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Abstract—Testing using architectural design models is intended
to determine if the realized system meets its specification, and
works as a whole in terms of computational components and
their interactions. The growing complexity of embedded systems
requires new techniques that are able to support testing of
extra-functional requirements, like energy usage of components
and systems, which is very necessary in order to obtain valid
implementations. In this paper, we show how architectural
models described in the EAST-ADL architectural language can
also be used for testing the energy consumption of embedded
systems, after transforming them into networks of formal models
called priced timed automata. Assuming an EAST-ADL model
annotated with energy consumption information, we show how
to automatically generate energy-aware test cases based on
statistical model checking (SMC) of the resulting network of
priced timed automata. We automate the generation of executable
test cases with UPPAAL SMC, using a test strategy based on
several random simulation runs of the system. By seeding the
original formal model with a set of energy-consumption related
faults, we are able to carry out fault detection analysis. We apply
this technique on a Brake-by-Wire system from the automotive
domain, and evaluate it in terms of efficiency and model fault
detection.

I. INTRODUCTION

The use of embedded systems is ubiquitous. For instance,
using embedded systems in the automotive industry allows for
the implementation of complex automotive features, such as
cruise control, automatic braking, and stability control [24].
Such features also increase the complexity and heterogeneity
of the entire system [15], and significant problems could arise
during the integration of new sub-systems due to the emergent
behavior of the whole system. For example, a change in the
software sub-system or the replacement of a hardware compo-
nent can affect the system’s latency, energy consumption and
memory utilization [24]. In such cases, it is not enough to show
the functional correctness of each sub-system’s behavior, but
one also needs to provide evidence that the system meets its
extra-functional requirements, such as real-time performance
and resource consumption.

Given the growing demand for low-energy computing in
embedded systems [5], the energy consumption of software is
becoming an increasingly important issue in designing such
systems. Therefore, testing the system’s behavior with respect
to not exceeding its provided energy budget, the so-called
feasibility tests, as well as testing for the worst-case energy
consumption of components and system are very important for
ensuring the quality of service of the embedded system, and
estimating its performance.

To facilitate reasoning about resource consumption of em-
bedded systems at high levels of abstraction, architectural
description languages such as EAST-ADL1 [9] enable the
representation of both hardware and software elements, as well
as related extra-functional information (e.g., timing properties,
triggering information, resource consumption), by annotating
the model accordingly. If we assume energy as the resource
of interest, it is not well studied how energy consumption
annotations of EAST-ADL models can be used to create perfor-
mance tests for feasibility and worst-case energy consumption
of components.

Since load testers might have limited resources to manually
create test suites for all performance scenarios, we propose a
method for automatically generating test suites by selecting
the nominal and potentially troublesome simulations of an
embedded system modeled in EAST-ADL after transforming
it into a network of priced timed automata [6]. Specifically,
we select test suites based on random simulations showing the
nominal energy consumption and the most expensive energy
cost based on a statistical analysis of the system using UPPAAL
SMC [11], the statistical extension of the UPPAAL model
checker. We show how to seed faults in the EAST-ADL model
and assess the energy-related fault detection capability of each
generated test suite.

To illustrate the efficiency of our method, we carry out a
pilot evaluation, using a Brake-by-Wire industrial prototype
system. This system is modeled in EAST-ADL architectural
language annotated with energy resources. Our results show
that the proposed method is efficient in terms of generation
time, and that an approach that selects test suites showing
divergent energy consumption from the expected result can
increase the fault detection scores. Our observations regarding
fault detection could allow an industrial designer to gain
deeper understanding into the system’s resource-usage behav-
ior, and consequently adjust and optimize both software and
hardware designs accordingly.

The remainder of the paper is organized as follows. In
section II we overview the preliminaries needed to compre-
hend our contribution, that is, the concept of architecture-based
testing, EAST-ADL language, UPPAAL SMC and priced timed
automata, respectively. The main contribution of the paper,
that is, our approach for creating energy-aware tests from
annotated EAST-ADL models is described in section III, and its

1EAST-ADL stands for Electronic Architecture and Software Tools-
Architecture Description Language.



application on the Brake-by-Wire system and the experimental
results are presented in section IV. We discuss our conclusions
and present lines of future work in section VII.

II. BACKGROUND

In this section, major aspects of architecture-based testing,
the EAST-ADL language and UPPAAL SMC are discussed.
The presented aspects are put into the context of the contri-
bution of this study.

A. Architecture-Based Software Testing

Architectural design models are created during software de-
velopment by choosing components and connectors represent-
ing the whole software system and its high-level structure [26].
Testing using architectural designs as input to the creation of
tests is intended to check if the system meets its architectural
specifications in terms of the overall interactions among the
system components. This type of testing is sometimes known
as system testing [4] and its main purpose is to discover ar-
chitectural design problems. Testing, in this case, may address
such properties as functional correctness, real-time guarantees
and performance [26]. According to an industrial survey [21],
testing and analysis of extra-functional properties (e.g., energy,
bandwidth and memory) are very important for practitioners
when engineering embedded systems. In this study we focus
on testing for energy consumption based on architectural
design models. When testing for such performance properties
at the software architecture level, architectural models are
annotated with energy consumption requirements. The purpose
of testing the energy consumption (e.g., feasibility or worst
case energy consumption) at the architectural level is to find
faults with the performance of an actually developed system
in terms of its components and interactions.

B. EAST-ADL Architectural Language

EAST-ADL [9] is an AUTOSAR-compatible2[1] architec-
tural description language dedicated to the development of
automotive embedded systems. The functionality of the system
is defined at four levels of abstraction, as follows: (i) the
Vehicle Level, the highest level of abstraction, describes the
electronic features as they are perceived externally, (ii) the
Analysis Level provides an abstract functional representation
of the architecture, (iii) the Design Level provides a detailed
functional representation of the architecture, together with the
allocation of these elements onto the hardware platform, and
(iv) the Implementation Level provides the implementation of
the system using AUTOSAR elements.

At each abstraction level, the system model uses compo-
nents, each a FunctionType, which describe the functional
elements of the system. The FunctionType has: (i) ports that
receive and provide data, respectively, (ii) a trigger, either
time-based or event-based, and (iii) an associated behavior.
Each of these components is instantiated as one or more of
type FunctionPrototype, which are connected to provide the

2AUTOSAR stands for AUTomotive Open System ARchitecture developed
by manufactures as a standard in the automotive domain.

system model. The execution of each FunctionPrototype is
based on the “read-execute-write” semantics, and the associ-
ated behavior can be defined using different notations and tools
(e.g., Simulink or UPPAAL PORT timed automata [20]). The
work proposed in this paper targets the information encoded at
the Design Level, since it depicts both the Functional Design
Architecture (FDA) and Hardware Design Architecture (HDA),
making it possible to specify extra-functional properties such
as allocation, efficiency, reuse. The model can be extended
with a GenericConstraint annotation, which allows the system
designer to specify various extra-functional properties, such as
energy consumption or memory utilization.

C. UPPAAL SMC and Priced Timed Automata

UPPAAL SMC [11] is an extension of UPPAAL, enabling
the analysis of different performance properties of networks
of priced timed automata with stochastic semantics. Statistical
model-checking generates stochastic simulations to estimate
probabilities and probability distributions over time with given
confidence levels, so the technique scales better than exact
symbolic model-checking.

Priced timed automata (PTA) are extensions of timed au-
tomata with cost variables that can evolve at integer rates
(also 6= 1) and are used in this paper to capture the re-
source usage. In this paper, we restrict the models to natural
number rates. The resource usage is modeled via a function
P : (L ∪E)→ N, where L is a finite set of locations, and E
is the set of edges of the PTA model, which assigns costs to
both locations and edges. A network of PTA (NPTA) can be
expressed as a composition of n PTA over clocks and actions;
the PTA synchronize on send-receive actions (i.e., send b! is
complementary to receive b?) and can use shared variables in
guards that are Boolean conditions enabling the execution of
edges).

Let X be a finite set of clocks and B(X) the set of guards,
which are finite conjunctions of atomic guards of the form
x ./ n, where x ∈ X , n ∈ N, and ./ ∈ {<,≤,=,≥, >}.
A (Linear) PTA over clocks X and actions Act is a tuple
(L, l0, X, V, I, Act, E, P ) where L is a finite set of locations,
l0 is the initial location, X is set of clocks, V is a set of data
variables, I : L → B(X) assigns invariants to locations, Act
is a set of actions, E ⊆ L × B(X,V ) × Act × R × L is the
set of edges (where R denotes the reset set i.e., assignments
to manipulate clock- and data variables), and P : (L ∪ E)→
N assigns costs to both locations and edges. In the case of
(l, g, a, r, l′) ∈ E, we write l

g,a,r−−−→ l′.
The semantics of PTA is defined as a transition system over

states (l, u), with the initial state (l0, u0), where u0 assigns
all clocks in X to zero. There are two kinds of transitions:

(i) delay transitions: (l, u)
d,p−−→ (l, u ⊕ d), where u ⊕ d is

the result obtained by incrementing all clocks of the automata
with the delay amount d, and p = P (l) ∗ d is the cost of
performing the delay, and

(ii) discrete transitions: (l, u)
d,p−−→ (l′, u′), corresponding

to taking an edge l
g,a,r−−−→ l′ for which the guard g is

satisfied by u. The clock valuation u′ of the target state is
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Fig. 1: Overview of the test suite generation and evaluation
method for energy consumption based on EAST-ADL architec-
tural models.

obtained by modifying u according to updated r. The cost
p = P (l, g, a, r, l′) is the priced associated with the edge.

A trace σ of a PTA is a sequence of delays, actions, and
transitions:
σ = (l0, u0)

a1,p1−−−→ (l1, u1)
a2,p2−−−→ ...

an,pn−−−−→ (ln, un),
where the cost of performing σ is Σn

i=1pi.
A network of PTA A1 ‖ ... ‖ An can be expressed as a

composition of n PTA over X and Act, synchronizing on
complementary actions and using shared variables that can
be used in guards and transitions.

UPPAAL SMC uses an extension of Weighted Metric Tem-
poral Logic (WMTL) [10] to carry out hypothesis testing,
among other properties, which checks if the probability to
reach state φ within cost x ≤ C is greater or equal to a certain
threshold p : Pr(♦x≤Cφ) ≥ p.

III. CREATING ENERGY-AWARE TESTS FOR EAST-ADL
MODELS

In this section, we describe an approach to automatically
generate test suites for testing the energy consumption using
an EAST-ADL system architectural model. Our test generation
approach aims to use energy consumption goals (e.g, nominal,
worst-case energy consumption) to automatically select test
suites using several random simulations of the system.

Overall, the approach is composed of the following steps,
mirrored in Figure 1:

1) EAST-ADL TO PTA TRANSFORMATION. This first step
(described in detail in Section III-A) shows the trans-
formation of an EAST-ADL model containing energy
consumption annotations into a PTA model ready to be
used by UPPAAL SMC for test-case generation.

2) TEST GOAL TRANSFORMATION. The second step (de-
scribed in detail in Section III-B) shows how a test query
is obtained. This is a property expressible as a simulation
property used by UPPAAL SMC.

3) TEST SUITE SELECTION. The third step (described in
Section III-C) shows how we select test suites based
on the needed resource analysis performed on the PTA
model.

4) TEST SUITE GENERATION. The fourth step (described
in Section III-D) requires the use of the UPPAAL SMC
to generate a set of test cases satisfying the test goal by
using the SMC’s ability to show simulation traces.

5) TEST SUITE EVALUATION. The fifth step (described in
Section III-E) shows how test oracles are used to auto-
matically assess the energy-related fault-revealing ability
of the generated test suites.

A. EAST-ADL to PTA Transformation

We represent the architectural elements in EAST-ADL by an
automatic transformation into PTA. Each FunctionPrototype
is transformed into a network of two synchronized automata
(as shown in Figure 2): an interface automaton, dedicated to
the elements of the EAST-ADL component interface, and a
behavior automaton, used to model the behavior of the EAST-
ADL components. Each FunctionPrototype is defined as an
automaton with four locations: (i) Idle , (ii) a Read location
that allows the update of the variables according to the values
on the input ports, independent of other computations, (iii)
an Exec location that triggers the Behavior that models the
desired behavior of FunctionPrototype , and (iv) a Write
location that allows the update of the output ports according
to the values of the computed internal variables, respectively,
independent of other computations. The triggering of each
interface is based on the triggering Trigg associated to the
EAST-ADL FunctionPrototype . Other resource annotations
EC , e.g., the energy consumption in the GenericConstraint
annotation, are included in the behavior of the TA model
and a monitor automaton is used to measure the resource
consumption. Concretely, we use a monitor automaton that
contains all the resource annotations of the EAST-ADL model,
including the energy consumption. The monitor is a loop-
free PTA that follows the execution of the system, which
is achieved by employing the already existing synchroniza-
tion channels FunctionPrototype beh start and FunctionPro-
totype beh stop. Assuming an architectural model consisting
of one FunctionPrototype only, we annotate the monitor with
a continuous resource, that is, energy, whose consumption is
increasing with time. The energy is consumed from the time
when data is read from the input ports until the function block
writes the data to the output ports. The GenericConstraint
allows the EAST-ADL model to be annotated with its energy
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Fig. 2: An example of a transformed EAST-ADL component using a generic interface timed automaton and a behavior template.

consumption. The consumption of a continuous, non-referable
resource (e.g., energy) c is computed as c = n× t+ s, where
n ∈ Z the rate of consumption over time t, and s ∈ Z is a
constant. Figure 2 depicts the results of the transformation for
a generic EAST-ADL FunctionPrototype. For more details, we
refer the reader to our previous work [22].

B. Test Goal Transformation

Extra-functional aspects contained in the EAST-ADL, like
energy consumption, are often more difficult to test than
functional properties. Embedded systems often require the
consumption of large amounts of energy. Irregular and heavy
energy usage could lead to inadequate system functionality
to keep essential components running. Utilizing the energy
consumption annotated in EAST-ADL, an estimation of the
dedicated energy budget can be computed. If the actual energy
consumption of the system does not exceed its energy budget,
the system can complete its execution. Otherwise, the system
has exhausted its given budget. In this study, we address the
goal of analyzing the energy consumption over time. Conse-
quently, we focus on test queries providing the simulation of
the nominal and worst-case energy consumption of a system
modeled in EAST-ADL. Our technique provides simulation
traces over a predefined number of runs of the system model.
Simulation can be formulated as the property:

simulate n[bound]{E1, .., Ek}

where n is the number of simulations to be performed, bound
is the time bound on the simulations, and E1, .., Ek are the
expressions to be monitored.

Even though the core idea of UPPAAL SMC is to provide
statistical results based on a series of simulations of the
system, it is desirable to use the values of the input parameters
and energy during individual simulations of the system as test
cases. The simulation is dependent on the number of runs of
the model (n), and the upper time limit for the number of
simulation runs (bound).

C. Test Suite Selection

The previous phase can simulate the energy consumption
from each individual run of the model. This step evaluates
the overall energy performance of each simulation and pin-
points the simulation with the worst-case energy consumption.
The analysis using UPPAAL SMC can return a maximal value
of the energy that will eventually reach a certain behavior in

time. This problem is reduced to maximizing the energy cost
function such that the following property is satisfied:

E[bound;n](max : energy)

where bound is the same time bound used for generating
simulation traces, n gives the number of runs, and energy
is the energy cost to be evaluated. The worst-case energy
consumption analysis computes, on the network of PTA, the
cost of the simulation that will eventually reach a certain timed
behavior. The maximum value of the energy obtained from the
consumption analysis is used to identify a test suite showing
the estimated worst-case energy consumption. Feasibility anal-
ysis is used at this point to verify if the energy usage stays
within the maximum energy value provided by the worst-case
energy consumption analysis. The verification is achieved by
examining the probability distribution of the energy resource,
which is formulated as a probability evaluation, as follows:

Pr[bound](ψ)

where bound defines the time bound for the runs, and ψ can
be of the form “Eventually q”, where q is a state predicate.
Based on this analysis we can select the necessary test suites.
As the load tester might have limited time to test all scenarios
in practice, we select the nominal and potentially troublesome
simulations. Specifically, we select several random simulations
showing the nominal energy consumption and another one
which determines when the energy cost is the most expensive.

D. Test Suite Generation

We use the simulation traces to create executable test cases.
Test cases are obtained by extracting from the simulations
the input parameters and the energy values at each predefined
time unit. In UPPAAL SMC, every input variable is described
using signals. In this context, test suite generation is essentially
signal generation using the simulations generated by UPPAAL
SMC. Each test input is a vector of signals. Given that the
search space of input signals is very large, we select the input
signals evolving over a certain predefined time. We note that
our input signal generation is geared towards the specific needs
of the automotive domain where EAST-ADL is used, where the
time-dependent behavior of the system is tested using ordered
sequences of signals as input values.

E. Test Suite Evaluation

For fault-seeding purposes, one should model representative
naturally-occurring faults related to the energy consumption.



(a) The interface timed automaton. (b) The behavior timed automaton.

Fig. 3: The network of Priced Timed Automata (PTA) for the brake pedal sensor component FunctionPrototype showing the
transformed EAST-ADL architectural interface and behavior.

Unfortunately, to the best of our knowledge, there is no
accepted way to determine whether seeded faults for PTA
models are representative. We suggest in this study to alter
the PTA model in a small way, mimicking the energy cost
consumption modeling errors. Given a PTA model, its faults
are seeded by changing the rate of consumption over time or
the energy constant.

A fault is considered to be detected by a test suite if
the energy values differ drastically at certain time points in
order to increase the probability of evaluating if the energy
noticeably diverge from the expected result. Given that small
deviations from the specified energy values can be acceptable,
test engineers are likely to identify any fault when provided
with substantial energy deviations. To measure the fault-
revealing ability of a test suite, we use a quantitative measure
of test verdict. Let be a test suite TS generated and executed
for a given faulty model M, and let E = e1, ..., en be the set
of energy signals obtained by running M for the test inputs
in TS and sampled at n time points. Let O = o1, ..., on be
the corresponding expected signals. We use a threshold value
to check if the distance between each value of E and M at
the same time points is larger than this budget threshold,
respectively. If there is at least one energy value in O for
which the energy values of E sufficiently deviates from the
expected value then a tester could conclusively detect a fault.
Otherwise, the faulty model is not detected by the test suite
TS.

IV. A CASE STUDY ON A BRAKE-BY-WIRE SYSTEM

In order to evaluate the proposed automatic test generation
technique, we apply it on an industrial prototype system
provided by Volvo Group Trucks Technology, Sweden. We
perform some preliminary experiments on a Brake-by-Wire
(BBW) industrial prototype and evaluated the applicability
(i.e., generation time) of creating test suites using the proposed
automatic test generation for energy consumption. In addition,
we investigate the energy-related fault detection ability of
the generated test suites by using manually seeded faults. To
facilitate fault-detection analysis, we begin by seeding a set
of faults in the original model. For the creation of faults, we
rely on energy consumption faults.

Concretely, we consider the original transformed PTA model
and for each faulty model we execute the generated test suites
and collect the simulation traces containing the energy values.
In order to calculate the fault detection score, each test suite is
executed on both the original model and its faulty counterpart.
In case the energy results differ between the executions, the
fault is considered to be detected.

A. Case Description

The BBW system is a braking system equipped with an
Anti-Lock Braking (ABS) function, and without any me-
chanical connectors between the brake pedal and the brake
actuators. A sensor attached to the brake pedal reads its
position, which is used to compute the desired global brake
torque. At each wheel, a sensor measures the speed of the
wheel, which is used by the ABS algorithm together with
the brake torque and the estimated vehicle speed to compute
the actual brake torque that will be sent to the actuators. We
have applied the transformation described in Section III-A on
the BBW system modeled in EAST-ADL. Figure 3 depicts the
transformation of the brake pedal sensor FunctionPrototype
(part of the BBW system modeled in EAST-ADL) into a net-
work of two synchronized PTA. The energy consumed by the
component is calculated according to the rate of consumption
modeled in the interface PTA (pBrakePedalSensor e′ ==
2), and the constant is modeled in the behavior automaton
(pBrakePedalSensor e = pBrakePedalSensor e + 0.1).
At any given time, the energy consumed by the system
is calculated by adding the energy consumed by all of its
components.

B. Manual Fault Seeding

The fault seeding procedure, described in Section III-E,
results in 5 faults (i.e., Fault 1 to 5), each being a version
of the original EAST-ADL model containing a single fault
(i.e., each fault assumes one or more changes in the model).
These five faults are used in this study for characterizing
potentially problematic energy consumption behavior. Each
of the generated test suites is executed on each of the faulty
versions and its original counterpart, so that a fault detection
score can be calculated. A fault is considered to be detected



Resource Test Goal Type SMC Query Time (s) Runs

Energy
Worst-Case Energy Consumption E[t<=50,100](max : energy) 11.8 100
Feasibility Analysis Pr[ t<=50](<> energy<=447.22) 9.9 86
Test Simulations Generation simulate 50[<=50]{inputs[], energy} 7.2 50

TABLE I: Overall results showing the efficiency of the energy consumption analysis and test generation.

(a) Test simulations of energy consumption. (b) Estimated energy probability distribution.

Fig. 4: Generation of simulations for energy consumption analysis showing nominal and worst-case test suites.

by a test suite if the energy values differ drastically at certain
time points in order to increase the probability of evaluating if
the energy noticeably diverge from the expected result. In our
work, we set the threshold to 2 energy units. We choose this
value based on our experience with verifying and analyzing
the BBW system. Additional details on the case study (e.g,
models and faults used) can be found at the study website
created for storing the information needed for replication and
reviewing3.

C. Experimental Results and Discussion

In Table I, we present the overall results of our test-case
generation method applied to the BBW system. In this exper-
iment, we assume that the time is bounded to 50 time units in
the simulations. This estimation is based on the analysis, using
UPPAAL SMC, of the time needed for signals to propagate
from the pedal sensors to the actuators in the BBW system.
Table I lists–for each test goal type and query to be checked–
the time used, as well as the number of simulation runs.
Regarding the generation of simulations for energy analysis,
UPPAAL SMC is able to find a solution in 7.2 seconds4 within
50 simulations of the model (as shown in Figure 4a).

From these simulations we randomly select two test suites
(T1 and T2) to partially show the nominal behavior of the
simulated system. To generate a test suite showing the worst-
case energy consumption, we use UPPAAL SMC’s ability

3We provide the models at www.testinghabits.org/autoenergy/
4Simulations ran on a computer with 1.8 Ghz processor and 8GB memory

to compute the maximum expected value of the energy.
For this, we simulate the system over 100 runs, trying to
maximize the energy consumption, with the query E[t<=50,
100](max : energy). The mean value provided by UPPAAL
SMC for the maximum consumption is 447.2 energy units. We
record the distribution of the energy consumption over 100
runs, as shown in Figure 4b. Using this estimation, we use
feasibility analysis to analyze the probability for the energy
consumption to stay within the available energy threshold
provided by the model. UPPAAL SMC is able to show that the
energy consumption is smaller than 447.2 with a probability
between 0.9 and 1, and a confidence of 0.9 after 86 runs
of the model. Based on this analysis we select a third test
suite (T3) from the generated simulations showing the worst-
case energy consumption. From Table I we can observe that
energy feasibility analysis and worst-case energy consumption
analysis are computationally inexpensive when used for test-
case generation for testing the energy consumption annotated
in an EAST-ADL model. This shows how capable statistical
model checking is, for testing the energy consumption of a
realistic industrial system. We conclude that we have provided
preliminary evidence that this is an efficient method for test
generation for testing the energy consumption of a real-world
embedded system modeled using EAST-ADL.

Regarding the fault detection in terms of detecting manually
seeded faults, as shown in Table II, we focus on comparing
all three test suites generated using our method. For all faults,
the fault detection score obtained by T1 is higher than the



TABLE II: Fault detection results for each generated test suite;
X represents a fault being detected by a test suite and −
represents a fault not detected by a test suite.

Fault Detection\ Test Suite T1 T2 T3

Fault 5 − − −
Fault 4 X − −
Fault 3 X X X
Fault 2 X X X
Fault 1 X X X

Fault Detection Score (%) 80% 60% 60%

one achieved by T2 and T3. It seems that Fault 4 is detected
only by T1, while Fault 5 is not detected by any of the test
suites. This can be explained by the fact that Fault 5 contains
changes in components using less energy in each periodic
execution. Fault 1, 2 and 3 are easily detected by all test
suites. Since these three faults contain changes in components
dissipating more energy per each execution cycle, the selected
test suites easily detect the change in energy consumption. It
is interesting to note that the test suite generated for showing
the worst-case energy consumption is not able to detect two
out of five faults. In our experiment, even though the test
suite showing the worst-case energy consumption (i.e., T3)
generated by UPPAAL SMC covers 60% of the seeded model
faults, the energy values produced by this test suite on Fault
4 and 5 either do not deviate at all, or deviate just slightly
from the oracle values, hence yielding very small deviation
values. In contrast, the random selection of a test suite (i.e.,
T1) can result in an energy signal that is more distant from the
oracle energy consumption value. It seems that an approach
that selects test cases that yield diverse energy consumption
can potentially increase the fault detection score.

V. THREATS TO VALIDITY

We have manually seeded energy-related faults to measure
the fault detection capability of the selected tests. This has
been performed prior to the generation of tests in order
to avoid a potential knowledge bias. It is possible that a
larger number of naturally-occurring faults or automatically-
generated mutations would yield different results. Adding
mutations should be employed in order to control the results
more objectively.

The detection of faults is based on an energy budget
threshold, and the selected time points for checking the signal
difference. This criterion is case-study specific and is not
sufficient to draw any strong conclusions. The effectiveness
of this criterion depends on the definition of energy difference
and would obviously differ from one context to another. As
differences are characterized by signal shape features, we have
checked if the energy values differ substantially at certain time
points. This is a realistic situation with test engineers likely
to identify faults based on visual inspection of the measured
energy signal.

The approach presented in this study is focusing on design-
ing and selecting a proper test suite for exposing resource-
related problems based on analyzing the architectural model
and the fault detection score. However, unlike functional

testing, which can use various metrics (e.g., code coverage,
mutation coverage) for test generation, resource-usage testing
approaches are not as well studied. There is a need for
establishing and evaluating metrics capturing performance and
resource consumption aspects of test effectiveness that can be
used for test generation and selection.

VI. RELATED WORK

Recently, there has been a growing interest [8] in developing
testing and analysis techniques based on the architectural
design of the system under test. Testing based on software
architectures has been explored in a considerable amount of
work, leading to contributions in the automatic generation of
integration and system level tests [2], [7], [25], architectural-
based testing criteria [19], and regression testing [16]. Testing
software based on performance properties at the architectural
level (also known as system level) has received less attention
[27], [12], [18], [14] than the functional testing of such models.
In this work, we directly consider how to select or generate
test suites for testing the energy performance of a system
based on its architectural model. One of the initial research
papers on this topic [27] uses the software architecture of a
system whose performance is used for selecting the parameters
that directly influence the system performance. Among the
numerous approaches proposed to generate tests, only a few
[23], [3], [28], [13] are considering robustness and resource
consumption. Nebut et al. [23] and Shaukat et al. [3] propose
methods for automatic test generation that support robustness
goals expressed in UML models. In contrast to these studies,
our approach is based on the EAST-ADL architectural model,
which is an emerging notation currently used in the automotive
domain. In addition, we discuss in this study a related approach
to selecting tests that we have found useful for testing the
performance of an existing Brake-By-Wire system by using
energy consumption found in the architectural model for
generating tests.

Recently, Jiang et al. [17] compare current techniques that
are used in performance and load testing. A few approaches
[29], [30] have been proposed to automatically find problem-
atic load tests which can cause a system to violate timing
and resource requirements using system models. Our work
is different from existing work in automatic test generation
for resource consumption because it can provide an efficient
and effective test selection method in the presence of seeded
energy-related faults; this aspect has received little attention
in the literature.

VII. CONCLUSIONS

In this paper, we have outlined a method for testing energy
consumption in embedded systems. The method makes use
of energy requirements as expressed in EAST-ADL architec-
tural models, transforms these requirements together with the
components interfaces to priced timed automata, and uses sta-
tistical model checking in order to identify relevant test cases.
We use random simulations to create test suites containing
input parameters and energy signals. Given the large number of



potential test suites, we select several simulations showing the
nominal and the worst-case energy consumption using statis-
tical model checking. A pilot case study of the method, using
a Brake-by-Wire system provided by Volvo Group Trucks
Technology, Sweden, indicates that statistical model checking
is suitable for generating test suites for energy consumption.
The evaluation shows that the test suite generation method is
efficient in terms of time required to generate tests. We have
proposed in this study to evaluate the fault detection ability
of these test suites by seeding energy consumption modeling
errors, resulting by changing the rate of cost consumption over
time. Our results suggest that an approach that selects test
suites showing diverse energy consumption can increase the
fault detection ability.

Future work aims at extending our method to generating
tests for other types of resources too, and apply it more
extensively on actual industrial cases to expose its strengths
as well as limitations.
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