
Software Systems Integration and Architectural Analysis – A Case Study

Rikard Land, Ivica Crnkovic
Mälardalen University

Department of Computer Science and Engineering
PO Box 883, SE-721 23 Västerås, Sweden

+46 21 10 70 35, +46 21 10 31 83
{rikard.land, ivica.crnkovic}@mdh.se

http://www.idt.mdh.se/{~rld, ~icc}

Abstract
Software systems no longer evolve as separate entities but
are also integrated with each other. The purpose of
integrating software systems can be to increase user-value
or to decrease maintenance costs. Different approaches,
one of which is software architectural analysis, can be
used in the process of integration planning and design.
This paper presents a case study in which three software
systems were to be integrated. We show how architectural
reasoning was used to design and compare integration
alternatives. In particular, four different levels of the
integration were discussed (interoperation, a so-called
Enterprise Application Integration, an integration based on
a common data model, and a full integration). We also
show how cost, time to delivery and maintainability of the
integrated solution were estimated.
On the basis of the case study, we analyze the advantages
and limits of the architectural approach as such and
conclude by outlining directions for future research: how
to incorporate analysis of cost, time to delivery, and risk in
architectural analysis, and how to make architectural
analysis more suitable for comparing many aspects of
many alternatives during development. Finally we outline
the limitations of architectural analysis.

Keywords
Architectural Analysis, Enterprise Application Integration,
Information Systems, Legacy Systems, Software
Architecture, Software Integration.

1. Introduction
The evolution, migration and integration of existing

software (legacy) systems are widespread and a formidable
challenge to today's businesses [4,19]. This paper will
focus on the integration of software systems. Systems need
to be integrated for many reasons. In an organization,
processes are usually supported by several tools and there
is a need for integration of these tools to achieve an

integrated and seamless process. Company mergers
demand increased interoperability and integration of tools.
Such tools can be very diverse with respect to technologies,
structures and use and their integration can therefore be
very complex, tedious, and time- and effort-consuming.
One important question which arises: Is it feasible to
integrate these tools and which approach is the best to
analyze, design and implement the integration?

Architecture-centered software development is a well-
established strategy [2,3,13,21]. We have experienced the
architecture of a system as an appropriate starting point
around which to concentrate integration activities. One
common experience is that integration is more complex and
costly than first expected due to “architectural mismatches”
[10,11], and this problem should be addressed at the
architectural level. It also seems possible that some
architectural analysis techniques used during new
development could also be applicable during system
evolution and integration. In this paper we show the extent
to which an architecture-centric approach can be used
during system evolution and integration, and how accurate
and relevant the result of such an architecture-based
analysis is.

Our aim has been to present our experiences from a
case study in which three software systems were to be
integrated after a company merger. We have monitored the
decision process, and the actual integration has just begun.
The activities were focused around the systems’
architectures. We describe the three integration approaches
that were discerned and discussed, how architectural
descriptions of the two most interesting were developed
and analyzed and the decisions taken for the development
project. Further we analyze the proposed solutions showing
the strong and weak sides of the architectural strategy as
such.

The rest of this paper is organized as follows. Section
2 provides the background of our case study, section 3
discusses four integration approaches, and section 4 uses

the case study to elaborate on architectural analyses
possible during system integration. Section 5 describes
related work, and section 6 concludes the paper and
suggests directions for future research.

2. Introducing the Case Study
The case study concerns a large North American

industrial enterprise with thousands of employees that
acquired a smaller (approximately 800 employees)
European company operating in the same business area.
Software, mainly developed in-house, is used for
simulations and management of simulation data, i.e. as
tools for development and production of other products.
The functionality of the software developed in the two
organizations prior to the merger was found to overlap to
some extent, and three systems suitable for integration
were identified. A project was launched with the aim of
arriving at a decision on strategic principles for the
integration, based on the proposed architecture for the
integrated system. This was the first major collaboration
between the two previously separate software departments.

Key

Server

Unix
Server

Client

Unix
Server

Client

Tcl

C++

Database
Server

C++

Server

Client

Java

Java

Data
Files

Process

File

File Access

Bidirected Runtime
Communication

Figure 1. Today’s three systems.

Figure 1 describes the existing systems’ architectures
in a simplified manner in a high-level diagram combining
an execution view of the system with the code view
[2,7,13,16]. The sizes of the rectangles indicate the relative
sizes of the components of the systems (as measured in

lines of code). One system uses a proprietary object-
oriented database, implemented as files accessed through
library functions, while the other two systems, which were
developed at the same site, share data in a common
commercial relational database executing as a database
server. The most modern system is built with three-tier
architecture in Java 2 Enterprise Edition (J2EE), while the
two older systems are developed to run in a Unix
environment with only a thin X Windows client displaying
the user interface (the “thin” client is denoted by a
rectangle with zero height in the figure). These are written
mostly in Tcl and C++, and C++ with the use of Motif. The
“Tcl/C++ system” contains ~350 KLOC (thousands of
lines of code), the “C++/Motif system” 140 KLOC, and the
“Java system” 90 KLOC.

3. Integration Approaches
When developing architectures of new systems, the

main goal is to achieve the functionality and quality
properties of the system in accordance with the specified
requirements and identified constraints. When, however,
existing systems are to be integrated, there may be many
more constraints to be considered: backward compatibility
requirements, existing procedures in the organization,
possible incompatibility between the systems, partial
overlap of functionality, etc. Similarly, the integrated
system is basically required to provide the same
functionality as the separate systems did previously, but
also, for example, to ensure data consistency and enable
automation of certain tasks previously performed manually.
When developing new software, it is possible to design a
system that is conceptually integrated [5] (i.e. conforms to
a coherent set of design ideas), but this is typically not
possible when integrating software since the existing
software may have been built with different design
concepts [11]. Another problem is how to deal with the
existing systems during the integration phase (and even
long after, if they have been delivered and are subject to
long-term commitments). This problem becomes more
complex the more calendar-time the integration will take as
there is a pronounced tradeoff between costs in the short
term and in the long term when different integration
solutions have different maintainability characteristics. For
example, there is an opportunity to replace older with more
recent technologies to secure the system usability for the
future. Scenarios possible if the systems are not integrated
should also be considered.

In the analysis and decision process we have discerned
four integration approaches or “levels” with different
characteristics. They are:
• Interoperability through import and export

facilities. The simplest form of using services between
tools is to obtain interoperability by
importing/exporting data and providing services. The

data could either be transferred manually when data is
needed, or automatically. To some extent, this could be
done without modifying existing systems (e.g. if there
is a known API or it is possible to access data directly
from the data sources), and if source code is available
it is possible to add these types of facilities. This
approach would allow information to flow between the
systems, which would give users a limited amount of
increased value. It would be difficult to achieve an
integrated and seamless process, as some data could be
generated by a particular tool not necessarily capable
of automatic execution. Moreover, there would be
problems of data inconsistency.

• Enterprise Application Integration (EAI). Many
systems used inside a company are acquired rather
than built, and it is not an option to modify them. Such
systems are used within a company, as opposed to the
software products a company not only uses but also
manufactures and installs at customers’ sites.
Integrating such enterprise software systems involve
using and building wrappers, adapters, or other types
of connectors. In such a resulting “loose” integration
the system components operate independently of each
other and may store data in their own repository.
Depending on the situation, EAI can be based on
component technologies such as COM or CORBA,
while in other cases EAI is enabled through import and
export interfaces (as described in previous bullet).
Well-specified interfaces and intercommunication
services (middleware) often play a crucial role in this
type of integration.

• Integration on data level. By sharing data e.g.
through the use of a common database, the users will
benefit from access to more information. Since the
systems store complementary information about the
same data items; the information will be consistent,
coherent and correct. However, it would presumably
require more effort to reach there: a common data
model must be defined and implemented and the
existing systems must be modified to use this database.
If this is done carefully, maintenance costs could be
decreased since there is only one database to be
maintained and there are opportunities to coordinate
certain maintenance tasks. On the other hand,
maintenance becomes more complex since the
database must be compatible with three systems
(which are possibly released in new versions
independently). Also data integration may have an
impact on code change, due to possible data
inconsistencies or duplicated information.

• Integration on source code level. By “merging”
source code, the users would experience one
homogeneous system in which similar tasks are
performed in the same way and there would be only

one database (the commercial database used today by
the C++/Motif system and the Java system). Future
maintenance costs can be decreased since it would be
conceptually integrated, and presumably the total
number of lines of code, programming languages,
third-party software and technologies used will
decrease. Most probably the code integration would
require integration of data.
Interoperability through import and export facilities is

the most common way of beginning an integration
initiative [8]. It is the fastest way to achieve (a limited
amount of) increased functionality and it includes the
lowest risk of all alternatives, which is the reason why
managers usually adopt this approach. In a combination
with a loose integration (EAI) it can provide a flexible and
smooth integration process of transition: the import/export
facilities can be successively replaced by communicating
components and more and more integrated repositories. Of
course, this approach has its disadvantages – in total it will
arguably require more effort, and the final solution may
technically not be as optimized as the results of the “data
level” or “code level” approaches. This of course depends
on the goals of the integration.

Which integration approach to use in a particular
context depends not only the objective of the integration,
but also e.g. the organizational context and whether source
code is available or not. For example, is the goal to produce
an integrated product for the market, or is the system to be
used only in-house? Is integration of software a result of a
company merger? Is integration expected to decrease
maintenance costs or to increase the value for users (or
both)? Who owns the source code? Can the systems to be
integrated be expected to be released in subsequent
versions by (other) independent vendors? Is modifying
source code an option, considering both its availability and
possible legal restrictions? Business constraints also limit
the possibilities – the resources are limited and time to
market an important concern. One must also consider the
risks associated with each alternative, meaning the
probability of overrunning budget and/or schedule or not
succeed with the integration. The risk parameters include
not only those related to technical problems, but also those
associated with the collaboration of two software
development departments which had previously belonged
to different companies and only recently began
collaborating.

The project team of the case study intuitively felt that
the benefits and the cost of implementation, the time to
delivery, and the risk of the integration approaches
described above should be related roughly as shown in
Figure 2. The diagram is very simplistic assuming there is
only one “benefit” dimension, but as mentioned earlier
there may be different types of goals for integration, such
as increased usability or decreased maintenance costs. EAI

was never explicitly considered as a separate approach
during the case study and is therefore omitted from the
figure.

Cost,
Risk,
Time

Benefit

"Import/Export Interface"

"Data level"

"Code level"

Figure 2: Expected relations between risk, cost, and

time to delivery.

4. Development of Integration Alternatives
Developers from the two sites met and analyzed the

existing systems at the architectural level, and then
developed and analyzed two integration alternatives. The
developers had architected, implemented and/or maintained
the existing systems and were thus very experienced in the
design rationale of the systems and the technologies used
therein. The architectural alternatives were then handed
over to management to decide which alternative should be
used. The integration process was based on IEEE standard
1471-2000 [14] and is described in more detail in [17,18].

The “import/export level” interoperability was not dis-
cussed in any depth since it was apparent that more benefits
were desired than could be expected with this approach.
Instead, the software developers/architects tried the other
approaches to integration, by conceptually combining the
source code components of the existing system in different
ways. The existing documentation had first to be improved
by e.g. using the same notation (UML) and the same sets of
architectural views (a code view and an execution view
were considered sufficient) to make them easy to merge
[18]. Each diagram contained about ten components,
sufficient to permit the kind of reasoning that will be
described. By annotating the existing components with
associated effort, number of lines of code, language,
technologies, and third-party software used, the developers
could reason about how well the components would fit
together. During the development of alternatives,
statements about the quality properties of the integrated
system such as performance and scalability were based on
the characteristics of the existing systems. Patterns known
to have caused deficiencies and strengths in the existing
systems in these respects made it possible to evaluate and
discard working alternatives rapidly. The developers had a
list of such concerns, to ensure that all those of importance
were addressed. The process of developing and refining
alternatives and analyzing them was more iterative than is

reflected in the present paper where we only present two
remaining alternatives and the analyses of three specific
concerns in more detail (sections 0 through 4.3).

The two remaining main alternatives conformed well
to the “data level” and the “code level” integration
approaches. Both these alternatives would necessarily need
a common data model and shared data storage. From there,
the two different levels of integration would require
different types of actions: for “data level” integration, the
existing systems would need to be modified due to changes
in the data model, and for “code level” integration, much of
the existing functionality would need to be rewritten in
Java; see Figure 3. In reality, these descriptions were more
detailed than the figure suggests; About ten components
were used in each of the same two views for describing the
existing systems, a code view and an execution view.

Server

Unix
Server

Client

Unix
Server

Client

Tcl

C++

Database Server

C++

Server

Client

Java

Java

a) "Data level" integration, preserves existing
architectures

Server

Server

Client

Java or Tcl

Java

Database
Server

b) "Code level" integration, uses 3-tiered
architecture

Figure 3. The two main integration alternatives.

Architectural descriptions such as these make it
possible to reason about several properties of the resulting
integrated system.

4.1 Future Maintainability
The following factors were considered in the case

study to be able to compare the future maintenance costs of
the integration alternatives:
• Technologies used. The number of technologies used

in the integrated system arguably tells something about
its complexity. By technologies we more specifically
mean the following: programming languages,
development tools (such as code generators and
environments), third-party software packages used in
runtime, and interaction protocols. Too many such
technologies will presumably create maintenance
difficulties since maintaining staff needs to master a
large number of languages and specific products and
technologies, but at the same time tools and third-party
software should of course be used whenever possible
to increase efficiency. A reasonable number must
therefore be estimated in any specific case. In our case
study, the total number of languages and technologies
used in the “code level” alternative would be reduced
to 6 to 8 languages instead of the 11 found in the
existing system combined, a number which would be
preserved in the “data level” alternative. The number
of third-party packages providing approximately the
same functionality could be reduced from 9 to 5, and
two other technologies would also become
superfluous.

• LOC. The total number of lines of code (LOC) has
been suggested as a measure of maintainability; it is
e.g. part of the Maintainability Index (MI) [20,23]. In
the case study, the total number of lines of code would
be considerably less with the “code level” alternative.
No numbers were estimated, but while the “code level”
alternative would mean that code was merged and the
number of lines of code would be less than today, the
“data level” alternative would rather raise the need of
duplicating more functionality in the long term.

• Conceptual integrity. Although a system commonly
implements several architectural styles at the same
time – “heterogeneous systems” [2] – this should come
as a result of a conscious decision rather than
fortuitously for the architecture to be conceptually
integrated [5]. In the case study, it was clear, by
considering the overall architectural styles of the
systems, that the “data level” alternative involved three
styles in parallel while the “code level” would reflect a
single set of design ideas.
It might seem surprising that in the case study, in the

“code level” integration alternative, the server is written

totally in Java. Would it not be possible to pursue the EAI
approach and produce a loosely integrated solution,
involving the reuse of existing parts written e.g. in C++?
With the platform already in use, J2EE, it would be
possible to write wrappers that “componentized” different
parts of the legacy code. This was considered, and, by
iteration the architectural description of this alternative was
modified and analyzed with respect to the cost of
implementation. Based on these estimates, all solutions
involving wrappers and componentization were ultimately
discarded and only the two alternatives already presented
remained.

Whether to use Java or Tcl in the client for the “code
level” alternative was the subject of discussion. Much more
user interface code was available in the Tcl/C++ system
than in the Java system which was preferable for other
reasons. The pros and cons of each alternative were hard to
quantify, and eventually this became a question of cost, left
to the management to decide.

4.2 Cost Estimation
Estimating the cost of implementing an integrated

system based on an architectural description is fairly
straightforward. Based on previous experience, developers
could estimate the effort associated with each component,
considering whether it will remain unmodified, be
modified, rewritten, or totally new in the integrated system.
Clearly, the outcome of this type of estimation is no better
than the estimations for individual components. The
advantage of estimation at the component level is that it is
easier to grasp, understand, and (we argue) estimate costs
for smaller units than for the system as a whole.

This estimation is fairly informal and mainly based on
experience, but it can be considered reasonable. First, the
developers in the case study were very experienced in the
existing systems and software development, second, the
developers themselves agreed on the numbers, third, these
numbers were higher than the management had expected
(implying it not being overly optimistic/unrealistic), fourth,
management explicitly asked the developers during the
development of the alternatives to find cheaper (and faster)
alternatives, something they were unable to do – the only
alternative according to them would be the import and
export facilities (for the interoperability approach). When
summing the effort associated with all components in each
alternative the developers found (partly to their surprise)
that the implementation costs would be the same for both
alternatives (the total estimated times differed by only 5%,
which is negligible for such early, relatively rough
estimations). This was true for the variant of the “code
level” alternative if Tcl was chosen for the client part -
using Java would require more resources. The apparently
high cost of the “data level” alternative was due to the
definition of a common data model, and in the case of the

Tcl/C++ system the use of a new database (a commercial
relational database instead of an object-oriented proprietary
database). These changes would ripple through the data
access layer, the classes modeling the items in the database,
and to a limited extent the user interface. Since the total
number of lines of code is much greater than the estimated
number of lines of code in the “code level” integration
alternative, the apparently lower cost of modifying code
instead of rewriting it would be nullified by the larger
number of lines of code. It would also be necessary to write
some new components in two languages.

C++/Motif
system

Tcl/C++
system

Java
system

Replace
proprietary
database

Modify
classes/user

interface

General
activities

Define data
model

Develop
general

functionality

Modify
classes/user

interface

Extend with
functionality

X

Modify
classes/user

interface

Extend with
functionality

Y

Extend with
functionality

Z

New
functionality

W

Implement new functionality Transfer
functionality

General
activities

Define data
model

Develop
general

functionality

New
functionality

X

New
functionality

Y

New
functionality

W

New
functionality

Z

Transfer
functionality
A from Tcl/
C++ system

Transfer
functionality
B from Tcl/
C++ system

Transfer
functionality
C from C++/
Motif system

b) Project schedule plan for "code level" alternative:

a) Project schedule plan for "data level" alternative:

Bridging solutions would be required and functionality
duplicated in both C++ and Java by the existing code (and
added to by the development of new functionality and the
modifications of e.g. data access layers). When the
developers estimated the costs associated with using both
Tcl and Java in the client (since much code could be
reused), and using only one (thus extending the existing
code in one language with the functionality of the other), it
was concluded that using two different languages in the
client would probably be more costly than using either one,
due to the same arguments as above. Some generic
components, among them non-trivial graphical widgets,
would need to be written in two languages.

Building a common data model from existing data
models is one of the major challenges of software
engineering [1,10], which was apparent from the cost
estimations. We cannot claim, on the basis of a single case
study, that the “data level” approach will always be as
expensive as the “code level” approach, but this reasoning
gives at hand that in general, neither approach is cheap,
once a minimum of data level integration is decided upon.
For the “data level” alternative this requires changes
throughout the existing systems and the “code level”
alternative requires changes, to adapt to both the new data
model and a single set of technologies, languages, and
architectural styles.

4.3 Estimated Time to Delivery
The resulting project plans developed in the case study

are shown in Figure 4. Although the diagrams presented
here are somewhat simplified compared with those
developed in the project, they suffice to illustrate some
features of this type of project plan:

Figure 4: The outlined project plans.

• Management is given a certain amount of freedom by
not assigning strict dates to activities. Activities can be
prioritized and reordered, and deliveries “spawned off”
to meet business demands. More staff can be assigned
to certain activities to increase parallelism and
throughput. Based on which components would need
to be included in a delivery, it is possible to define
activities that produce these components; for example,
if a delivery with functionality “X” is desired, the
activity “Extend with functionality X” or “New
functionality X” (for the two alternatives respectively)
must be performed as well as all activities on which it

• The definition of a common data model is crucial in
both integration approaches, since most other activities
are dependent on it. In the case study, the developers
were explicit that this activity should not be rushed,
and should involve the most experienced users as well
as developers.

is dependent. One strategy could be to aim at
delivering a “vertical slice” of the system,
incorporating the functionality that is most used first.
In this way some users can begin using the new
system, thus minimizing the need for maintenance and
development of the existing systems (which will soon
be retired).

• In the “code level” alternative, many activities are of
the “transfer functionality” type. In this way, users of
the Java system will only see the functionality grow
rapidly, but the users of the other systems will
experience a period when most of the functionality
exists in both the system with which they are familiar
and the new system. For the “data level” alternative,
the activities are more of the kind “modify the existing
systems”. The users would then continue using their
familiar system but, when beginning to use the other
systems, would have access to more functionality
working on the same data. This type of reasoning
impacts on long-term planning aspects such as the time
at which existing systems can be phased out and
retired.

• In the “code level” alternative, it was possible to
identify more general components that would require
an initial extra amount of effort and calendar-time but
would eventually make the project cheaper and faster.
In the “data level” alternative, only few such
components were identified.

• Some development of totally new functionality
demanded by users was already planned and could not
be delayed until the systems integration efforts were
completed. However, it was agreed that these activities
should be delayed as long as possible – at least until
one of the integration alternatives was chosen, and if
possible, until the new data model had been defined,
and even general components implemented in the case
of the “code level” alternative. This was to avoid
producing even more source code that would need to
be modified during the integration.

4.4 The Decision
When the developers from the two sites had jointly

produced these two alternatives and analyzed them, the
management was to decide which alternative to choose. It
was agreed that the “code level” alternative was considered
to be superior to the “data level” alternative from virtually
all points of view. The users would experience a more
powerful, uniform and homogeneous system. It would also
be easier (meaning less costly) to maintain. The analysis
had shown that it would include a smaller code base as well
as a smaller number of languages, third-party software, and
other technologies. The languages and technologies used
were more modern, implying that they would be supported

by more tools, easier to use and more attractive to potential
employees. Not least, the resulting product would be
conceptually integrated. Regarding the choice between
using Java and Tcl in the client, the management accepted
that if the “code level” was decided upon, Tcl would be
used since using Tcl implied a significantly smaller effort
(due to a larger code base to reuse).

When management considered all this information,
they judged the integration to be sufficiently beneficial to
motivate the high cost. The benefits included, as we have
indicated earlier, increased user efficiency, decreased
maintenance costs (in the case of the “code level”
alternative), as well as less tangible business advantages
such as having an integrated system to offer customers.
Also, the evolution scenarios for the existing systems if no
integration was performed would be costly; for example,
the European organization would probably replace in the
near future, the proprietary object-oriented database with a
commercial relational database for maintenance and
performance reasons. The cost of implementing the “data
level” and “code level” alternatives (when using Tcl in the
client) had been estimated to differ insignificantly, and as
the organization had to develop it with a limited number of
staff, the estimated time to delivery would also be very
similar, although the deliveries would be of different kinds
due to the different natures of the activities needed for the
two alternatives. The relation benefit vs. cost and time to
delivery can therefore be visualized as Figure 5 illustrates
(the “import/export interface” level was not analyzed,
hence the parentheses).

Benefit

("Import/Export Interface")

"D
ata le

ve
l"

"C
ode le

vel"
Cost,
Time

Figure 5: The estimated cost and time to delivery.
As became clear by now, it was less important to get as

much benefit as possible for the cost than to decrease the
risk as much as possible. No formal risk analysis was
performed at this point, but the risk was judged to be
higher for the “code level” alternative, since it involves
rewriting code that already exists and works, i.e. risking
overrunning schedule and budget and/or decreasing the
quality of the product, but also a risk in terms of
“commitment required” from the departments of two
previously separate organizations, not yet close
collaborators. By choosing the “data level” alternative,
each system would still be functioning and include more

functionality than before, should the integration be
discontinued due to e.g. an unacceptable schedule and/or
budget situation. This is discernible in the project plans of
Figure 4. Management doubted that the cost of the two
alternatives would really be similar; they intuitively
assumed that the higher benefit, the more effort was
required (cost and time), as was sketched in Figure 2. Still,
they were explicit in that the risk was the decisive factor
and not cost, when choosing the “data level” alternative.

5. Related Work
There are suggestions that project management during

ordinary software development has much to gain from
being “architecture-centric” [21]. We have shown some
ways of pursuing the architecture-centric approach during
integration also. The rest of this section will focus on two
related aspects of this, the literature relating to integration
approaches, and methods and analysis techniques based on
architectural descriptions.

Of the four integration approaches we have discussed,
Enterprise Application Integration (EAI) seems to be the
most documented [9,12,15,19,22]. This approach concerns
in-house integration of the systems an enterprise uses rather
than produces. Johnson [15] uses an architectural approach
to analyze the integration of enterprise software systems. In
spite of the difficulty of accurately describing the
architecture of this type of system because the available
documentation is inadequate, architectural analysis can be
successfully applied to the design of enterprise systems
integration. Johnson has also examined the limitations of
architectural descriptions which one must be aware of,
limitations that were also experienced in the case study.

None of the architectural methodologies available
were completely feasible for the task. The Architecture
Trade-off Analysis Method (ATAM) [6] and the Software
Architecture Analysis Method (SAAM) [2,6] are based on
stakeholder-generated scenarios. The ATAM requires
business drivers and quality attributes to be specified in
advance and more detailed architectural descriptions to be
available. In the case study, all of this was done in a more
iterative manner. Also, with limited resources, it would be
impossible to evaluate and compare several alternatives, it
being too time-consuming to investigate all combinations
of quality attributes for all working alternatives. While both
SAAM and ATAM use scenarios to evaluate
maintainability, we used another, if less accurate
measurement method, comparing the number of lines of
code, third-party software, languages, and technologies
used, assuming that the lower the number, the easier the
maintenance . The Active Reviews for Intermediate Designs
method (ARID) [6] builds on Active Design Reviews
(ADR) and incorporates the idea of scenarios from SAAM
and ATAM. It is intended for evaluating partial
architectural descriptions, exactly that which was available

during the project work. However, it is intended as a type
of formal review involving more stakeholders and this was
not possible because the project schedule was already
fixed, and too tight for an ARID exercise. All of these
methodologies analyze functionality (which was relatively
trivial in the case study as the integrated system would
have the functionality of the three systems combined) and
quality attributes such as performance and security (which
are of course important for the product of the case study,
but considered to be similar to the existing systems) – but
none addresses cost, time to delivery, or risk, which were
considered more important. The project therefore relied
more on the analysts’ experience and intuition in analyzing
functionality and quality attributes (because of the project’s
limited resources), and cost, time to delivery, and risk
(because there are no available lightweight methodologies
for analyzing these properties from architecture sketches).

6. Conclusions
We have shown the central role of software

architecture in a case study concerning the integration of
three software systems after a company merger. Some
important lessons we learned from this case study can be
formulated as follows:
• There are at least four approaches available to a

software integrator: Enterprise Application Integration
(EAI), interoperability, data level integration, and
source code integration. The choice between these is
typically based on business or organizational
considerations rather than technical.

• When the architectural descriptions of existing systems
are not easily comparable, the first task is to construct
similar architectural descriptions of these. The
components of the existing systems can then be
rearranged in different ways to form different
alternatives. The working alternatives can be briefly
analyzed, largely on the basis of known properties of
architectural patterns of the existing systems.

• The functional requirements of an integrated system
are typically a combination of the functionality of the
existing systems, and are relatively easy to assess as
compared with other quality attributes.

• The effort required to implement each component of
the new system can be estimated in terms of how much
can be reused from the existing systems and how much
must be rewritten. The total cost of the system is easily
calculated from these figures.

• According to the estimations performed in the case
study, source code level integration is not necessarily
more expensive than data level integration.

• Architectural analysis, as it was carried out in the
project, fails to capture all business aspects important

for decisions. All the information needed to produce a
project schedule is not present in an architectural
description. The risk associated with the alternatives
was identified as the most important and least analyzed
decision criteria.
There are a number of concerns that must be addressed

during integration planning as well as during software
activities in general. These include the process and time
perspective (e.g. will the integration be carried out
incrementally, enabling stepwise delivery and retirement of
the existing systems?), the organizational issues (e.g. who
are the stakeholders?), the cost and effort requirements
(e.g. are only minimal additional efforts allowed?), etc. We
have shown how a system’s architecture can be used as a
starting and central point for a systematic analysis of
several features. To what extent can such concerns be
addressed by architectural analysis? Perhaps the focus on
the architecture, basically a technical artifact poses a risk to
these other concerns? We have presented means of
estimating cost and time of implementation based on
architectural descriptions, including outlining project
schedules. We have also shown that only the parts of such
project schedules involving implementation of source code
can be produced from the architectural descriptions,
activities such as design or analysis must be added from
other sources. We also showed that the risk of choosing
one alternative or the other was not considered. We
therefore propose that risk analysis be included in
architectural analysis to make it more explicit (or the
opposite, that architectural analysis be used in project risk
analysis). This would make it possible to treat risk together
with other quality properties and make a conscious trade-
off between them. Research in this area will presumably
need to incorporate an organizational development and
production process model – which would also provide a
better basis for time and cost estimation.

7. References
 [1] Aiken P. H., Data Reverse Engineering : Slaying the

Legacy Dragon, ISBN 0-07-000748-9, McGraw
Hill, 1996.

 [2] Bass L., Clements P., and Kazman R., Software
Architecture in Practice (2nd edition), ISBN 0-321-
15495-9, Addison-Wesley, 2003.

 [3] Bosch J., Design & Use of Software Architectures,
ISBN 0-201-67494-7, Addison-Wesley, 2000.

 [4] Brodie M. L. and Stonebraker M., Migrating Legacy
Systems: Gateways, Interfaces & the Incremental
Approach, Morgan Kaufmann Series in Data
Management Systems, ISBN 1558603301, Morgan
Kaufmann, 1995.

 [5] Brooks F. P., The Mythical Man-Month - Essays On
Software Engineering, 20th Anniversary Edition,
ISBN 0201835959, Addison-Wesley Longman,
1995.

 [6] Clements P., Bachmann F., Bass L., Garlan D., Ivers
J., Little R., Nord R., and Stafford J., Evaluating
Software Architectures, SEI Series in Software
Engineering, ISBN 0-201-70482-X, Addison-
Wesley, 2001.

 [7] Clements P., Bachmann F., Bass L., Garlan D., Ivers
J., Little R., Nord R., and Stafford J., Documenting
Software Architectures: Views and Beyond, SEI
Series in Software Engineering, ISBN 0201703726,
Addison-Wesley, 2002.

 [8] Crnkovic Ivica and Larsson M., “Challenges of
Component-based Development”, In Journal of
Systems & Software, volume 61, issue 3, 2002.

 [9] Cummins F. A., Enterprise Integration: An
Architecture for Enterprise Application and Systems
Integration, ISBN 0471400106, John Wiley & Sons,
2002.

 [10] Estublier J., “Software Configuration Management:
A Roadmap”, In Proceedings of 22nd International
Conference on Software Engineering, The Future of
Software Engineering, ACM Press, 2000.

 [11] Garlan D., Allen R., and Ockerbloom J.,
“Architectural Mismatch: Why Reuse is so Hard”, In
IEEE Software, volume 12, issue 6, 1995.

 [12] Gyllenswärd E., Kap M., and Land R., “Information
Organizer - A Comprehensive View on Reuse”, In
Proceedings of 4th International Conference on
Enterprise Information Systems (ICEIS), 2002.

 [13] Hofmeister C., Nord R., and Soni D., Applied
Software Architecture, ISBN 0-201-32571-3,
Addison-Wesley, 2000.

 [14] IEEE Architecture Working Group, IEEE
Recommended Practice for Architectural
Description of Software-Intensive Systems, report
IEEE Std 1471-2000, IEEE, 2000.

 [15] Johnson P., Enterprise Software System Integration
– An Architectural Perspective, Ph.D. Thesis,
Industrial Information and Control Systems, Royal
Institute of Technology, 2002.

 [16] Kruchten P., “The 4+1 View Model of
Architecture”, In IEEE Software, volume 12, issue
6, 1995.

 [17] Land R., “Applying the IEEE 1471-2000
Recommended Practice to a Software Integration
Project”, In Proceedings of International
Conference on Software Engineering Research and
Practice (SERP'03), CSREA Press, 2003.

 [18] Land R., Crnkovic I., and Wallin C., “Integration of
Software Systems – Process Challenges”, In
Proceedings of Euromicro Conference, 2003.

 [19] Linthicum D. S., Enterprise Application Integration,
Addison-Wesley Information Technology Series,
ISBN 0201615835, Addison-Wesley, 1999.

 [20] Oman P., Hagemeister J., and Ash D., A Definition
and Taxonomy for Software Maintainability, report
SETL Report 91-08-TR, University of Idaho, 1991.

 [21] Paulish D., Architecture-Centric Software Project
Management: A Practical Guide, SEI Series in
Software Engineering, ISBN 0-201-73409-5,
Addison-Wesley, 2002.

 [22] Ruh W. A., Maginnis F. X., and Brown W. J.,
Enterprise Application Integration, A Wiley Tech
Brief, ISBN 0471376418, John Wiley & Sons, 2000.

 [23] SEI Software Technology Review, Maintainability
Index Technique for Measuring Program
Maintainability, URL:
http://www.sei.cmu.edu/str/descriptions/mitmpm.html,
2003.

	Abstract
	Introduction
	Introducing the Case Study
	Integration Approaches
	Development of Integration Alternatives
	Future Maintainability
	Cost Estimation
	Estimated Time to Delivery
	The Decision

	Related Work
	Conclusions
	References

