Noname manuscript No.
(will be inserted by the editor)

Supporting Timing Analysis of Vehicular Embedded
Systems through the Refinement of Timing Constraints

Saad Mubeen - Thomas Nolte -
Mikael Sjodin - John Lundbéack -
Kurt-Lennart Lundback

Received: date / Accepted: date

Abstract The collective use of several models and tools at various abstraction
levels and phases during the development of vehicular distributed embedded
systems poses many challenges. Within this context, this paper targets the
challenges that are concerned with the unambiguous refinement of timing re-
quirements, constraints and other timing information among various abstrac-
tion levels. Such information is required by the end-to-end timing analysis
engines to provide pre-runtime verification about the predictability of these
systems. The paper proposes an approach to represent and refine such infor-
mation among various abstraction levels. As a proof of concept, the approach
provides a representation of the timing information at the higher levels us-
ing the models that are developed with EAST-ADL and Timing Augmented
Description Language (TADL2). The approach then refines the timing in-
formation for the lower abstraction levels. The approach exploits the Rubus
Component Model at the lower level to represent the timing information that
cannot be clearly specified at the higher levels, such as trigger paths in dis-
tributed chains. A vehicular-application case study is conducted to show the
applicability of the proposed approach.

Keywords Distributed embedded systems - component-based development -
timing model - component model - end-to-end timing analysis

Saad Mubeen, Thomas Nolte, Mikael Sjodin

Mailardalen University, Vasteras, Sweden

First author’s Tel.: +46 21 10 31 91

E-mail: {saad.mubeen, thomas.nolte, mikael.sjodin}@mdh.se

John Lundbéck, Kurt-Lennart Lundback
Arcticus Systems AB, Jarfilla, Sweden
E-mail: {john.lundback, kurt.lundback}@arcticus-systems.com

2 Saad Mubeen et al.

1 Extended Version

This paper extends our previous work [1] where we have discussed the re-
finement of two end-to-end delay constraints from higher to lower abstraction
levels during model- and component-based development of vehicular embed-
ded systems. As a proof of concept, we have selected the Timing Augmented
Description Language (TADL2) [2] at the higher abstraction levels. Whereas
at the lower level (implementation), we have selected the Rubus Component
Model (RCM) [3] which is already used in the vehicle industry for the develop-
ment of control functionality in vehicular embedded systems. The work in this
paper generalizes our previous work [1] by refining various other types of tim-
ing constraints (18 in total) from the higher to lower abstraction levels. Once
again, we consider TADL2 and RCM for the proof of concept. We also conduct
a detailed automotive-application case study to validate our refinement and
timing model representation approach.

2 Introduction

Due to increase in the amount of advanced computer controlled functionality
in vehicular distributed embedded systems, the size and complexity of embed-
ded software has drastically increased in the past few years. For example, the
embedded software in heavy vehicle architectures such as a modern truck may
consist of as many as 2,000 software functions that may be distributed over
45 Electronic Control Units (ECUs) [4]. In order to deal with the software
complexity, the research community has proposed model- and component-
based development of embedded real-time systems by using the principles of
Model-Based Software Engineering (MBSE) and Component-Based Software
Engineering (CBSE) [5,6]. This approach is intended to capture requirements
early during the development!, lower development cost, enable faster turn-
around times in early design phases, increase reusability, support modeling
at higher abstraction levels, and to provide possibilities to automatically per-
form timing analysis, derive test cases and generate code. MBSE provides the
means to use models to describe functions, structures and other design arti-
facts. In contrast, CBSE supports the development of large software systems
by integration of software components. It raises the level of abstraction for the
software development and aims to reuse software components and their archi-
tectures. Model- and component-based development of software architectures
for vehicular embedded systems has had a surge in the last few years. It is
evident from several large European research projects that have run in close
collaboration between academia and the industry [7,8,9,10,11].

1 The aspect “during the development” refers to the abstraction levels during the software
development of vehicular embedded systems. Note that this aspect does not refer to the
overall automotive development process.

Supporting Timing Analysis through the Refinement of Timing Constraints 3

2.1 Problem Statement

Most of the vehicular functions are developed as distributed embedded systems
with real-time requirements specified on them. This means that the providers
of the systems are required to ensure that logically correct actions are taken
by the systems at times that are appropriate to their environment (i.e., the
timing requirements are satisfied). One way to guarantee that the system meets
its timing requirements is to perform pre-run-time analysis of it, e.g., end-
to-end response-time and delay analysis [13,19]. Such analysis can validate
the timing requirements without performing exhaustive testing. Note that the
timing behavior of an individual task or a message can be determined by
calculating its response time. The response time of a task or a message is
defined as the amount of time elapsed between its activation and completion
or reception respectively. Often, vehicular embedded systems are modeled with
task chains. A task chain consists of a number of tasks that are in a sequence
and have one common ancestor. Each task may receive an activation trigger, a
data or both from its predecessor. Any two neighboring tasks in a chain may
reside on two different nodes, while the nodes communicate with each other via
network messages. In this case, the messages are part of the task chain. The
timing behavior of the task chain is determined by calculating its end-to-end
response time and/or delays. The end-to-end response time of a task chain is
defined as the amount of time elapsed between the arrival of an event at the
first task and the production of the response by the last task in the chain. If
the tasks within a chain are activated by independent sources (e.g., clocks)
then different types of end-to-end delays are also calculated to determine the
timing behavior of the chain (Section 4.5.3 provides a detailed discussion on
the end-to-end delays).

In order to perform the timing analysis of the system, its end-to-end timing
model should be available. The end-to-end timing model consists of the infor-
mation containing timing properties, requirements, dependencies, control and
data flows concerning all tasks, messages and task chains in the system. Based
on this information, the timing analysis can predict the execution behavior of
the system with respect to end-to-end timing. We refer the reader to [18] for
details about the end-to-end timing models.

The majority of existing approaches for component-based vehicular dis-
tributed embedded systems support the representation of such timing models
at an abstraction level that is close to their implementation [7,14,18,19,20,21].
An abstraction level provides a complete definition of the system for a given
purpose during the development process. There are a few works including [12,
39] that support the end-to-end timing analysis at the higher abstraction lev-
els. It is shown in [12] that the timing analysis supported by the existing
approaches at the higher abstraction levels cannot predict the end-to-end tim-
ing behavior of the system with a high precision. This is because the analysis
is often not based on the actual implementation of the system. The preci-
sion of the analysis refers to how accurately the analysis results capture the
end-to-end timing behavior of the final systems. The low-precision analysis

4 Saad Mubeen et al.

results are over-estimated due to educated guesses by the expert integrators
about missing timing information at the higher abstraction levels and earlier
phases during the development. Whereas the high-precision analysis results
do not include such over-estimations. We assume, irrespective of the precision,
the analysis results are not optimistic (under-estimated). Recently, one of the
main focuses of several international initiatives, involving both academia and
industry, has been on supporting the timing analysis at various abstraction
levels and development phases [8,9,10,11].

Representation of the timing model at the higher abstraction levels is chal-
lenging mainly because not all timing information is available at the higher
levels. Moreover, a mismatch and incompatibilities among various methodolo-
gies, languages and tools that are used in different development phases also
add to the complexity of representing the timing model. Since complete tim-
ing information may not be available at the higher levels, the timing analysis
results can be over-estimated based on pessimistic assumptions. Hence, the
analysis results may not represent accurate timing behavior of the final sys-
tem. However, these results can provide useful information to the developer to
guide her in performing model refinements earlier during the development[12].

We envision the representation of the end-to-end timing models and sup-
port for a high-precision end-to-end timing analysis at the higher levels of
abstraction to be the state of the practice in the future. We believe the timing
information will be formally modeled at the higher abstraction levels in the
vehicle industry. In that case, we need to extract the specified timing infor-
mation at the higher abstraction levels and connect it to the implementation
to generate the end-to-end timing model. Otherwise, it can be too late to ex-
tract the timing model at lower abstraction levels that are close to the system
implementation.

We have experienced that the timing information is modeled at higher
abstraction levels in the vehicle industry. This may be carried out using, e.g.,
the SysML language [22]. However, it is done mostly in an informal and textual
way, which cannot be used for any formal timing analysis. Today, the TADL2
language [2] provides the only viable formal method for modeling of timing
information using timing constraints at various abstraction levels in the vehicle
domain. This is evident from the fact that TADL2 has recently provided the
timing model to the EAST-ADL language [31] and AUTOSAR [7]. EAST-
ADL is an architecture description language in the automotive domain. The
industrial members in the EAST-ADL association and the consortium that has
developed the TADL?2 language are shown in Fig. 3. AUTOSAR supports the
development of standardized software architectures in the automotive domain.
The AUTOSAR consortium consists of over 300 industrial partners including
Original Equipment Manufacturers (OEMs), tier-1 and tier-2 suppliers in the
automotive domain.

In order to represent the complete end-to-end timing model and perform
a high-precision end-to-end timing analysis, TADL2 has to be combined with
a lower abstraction level execution modeling technology such as RCM. Since
the TADL2 language and corresponding timing extensions in EAST-ADL and

Supporting Timing Analysis through the Refinement of Timing Constraints 5

AUTOSAR have been introduced fairly recently, it may take some time for the
automotive industry to use TADL2 for the development of vehicles. Note that
TADL2 has been successfully employed for the development of some valida-
tors and prototypes in the automotive industry, e.g., electro-mechanic systems,
brake-by-wire systems, steer-by-wire systems and adaptive cruise control sys-
tems [9]. We hope that the industry will start using TADL2 very soon. If they
do so, we can reuse that information to perform a high-precision end-to-end
timing analysis at the higher abstraction levels.

2.2 Paper Contributions

In this paper?, we propose an approach to represent the end-to-end timing
models at a higher abstraction level compared to the level where the software
architecture is implemented. At the higher level, this approach provides a rep-
resentation of the timing information on the system models that are developed
with the EAST-ADL language using the TIMMO methodology [23] and anno-
tated with timing information using TADL2. At the lower level, the approach
exploits RCM and its tool suite Rubus-ICE [24] to represent the timing infor-
mation that cannot be clearly specified at the higher level, e.g., control paths in
distributed chains. However, it is not straightforward to combine TADL2 with
RCM due to various challenges such as providing an unambiguous refinement
of the TADL2 timing constraints in RCM and supporting an unambiguous
representation of the control and data flows at the higher level (Section 5 dis-
cusses these points in detail). The main focus of this paper is to deal with
these challenges. In order to show a proof of concept, we model a vehicular
application at the higher level and refine it along with the timing information
to the lower level. We then perform the end-to-end timing analysis of the sys-
tem to validate the timing constraints specified at the higher level. The main
contributions in this paper are listed as follows.

1. Interpretation of all TADL2 timing constraints in RCM.

2. Extensions to RCM for unambiguous refinement of the TADL2 timing
constraints.

3. Representation of the end-to-end timing information at the higher abstrac-
tion level.

4. Perform a vehicular-application case study to show the applicability and
usability of the proposed refinement and timing model representation ap-
proach.

We choose RCM instead of AUTOSAR at the lower abstraction level for
two reasons. Although AUTOSAR provides a timing model in its current spec-
ification [7], it still lacks a way to specify a few low-level details which are
needed to perform the end-to-end timing analysis, e.g., control flow is not

2 A version of this paper is provided as an internal report for industrial referencing at
http://www.es.mdh.se/publications/3545-. It does not represent a published work.

http://www.es.mdh.se/publications/3545-

6 Saad Mubeen et al.

specifiable in an unambiguous way. The other reason is that the implementa-
tions built with RCM have relatively smaller run-time footprints, i.e., timing
and memory overheads (Section 3.2 discusses this point in detail). The work
in this paper brings us one step closer to the goal of developing a seamless
tool-chain for model-based development of vehicular embedded systems and
supporting inter-operation of various modeling and analysis tools including
the AUTOSAR-based tool chain [10].

2.3 Paper Layout

The rest of the paper is organized as follows. Section 3 discusses the back-
ground and related work. Section 4 discusses the refinement of the TADL2
timing constraints in RCM. Section 5 discusses other challenges and corre-
sponding solutions. Section 6 provides a case study. Finally, Section 7 con-
cludes the paper and presents future work.

3 Background and Related Work

There are several frameworks that support the modeling of timing informa-
tion such as AADL [25], SCADE [26], MARTE [27], MAST [28], SysML,
CHESS [29,30]. In this paper we only target the vehicular domain, espe-
cially the segment of construction equipment and other heavy road vehicles,
where the main focus is on EAST-ADL [31], EAST-ADL-like models® and AU-
TOSAR [7]. In addition, Rubus [35] is used complementary to EAST-ADL.

3.1 EAST-ADL

EAST-ADL is a domain-specific architecture description language that tar-
gets the development of software architectures for automotive embedded sys-
tems. Fig. 3 depicts the industrial members in the EAST-ADL association
that have been involved in the development and extension of the language.
EAST-ADL is inspired by SysML which is a system modeling language used
for systems engineering [32]. It is mapped to several automotive standards
including 1S026262 [33] for functional safety and AUTOSAR for the imple-
mentation and run-time execution of the software architecture. It defines a
top-down development methodology that advocates the separation-of-concerns
principle by defining various abstraction levels for the development of vehicle
software. Each abstraction level provides a complete definition of the system
for a specific purpose. Fig. 1 shows the abstraction levels along with various
methodologies, models, languages and tools used at each level. This figure also
depicts several recent works within the scope of this paper.

3 For example, SE Tool and SystemWeaver (http://www.systemweaver.se).

http://www.systemweaver.se

Supporting Timing Analysis through the Refinement of Timing Constraints 7

4 N

o L9

g RCM %% CBSE 2016 [39] R

/—I Timm02: TADL) = RTCSA 2015 [40] CRYSTAL | &]
(A -, | Rubus-ICE e | @
U CORE 7)) ITNG2016[12] ~ A" =

~ | SystemWeaver Papyrus) é]

. = >

i (ll_) MetaEdit+ MR) g a

A »~~ No Magic VoA v

S o ModComp 2014 [1] vl | 8o
D - CRYSTAL | -

\LLl % Rubus-EAST /' \uxqk 5015 [41] comsis [19] A |8 @
_ /0

/AauT@EsaRr |BM Rational Rhapsody)

Enabling Innovation

SymTA/S S
' g . =
TiMM02: TADL2 cHRONSIM * svuTavision | B
% — c
RCM &2 @PRIDE pyCPA &\ Z Fraunhofer 2
Rubus-ICE proCom S = e 5
Menbor yviva | &
(ECTOR > DaVinci COMDES-II Graphias | ”/ £ E

Fig. 1 Abstraction levels considered during the development.

3.1.1 Vehicle or end-to-end level

At the vehicle level, requirements, functionality and features of the vehicle are
captured in an informal (often textual) and solution-independent way. This
level captures the information regarding what the system should do. Within
the segment of construction equipment and other heavy road vehicles, this
abstraction level is better known as the end-to-end level because the features
and requirements on the end-to-end functionality of the machine or vehicle are
captured in an informal way.

3.1.2 Analysis level

At the analysis level, the requirements are formally captured in an allocation-
independent way. Functionality of the system is defined based on the require-
ments and features without implementation details. A high-level analysis may
also be performed for functional verification, e.g., consistency analysis.

3.1.3 Design level

The artifacts at this level are developed in an implementation-independent
way. These artifacts are refined from the analysis level artifacts. In addition to
the software architecture composed of the design-level software components,
this level also contains the middleware abstraction, the hardware architecture
and the software functions-to-hardware allocation.

8 Saad Mubeen et al.

3.1.4 Implementation level

At the implementation level, the design-level artifacts are refined to a software-
based implementation of the system functionality. At this level, the EAST-
ADL methodology describes the system in terms of AUTOSAR elements and
their integration. However, in this work, our focus is on using RCM and Rubus-
ICE at the implementation level. Hence, the artifact at this level consists of a
software architecture of the system that is defined in terms of Rubus software
components and their interactions.

In this work, we focus on the representation of the end-to-end timing mod-
els mainly at the design and implementation levels.

3.2 Rubus Component Model (RCM) and Rubus-ICE

Rubus is a collection of methods and tools for the model- and component-
based software development of dependable embedded real-time systems. It
is developed by Arcticus Systems? in close collaboration with several aca-
demic and industrial partners. It has been used in the vehicle industry for
over 20 years. Rubus is today mainly used for the development of control
functionality in vehicles by several international companies, e.g., BAE Systems
Higglunds®, Volvo Construction Equipment®, Knorr-Bremse”, Mecel® and Ho-
erbiger®. The Rubus concept is based around RCM and its development envi-
ronment, Rubus-ICE, which includes modeling tools, code generators, analysis
tools and run-time infrastructure. Rubus also includes a real-time operating
system which has already been certified in the ISO 26262:2011'° safety stan-
dard according to ASIL D. The overall goal of Rubus is to be aggressively
resource efficient and to provide means for developing predictable, timing an-
alyzable and synthesizable control functions in resource-constrained embedded
systems. The timing analysis supported by Rubus-ICE includes the end-to-end
response-time and delay analysis [19]. Rubus methods and tools focus on the
implementation level and are used complementary to the EAST-ADL method-
ology at the top three levels.

Rubus enables the designer to graphically describe systems as intercon-
nected components. These interconnected components, following a hardware
paradigm called Software Circuits (SWCs), define the structure of the appli-
cation system that can be analyzed and synthesized entirely within the Rubus
environment. An SWC is the lowest-level hierarchical element in RCM. It en-
capsulates basic functions. An SWC has the run-to-completion semantics, i.e.,

http://www.arcticus-systems.com
http://www.baesystems.com
http://www.volvoce.com
http://www.knorr-bremse.com
http://mecel.se
http://www.hoerbiger.com

© 0 N D U

10 http://www.iso.org/iso/catalogue_detail?csnumber=43464

http://www.arcticus-systems.com
http://www.baesystems.com
http://www.volvoce.com
http://www.knorr-bremse.com
http://mecel.se
http://www.hoerbiger.com
http://www.iso.org/iso/catalogue_detail?csnumber=43464

Supporting Timing Analysis through the Refinement of Timing Constraints 9

upon receiving a trigger (activation) on its trigger input port the SWC reads
data from its data input ports, executes its functionality, provides data on its
data output ports and finally produces a trigger on its trigger output port.
Fig. 2 shows an example of the software architecture in RCM that is com-
posed of SWCs, interconnections between SWCs and interactions of SWCs
with external events and actuators with regard to both data and triggering.

Input Output Trigger
Clock trigger port trigger port terrpinator
T~< \ N
AN : =

Venicsposd O ke
m OT% m o7 EngineTorque| ‘
> oudpv SpeedSet e | \
\
A Cosger \ M " AcC Actuation
\

S \ .
Software Circuit Input data port Qutput data port Sensor signal signal

Fig. 2 Example of the software architecture of a system modeled in RCM.

The Rubus runtime framework maps the SWCs to tasks which are runtime
entities. Each external event trigger in the software architecture defines a task.
The SWCs connected through the chain of triggered SWCs (trigger chain) are
allocated to the corresponding task. All clock triggered chains are allocated
to an automatically generated static schedule that fulfills the precedence or-
der and other temporal requirements. Within the trigger chains, inter-SWC
communication is aggressively optimized to use the most efficient means of
communication for each communication link. For example, there is no use of
semaphores in point-to-point communications within a trigger chain. Another
example is sharing of memory buffers between ports. This means that a buffer
can be shared between two ports belonging to different SWCs if it can be
guaranteed that these ports will never use the buffer space at the same time.
This is applicable in the case of a trigger chain because a task early in the
chain can never be active at the same time as a task late in the chain (as-
suming that the deadline of each task is smaller than or equal to its period).
Allocation of SWCs to tasks and construction of schedule can be subject to
different optimization criterion to minimize, e.g., response times for different
types of tasks, or memory usage. The run-time framework executes all tasks on
a shared stack, thus eliminating the need for static allocation of stack memory
to each individual task.

3.3 AUTOSAR

AUTOSAR [7] is an industrial initiative to provide a standardized software
architecture for the development of embedded software. It is used at the im-
plementation level in Fig. 1. It describes the software development at a higher
abstraction compared to RCM. Unlike RCM, it does not separate control and
data flows among components within a node. AUTOSAR does not differentiate

10 Saad Mubeen et al.

between the modeling of intra- and inter-node communication which is unlike
RCM. The timing model in AUTOSAR has been introduced fairly recently
compared to that of RCM. There are some similarities between AUTOSAR
and RCM, e.g., the sender-receiver communication in AUTOSAR resembles
the pipe-and-filter communication in RCM. AUTOSAR is more focussed on
the functional and structural abstractions, hiding the implementation details
about execution and communication. AUTOSAR hides the details that RCM
highlights.

3.4 TIMMO, TIMMO2USE, MARTE, TADL and TADL2

TIMMO [8] is an initiative to provide AUTOSAR with a timing model [36].
It is based around a methodology and the TADL language [34] which is used
to express timing requirements and constraints. It is inspired by MARTE [27]
which is a UML profile for model-driven development of real-time and em-
bedded systems. The TIMMO methodology uses the EAST-ADL language
for structural modeling and AUTOSAR for the implementation. TIMMO and
EAST-ADL focus on the top three levels in Fig. 1. TADL is redefined and
released in the TADL2 specification of the TIMMO2USE project [9]. TADL2
can specify timing related information at all abstraction levels shown in Fig. 1.
The industrial members in the TIMMO and TIMMO2USE projects are shown
in Fig. 3. Most of these initiatives lack the support for expressing the low-
level details at the higher levels such as linking information in distributed
chains. It is important to extract these details from the software architecture
for the representation of the end-to-end timing model. These initiatives do not
provide sufficient support for representing this information or performing the
end-to-end timing analysis. In our view, the end-to-end timing model includes
enough information from the system to be able to perform the end-to-end
response-time and delay analysis.

3.5 Other Related Models and Approaches

There are several other related component models and modeling approaches
such as COMDES-IT [20], ProCom [14] and TECS [15]. ProCom supports
timing analysis at the implementation level [37]. According to [19], the analysis
supported by ProCom is not performed with such a high precision as it is done
in Rubus-ICE. To the best of our knowledge, none of these models support the
representation of the end-to-end timing models at the higher abstraction levels.
This is because these models are developed to model the software architecture
only at the implementation level. These models rely on EAST-ADL at the
higher abstraction levels. The end-to-end timing models cannot be completely
represented at the higher abstraction levels of EAST-ADL mainly for two
reasons: (1) EAST-ADL does not differentiate between the control and data
flows, (2) EAST-ADL cannot express the low-level details at the higher levels
such as linking information in distributed chains [18].

Supporting Timing Analysis through the Refinement of Timing Constraints 11

Industrial Members of the EAST-ADL Association

@® BOSCH \@; @ cMshiy: @ @ MetaCase mcrLaren”

- [}
“/\l’(ili("US Systems Mecel 4S Group DeLPHI R 'I IFEEVWV

Autoliv

BRACE CORE SYSTEMITE [JCARGOTEC

Z Fraunhofer CARMEQ.
ESK

@ @ Industrial Members of the TIMMO Project (TADL Language) QoD

Auoi
& BOSCH ‘ SIEMENS DENSO symravision GMEAIRF ETAS TlTech
Industrial Members of the TIMMO2USE Project (TADL2 Language)
(i;w BOSCH %r\ruli(‘us Systems DELPHII ﬁAbslnt dSPACE
@ INCHRON @ I RTaw SYMTA VISION < 09“
THINK REAL-TIME RAPITA reamme-sewon TIME CRITICAL NETWORKS ©

Fig. 3 Industrial members/partners in the EAST-ADL, TIMMO and TIMMO2USE con-
sortia/projects.

There are middleware development technologies such as Real-Time CORBA,
minimum CORBA and CORBA lightweight services for distributed embedded
systems [21]. CUTS [16], based on CORBA, provides an execution modeling
support to validate quality-of-service properties of the system. The downside
of using CORBA-based development is that the run-time framework is heavy-
weight. Hence, it is not suitable for resource-constrained embedded systems
that require a small run-time footprint. On the other hand, RCM has a small
run-time footprint.

3.6 Modeling Tools

DaVinci'! is a tool for the software development of AUTOSAR applications.
However, this tool does not support the representation of the end-to-end tim-
ing models at the higher abstraction levels. The Palladio tool'? allows for
modeling of the software architecture and its analysis based on several quality
attributes including response times. However, this tool does not support the
end-to-end timing analysis [19,47]. The refinement of timing constraints and
representation of the end-to-end timing models to facilitate such analysis is
the main focus (and contribution) of our work. There are several other tools
that support modeling of the systems using the methodology shown in Fig. 1,
e.g., Papyrus, Mentor Graphics VSA, Rubus-EAST, EATOP, MetaEdit+, En-
terprise Architect, No Magic, System Weaver and SE Tool to name a few [17].
These tools are usable at the first three levels in Fig. 1. None of these tools

11 http://vector.com/vi_davinci_developer_en.html
12 http://www.palladio-simulator.com/tools/quality_dimensions

http://vector.com/vi_davinci_developer_en.html

12 Saad Mubeen et al.

support the representation and refinement of the end-to-end timing models
from the higher levels to the implementation level.

3.7 Authors’ Previous Work

In our previous work [18,42], we have presented a method to represent the
end-to-end timing models at the implementation level. However, this method
is not applicable at the higher abstraction levels. We have recently targeted the
vehicle level by developing a modeling technique (denoted by CBSE2016 [38]
in Fig. 1). We have developed a method to extract the end-to-end timing
models from the extended models of legacy systems (previously developed)
to support the end-to-end timing analysis at the vehicle level (denoted by
RTCSA2015 [39] in Fig. 1). Moreover, we have developed a method to refine
timing requirements using early timing analysis at the vehicle level (denoted
by ITNG2016 [12] in Fig. 1). Note that these techniques rely on the reuse of
software architectures from the legacy systems. Hence, these techniques are
not applicable when the system is developed from the scratch using the top-
down development approach. Moreover, these techniques are not applicable
at the design level which is the main focus of this paper. Another work (de-
noted by MASE 2015 [40] in Fig. 1) uses model transformations to anticipate
design-level decisions to support the end-to-end timing analysis. It results in
one-to-many implementation-level models corresponding to a single design-
level model. However, it does not support the representation and refinement
of the end-to-end timing models from the higher to lower abstraction levels.
In [41], we have discussed the basic idea for the representation of the timing
models at the design level. We have discussed the refinement of two end-to-end
delay constraints from the higher to the lower abstraction levels in [1]. In this
paper, we generalize our previous work [1] by refining various other types of
timing constraints (18 in total) from the higher to the lower abstraction levels.
These constraints are concerned with synchronization, repetition, patterns and
various types of delays. As a proof of concept, we select the EAST-ADL and
TADL2 languages at the higher abstraction levels. Whereas RCM is selected
at the implementation level.

4 Interpretation of TADL2 Timing Constraints in RCM

In the first subsection, we present the model of constraints and events. In the
following subsections, we discuss various timing constraints in TADL2. We also
discuss the semantics of each timing constraint according to the specification
of TADL2 [2]. Moreover, we interpret and refine these timing constraints in
RCM.

Supporting Timing Analysis through the Refinement of Timing Constraints 13

4.1 Model of Constraints and Events

In TADL2, timing requirements are specified by means of timing constraints on
events and event chains [23]. Constraints are used to put restrictions on, e.g.,
repetition of an event, delays between a pair of events and synchronicity of a set
of events. An event denotes a distinct form of state change in a running system.
It takes place at distinct points in time which are called its occurrences. There
can be any number of occurrences of an event. The set of all the occurrences
of an event is called the sequence of the event. A subsequence of the event is
a subset of its sequence. For example, if there are ten occurrences of an event
within a given time interval then the size of the event sequence is ten. Any set of
two consecutive occurrences within this sequence represents a subsequence of
the event within the given time interval. Similarly, any set of three consecutive
occurrences within this sequence also represents a subsequence of the event
within the given time interval. An event is used to trigger an analysis- or
design-level function. When the function is triggered, input data is consumed
followed by processing and transformation of the data and then production of
the data at the output. A function can also be time-triggered.

A timing constraint is denoted by TC. The constraint can be specified on the
occurrences of a single event or a set of events. In the former case, the sequence
or any subsequence of the single event is constrained. In the later case, the
occurrences of the set of events are constrained. In order to clarify the notations
that are used to define timing constraints in the following subsections, consider
the following example. Consider two events that are denoted by source and
target. We use the object-oriented notation to define the attributes of the
constraint. For example, TC.source refers to the source event on which
TC is specified. Let us denote an occurrence of the event TC.source by an
attribute s. The value of this attribute is basically a time point when an
instance of the event occurs. These time points can be added, subtracted and
compared. A constraint often puts limits on the occurrences of events. These
limits can be specified in terms of time distances using upper and lower
attributes. In that case, the occurrences of the events are required to happen
within these limits. The following provides an example for the semantics of
constraint TC.

A system behavior satisfies a specified timing constraint denoted by TC if
and only if (iff) for every occurrence of TC.source at time s, there is an
occurrence of TC.target at time t such that

TC.lower < (t —s) < TC.upper (1)
This means, that the timing constraint TC is satisfied if both of the fol-
lowing conditions are satisfied: (1) if the time distance between time points t
and s is greater than or equal to the time distance specified by the lower
attribute, and (2) if the time distance between time points t and s is smaller
than or equal to the time distance specified by the upper attribute.
It should be noted that the software components in an event chain can be
triggered by independent clocks with different activating periods as shown in

14 Saad Mubeen et al.

Fig. 4(a) and Fig. 4(d). This phenomenon is common in multi-rate systems
which are frequently found in the vehicular domain [19,47]. Due to different
activating periods along the chain, there can be multiple response occurrences
corresponding to a single occurrence of the stimulus in an event chain. For
example, the two components in Fig. 4(a) are activated independently with
different periods. Fig. 4(b) shows the task chain that corresponds to the com-
ponent chain in Fig. 4(a) at runtime. In this chain, there are four occurrences
of the response event corresponding to each occurrence of the stimulus event
as shown in Fig. 4(c). In such a chain, multiple response occurrences due to
each consecutive stimulus occurrence are differentiated by means of colors. For
example, assume that the current occurrence of the stimulus is at time 0 in
Fig. 4(c). All the occurrences of the response event that occur after the current
occurrence but before the next occurrence of the stimulus event are represented
with the same color (black) as that of the color of the current occurrence of
the stimulus. We use a similar approach to associate colors to the event occur-
rences when there is a single occurrence of the response event corresponding
to several occurrences of the stimulus events as shown in Fig. 4(d)-(f).

Clock Software Circuit (SWC) :
16 ms N . 16 ms
Triggerport |
s |
Data_IN Data OUT | Data N DIP1 DOP1 DIPZ DOPZ%—EDa[a out
A 1 SWC_1 SWC_2
Dataport |
Period = 16 Period = 4 1 Period = 4 Period = 16
Task 1
=
|
Reg-1 Reg-2 Reg-3 Reg-1 Reg-2 Reg-3
(7) (7)1 ! () ()
WCET =1 WCET =1 1 WCET =1 WCET =1
(b Reglster 1 (e)
|
!
Stimulus events | Stimulus events T T T T T T 1
activating 7, 1 T I activating 7, 1
16 time | 12 16 20 24 28 time
Response events. ! Response eventsu
activating 7, 1 T T T T 1 1 | :act|vat|ng772 i 1 |
(c) time | ! (f) time

Fig. 4 Event occurrences modeled with colors in the multi-rate chains.

4.2 Delay Constraint

4.2.1 TADL2 Description

This constraint constrains the distance between occurrences of the source
and target events. It does not matter if the matching target occurrence is
caused by the corresponding source occurrence or not.

Supporting Timing Analysis through the Refinement of Timing Constraints 15

4.2.2 Semantics

A system behavior satisfies the specified DelayConstraint DC iff for every
occurrence s of DC.source, there is an occurrence t of DC.target such
that

DC.lower < (t - s) <DC.upper (2)

4.2.8 Interpretation in RCM

RCM does not offer any support for the specification of this constraint.

We propose the addition of a new timing constraint with the above se-
mantics, denoted by Delay, in RCM. Since this constraint corresponds to the
distance between occurrences of the source and target events, we asso-
ciate two objects with it, namely Delay Start and Delay End as shown
in Fig. 5. The Delay Start object can be specified at the Data Input Port
(DIP) of the source SWC. The triggering of Trigger Input Port (TIP) of the
source SWC corresponds to a new occurrence of the source event. The trig-
gering can be done by a clock or an event in RCM. The Delay End object
can be specified at the Data Output Port (DOP) of the target SWC. A trigger
produced at the Trigger Output Port (TOP) of the target SWC corresponds
to a new occurrence of the target event. In order to express the lower and
upper values of the constraint, we associate two parameters with the same
names to the Delay End object.

10 ms (5L Solp Py N _ =

_)¢ 107 Lsidme ToP > TP TOP T~

= SDIP 1 DOP 1 DIP 1 DOP. Data_Om
20ms —~ | SHDIP2 DOP2 DIP—2 End
< bl ToP SWC_C SWC_D
Sensor A[_ Qg b DIP_1 DOP_1¢ target SWC
SWC_A
source SWC

Fig. 5 Proposed objects to specify the Delay constraint in RCM.

The occurrences of the target event (data in DOP_1 of SWC_D) may
correspond to the input data at DIP_1 of SWC_A or DIP_1 of SWC_B or both
depending upon how the SWCs are triggered. In the example shown in Fig. 5
and Fig. 6, the occurrences of the target event corresponds to the input data
either from SWC_B or from both SWC_A and SWC_B. The upward arrows in
Fig. 6 symbolize occurrences of the events. The lower and upper attributes
for the Delay constraint are also identified in Fig. 6. Assuming the priority of
the task corresponding to SWC_A to be higher than the priority of SWC_B,
the first occurrence of the target event matches the first occurrences of both
SWC_B and the source event. Whereas the second occurrence of the target
event is due to only SWC_B. As discussed earlier, the matching occurrence of

16 Saad Mubeen et al.

the target event with respect to the occurrences of the source event does
not matter in this constraint. This implicitly implies that the activation periods
of the source and target events may or may not be equal as shown in Fig. 5.

lower

= & ‘
5 N
i upper i
source 4 | | 1« 1« e

target 1‘ 1‘ 1‘ 'I‘ Gine

Fig. 6 Event sequence satisfying a Delay constraint.

4.3 Strong Delay Constraint
4.8.1 TADL2 Description

This constraint constrains the distance between each indexed occurrence of
the source event and the corresponding identically indexed occurrence of
the target event. Matching of the target occurrence caused by the corre-
sponding source event occurrence is vital for this constraint.

4.8.2 Semantics

A system behavior satisfies the specified StrongDelayConstraint SDC iff
the number of occurrences of SDC. source and SDC.target events is equal;

and for each index i, if there is an i*" occurrence of SDC.source at time s

there also is an i occurrence of SDC.target at time t such that

SDC.lower < (t - s) < SDC.upper (3)

4.8.83 Interpretation in RCM

RCM does not offer any support for the specification of this constraint.

We propose the addition of a new timing constraint with the above se-
mantics, denoted by S-Delay, in RCM. Since this constraint corresponds to
the distance between two matching occurrences of the source and target
events, we associate two objects with it, namely S-Delay Start and S-Delay
End as shown in Fig. 7. As the number of occurrences of the source and
target events for each index are not equal in the example in Fig. 5, S-Delay
constraint cannot be used in place of the Delay constraint. However, it can
be used on the same system if the source SWC is changed as shown in Fig. 7.
The S-Delay Start object can be specified at the DIP of the source SWC.
The triggering of the TIP of the source SWC corresponds to a new occurrence

Supporting Timing Analysis through the Refinement of Timing Constraints 17

of the source event. The S-Delay End object can be specified at the DOP
of the target SWC. The production of a trigger at the TOP of the target SWC
corresponds to the new occurrence of the target event. In order to express
the lower and upper values of the constraint, we associate two parameters
with the same names to the S-Delay End object. These values are identified
in Fig. 8. The figure also shows that the occurrences of the target event
match with the occurrences of the source event. This implicitly implies that
the activation periods of the source and target events must be equal as shown
in Fig. 7.

P e
10 LsdTp TOP >tk TP TOP 1 550y =
1 DOP 1 DIP.1 DOP 1 -- &—Data_Out
SDP2 DOP—2 O-»BDIP2

SWC_C SWC_D
target SWC

Fig. 7 Proposed objects to specify the Strong Delay constraint in RCM.

lower
= & 5
| !
3 upper "
source 4 1\ 1« e
target 1‘ 1‘ e

Fig. 8 Event sequence satisfying a Strong Delay constraint.

4.4 Order Constraint

This constraint is a special case of the Strong Delay constraint (see Sec-
tion 4.3). It constrains an order between the occurrences of any two events.
The order constraint is equivalent to the St rong Delay constraint after the
following three variations:

1. SDC.lower in Eq. 3 is set to zero,

SDC.upper in Eq. 3 is set to infinity,

3. the matching occurrences of the source and target events in Eq. 3
denoted by s and t respectively cannot coincide.

o

18 Saad Mubeen et al.

4.5 Reaction Constraint
4.5.1 TADL2 Description

This constraint constrains the occurrence of a response event after the oc-
currence of a corresponding stimulus event in an event chain. Basically, the
constraint specifies “how long after the occurrence of a stimulus the corre-
sponding response must occur” [2]. This constraint differs from the Delay
constraint in a way that it can only be applied to event chains and not to in-
dividual events. In the multi-rate event chains, multiple response occurrences
due to each consecutive stimulus occurrence are differentiated by means of col-
ors. In order to satisfy this constraint, the earliest occurrence of the response
with the same color as that of the st imulus must take place within the limits
specified by this constraint as shown in Fig. 9.

4.5.2 Semantics

A system behavior satisfies the ReactionConstraint ReaC if and only if
for each occurrence of ReaC.stimulus at time s, there is an occurrence of
ReaC.response at time r such that

(r.color = s.color)
and
(r is time of the earliest occurrence of ReaC.response with color
s.color)
and
(ReaC.minimum < (r — s) < ReaC.maximum)

. maximum . maximum
= " =
iminimum : iminimum
— ! ‘
sﬁmulus’l\ | 5 A
i i I

: time

response T T T T /.\ M e A
' H ! I A | |

Fig. 9 Event sequence satisfying a Reaction constraint.

4.5.8 Interpretation in RCM

RCM offers the support to specify the reaction constraint. This constraint is
denoted by DataReaction (DR for short). This constraint can be specified
on an event chain, an event chain segment or a distributed event chain (dis-
tributed over more than one node) by means of the DR Start and DR End

Supporting Timing Analysis through the Refinement of Timing Constraints 19

objects as shown in Fig. 10. The DR End object supports the specification of a
maximum value by means of a deadline parameter associated to it. However,
the minimum parameter is considered to be zero. In order to be consistent
with the TADL2 Reaction constraint, we associate a new parameter with
the DR End object to specify the non-zero minimum value of the constraint.

F— |

Fig. 10 Existing objects in RCM that are used to specify the Reaction constraint.

The analysis engines [19] provided by Rubus-ICE support the calculations
for the corresponding Reaction delay. Consider the example of an event
chain in a multi-rate system in Fig. 10. In Fig. 11, we show the time line when
this chain is executed (assuming each SWC corresponds to a task denoted
by 7 at run-time). It should be noted that task 7p is deliberately given an
offset of 15ms to maximize the delays. An offset is an externally imposed time
interval between the arrival of the activating event and release of the task
for execution. Often, an offset is used to specify temporal dependency among
the releases of a set of tasks. The reaction delay is equal to the time elapsed
between the previous non-overwritten release of task 74 (input of the chain)
and the first response of task 7o (output of the chain) corresponding to the
current non-overwritten release of task 74. Assume that a new value of the
input is available in the input buffer of task 74 “just after” the release of
the second instance of task 74 (at time 8ms). Hence, the second instance of
task 74 “just misses” the read of the new value from its input buffer. This
new value has to wait for the next instance of task 74 to travel towards the
output of the chain. Therefore, the new value is read by the third and fourth
instances of task 74. The first output corresponding to the new value (arriving
just after 8ms) appears at the output of the chain at 34ms. This results in the
delay of 26ms as shown in Fig. 11. This phenomenon is more obvious in the
case of distributed embedded systems where a task in the receiving node may
just miss to read fresh signals from the message arriving from the network.
The analysis engines calculate the Reaction delay as shown in Fig. 11 and
compare it with the specified constraint parameters.

4.6 Age Constraint
4.6.1 TADL2 Description
This constraint constrains the occurrence of a stimulus from the occurrence

of the corresponding response looking back through the event chain. Basi-
cally, the constraint specifies “how long before each response the corresponding

20 Saad Mubeen et al.

0 15 20 125 30 I35 40 450 50

|
| :<—Age delay = 22———»!
:diReaction delay = 26—»: |

Fig. 11 Demonstration of the Reaction and Age delay calculations by analysis engines.
Note that the time is expressed in ms.

stimulus must have occurred” [2]. In order to satisfy this constraint, the latest
occurrence of the stimulus with the same color as that of the response
must lie within the limits specified by this constraint as shown in Fig. 12.
This constraint differs from the Delay constraint in a way that it can only be
applied to event chains and not to individual events.

4.6.2 Semantics

A system behavior satisfies the specified AgeConstraint AgeC if and only
if for each occurrence of AgeC.response at time r, there is an occurrence
of AgeC.stimulus at time s such that

(s.color = r.color)
and
(s is time of the latest occurrence of AgeC.stimulus with color r.color)
and
(AgeC.minimum < (r — s) < AgeC.maximum)

srimulusT ’[‘ T AWM
: : : i oW
1 : : N time

maximum | maximum

minimum | minimum
response T

Fig. 12 Event sequence satisfying an Age constraint.

4.6.3 Interpretation in RCM

RCM supports the specification of the Age constraint denoted by DataAge.
This constraint can be specified on an event chain, an event chain segment or

Supporting Timing Analysis through the Refinement of Timing Constraints 21

a distributed event chain by means of the Age Start and Age End objects
as shown in Fig. 13. The Age End object supports the specification of a
maximum value by means of a deadline parameter associated to it. However,
the minimum parameter is considered to be zero. In order to be consistent
with the TADL2 Age constraint, we associate a new parameter with the Age
End object to specify the non-zero minimum value of the constraint.

The analysis engines support the calculations for the corresponding Age
delay. Consider the example of an event chain in a multi-rate system shown in
Fig. 13. Fig. 11 shows the time line when this chain is executed. The analysis
engines calculate the Age delay as shown in Fig. 11 and compare it with the
specified constraint parameters.

oo ETP TOP i L oP Ll oP
snmmus@ SpiP_1 DOP_1& 3 5 SDIP_1 DOP_1

SWC_A SWC_B SWC_C

b8
O-a

e»3__ Jac_sig

Fig. 13 Existing objects in RCM that are used to specify the Age constraint.

4.7 Repetition Constraint
4.7.1 TADL2 Description

This constraint constrains the distribution of occurrences of a single event that
may also experience jitter before its activation. Jitter represents the maximum
variation in time with which the event can be delayed. The span attribute
associated with this constraint determines which repeated occurrence will be
constrained.

4.7.2 Semantics

A system behavior satisfies the specified RepetitionConstraint RC iff the
following two are simultaneously satisfied for each subsequence X of RC.event:

1. if X contains span + 1 occurrences then d is the distance between the
outer- and inner-most occurrences in X and

RC.lower < d < RC.upper

2. for each index i, if there is an i*" occurrence of X at time s there also is an

ith occurrence of RC.event at time t such that

0<(t-s)<RC.jitter

If the span attribute is equal to one, jitter is equal to zero and the upper
attribute is equal to the lower attribute then the behavior becomes strictly
periodic. Fig. 14 graphically illustrates this constraint.

22 Saad Mubeen et al.

upper

span=1 «————— 4 event
«—> | Ly %
upper i lower | ! activation
> . j ‘et
4 lower | Ly o arrival
I AR I fime
Jitter Jitter Jitter

Fig. 14 Event sequence satisfying a Repetition constraint.

4.7.8 Interpretation in RCM

In RCM, an SWC can be time triggered or event triggered by means of the
TrigClockTT or TrigClockET objects respectively. The TrigClockTT ob-
ject generates periodic trigger signals with a period specified on it. Whereas the
TrigClockET object generates sporadic trigger signals with a minimum inter-
arrival time between any two consecutive occurrences. These two objects are
shown in Fig. 15. Another object in RCM, denoted by TrigJitterPeriod,
provides the allowance for jitter to the trigger generating objects. Fig. 15 con-
tains two of these objects with jitter values equal to 1 millisecond and 100
microseconds.

Note that we associate a new parameter, denoted by the maximum inter-
arrival time, with the TrigClockET object. This attribute specifies the max-
imum amount of time that can elapse between the occurrence of any two con-
secutive arrivals of the sporadic activation events. With this extension, any
two consecutive triggers produced by the TrigClockET object cannot hap-
pen in less than the minimum inter-arrival time and more than the maximum
inter-arrival time.

The TrigClockTT or TrigClockET objects can be combined with the
TrigJitterPeriod object torepresent the TADL2 Repetition constraint.
In order to be consistent with the TADL2 Repetition constraint, we add the
span parameter to the TrigClockTT and TrigClockET objects. When the
TrigClockTT object is combined with the TrigJitterPeriod object, it
represents the TADL2 Repetition constraint that has the upper attribute
equal to the lower attribute. When the TrigClockET object is combined
with the TrigJitterPeriod object, it represents the TADL2 Repetition
constraint with its lower and upper values assigned to the minimum and
maximum inter-arrival time attributes respectively.

4.8 Repeat Constraint

This constraint is a special case of the Repetition constraint (see Sec-
tion 4.7). It constrains the distribution of the occurrences of a single event
that does not experience any jitter. It is similar to the Repetition con-
straint without allowance for any jitter. Hence, the semantics and refinement

Supporting Timing Analysis through the Refinement of Timing Constraints 23

10 ms

TrigClockTT
TIP TOP J l
DIP_1 stimulus1

Sensor_A TrigClockET

TIP TOP
DIP_1 stimulus2 %

Sensor_B TrigJitterPeriod

sensor_A

5ms
100 us

sensor_B

Fig. 15 Existing objects in RCM that are used to specify triggers and jitter.

for the Repeat constraint are the same as that of the Repetition constraint
with jitter set to zero.
4.9 Sporadic Constraint

4.9.1 TADL2 Description

This constraint constrains the occurrence of a sporadic event.

4.9.2 Semantics

This constraint is a special type of the Repetition constraint whose span
is equal to 1. Moreover, any two subsequent activations of the event in this
constraint must be separated by the Minimum Inter-arrival Time (MIT). This
constraint is graphically illustrated in Fig. 16.

upper

span=1 <«—== > 1« event
> | ot
upper : lower | ! activation

(11% o event
1‘ awer, | 1* arrival
L L : time
Jitter Jitter Jitter
T

Fig. 16 Event sequence satisfying a Sporadic constraint.

4.9.8 Interpretation in RCM

The TrigClockET object can be combined with the TrigJitterPeriod
object to represent the TADL2 Sporadic constraint as shown in Fig. 17. In
order to consistently interpret this constraint, we set the span parameter to

24 Saad Mubeen et al.

1 and the MIT value equal to the period associated with the TrigClockET
object. The lower and upper values can be assigned to the minimum and
maximum inter-arrival times. If the maximum inter-arrival time is not speci-
fied, it can be considered equal to infinity.

5 ms TIP TOP TrigClockeT [(Gf
DIP_1 stimulus2
100 us =
Sensor_B
sensor_B TrigJitterPeriod

Fig. 17 Equivalent of the Sporadic constraint specified in RCM.

4.10 Burst Constraint
4.10.1 TADL2 Description

The BurstConstraint constrains an event with bursty occurrences.

4.10.2 Semantics

This constraint is a special type of the Sporadic constraint with the following
extensions.

1. There is no allowance for jitter.

2. There is a maximum number of occurrences of the event, denoted by
MaxOccurrences, in an interval. The size of the interval is denoted by
length.

3. Two subsequent activations in the interval must be separated by the Min-
imum Inter-arrival Time (MIT).

Two event sequences satisfing the same BurstConstraint are shown in
Fig. 18.

MaxOccurrences =4

MaxOccurrences = 4
| |

Event
1 T 1 T activation

MIT MIT MIT” MIT

I

t 1t 1t 1

MIT” MIT MIT MIT

length | length

Fig. 18 Event sequences satisfying the BurstConstraint.

Supporting Timing Analysis through the Refinement of Timing Constraints 25

4.10.8 Interpretation in RCM

The Sporadic constraint in RCM is extended to represent the TADL2 Burst
constraint by setting the TrigJitterPeriod to zero and associating the
length and MaxOccurrences attributes to the TrigClockET object shown
in Fig. 17.

4.11 Periodic Constraint

4.11.1 TADL2 Description

This constraint constrains the occurrence of a periodic event.

4.11.2 Semantics

This constraint is a special type of Sporadic constraint whose lower and

upper attributes are equal. These attributes are assigned the value of the
period. This constraint is graphically illustrated in Fig. 19.

span =1
| period period . N e.ven.t
1« ; 1* i 1\ activation
L L Lt s time
jitter Jitter Jitter event
MIT b MIT ! arrival

Fig. 19 Event sequence satisfying a Periodic constraint.

4.11.8 Interpretation in RCM

The TrigClockTT object can be combined with the TrigJditterPeriod
object to represent the TADL2 PeriodicConstraint as shown in Fig. 20.
In order to consistently interpret this constraint we set the span parameter
to 1. The upper and lower parameters are equal and are assigned the value
of the period. The MIT value is assigned to the period associated with the
TrigClockTT object unless specified otherwise.

4.12 Pattern Constraint
4.12.1 TADL2 Description

This constraint constrains the occurrences of an event that follows a certain
pattern with respect to some periodic temporal points.

26 Saad Mubeen et al.
TrigClockTT l>

TIP TOP

DIP_1 stimulus1

Sensor_A TrigJitterPeriod

10 ms

sensor_A

Fig. 20 Equivalent of the Periodic constraint specified in RCM.

4.12.2 Semantics

A system behavior satisfies the specified PatternConstraint PC iff there
is a set of times X such that the same system behavior simultaneously satisfies
the following conditions:

1. PeriodicConstraint with its period equal to PC.period. This con-
straint corresponds to the periodic repetition of the pattern shown in
Fig. 21.

2. For each PC.offset index i, there is an occurrence x; of X such that

PC.offset; <x; < (PC.offset; +PC. jitter)

3. If X contains two occurrences then d is the distance between the outer-
and inner-most occurrences in X and

PC.minimum < d

Note that x; represents all the occurrences of the event within each period
shown in Fig. 21.

The Pattern constraint is graphically illustrated in Fig. 21. In each period
of event patterns, the event occurrences happen at the predefined temporal
points, called offsets, with respect to the starting reference point in that period.
Each occurrence of the event can be influenced by the specified jitter.

i offsety+ jitter ! ’ offsets+ jitter
> : >
offset; 3 : offset;
offsety* jitter bob offsety jitter
offset, I | offset,
S — i i : !
loffset;+ jitter ! L } loffset,+ jitter !
5 2 i 3 < 2 |
ioffset; b o ! (offset; ! !
S L 3 b i
el Tl T Ty 1T D000 o
! K> = = K> = =]
| minimum '
“ . e >
period

Fig. 21 Event sequence satisfying a Pattern constraint.

Supporting Timing Analysis through the Refinement of Timing Constraints 27

4.12.8 Interpretation in RCM

This constraint is similar to the transactional model of tasks with offsets which
is inherent to the time-triggered execution in RCM. At run-time, all time
triggered tasks (assuming an SWC corresponds to a task at run-time) from
a node are combined into one big periodic transaction. The tasks within the
transaction have offsets and jitter. The period of the transaction is the least
common multiple of the periods of all tasks in the transaction.

We propose the addition of a new timing constraint with the above se-
mantics, denoted by the Pattern constraint, in RCM as shown in Fig. 22.
The parameters associated to this object are period, minimum inter-arrival
time, jitter, number of event occurrences during the period time and a set of
offsets. The analysis engines are responsible for checking this constraint by
comparing the specified parameters with the corresponding parameters in the
transactional model.

Constraint -=
Pattern

PatternEventConstraint

Fig. 22 Proposed object in RCM to specify the Pattern constraint.

4.13 Arbitrary Constraint
4.13.1 TADL2 Description

This constraint constrains an event that occurs irregularly. The constraint
contains a set of pairs consisting of a minimum inter-arrival time (denoted by
min) and a maximum inter-arrival time (denoted by max).

4.18.2 Semantics

A system behavior satisfies the specified ArbitraryConstraint AC iff for
each AC.min index i, the same system behavior satisfies, for each subsequence
X of AC.event, if X contains i + 1 occurrences then d is the distance between
the outer- and inner-most occurrences in X and

AC.min; < d < AC.max; (4)

The constraint is graphically illustrated in Fig. 23. In this figure, min1,
min2 and min3 represent the minimum inter-arrival time between/among

28 Saad Mubeen et al.

two, three and four subsequent occurrences of the event respectively. Simi-
larly, max1, max2 and max3 represent the maximum inter-arrival time be-
tween/among two, three and four subsequent occurrences of the event respec-
tively. Although three pairs of min and max parameters are plotted for the first
two occurrences of the event, these parameters continue in a similar fashion
for the rest of the occurrences of the event.

BN

! : ; event
o AR e : ! i activation

time

min,

max;

Fig. 23 Event sequence satisfying an Arbitrary constraint.

4.18.3 Interpretation in RCM

There is no existing support to specify the arbitrary constraint in RCM. We
propose the addition of a new timing constraint with the above semantics, de-
noted by Arbitrary constraint, in RCM as shown in Fig. 24. The constraint
is able to specify any number of pairs of min and max values.

Constraint -=
Arbitrary

ArbitraryEventConstraint

Fig. 24 Proposed object in RCM to specify the Arbitrary constraint.

Supporting Timing Analysis through the Refinement of Timing Constraints 29

4.14 Execution Time Constraint
4.14.1 TADL2 Description

This constraint constrains the time between activation and completion of the
execution of a function (executable entity). However, the intervals, when the
execution of the function is interrupted due to preemptions and blocking, are
not considered in this constraint.

4.14.2 Semantics

A system behavior satisfies the specified ExecutionTimeConstraint ETC
iff for each occurrence x of the event ETC.activate, ET; is the set of times
between x and the next ETC.completion while excluding the times due to
ETC.preemtion and ETC.blocking, and that

ETC.lower < sum of all continuous intervals in ET; < ETC.upper (5)

This constraint is graphically illustrated in Fig. 25.

M ET, ET, ET, ET, ET;s ‘l‘ activation

time % execution ET;

i Vg - fasriaen |:] blocking

W l preemption
1 - time

—~ilower 56

— ‘L completion

Fig. 25 Event sequence satisfying an Execution Time constraint.

4.14.8 Interpretation in RCM

RCM supports the specification of the execution time constraint for an SWC.
Each SWC has one or more behaviors, whereas each behavior represents a
function. When an SWC is triggered, its state and data (from all of its DIPs)
are passed to it. The states are updated and the newly calculated data is placed
on the DOPs while a trigger is produced at the TOP upon completion of the
behavior. RCM supports the specification of three types of execution times
on the behavior of SWC namely Best Case Execution Time (BCET), Worst
Case Execution Time (WCET) and Average Case Execution Time (ACET) as
shown in Fig. 26. In order to unambiguously interpret this constraint in RCM,
the lower and upper values of this constraint (see Fig. 25) can be assigned
to the BCET and WCET parameters respectively in Fig. 26.

30 Saad Mubeen et al.

’ f(){.2 - - - > Behavior properties:

| SWC_A_Behavior * Identifier
P Top - * Worst-case execution time (upper)
DIP_1 DOP_1 L
= - 1 * Best-case execution time (lower)
SWC_A TP TOP + Average-case execution time

\\éDIPJ DOP_1 Stack size
SWC_A_Interface

Fig. 26 Equivalent to the Execution Time constraint specified in RCM.

4.15 Synchronization Constraint
4.15.1 TADL2 Description

This constraint constrains the closeness of the occurrences of a group of events.

4.15.2 Semantics

A system behavior satisfies the specified SynchronizationConstraint on
a given set of events and given the occurrence of any event in this set, then
the rest of the events in the set must occur at least once within a certain time
window called tolerance.

This constraint is graphically illustrated in Fig. 27. It is applied on the two
events data_A and data_B. In this constraint, more than one instance of the
events may exist in a time window, provided the above conditions are met.
Moreover, the windows may overlap and they may share occurrences of the
events.

SynchronizationConstraint
tolerance

data A A T T T fime

data_B 'T 'T 'T 'T T T time

Design_Component_B Actuator_B

Fig. 27 Event sequences satisfying a Synchronization constraint.

4.15.8 Interpretation in RCM

There is an existing support in RCM to synchronize multiple triggers by means
of a synchronization object denoted by TrigSync as shown in Fig. 28. This
object has two or more TIPs and only one TOP. The synchronization condition
can use either AND or OR semantics. In the case of the AND condition, the
TOP is triggered only when trigger signals have arrived at all TIPs. In the

Supporting Timing Analysis through the Refinement of Timing Constraints 31

case of the OR condition, the TOP is triggered as soon as there is a trigger
signal at one of the TIPs. In order to make this constraint consistent with the
TADL2 Synchronization constraint, we add the tolerance parameter
to this object. The analysis engines are responsible for checking the constraint
by determining if the triggering events occur within the tolerance window
or not.

10 ms L~
te TIP TOP [t i TIP TOP i
Sensor A[___o—»CDIP_1 data_A »Odata_ A DOP_1 O |ac_sig A
Actuator_A

TrigSync

>

¢ lac_sig_B

)
3
7]
i
el

Sensor B[o—»0DIP_1 data_ B
SWC_B Actuator_B

Fig. 28 Synchronization constraint in RCM.

4.16 Strong Synchronization Constraint
4.16.1 TADL2 Description

This constraint constrains the closeness of the occurrences of a group of events.

4.16.2 Semantics

The semantics of the StrongSynchronizationConstraint differs from
the semantics of the SynchronizationConstraint in a way that the oc-
currences of the events in a window must have same indices. Therefore, at
most one instance of the events can exist in the time window. Moreover, the
windows cannot overlap and they may share occurrences of the events.

This constraint is graphically illustrated in Fig. 29. It is applied on the two
events data_A and data_B.

StrongSynchronizationConstraint
tolerance

| ay Y S

Design_Component_A

T rert L i

Design_Component_B Actuator_B

time

Fig. 29 Event sequences satisfying a Strong Synchronization constraint.

32 Saad Mubeen et al.

4.16.3 Interpretation in RCM

There is an existing support in RCM to synchronize multiple triggers by means
of a synchronization object denoted by TrigSync. In order to differentiate
the Strong Synchronization constraint from this object, we add a simi-
lar object denoted by S-TrigSync as shown in Fig. 30. This object has two
or more TIPs and only one TOP. The synchronization condition can use ei-
ther AND or OR semantics. In order to make this constraint consistent with
the TADL2 Strong Synchronization constraint, we add the tolerance
parameter to this object.

10 ms [
= TIP TOP ¢ i TIP TOP =i
Sensor A[___o—»0DIP_1 data_A »Odata A DOP_1 0 |ac_sig A

SWC_A Actuator_A

S-TrigSync L TIP TOP I

T »
Sensor B[o—»0DIP_1 data_B data_B DOP_1O-w |ac_sig B
SWC_B Actuator_B

Fig. 30 Proposed object in RCM to specify the Strong Synchronization constraint.

4.17 Output Synchronization Constraint
4.17.1 TADL2 Description

This constraint constrains the closeness of the occurrences of responses to
a certain stimulus. Basically, the constraint defines how far apart the re-
sponses to a certain stimulus can occur. This constraint differs from the
SynchronizationConstraint in a way that it can only be applied to
a set of event chains such that there are multiple responses to a single stim-
ulus as shown in Fig. 31 and Fig. 32. The tolerance parameter constrains
the latest of these response occurrences for each chain. The system in Fig. 31
is modeled with two event chains. They have common stimulus but different
responses denoted by responsel and response2.

4.17.2 Semantics

A system behavior satisfies the Output SynchronizationConstraint 0SC
iff for each occurrence of OSC.stimulus at time s, there is a time t such
that for each index i, there is an occurrence of OSC.response; at time r
such that

(r.color = s.color)
and

Supporting Timing Analysis through the Refinement of Timing Constraints 33

OutputSynchronizationConstraint
responsel

data AfE] out 1 ¢ él)inputib

#Xsigna data_in data_A Component_B Actuator1
== data_B
Sensor -

stimulus Component A data_ BEE] out 2 ¢ (Jl)inputm
Component_C Actuator2
response?2

Fig. 31 Usage of the Output Synchronization constraint at the design level.

stimulus f} A A —
tolerance
<> <> <>
responsel 1\ 1\ 1« e
me
response2 1‘ 1" 1‘ i

Fig. 32 Event sequences satisfying the Output Synchronization constraint.

(r is time of the earliest occurrence of 0SC.response; with color
s.color)
and
(0<(r — t) <o0SC.tolerance)

4.17.3 Interpretation in RCM

There is an existing support in RCM to synchronize multiple triggers by using
the TrigSync object. We add a similar object, denoted by Out-TrigSync,
in RCM. This object has two or more TIPs and only one TOP. The syn-
chronization condition can use either AND or OR semantics. In order to make
this constraint consistent with the TADL2 Output Synchronization con-
straint, we add the tolerance parameter to it. The analysis engines must
ensure that this constraint is satisfied within the tolerance window. The
example in Fig. 33 depicts a single rate system. Hence, there cannot be more
than one occurrences of each response corresponding to single occurrence of
the stimulus. However, the Out-TrigSync is equally applicable to multi-rate
systems where the components are triggered with independent clocks. It is im-
portant to note that the Output Synchronization constraint can also be
specified in distributed systems. For example, the common stimulus of any
two chains can be on one node while their responses can be on two different
nodes (other than the stimulus node). In such a case, two TrigSync objects
are specified on the two response nodes. However, the usage name of these

34 Saad Mubeen et al.

objects are the same. The run-time environment must consider any two or
more TrigSync objects with the same usage name as one object.

10ms
stimulus <

TIP TOP I |
O DIP_1 response1 ¢» L/ 0 Jac_sig_A
b

Sensor

SWC_C Actuator_B

Fig. 33 Proposed object to specify the Output Synchronization constraint in RCM.

4.18 Input Synchronization Constraint
4.18.1 TADL2 Description

This constraint constrains the closeness of the occurrences of stimuli corre-
sponding to a certain response. Basically, the constraint defines how far apart
the stimuli corresponding to a certain response can occur. This constraint
differs from the Synchronization constraint in a way that it can only be
applied to a set of event chains such that there are multiple stimuli and a sin-
gle corresponding response as shown in Fig. 34 and Fig. 35. The tolerance
parameter constrains the latest of these stimuli occurrences for each chain.
This means that once one of the stimuli has been acquired, the others should
be acquired within the time window equal to the tolerance parameter. The
system in Fig. 34 is modeled with two event chains. They are initiated by
separate stimuli but they have one common response.

InputSynchronizationConstraint

stimulusl
gsignal¢ #data_A out_1 response
SeRsoCA Component B_1 data_1 actuate {O— 3 input:e»
data_2 Actuator
ﬂsigﬂal¢ ¢ data_BEE| out_2 Component_A_1
Sensor_B Component_C_1
stimulus2

Fig. 34 Usage of the Input Synchronization constraint at the design level.

Supporting Timing Analysis through the Refinement of Timing Constraints 35

tolerance
> > >
stimulus14 1\ 1« "
me
stimulus2 |4 A A s
response 4 A 4 o

Fig. 35 Event sequences satisfying the Input Synchronization constraint.

4.18.2 Semantics

A system behavior satisfies the Input SynchronizationConstraint ISC
iff for each occurrence of ISC.response at time r, there is a time t such
that for each index i, there is an occurrence of ISC.stimulus; at time s
such that

(r.color = s.color)
and
(s is time of the earliest occurrence of ISC.stimulus; with color
r.color)
and
(0<(s — t)<IsC.tolerance)

4.18.8 Interpretation in RCM

There is an existing support in RCM to synchronize multiple triggers by using
the TrigSync object. We add a similar object, denoted by In-TrigSync,
in RCM. This object has two or more TIPs and only one TOP. The synchro-
nization condition can use either AND or OR semantics. In order to make
this constraint consistent with the TADL2 Input Synchronization con-
straint, we add the tolerance parameter to it. The example in Fig. 36 de-
picts a single rate system. Hence, there cannot be more than one occurrences
of each response corresponding to single occurrence of the stimulus. However,
the In-TrigSync is equally applicable to multi-rate systems where the com-
ponents are triggered with independent clocks.

10ms
sensor A&

TP TOP i
ODIP_1 stimulus1 ©

10ms
sensor B[&

Sensor_B

Fig. 36 Proposed object to specify the Input Synchronization constraint in RCM.

36 Saad Mubeen et al.

4.19 Comparison Constraint

This constraint is not a timing constraint. In fact, it is used to represent the
comparison between the value of a specified constraint and the values of the
variables that have arithmetic relations between/among them. For example,
consider a distributed chain that consists of three sub-chains. Also assume that
the delay of each sub-chain is calculated separately. The distributed chain is
considered schedulable if the sum of the three delays is less than or equal to the
Delay constraint specified on the distributed chain. Since the Comparison
constraint is not a timing constraint, it does not require any refinement. The
Rubus tool suite automatically compares each specified constraint with the
corresponding calculated value. The comparison results are presented to the
user. Moreover, the results are back-propagated to the models at the higher
abstraction levels.

5 Challenges in the Representation of the End-to-end Timing
Model at the Design Level

The models and approaches that are used at the implementation level such
as RCM and AUTOSAR allow to represent the end-to-end timing models.
However, the modeling approaches used at the design or higher levels such as
EAST-ADL, TIMMO and TADL2 do not support complete and unambiguous
representation of the timing models. Due to unavailability of the end-to-end
timing models at the higher abstraction levels, it is not possible to perform the
end-to-end timing analysis [19,47]. As discussed earlier in Section 3.7, there are
few works that support the end-to-end timing analysis at the higher levels of
abstraction such as [12,39]. However, the analysis supported by these works is
of low precision. It has already been shown in [12], that the analyses in [12,39]
can be highly pessimistic (overestimated) as compared to the analyses in [19,
47]. The analyses in [12,39] heavily rely on the reuse of software architectures
from legacy systems. Hence, these analyses are not applicable when the system
is developed from the scratch. On the other hand, our work aims to support
the high-precision end-to-end timing analysis [19,47] at the higher abstraction
levels. We focus mainly on the design level within the context of this prob-
lem. We consider the modeling support of EAST-ADL, TIMMO and TADL2
at the design level. Whereas the modeling support of RCM is considered at
the implementation level. We discuss some of the challenges that hinder the
representation of the end-to-end timing model. We propose guidelines and so-
lutions to deal with these challenges. We also discuss the implementation of
these solutions in RCM.

5.1 Representation of Control and Data Paths

Unambiguous representation of control (trigger) and data paths from the sys-
tem is vital for performing its end-to-end timing analysis. A trigger path cap-

Supporting Timing Analysis through the Refinement of Timing Constraints 37

tures the flow of triggers along a chain of components (tasks at run-time). For
example, the trigger path in the chain shown in Fig. 37(c) can be expressed as
{{SWC_A — SWC_B}, {SWC_C}} because SWC_B is triggered by SWC_A,
while SWC_C is triggered independently. Similarly, the trigger paths in the
chains shown in Fig. 37(a) and Fig. 37(b) can be expressed as {{SWC_A —
SWCB — SWC_C} and {{SWC_A}, {SWC_B}, {SWC_C}} respectively.

One of the main challenges in the representation of an end-to-end timing
model at the design level is the lack of a clear separation between the trigger
and data paths. At the implementation level, e.g. in RCM, these paths are
clearly separated from each other by means of trigger and data ports as shown
in Fig. 38(b). A TOP of an SWC can only be connected to the TIP(s) of other
SWC(s). Similarly, a DOP of an SWC can only be connected to the DIP(s) of
other SWC(s). Hence, the trigger and data paths can be clearly identified.

10 ms 10 ms 10 ms
10ms SWC_A SWC_B SWC_C 0ms swe A SWCB @ swc_c

' '
1 1
i -3 swc A lswc B SwWc_c i
it el i R i i
S - Data | | S
ensor ! | Sensor Data
. Sensor Data)
Input (a) sink | Input (b) sink 1 Input (c) sink

Fig. 37 Example of (a) trigger chain, (b) data chain, and (c) mixed chain.

On the other hand, the components at the design level communicate via
the flow ports as shown in Fig. 38(a). A flow port is an EAST-ADL object
that is used to transfer data between components. It is single buffer, non-
consumable and over-writable. Without any explicit information, it can be
interpreted as a data or trigger port at the implementation level. There is
no support to specify explicit trigger paths at the design level. Moreover, a
component can be triggered via specified timing constraints on event, modes,
or internal behavior of the component. The two types of flows should be clearly
and separately captured in the end-to-end timing model because the type of
the timing analysis depends upon it. For example, it is not meaningful to
compute the age delay of a trigger chain shown in Fig. 38(a) [19]. Since the
age delay in a trigger chain is always equal to its response time, the calculations
for the age delay in this case will produce redundant results.

Flow port Trigger port
7 p L7 ggerp
7
IN OouT
IN_2 §ZlouT.2
IN_3 OouT_3

- “==~_ Data port
Design_Level_SWC Implementation_Level_SWC P

(a) (b)

Fig. 38 Model of the SWC at (a) design level, (b) implementation level.

38

Saad Mubeen et al.

In order to clearly identify the trigger and data paths at the design level,

we make the following assumptions.

1.

We assume a one-to-one mapping between each design- and implementation-
level component. In general, there can be an n-to-m mapping between a
design- and an implementation-level component. Our assumption is quite
practical because most of the existing works, such as [43], consider a one-
to-one mapping between the design-level components (developed using
EAST-ADL) and the implementation-level components (developed using
AUTOSAR). In addition, our assumption is based on the common practice
that is used in the vehicle industry, especially in the segment of construc-
tion equipment vehicles domain.

. A flow port of a software component can be triggered either by an indepen-

dent source such as a clock or by a dependent source such as another soft-
ware component. If the components in a chain are triggered independently
then the resulting end-to-end delays in the chain are higher as compared
to the case when the components along the chain are triggered depen-
dently [19,47]. If there is no trigger information available for a flow port of
a software component on which a timing constraint is specified, we assume
that the component is triggered independently. The type of triggering is
judged by the type of the constraint. This assumption is pessimistic but
safe because we are interested in the worst-case end-to-end timing analysis.
If the Age or Reaction are the only constraints that are specified on a
chain, we assume that the first and last components in the chain are trig-
gered independently. This is because more than one independent trigger
in a chain makes it a multi-rate chain. Otherwise, the chain becomes a
single-rate chain. In a single-rate chain, the age delay is equal to its re-
sponse time while the reaction delay is a slight variation of its response
time. Hence, the schedulability of a single-rate chain can be determined
by response-time analysis [13] without performing the end-to-end delay
analysis [19,47]. Therefore, the single-rate chains are constrained by the
deadline constraints instead of the age and reaction constraints. It is more
meaningful to specify the Age and Reaction constraints on the multi-rate
chains as compared to the single-rate chains.

We assume that a flow port is implicitly triggered at the arrival of data.
If there are more than one flow ports in a component then the arrival
of data at each port produces a trigger. For example, the component in
Fig. 38(a) may receive three individual triggers when data is separately
received at the three input flow ports. The TrigSync object in RCM can be
used to deal with multiple implicit triggers (corresponding to multiple flow
ports) at the implementation level. This object gets the multiple triggers
at input, synchronizes them, and produces a single trigger that can be used
to trigger the SWC (corresponding to the design-level component) at the
implementation level. Fig. 39 shows an implementation-level equivalent of
the design-level component with three flow ports as shown in Fig. 38(a).

Supporting Timing Analysis through the Refinement of Timing Constraints 39

TrigSync

Fig. 39 Implementation-level equivalent of the design-level component in Figure 38(a).

5.2 Representation of Timing Parameters

The timing information expressed with the models and tools used at the design
level is not enough to represent the end-to-end timing model. For example, one
of the EAST-ADL based tools'? used at the design and higher levels is able
to specify only one timing parameter on components, i.e., the period of the
component. Clearly, this information is not enough to perform the end-to-
end timing analysis. TADL2 can specify timing constraints and properties at
the design level in EAST-ADL and AUTOSAR based development. However,
TADL2 does not allow to express some timing parameters, e.g., priority and
transmission type which are needed to perform the end-to-end timing analysis.
We have already discussed the interpretation of TADL2 timing constraints in
RCM in the previous section.

We assume that the execution order of the design-level components in a
chain is specified, otherwise, we make an implicit assumption about it. That
is, each component is assumed to execute only after successful execution of its
preceding component in the chain unless specified otherwise. This means a data
provider component is assumed to be always executed before the data receiver
component. Since this assumption fixes the execution order, it is safe to assume
that the priorities of the components are equal within the chain. Note that
this assumption is in line with the fourth assumption in Section 5.1. If worst-,
best- and average-case execution times are not available at the design level,
they can be estimated at the implementation level either by using estimates
by the experts or by reusing them from the other projects or previous releases
of the vehicle.

5.3 Identification of Chain Types

The chain types in RCM can be easily identified because the control and
data flows are clearly separated at the implementation level. Various types
of chains in RCM are depicted in Fig. 37. Since there is no clear separation
between these flows at the design level, virtually it is not possible to identify

13 For IP protection, the name of the tool is not specified.

40 Saad Mubeen et al.

the type of a chain. At the design level, a chain can be interpreted as a trigger
or data chain. Without any explicit trigger information, the end-to-end timing
analysis cannot be performed. This is because a trigger chain is analyzed by
calculating its end-to-end response time and reaction delay. Whereas a data
or a mixed chain is analyzed by calculating its end-to-end response time and
reaction delay as well as its age delay [19]. If there are no constraints specified
on a chain, we assume it to be a trigger chain. Otherwise, it can be considered
as a data or a mixed chain depending upon how the constraints are specified.

5.4 Information Duplication and Ambiguity

At the implementation level, for example, RCM does not allow illogical oper-
ations such as specifying more than one clock on the same component with-
out any synchronization or merge operation. However, these restrictions are
not present at the design level, e.g., more than one execution time or peri-
odic constraint can be specified on a single component in EAST-ADL using
TADL2. Similarly, if the data age and reaction constraints are wrongly speci-
fied then the development environment does not complain about it. As a result,
the timing model may have redundant or erroneous information. Information
duplication can lead to inconsistency in the timing model. However, at the
implementation level, Rubus-ICE complains about these inconsistencies and
ambiguities. The analysis engines calculate the age and reaction delays only
when the corresponding constraints are specified on data and mixed chains.

5.5 Implementation Challenges and Applicability of the Approach

There are two different approaches to deal with these challenges. The first ap-
proach is to extend and improve the design-level models, languages and tools
in such a way that the timing models can be completely and unambiguously
represented. Moreover, the represented models are general enough to be oper-
ated on by different models and tools. The only problem with this approach
is that it requires strong collaboration among a number of tool suppliers and
stake holders. This, in turn, raises other types of challenges and limitations.

The second approach is to develop the interpretation of the design level that
depends upon the execution-level modeling technology. Such an interpretation
should be general enough to be applicable to any component model which is
designed for the software development at the implementation abstraction level.
For example, developing a Rubus interpretation of EAST-ADL. It is important
to note that this interpretation can be a subset of the full expressiveness of
EAST-ADL. No doubt, this may result in a number of these interpretations
by several other modeling technologies. This can be a good solution as long as
these interpretations support unambiguous representation of the end-to-end
timing models. In this paper we have advocated the second option.

The approach proposed in this paper can be generally applied to any
implementation-level component model for the development of vehicle software

Supporting Timing Analysis through the Refinement of Timing Constraints 41

that (1) supports a pipe-and-filter style for the interaction between/among
software components, (2) differentiates between the control and data flows
between/among the software components and (3) allows representation of the
low-level details at the higher abstraction levels such as the linking information
in distributed chains [18,19]. Moreover, the challenges and proposed solutions
discussed in this paper are equally applicable to other higher-level modeling
technologies that comply with the EAST-ADL methodology. Note that all the
assumptions made in this paper reflect the worst-case conditions. Hence, the
analysis results can be sometimes pessimistic (overestimated) but safe, i.e.,
the results cannot be optimistic (underestimated). The timing model repre-
sentation approach is well suited to hard real-time software systems that are
required to meet stringent timing requirements.

5.6 Implementation of the Refinement in Rubus-ICE

The refinement of the TADL2 timing constraints to RCM (discussed in Sec-
tion 4) is hard coded in the refinement engine of Rubus-ICE as shown in
Fig. 40. Note that all EAST-ADL editors support exchange of the design-level
model in the XML format. Such a model, augmented with the TADL2 tim-
ing constraints, is read by the refinement engine. The output of this engine is
the refined implementation-level model. The existing end-to-end timing anal-
ysis engines [19,47] in Rubus-ICE are extended based on the assumptions and
guidelines that are discussed in this section. The end-to-end timing analysis
results obtained from the analysis engines are back-propagated to the design-
level models as shown in Fig. 40.

\ Design-level model (E/\NST-ADL)

/ Refinement engine augmented with Editors
the TADL2 timing . .
7)) MetaEdit+

Implemen}ation level constraints
model (XML) A 4MML) Papyrus No Magic

Menior
Graph
o ARC CORE

End-to-end timing Timing analysis SystemWeaver

L

]

&

>

o)

S) ! »

\& analysis engines | / results (XML) Rubus-EAST 9

Fig. 40 Information flow after the implementation of the refinement in Rubus-ICE.

6 Vehicular-application Case Study

In this section, first we model the steer-by-wire (SBW) system with EAST-
ADL at the design level. In [1], we modeled partial software architectures of

42 Saad Mubeen et al.

only two nodes in the SBW system. This section extends the previous case
study by modeling the complete software architecture of the SBW system.
In the second step, we specify several timing constraints on the software ar-
chitecture of the SBW system. In the third step, the design-level software
architecture along with the specified timing constraints are refined to the
implementation-level software architecture. In the fourth step, the analysis
engines are run to verify the specified timing constraints.

6.1 Steer-by-wire (SBW) System

The SBW system provides electronic steer control to a vehicle by substitut-
ing majority of mechanical and hydraulic components with electronic compo-
nents in the conventional steering system. In this system, the steering angle is
converted into electrical signals. These signals are then processed to produce
actuation signals that control the direction of the wheels. The SBW system
consists of five nodes or Electronic Control Units (ECUs) that are connected
to a single Controller Area Network (CAN) [44] bus as shown in Fig. 41. The
CAN bus is assumed to operate at the speed of 250 Kbit/s. There are four
ECUs for Wheel Control (WC) and one ECU for Steer Control (SC). The WC
ECUs for front-left, front-right, rear-left and rear-right wheels are denoted by
FL.WC, FR-WC, RL.WC and RR_-WC in Fig. 41.

RL_WC L FL_WC
ECU SC ECU
ECU

CAN Bus

|
RR_WC FR_WC
A v AT ECU

Fig. 41 Block diagram of the SBW system.

The SC ECU receives inputs from three sensors that include steering angle,
steering torque (applied by the driver) and vehicle speed sensors. It receives
one CAN message from each WC ECU. The message includes information
regarding the torque of each wheel. Based on these inputs, the SC ECU calcu-
lates the feedback steering torque and sends it to the feedback torque actuator.
This actuator is responsible for producing the feeling of turning effect of the
steering wheel for the driver. Such an effect corresponds to the grip of the
wheels. The wheel actuators in the WC ECUs should move the wheels in ac-
cordance with the steering wheel movements. Hence, the SC ECU sends two
CAN messages to all WC ECUs. One message carries the steer angle signal.
Whereas the other message carries the steer torque signal.

Each WC ECU receives inputs from wheel angle and wheel torque sen-
sors. Depending upon the sensor inputs and the CAN message that is received

Supporting Timing Analysis through the Refinement of Timing Constraints 43

from the SC ECU, each WC ECU calculates the wheel torque and produces
actuation signals for the corresponding wheel actuator. The actuator is re-
sponsible for moving the corresponding wheel in accordance with the steering
wheel movements. Each WC ECU sends one CAN message to the SC ECU
containing the corresponding wheel torque signals.

6.2 Modeling of the SBW System at the Design Level

The software architecture of the SBW system at the design level, modeled with
EAST-ADL, is depicted in Fig. 42. The left-hand side of the figure shows the
software architecture of the SC ECU. Whereas the right-hand side of the figure
shows the software architectures of the four WC ECUs. Each component in
Fig. 42 is a Function Prototype which is the design-level software component
in EAST-ADL. It should be noted that EAST-ADL does not provide detailed
models of networks. Hence, the components that require inter-ECU commu-
nication are interconnected using direct connections, e.g., SC_Controller and
FL_Controller. The detailed network communication is modeled only at the
implementation level. Hence, these components communicate with each other
via network messages at the implementation level.

TC13,TC14 TC27,1C28 TC9 TC35

i ! i

R kit REEDEE :'1'-:-5- ----- o

_________ TCAL o idi
i ! L

| ! HHE

i T T

H 1 HIHE

¥ 1 YV ¥

{JFL_Wheel_info B N §3 ouT
()FR_Wheel_Info S_Angle
{)RL_Wheel_Info S_Torque

FL_Angle Control
FL_Torqug;, FL_Info
S_Angleugl

(Em £2 ou'rig

FL_Actuator

Steer_FB_Actuator

i
L
™
H
L
Nl
H
L
v
i
+—RR_Wheel B8 s_Torque H !
¢ steer_Angle '
. & steer Torque FL_Controller ' i Tc36
3 Steer_Ange (Vehicte.Speed TC29,TC30 I :
A_SC_Controller TC15,TC16----- v v i v
: N §3 ouT FR_Angle Control T : IN £ ouT
i R
' TC17,7C18- “1 PR Wheel Angle FSR;:;:: FR_Info ! PR Actuator
- v
! n §5 our S_Torque ! H
! H FR_Wheel_Torque FR_Controller ! 1
H TC7 vl TC37
: TC19,TC20 Tes1Tes2 i i
_____ I
TC6,TC5 ’ ¥ + L ¥
N £ out RL_Angle Control :éam £ OUTé
TC21,TC22--, RI_Wheel_Angle RL_Toraueg) RL_Info | T RI_Actuator
s_Angle
' Y 1
-m £2) out ¢y S_Torque 1
Legend: RL_Wheel_Torque RL_Controller i
. ! TC38
- TC337C34 i :
<) IN_Flow_Port OUT_Flow_Port <} TC23,7C24---- - S 4 ' i
Function_Prototype/ Design-level_Software_Component W g our RR_Angle Control % W g our }
TC: Timing Constraint TC25,1C26 - - RR_Vineel Angle ’;ﬁ:{:@ RR_Info RR_Actuator
O £3) ouT (> S_Torque

RR_Wheel_Torque RR_Controller

Fig. 42 Design-level software architecture of the SBW system in EAST-ADL.

44 Saad Mubeen et al.

6.3 Specification of Timing Constraints at the Design Level

There are 41 Timing Constraints (T'Cs) that are specified on the software ar-
chitecture of the SBW system shown in Fig. 42. These constraints comprise
of nine different types of timing constraints including Periodic, Sporadic,
Repetition, Strong Delay, Execution Time, Age, Reaction, Input
Synchronization and Output Synchronization. Various attributes
that are associated to these constraints are tabulated in Fig. 43. Let us con-
sider three examples to understand the specified timing constraints. TC1 is
a Periodic constraint that is specified on the Steer_Angle component. It
requires the activation of Steer_Angle to be strictly periodic with a period
of 10,000 pus and maximum allowed jitter of 10 us. TC9 represents Output
Synchronization constraint among the outputs of the FL_Controller, FR_
Controller, RL_Controller and RR_Controller components. It constrains the
closeness of occurrences of the responses of these four components by 60 us.
TC40 represents the Age constraint that constrains the data age delay be-
tween the arrival of input data at the Steer_Angle component in the SC ECU
and the production of output data by the FL_Actuator component in the
FL.WC_ECU. The maximum and minimum values associated to this con-
straint are equal to 20,000 us and 30,000 us respectively.

6.4 Refinement of the SBW System to the Implementation Level

In order to refine the software architecture of the SBW system from the design
level to the implementation level, we use the model representation and timing
constraints refinement approach that we have discussed in Section 4 and Sec-
tion 5. The refined system-level software architecture of the SBW system is
shown in Fig. 44. This figure contains the models of five ECUs and one CAN
bus. There are six messages (see Section 6.1 for details) in the network. Each
message is assumed to carry a maximum amount of data, i.e., 8 bytes. The
refined software architecture of the SC ECU is shown in Fig. 45. Whereas the
refined software architectures of the four WC ECUs are shown in Fig. 46.
Each Periodic constraint is refined as a pair of periodic clock and jitter
objects. For example, TC11 is refined to the periodic clock and jitter objects
that are connected to the input trigger port of the FL_Wheel_Angle compo-
nent in Fig. 46. Each Execution Time constraint is refined by specifying
it on the behavior of the corresponding component in a similar fashion as
it is done in Fig. 26. The Sporadic constraint, TC5, is refined to the spo-
radic clock and jitter objects that are connected to the input trigger port of
the Vehicle_Speed component in Fig. 45. The Repetition constraint, TC3,
is refined to the periodic clock and jitter objects that are connected to the
input trigger port of the Steer_Torque component in Fig. 45. The Input
Synchronization constraint, TC8, is refined to the In_TrigSync object in
Fig. 45. The Output Synchronization constraint, TC9, is refined to the
Out_TrigSync object in Fig. 46. There are four Out_TrigSync objects in

Supporting Timing Analysis through the Refinement of Timing Constraints 45
. i Lower/Min. | Upper/Max. | Jitter Tolerance

Constraint Constraint Type Span

(us) (us) (us) (us)
TC1 Periodic 10,000 10,000 10 1 N.A
TC2 Execution Time 100 N.A N.A | N.A N.A
TC3 Repetition 10,000 10,000 10 1 N.A
TC4 Execution Time 100 N.A N.A [N.A N.A
TC5 Sporadic 10,000 10,000 10 1 N.A
TC6 Execution Time 100 N.A N.A | N.A N.A
TC7 Execution Time 200 N.A N.A | N.A N.A
TC8 Input Synchronization N.A N.A N.A | N.A 20
TC9 Output Synchronization N.A N.A N.A | N.A 60
TC10 Execution Time 120 N.A N.A | N.A N.A
TC11 Periodic 10,000 10,000 10 1 N.A
TC12 Execution Time 100 N.A N.A | N.A N.A
TC13 Periodic 10,000 10,000 10 1 N.A
TC14 Execution Time 100 N.A N.A | N.A N.A
TC15 Periodic 10,000 10,000 10 1 N.A
TC16 Execution Time 100 N.A N.A | N.A N.A
TC17 Periodic 10,000 10,000 10 1 N.A
TC18 Execution Time 100 N.A N.A | N.A N.A
TC19 Periodic 10,000 10,000 10 1 N.A
TC20 Execution Time 100 N.A N.A | N.A N.A
TC21 Periodic 10,000 10,000 10 1 N.A
TC22 Execution Time 100 N.A N.A | N.A N.A
TC23 Periodic 10,000 10,000 10 1 N.A
TC24 Execution Time 100 N.A N.A | N.A N.A
TC25 Periodic 10,000 10,000 10 1 N.A
TC26 Execution Time 100 N.A N.A | N.A N.A
TC27 Periodic 10,000 10,000 10 1 N.A
TC28 Execution Time 200 N.A N.A | N.A N.A
TC29 Periodic 10,000 10,000 10 1 N.A
TC30 Execution Time 200 N.A N.A | N.A N.A
TC31 Periodic 10,000 10,000 10 1 N.A
TC32 Execution Time 200 N.A N.A | N.A N.A
TC33 Periodic 10,000 10,000 10 1 N.A
TC34 Execution Time 200 N.A N.A | N.A N.A
TC35 Execution Time 120 N.A N.A | N.A N.A
TC36 Execution Time 120 N.A N.A | N.A N.A
TC37 Execution Time 120 N.A N.A | N.A N.A
TC38 Execution Time 120 N.A N.A | N.A N.A
TC39 Strong Delay 10,000 20,000 N.A | N.A N.A
TC40 Age 20,000 30,000 N.A | N.A N.A
TC41 Reaction 20,000 40,000 N.A | N.A N.A
N.A: Not Available or Not Applicable

Fig. 43 Attributes of the timing constraints specified in Fig. 42.

46 Saad Mubeen et al.

FL_WC_ECU

i_Angle_| FR_Msg
S_Torfue_Msg

el FR_WC_ECU
5,
5

Angle| RL_Msqg
_Torbue_Nsg

A RL_WC_ECU
5
5

b

RR_WC_ECU

Fig. 44 Refined software architecture of the SBW system at the implementation level.

1 Steer_Controller

!
Implementation-level
Software Component

Network Port

Vehicle_Speed

Fig. 45 Refined software architecture of the SC ECU at the implementation level.

Fig. 46. Since we use the same usage name for these objects, they correspond
to only one Out_TrigSync object at run-time (see Section 4.17.3 for details).
The Strong Delay constraint, TC39, is refined to the S_Delay Start and
S Delay End objects in Fig. 45. The Age constraint, TC40, is refined to
the Age Start and Age End objects in Fig. 45 and Fig. 46 respectively.
The Age Start and Age End objects have the same usage name. Similarly,
the Reaction constraint, TC41, is refined to the Reaction Start and
Reaction End objects in Fig. 45 and Fig. 46 respectively. The Reaction
Start and Reaction End objects also have the same usage name.

6.5 Verification of the Timing Constraints and Discussion

We use the analysis engines provided by the Rubus-ICE tool suite to verify if
the specified timing constraints are satisfied or not. The periodic and sporadic
activations of tasks (run-time entities corresponding to software components)
can be implemented at the user or kernel level in a Real Time Operating Sys-
tem (RTOS). The Rubus RTOS supports such activations at the kernel level.
This means that it guarantees strict periodic and sporadic clocks. Hence, all

Supporting Timing Analysis through the Refinement of Timing Constraints 47

FL Wheel Torque - oraue_tsg

I OT[> 10 ms
D1 oD

; i
' |
' |
H |
! |
! |
H Dus |
! FR_Uiheel_ingie ° FR_Actuator H
: !
110 ms [- 1T OT [H
' e OO 001G 5_Angle_Msg !
i

' FRWhesl Torqe o-1oTdue tsg FR_WC_ECU E
e o
(e e,y

10 ms i OT[> 10ms
D1 0Dt

RL_Wheel_Angie

[T oTph
S0 on_1dh] s angle Msg
5 Torque_Wsg ! RL_WC_ECU

RR_Wheel_Ti

RL_Actuator

RR_Actuator

RR_Controller

RR_WC_ECU |

Fig. 46 Refined software architectures of the four WC ECUs at the implementation level.

the Periodic, Sporadic and Repetition constraints, specified on the
SBW system, are satisfied by construction if the Rubus RTOS is used. RCM
and its run-time framework consider both best- and worst-case execution times
of the tasks. The tasks are not allowed to overrun as compared to the speci-
fied worst-case execution times. Hence, all the Execution Time constraints,
specified on the SBW system, are satisfied by using such restrictions.

The Rubus RTOS uses offline scheduling on top of the fixed-priority schedul-
ing [45,46]. Using the offline scheduling, all the tasks (corresponding to the
components on which the Input Synchronization constraint is specified)
are placed next to each other in the schedule. Hence, the static scheduler
along with the priority assignment policy can provide guarantees for meet-
ing the Input Synchronization constraint (identified as TC8 in Fig. 42).
The Output Synchronization constraint can be verified by performing
the end-to-end delay analysis [19] on the four chains on which TC9 is spec-
ified. According to the analysis engines, the output data is available at the
data output ports of the FL_Controller, FR_Controller, RL_Controller and
RR_Controller components at time 23,320 us. Interestingly, the delay varia-
tion in the output of the four chains is 0 which is well below the tolerance
parameter associated to TC9. The Strong Delay, data Age delay and data
Reaction delay calculated by the end-to-end delay analysis engines are equal
to 10,640 ps, 23,440 ps and 33,440 us respectively. By comparing these delays

48 Saad Mubeen et al.

with TC39, TC40 and TC41, we can see that the specified timing constraints
are satisfied.

7 Conclusion and Future Work

We have extended our previous approach to support the representation of the
end-to-end timing models at a higher abstraction level compared to the level
where the software architecture is implemented. The purpose is to support the
end-to-end timing analysis at the higher abstraction level and at an earlier
phase during the development of component-based vehicular distributed em-
bedded systems. At the higher level, the approach provides a representation of
the timing information that is extracted from the models developed with the
EAST-ADL and TADL2 languages using the TIMMO methodology. Whereas
at the lower level, it uses the Rubus Component Model (RCM) to represent
the timing information that cannot be clearly specified at the higher level.
As part of this approach, we have provided an interpretation of the TADL2
timing constraints in RCM. We have also proposed extensions to RCM for the
unambiguous refinement of these constraints. Moreover, we have discussed the
challenges and issues that are faced during the representation of the timing
information at the higher abstraction level. We have presented the guidelines
and solutions to deal with these challenges. Finally, we have modeled and
analyzed the timing of a vehicular-application case study to provide a proof
of concept for our approach. The challenges and corresponding solutions pre-
sented in this paper can be applied to other modeling technologies that comply
with the EAST-ADL methodology at the higher abstraction levels. The pro-
posed approach is suitable for any implementation level modeling technology
that supports a pipe-and-filter style for the communication among its soft-
ware components, differentiates between the control and data flows among its
software components, and allows representation of the low-level details at the
higher abstraction levels (e.g., linking information in distributed chains).

In TADL2, time can be expressed in multiple time bases, e.g., chronometric
time, angular time, revolution per minute and time expressed in distance or
rotation of a crank shaft. Furthermore, time can also be expressed as algebraic
expressions and parameterized expressions between different time bases using
the Symbolic Timing Expression [2]. It can be an interesting future work to
extend our approach by supporting the timing expressions that are based on
multiple time bases.

Acknowledgement

The work in this paper is supported by the Swedish Foundation for Strategic
Research, ARTEMIS and the Swedish Knowledge Foundation through the
projects PRESS, CRYSTAL and PreView respectively. The authors would
like to take the opportunity to thank the industrial partners Arcticus Systems,
Volvo CE, Volvo GTT and BAE Systems Hégglunds, Sweden.

Supporting Timing Analysis through the Refinement of Timing Constraints 49

References

1. S. Mubeen, J. Méki-Turja, and M. Sjodin, “Translating Timing Constraints during Ve-
hicular Distributed Embedded Systems Development,” 1st International Workshop on
Model-Driven Engineering for Component-Based Software Systems, Sep., 2014.

2. Timing Augmented Description Language (TADL2) syntax, semantics, metamodel Ver.
2, Deliverable 11, Aug. 2012.

3. K. Hanninen et.al., “The Rubus Component Model for Resource Constrained Real-Time
Systems,” in 3rd IEEE International Symposium on Industrial Embedded Systems, Jun.
2008.

4. P. Thorngren, keynote Talk: Experiences from EAST-ADL Use, EAST-ADL Open Work-
shop, Gothenberg, Oct., 2013.

5. T. A. Henzinger and J. Sifakis, “The Embedded Systems Design Challenge,” in Proceed-
ings of the 14th International Symposium on Formal Methods (FM), Lecture Notes in
Computer Science. Springer, 2006, pp. 1-15.

6. I. Crnkovic and M. Larsson, Building Reliable Component-Based Software Systems. Nor-
wood, MA, USA: Artech House, Inc., 2002.

7. AUTOSAR Techincal Overview, Release 4.1, Rev. 2, Ver. 1.1.0., The AUTOSAR Con-
sortium, Oct., 2013, http://autosar.org.

8. TIMMO Methodology, Ver. 2, TIMMO (TIMing MOdel), Deliverable 7, Oct. 2009, The
TIMMO Consortium.

9. TIMMO-2-USE, https://itea3.org/project/timmo-2-use.html.

10. CRYSTAL - CRitical sYSTem engineering AcceLeration, http://www.crystal-artemis.-
eu, accessed Mar., 2016.

11. Model-based Analysis & Engineering of Novel Architectures for Dependable Electric
Vehicles (MAENAD) Project, http://www.maenad.eu, accessed Mar., 2016.

12. S. Mubeen, T. Nolte, J. Lundbéack, M. Galnander, and K-L. Lundbéck, “Refining Timing
Requirements in Extended Models of Legacy Vehicular Embedded Systems Using Early
End-to-end Timing Analysis,” 18th International Conference on Information Technology:
New Generations (ITNG), Apr., 2016.

13. K. Tindell and J. Clark, “Holistic schedulability analysis for distributed hard real-time
systems,” Microprocess. Microprogram., vol. 40, pp. 117-134, Apr. 1994.

14. S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, and I. Crnkovic, “A Component Model
for Control-Intensive Distributed Embedded Systems,” in 11th International Symposium
on Component Based Software Engineering. Springer, Oct. 2008, pp. 310-317.

15. A. Ohno, T. Azumi, and N. Nishio, “TECS components providing functionalities of
OSEK specification for ITRON OS,” Journal of Information Processing, vol. 22, no. 4,
pp. 584-594, 2014.

16. H. Hill, “CUTS: a system execution modeling tool for realizing continuous system inte-
gration testing,” in 32nd ACM/IEEFE International Conference on Software Engineering,
May, 2010.

17. EAST-ADL Tooling, http://www.east-adl.info/Tooling.html, accessed Mar. 2016.

18. S. Mubeen, J. Mé&ki-Turja, and M. Sjodin, “Communications-Oriented Development
of Component- Based Vehicular Distributed Real-Time Embedded Systems,” Journal of
Systems Architecture, vol. 60, no. 2, pp. 207-220, 2014.

19. S. Mubeen, J. Maki-Turja, and M. Sjédin, “Support for end-to-end response-time and
delay analysis in the industrial tool suite: Issues, experiences and a case study,” Computer
Science and Information Systems, ISSN: 1361-1384, vol. 10, no. 1, 2013.

20. X. Ke, K. Sierszecki, and C. Angelov, “COMDES-II: A Component-Based Framework
for Generative Development of Distributed Real-Time Control Systems,” in Embedded and
Real-Time Computing Systems and Applications, RTCSA 2007. 13th IEEE International
Conference on, Aug. 2007, pp. 199 —208.

21. Catalog of Specialized CORBA Specifications. OMG Group, http://www.omg.-
org/technology/documents//.

22. OMG Systems Modeling Language, version 1.3. http://www.omgsysml.org.

23. TIMMO-2-USE Methodology Description, Ver. 2, Del. 13, Jul., 2012.

24. Rubus ICE-Integrated Development Environment, http://www.arcticus-systems.com.

50 Saad Mubeen et al.

25. P. Feiler, B. Lewis, S. Vestal, and E. Colbert, “An Overview of the SAE Architecture
Analysis & Design Language (AADL) Standard: A Basis for Model-Based Architecture-
Driven Embedded Systems Engineering,” in Architecture Description Languages, ser. The
International Federation for Information Processing (IFIP). Springer US, 2005, vol. 176,
pp. 3-15.

26. SCADE Suite, http://www.esterel-technologies.com/products/scade-suite, accessed
Mar., 2016.

27. The UML Profile for MARTE: Modeling and Analysis of Real-Time and Embedded
Systems, Jan. 2010. Available: http://www.omgmarte.org/

28. MAST-Modeling and Analysis Suite for Real-Time Applications, http://mast.unican.-
es.

29. CHESS Project, CHESS consortium. Avialable at: http://www.chess-project.org, ac-
cessed Mar., 2016.

30. A. Cicchetti, F. Ciccozzi, S. Mazzini, S. Puri, M. Panunzio, T. Vardanega, and A. Zovi,
“Chess: a model-driven engineering tool environment for aiding the development of com-
plex industrial systems,” in 27th International Conference on Automated Software Engi-
neering (ASE 2012), Sep. 2012.

31. EAST-ADL Domain Model Specification, Version V2.1.12, Version V2.1.12, De-
liverable 11, Aug. 2012http://www.east-adl.info/Specification/V2.1.12/EAST-ADL-
Specification_V2.1.12.pdf, accessed Mar. 2016.

32. D. Chen, L. Feng, T. Qureshi, H. Lonn, and F. Hagl, “An architectural approach to the
analysis, verification and validation of software intensive embedded systems,” in Comput-
ing, vol. 95, no. 8, pp. 649-688, 2013.

33. ISO 26262-1:2011: Road vehicles Functional safety. http://www.iso.org/.

34. TADL: Timing Augmented Description Language, Ver. 2, Deliverable 6, Oct., 2009.

35. Rubus models, methods and tools, http://www.arcticus-systems.com.

36. Mastering Timing Information for Advanced Automotive Systems Engineer-
ing. In the TIMMO-2-USE Brochure, 2012. Available at: http://www.timmo-2-
use.org/pdf/T2UBrochure.pdf.

37. J. Carlson, “Timing Analysis of Component-based Embedded Systems,” in 15th Inter-
national ACM SIGSOFT Symposium on Component Based Software Engineering. ACM,
Jun. 2012.

38. S. Mubeen, T. Nolte, M. Sjodin, J. Lundback, M. Galnander, and K.-L. Lundback,
“Modeling of Legacy Distributed Embedded Systems at Vehicle Abstraction Level,” in
19th International Symposium on Component Based Software Engineering, Apr. 2016.

39. S. Mubeen, M. Sjodin, T. Nolte, J. Lundbéck, M. Galnander, and K.-L. Lundbéck, “End-
to-end Timing Analysis of Black-box Models in Legacy Vehicular Distributed Embedded
Systems,” in 21st International Conference on Embedded and Real-Time Computing Sys-
tems and Applications (RTCSA), Aug. 2015.

40. A. Bucaioni, A. Cicchetti, F. Ciccozzi, R. Eramo, S. Mubeen, and M. Sjédin, “Antici-
pating implementation-level timing analysis for driving design-level decisions in east-adl,”
in International Workshop on Modelling in Automotive Software Engineering, Sep. 2015.

41. S. Mubeen, J. Maki-Turja, and M. Sjédin, “Towards Translation of Timing Con-
straints during Vehicular Embedded Systems Development,” in International Confer-
ence on Component-Based Software Engineering and Software Architecture (CompArch).
Springer, Jul. 2014.

42. S. Mubeen, J. Méaki-Turja, and M. Sjodin, “Extraction of end-to-end timing model from
component-based distributed real-time embedded systems,” in Time Analysis and Model-
Based Design, from Functional Models to Distributed Deployments (TiMoBD) workshop
located at Embedded Systems Week. Springer, Oct. 2011, pp. 1-6.

43. T. Qureshi, D. Chen, H. Lonn, and M. Térngren, “From EAST-ADL to AUTOSAR
Software Architecture: A Mapping Scheme,” in Software Architecture, Lecture Notes in
Computer Science, vol. 6903, pp. 328-335, 2011.

44. ISO 11898-1, “Road Vehicles interchange of digital information controller area network
(CAN) for high-speed communication, ISO Standard-11898, Nov. 1993.”

45. N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings, “Fixed priority pre-emptive
scheduling: an historic perspective,” Real-Time Systems, vol. 8, no. 2/3, pp. 173-198, 1995.

Supporting Timing Analysis through the Refinement of Timing Constraints 51

46. J. Méki-Turja, K. Hanninen, and M. Nolin, “Efficient Development of Real-Time Sys-
tems Using Hybrid Scheduling,” in International Conference on Embedded Systems and
Applications, June 2005.

47. N. Feiertag, K. Richter, J. Nordlander and J. Jonsson, “A Compositional Framework for
End-to-End Path Delay Calculation of Automotive Systems under Different Path Seman-
tics,” in International Workshop on Compositional Theory and Technology for Real-Time
Embedded Systems (CRTS), December, 2008.

	Extended Version
	Introduction
	Background and Related Work
	Interpretation of TADL2 Timing Constraints in RCM
	Challenges in the Representation of the End-to-end Timing Model at the Design Level
	Vehicular-application Case Study
	Conclusion and Future Work

