, please consult [4].

The results of the simulations are good, and the protocol
manages erroneous guesses very well, especially when the
network is not fully utilised. Since deadlines may occur in-
side an EC, it is natural that some messages are delivered
at a time of % � � %/- � , since we never know exactly when
a specific message is sent inside an EC (as discussed Sec-
tion 3.1). Therefore, occasionally, a message is the last mes-
sage delivered within an EC, even though its corresponding
N-Server’s deadline is earlier.

With close to maximum usage of the bandwidth, some
messages are delivered at a time of % � � ��� %/- � . This
is caused by bandwidth overload due to erroneous guesses,

and messages have to be scheduled in a later EC than
the one containing their N-Server’s deadline (Section 3.1).
However, this is a rare phenomenon and did in our experi-
ments not occur with somewhat lower than maximum usage
of the bandwidth. The worst result in our simulations were
that 20 out of 13477 messages were delivered at a time of
% � � � � %/- � . This result was obtained when the bandwidth
utilisation was set very close to maximum.

5 Conclusions

In this paper we have presented a new approach for
scheduling of the Controller Area Network (CAN). The dif-
ference between our approach and existing methods is that
we make use of server-based scheduling (based on EDF).
Our approach allows us to utilize the CAN bus in a more
flexible way compared to other scheduling approaches such
as native CAN, and Flexible Time-Triggered communica-
tion on CAN (FTT-CAN). Servers provide fairness among
the streams of messages as well as timely message delivery.

The strength of server-based scheduling for CAN, com-
pared to other scheduling approaches, is that we can cope
with streams of aperiodic messages. Aperiodic messages on
native CAN would make it (in the general case) impossible
to give any real-time guarantees for the periodic messages
sharing the bus. In FTT-CAN the situation is better, since
periodic messages can be scheduled according to EDF using
the synchronous window of FTT-CAN, thus guaranteeing
real-time demands. However, no fairness can be guaranteed
among the streams of aperiodic messages sharing the asyn-
chronous window of FTT-CAN.

One penalty for using the server method is an increase of
CPU load in the master node, since it needs to perform the
extra work for scheduling. Also, compared with FTT-CAN,
we are sending one more message, STOP, which is reducing
the available bandwidth for the system under heavy aperi-
odic load. However, STOP is of the smallest size possible
and therefore it should have minimal impact on the system.
However, if the CAN controller is able to detect when the
bus is idle (and pass this information to the master node),
we could skip STOP, and the overhead caused by our pro-
tocol would decrease (since this would make it possible to
use our server-based scheduling without STOP).

As we see it, each scheduling policy has both good
and bad properties. To give the fastest response-times, na-
tive CAN is the best choice. To cope with fairness and
bandwidth isolation among aperiodic message streams, the
server-based approach is the best choice, and, to have sup-
port for both periodic and aperiodic messages (although
no fairness among aperiodic messages) and hard real-time,
FTT-CAN is the choice. Using server-based scheduling, we
can schedule for unknown aperiodic or sporadic messages
by guessing that they are arriving, and if we make an er-
roneous guess, we are not wasting much bandwidth. This
since the stop-message, together with the arbitration mech-
anism of CAN, allow us to detect when no more messages
are pending so that we can reclaim potential slack in the

system and start scheduling new messages without wasting
bandwidth.

Acknowledgements

The work presented in this paper was supported by the
Swedish Foundation for Strategic Research (SSF) via the
research programme ARTES, the Swedish Foundation for
Knowledge and Competence Development (KK-stiftelsen),
and Mälardalen University.

References

[1] L. Abeni. Server Mechanisms for Multimedia Applica-
tions. Technical Report RETIS TR98-01, Scuola Superiore
S. Anna, Pisa, Italy, 1998.

[2] L. Almeida, J. Fonseca, and P. Fonseca. A Flexible Time-
Triggered Communication System Based on the Controller
Area Network: Experimental Results. In Proceedings of the
International Conference on Fieldbus Technology (FeT’99),
Magdeburg, Germany, September 1999.

[3] N. C. Audsley, A. Burns, M. F. Richardson, K. Tindell,
and A. J. Wellings. Applying New Scheduling Theory to
Static Priority Pre-emptive Scheduling. Software Engineer-
ing Journal, 8(5):284–292, September 1993.

[4] T. Nolte, M. Sjödin, and H. Hansson. Server-Based Schedul-
ing of the CAN Bus. Technical report, ISSN 1404-3041
ISRN MDH-MRTC-99/2003-1-SE, Mälardalen Real-Time
Research Centre, Mälardalen University, Sweden, April
2003.

[5] P. Pedreiras and L. Almeida. Combining Event-triggered
and Time-triggered Traffic in FTT-CAN: Analysis of the
Asynchronous Messaging System. In Proceedings of the

�����

IEEE International Workshop on Factory Communication
Systems (WFCS’00), pages 67–75, Porto, Portugal, Septem-
ber 2000. IEEE Industrial Electronics Society.

[6] P. Pedreiras and L. Almeida. A Practical Approach to EDF
Scheduling on Controller Area Network. In Proceedings
of the IEEE/IEE Real-Time Embedded Systems Workshop
(RTES’01) at the ���	� � IEEE Real-Time Systems Symposium
(RTSS’01), London, England, December 2001.

[7] Road Vehicles - Controller Area Network (CAN) - Part
4: Time-Triggered Communication. International Stan-
dards Organisation (ISO). ISO Standard-11898-4, Decem-
ber 2000.

[8] Road Vehicles - Interchange of Digital Information - Con-
troller Area Network (CAN) for High-Speed Communica-
tion. International Standards Organisation (ISO). ISO
Standard-11898, Nov 1993.

[9] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic Task Schedul-
ing for Hard Real-Time Systems. Real-Time Systems,
1(1):27–60, 1989.

[10] M. Spuri and G. Buttazzo. Efficient Aperiodic Service under
Earliest Deadline Scheduling. In Proceedings of the
���

�

IEEE Real-Time Systems Symposium (RTSS’94), pages 2–
11, San Juan, Puerto Rico, December 1994. IEEE Computer
Society.

[11] K. W. Tindell, H. Hansson, and A. J. Wellings. Analysing
Real-Time Communications: Controller Area Network
(CAN). In Proceedings of
��

�
IEEE Real-Time Systems

Symposium (RTSS’94), pages 259–263, San Juan, Puerto
Rico, December 1994. IEEE Computer Society.

