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Abstract—Many real-time control systems in industry 

are designed today for single processor architectures. At 
the same time, more functionality needs to be integrated 
into the software system. In order to enable correct 
timely execution of the control and protection 
applications, designers may need to optimize application 
code aggressively. Unwanted simplifications of 
algorithms or low sampling frequencies of the 
environment may be the result. Functionality in a 
system, which already has a degree of concurrency, may 
enable the system to scale onto a multiprocessor 
environment. This paper discusses and presents results 
from a study, which separates a substation automation 
real-time I/O communication system from application 
level threads in order to exploit existing concurrency. 
Within the system model described here, as well as in 
many other system models, it is possible to execute 
communication mechanisms and applications in 
parallel. The motivation for this work is let parallel 
execution of the I/O System and the application enable 
higher performance for application functionality. The 
result is more flexibility for the application designers.  
By describing a model of the real-time substation 
automation I/O System and extending that model with a 
mechanism to enable execution in a multiprocessor 
architecture, we contribute to the understanding of both 
the composition and the performance issues concerning 
parallel execution in such industrial systems.  
Measurements and results originate from execution in 
an existing system and from the multiprocessor system 
created. 

 
Index Terms – Real-Time System, I/O System, 

Multiprocessor. 

1. INTRODUCTION 

Computer systems which operate in an environment in 
which they are required to respond to external events, not 
only in a functionally correct way, but also in a correct 
timely way, are labeled real-time systems. If a system is to 
be able to respond to and act upon an increasing number of 
events, or perform an increasing volume of calculations, 
system performance requirements must be increased. The 
trend today is to incorporate more functionality into 
systems both with real-time characteristics and without 
real-time characteristics. An example of functionality with 
real-time characteristics is the calculation performed by the 
real-time parts of the application, while an example of 
functionality with no or less real-time characteristics is web 
services. With a real-time software platform built and 

designed for a single processor hardware architecture, all 
system components contend for shared resources such as 
the processor, memory and the interconnects. 

Communication and interaction with the environment is 
an important component in a real-time system. Sensors and 
actuators respond to and act upon the surrounding 
environment. The sensors or sampling devices  present the 
collected data to the application, and usually do this by 
interrupting the processor as data is delivered to an I/O 
communication system. In the case of a single processor 
system, the execution of the application is interrupted. 
Multiple processors can be deployed in order to increase 
communication performance. Differentiation of the 
communication system and the application functionality 
onto separate processor boards has been implemented in 
different architectures. Examples include the Intel Paragon 
system [1] and the Spring System [2] in which the purpose 
was to gain performance and predictability. Dedicated 
hardware architectures such as the Motorola PowerQUICC 
architecture [3], have given on-chip support for custom 
protocol communication, and network processors are 
becoming commercially available today [9]. Parallel 
protocol stacks on shared memory multiprocessors have 
been investigated by, among others, Yates [4] and 
Björkman [5]. Communication systems can internally 
exploit parallelism in different forms, such as layer-level 
parallelism or connection-level parallelism [6], but the work 
presented in this paper will exclusively investigate the 
effect of separating I/O communication middleware and 
application functionality onto different processor boards. In 
industry, many data collection and sampling I/O boards are 
developed in-house for special purposes. Protocols and I/O 
communication systems used in the delivery of data are 
designed for a specific system. Because of this it can be 
hard to integrate special purpose hardware accelerators for 
communication, such as network processors, into the 
system. The separation of the I/O System and the 
application onto separate general-purpose processor-based 
boards can therefore be a way of increasing performance. 

The purpose of this work is twofold. Firstly, we are 
interested in investigating whether a separation of I/O 
system and application functionality can increase 
performance for the application functionality. Secondly, we 
are interested in the real-time aspects of the timeliness of 
data for systems utilizing such a separation. 

In order to investigate the effects of such a separation we 
first describe in chapter 2, a model of an existing data-
driven real-time system. This model describes the I/O 
system middleware and its interaction with applications. 
The model is relevant for many industrial control 
applications and systems. In chapter 3 the model is 



extended and we describe how it could be used in 
distributed multiprocessor system architectures, and in 
chapter 4 we analyze the execution of the system. 
Thereafter, in chapter 5, we measure the performance of the 
different hardware architectures in an existing real-time 
industrial platform and discuss the benefits and threats of 
the single processor and multiprocessor configurations of 
the system. Finally, in chapter 6, we summarize and discuss 
how further research on the subject could evolve. 

2. A MODEL OF A DATA-DRIVEN REAL-TIME SYSTEM 

In this section we describe a model of a data-driven real-
time control system. A data-driven system is defined as a 
system in which the execution of the application is 
dependent on the reception of data from data producers, 
such as I/O nodes or peripherals. Each time data arrives, the 
application begins executing on the basis of new data and 
makes decisions based on the history of the collected data. 
The core component of the system is the I/O system (from 
now on abbreviated as the IOSys), which provides access to 
peripheral boards, actuators and possibly other system 
components. 

2.1. System Architecture 
The modules of a processor node in the system are 

illustrated in Figure 1 below. Components which  
communicate with peripheral components such as data 
producers, network peripherals and actuators are illustrated 
at the bottom of the figure. 
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Figure 1.  A single processor data-driven node. 

Three types of peripherals are represented in the system: 
1. An output peripheral component which  

performs actuations toward the environment 
according to requests from the IOSys via 
component A. 

2. An input peripheral component which produces 
data to corresponding system component B. 

3. A combined input/output component (for 
example a network interface) handled by 
component C. 

These three types of peripheral components can be added 
to the IOSys by the application designer, and the 
application can define which data is to be received from 
and/or sent to these. Data is delivered through the 
Application Programmers Interface (API) to the 
application, and actuation data is delivered to the IOSys 
through the same API. 

2.2. System Semantics and Functionality 
The IOSys provides functionality which can be 

categorized as middleware functionality, serving as a layer 
of software between the communication facilities, more 
specifically the transport layer, and the application. Data 
arriving from I/O producers is delivered to the application 
thread or threads according to the semantics of the IOSys. 
The API provided to the application developers enables 
them to control the run-time functionality of the IOSys. The 
application can, with the help of the IOSys, be configured 
towards a certain set of data producers by using this API. 

In this data-driven system model, it is possible to 
combine the delivery of collected and grouped data (see the 
discussion regarding grouping of data below) from the 
producers. The application can define data structures (DS) 
containing data from possibly multiple sources. Thus the 
application can wait for data items destined for a DS to 
arrive at the IOSys before the receiving application thread 
is ready to run. The I/O producers can be said to “publish” 
data to the IOSys and the application can be said to 
“subscribe to” data from the I/O producers via the IOSys.  
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Figure 2, Illustration of data exchange between the data 
producers/consumers, the I/O communication system and 
the application. 

The IOSys is in effect executing concurrently with the 
application, buffering and grouping data to be delivered 
later. Related available mechanisms for real-time systems 



are SPLICE [10], NDDS [11] from RTI. A standard for 
publish/subscribe mechanisms between applications, called 
Data Distribution Service for Real-Time Systems, is also 
being defined by OMG [12]. 

Figure 2 above illustrates a buffer of three data structures,  
each data set containing a number of data items (possibly 
from multiple data sources). The communication system 
will independently from the application group incoming 
data. Data item correlation is based upon timestamps 
related to each data item in order to achieve a correct 
snapshot of the environment. Each data producer must 
therefore be synchronized to a high degree of precision in 
order to group data into the data structures. Data from 
remote nodes (which timestamp items produced) to the 
local node may be delayed, but the IOSys can still group the 
data into the corresponding DS correctly. The main 
functionality of the IOSys can be summarized as: 

1. Applications can select to receive data items 
from multiple sources and package them into 
data structures (DS). 

2. Data is delivered whenever a DS is completely 
filled with items. 

3. The correlation, i.e. grouping, of data in the data 
structures is performed upon the timestamps of 
each item, i.e. correlation is performed 
depending on the time at which data items were 
produced. 

4. All data producers must produce data at the 
same rate; otherwise partly filled data sets would 
overflow the communication system buffers. 
The concept of data structure (DS) delivery is 
dependent on this property. 

3. THE DATA-DRIVEN REAL-TIME SYSTEM MODEL 
APPLIED TO A MULTIPROCESSOR SYSTEM 

In a single processor system, as illustrated in Figure 1 
above, both software and hardware system components 
contend for shared resources, such as the processor, the 
memory hierarchy and the interconnects. Priority-based 
operating systems therefore provide the assignment of 
priorities on threads. Threads on a single node are 
scheduled in an interleaved fashion according to “highest 
priority first”. A thread with a lower priority, ready to 
execute, may therefore have to wait to run due to the 
contention for the processor. Whenever such situations 
develop, the amount of thread level parallelism (TLP) is 
higher than the underlying computer architecture is able to 
utilize. Our system model allows for the parallel execution 
of the IOSys and the application threads. The concurrent 
execution and buffering that our model provides can 
therefore be exploited by a parallel system at the interface 
between the application and the IOSys. 

In Figure 3 below, we have introduced a delivery 
mechanism which enables the application and the IOSys to 
exchange information. If, for example, the application 
issues a request to wait for the next data structure, the 
IOSys will deliver it when it is filled with items through the 
use of the DS delivery mechanism. 

Base
Board

IOSys

Peripheral
B

Peripheral
A

Peripheral
C

OS

Comp.
B

Comp
C.

Comp.
C

Application
Board

DS
Delivery
Mech.

DS
Delivery
Mech.

Application
with

Wrapper

        DS       DS

100VG

Application
Peer

API
Call

 

Figure 3, The multiprocessor system model. 

In comparison with the single processor system, we have 
introduced an application peer thread for each application 
thread which exists on other boards in the system. Calls 
from the application threads to the IOSys are marshaled by 
a wrapper class on the application board and demarshaled 
by the application peer at the base board. This enables the 
applications to execute Remote Procedure Calls (RPC) 
across the IOSys API, such as “waiting for data” and 
“acknowledging data”. A problem common to every remote 
procedure call mechanism is that of opaque references [7]. 
References to complex data types owned by the IOSys 
cannot be passed back to the application thread. Therefore 
such references are substituted with opaque references and 
complex data structures are flattened. The effect of this 
mechanism is that the application can be written with the 
same semantics as are used in the single processor case. 

4. EXECUTION ANALYSIS OF THE MODEL 

In order to understand the behavior of the system we 
analyze the execution pattern of the system for a delivery of 
a data structure to the application for both the single 
processor case and the multiprocessor case. In Figure 4 we 
illustrate data delivery over two sample periods (TSample). 
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Figure 4. A single processor execution scenario. 

We can identify two major phases in the execution, which 
are common in real-time control systems based on 
continuous sampling of I/O peripherals. The Data 
Acquisition Phase (DAP) describes the total execution time 
for all data collection functions and the Application Phase 
(AP) consists of the execution time associated with the 
application: 



 
TDAP = TIOSysDAP + TComIOSysApp 
TAP = TApp + TComAppIOSysAP + TIOSysAP 
 
Where 
§ TIOSysDAP represents the execution time for the 

IOSys during the Data Acquisition Phase. 
§ TComIOSysApp represents the communication overhead 

between the IOSys and the application. 
§ TApp depicts the execution time for the application. 
§ TComAppIOSysAP represents the communication 

overhead between the application and the IOSys. 
§ TIOSysAP represents the execution time in the IOSys 

during the application phase (acknowledgement of 
DS). 

When the demand on system functionality increases, it 
may not be possible to execute the application on the single 
processor as illustrated in Figure 5 below. The first 
execution of the application thread has not been completed  
when the data acquisition phase begins. Basically, the rate 
at which data is produced is higher than the rate at which 
the application can consume data. This example illustrates 
only a small timeframe of execution, but is intended to 
illustrate a transient overload. 
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Figure 5. A scenario in which the application has                
insufficient execution resources. 

The execution of the same application in the 
multiprocessor system would yield an execution diagram as 
shown in Figure 6 below. A potentially parallel execution 
of the DAP and the AP which could enable an increase in 
computing resources for the application is possible. The 
increased computing resources provided to the application 
must be compared with how much the communication 
overhead actually is. As can be seen in Figure 6, there is an 
overhead in communication which must be weighed against 
the benefit of having enabled parallel execution. 
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Figure 6. The execution of the application in Figure 5 in 
the multiprocessor system. 

For the application, the communication overhead 
TComIOSysApp on the base board plus the communication 
overhead of TComAppIOSysAp on the application board is pure 
overhead. Note that as compared with the single processor 
system, this overhead is divided into three phases. The first 
is the execution time of the communication mechanism on 

the base board. The second is the communication latency of 
the link (illustrated by the dotted arrows) and the third 
phase is the execution time of the communication 
mechanism on the application board. In effect this also 
means that the “acknowledge” part of the application phase 
is executing on the base board. 

A relevant question is how we view and detect deadline 
misses in the system. Data structures (DS) are produced 
periodically by the stream of data items which originate 
from the data producers. At every instant when a data 
structure (DS) is ready to be delivered to the application, 
we can study how many previous DS’s have not yet been 
acknowledged by the application. In short, this property of 
the system provides the age of buffered data. This view is 
due to the data-driven structure of the system and deadlines 
are thus not associated with the execution times of threads, 
but rather with the delivery and consumption of incoming 
data. 

5. MEASUREMENTS AND RESULTS 

The measurement platform that has been used resembles 
the architecture illustrated in Figure 3. In order to 
investigate the effects of a separation of the I/O system and 
the application, we have created a number of system 
configurations which match the behavior of a data-driven 
periodic system. The main components in the system which 
we are interested in investigating are single/multiprocessor 
configurations with varying I/O data loads and with 
different application thread characteristics. 

5.1. Variation of Hardware and Communication 
Different configurations are obtained through the 

variation of three parameters. These parameters are the 
hardware configurations, I/O configurations and other 
system workloads. 

The purpose of varying hardware configurations is to 
permit reasoning about the feasibility of a separation of the 
IOSys and applications for the respective hardware 
architectures. The hardware configurations are: 

• HW1. Single processor system based on an Intel P3 
architecture in a configuration as illustrated Figure 1. 

• HW2. Multiprocessor system with two Intel P3 
processor boards in a configuration as illustrated in 
Figure 3. 

HW1 represents a computer architecture based on an Intel 
P3 clocked at a frequency of 266MHz and with a L2 cache. 
HW2 represents a hardware configuration in which two 
Intel based processor boards are connected a fiber optical 
100VG AnyLAN switched network. The 100VG network 
technology has been ratified by IEEE as standard 802.12 
and achieves a minimum data rate of 100Mb/s. 

We also vary the origin of produced data, and four 
configurations have been set up. As Table 1 states, data 
originates from remote nodes through communication over 
a connection-oriented protocol developed in-house. Data is 
periodically produced at a rate of TSample and as data items 
arrive at the node, the IOSys groups them into the data 
structures (DS). 

 



 
I/O 
Configuration 

Characteristics 

I/O1 I/O originating from one remote peripheral 
producer. Remote peripherals 
communicate with the processor board 
through an in-house communication 
protocol over the 100VG network. 

I/O2 I/O originating from two remote peripheral 
producers. 

I/O3 I/O originating from three remote 
peripheral producers. 

I/O4 I/O originating from four remote 
peripheral producers. 

Table 1, I/O Configurations. 

5.2. Processor Utilization 
A measure of available system performance is the amount 

of processor utilization over time. The measurements are 
based on a data collection interval 400 TSample periods long 
and in which TSample is one millisecond in duration. The 
processor utilization metric gives no actual information 
regarding for example real-time responsiveness, but 
indicates the amount of available processing power. 

The test includes one application thread which waits for 
an incoming data structure (DS) and immediately 
acknowledges this. No other work is performed. All four 
hardware configurations have been tested together with the 
four I/O loads, and the results are presented in Figure 7 and 
Table 2 below. 

 
 I/O1 I/O2 I/O3 I/O4 

HW1 20,5 31,7 46,2 58,6 
Base App Base App Base App Base App HW2 
50,6 31,2 60,0 31,0 69,3 31,2 82,3 31,4 

Table 2. Processor utilization over the data collection 
interval. 

We see that the communication mechanism used between 
the boards does affect performance significantly, but that 
this overhead is rather constant. For example, HW1 (single 
Intel P3 board) with the I/O1 configuration leads to a 
processor utilization of 20,5%. The HW2 multiprocessor 
configuration indicates that the overhead for the 
communication between the boards increases the load on 
each processor by approximately 30%. The actual figures 
for I/O1 indicate a 30,1% (50,6%-20,5%) and 31,2% 
overhead for the communication on the base board and the 
application board respectively. Remember that all I/O from 
the data producers are handled by the base-board, hence the 
higher load on that board (50,6% processor utilization with 
the I/O1 configuration).  
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Figure 7. A plot of processor utilization based on the 
figures in Table 2. 

The application thread has, in the multiprocessor case 
HW2, an almost constant amount of processing power 
available, regardless of the increased amount of I/O in the 
I/O1 and I/O2 case. This is due to the effect of only one 
data structure (DS) delivery across the boards being 
necessary, irrespective of how many origins the individual 
items in that DS have. In the I/O1 configuration only one 
data producer delivers data items, while in configuration 
I/O2 two data producers deliver data items to the base-
board. This form of de-multiplexing of incoming data into 
data structures (DS) is the foundation of the benefits of such 
a separation of I/O system and application functionality. 
The I/O4 multiprocessor configuration showed the largest 
performance gain for the application functionality 
configuration. In that case, the gain was 27,2% (58,6%-
31,4%) less processor utilization.  

Measurements on hardware configurations equipped with 
PowerPC 603 processors have been conducted as well. The 
multiprocessor configuration of the PowerPC processor 
boards does not manage to consume as many data structures 
(DS) as are produced. 

5.3. High Priority System Threads 
In order to see how high priority threads affect the 

execution of application threads we introduce a system 
thread with various workloads. The priority of the system 
thread in the single processor configuration was higher than 
that of the application threads, but lower than that of the 
communication threads. The thread was to represent 
functionality such as clock synchronization mechanisms in 
which synchronization pulses need be handled instantly. 
Different threads representing different workloads were 
created, the characteristics of these being the time it took to 
run them without disturbance on a single board. One-
millisecond workloads up to 10-millisecond workloads 
were created and run on both hardware configurations HW1 
and HW2. 

In the single processor configuration (HW1) we see that 
we have a continuously increasing execution time for the 
system thread compared with the ideal undisturbed 
execution. 
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Figure 8.  Response time of system thread vs. its 

undisturbed workload. 

The disturbance from the system thread’s point of view 
that leads to this increasing execution time is the data 
stream arriving continuously from the data producers at a 
rate of TSample (in our measurement 1 ms). In the 
multiprocessor configuration (HW2), the system thread 
kept the same priority but in this case, the application 
thread and the system thread did not compete for the same 
processor. The extra communication overhead between the 
boards, which is higher prioritized than the system thread, 
leads however, to an even longer execution time for the 
system thread (see Figure 8). 

For the same measurement, we also kept a log of how 
many outstanding data structures (DS) not yet 
acknowledged were queued on the delivery of a new DS, 
i.e. at each sample period. The result is presented in Figure 
9 below. 
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Figure 9. Maximum data structure buffer utilization. 

We see that the multiprocessor configuration (HW2) 
never has the queue to grow. This is due to the parallel 
execution of the application and the system thread. The 
single processor configuration on the other hand has a 
continuously growing queue due to the fact that the 
application thread never has the time to consume data on 
the incoming queue. A queue with, for example, six queued 
data structures (DS) will lead to a system that has not 
reacted on incoming sampled data for at least six TSample 
periods. It can be concluded that for such a multiprocessor 
design (HW2) a tradeoff can be made between the 

responsiveness of the application vs. how much longer the 
execution of other system threads will take. 

5.4. Synchronous RPC 
The multiprocessor design of HW2 assumes a clean 

interface between the application and the IOSys. In the 
multiprocessor case, all function calls in the single 
processor application design must be mapped to a 
synchronous remote procedure call (RPC). If the function 
call expects a result of any kind from the base-board, 
execution of that application thread is stalled. Function calls 
that do not need a result could be exchanged with an 
asynchronous RPC call. RPC calls can be very demanding 
and can have large round-trip times. In our system, in which   
application threads are executed every millisecond (TxSample 
is 1 millisecond) a high round-trip time can have very 
degrading effects on performance. We therefore measured 
the round-trip time of null RPC calls utilizing our inter-
board mechanism. The result was a round-trip time of 
approximately 0.36 milliseconds, which in our system 
means about a third of a sample period TSample. A 
conclusion which must be drawn from this is that RPC calls 
between the boards must be minimized to the greatest 
possible extent since even a single RPC call would cause a 
very high performance degradation of the application. If the 
semantics of the application permit, all data needed by the 
application thread should be delivered together with the 
data structures at the beginning of each sample period. 

6. FUTURE WORK 

Many parameters interact during the execution of a real-
time control system. The demand on supporting new 
functionality is increasing as is the demand for supporting 
high rates of data from sensors. Multiprocessor solutions 
need to be considered even in systems which  have been 
designed solely for a single processor environment. We 
have investigated a separation of application functionality 
from a communication middleware. Parallelism can be 
exploited at various other levels of the system and we 
would like to point out some interesting possible branches 
of research revolving around this topic for systems with the 
characteristics similar to the model described in this paper. 

The parallel system explored in this paper statically 
partitions functionality onto different processor boards and 
into different processing environments. Alternative 
multiprocessor hardware architectures would for example 
be Symmetric Multiprocessors (SMPs). The main benefit of 
such hardware architectures is that it provides a shared view 
of memory for all the processors and where coherency 
among processors is achieved by hardware. Since all 
processors have the same access to hardware components 
and memory, it should be possible to move a multithreaded 
application, originally designed for a single processor 
system, into such an environment. The need for an 
operating system with SMP support does arise in this 
context as well as the price/performance ratio. Are SMP 
systems a valuable alternative and are they feasible in real-
time and embedded control environments are questions that 
need to be answered. 



With the introduction of multiple processors, the software 
developer is faced with more complexity.  Much attention 
needs to be focused on designing multiprocessor software 
which achieves adequate performance and scales well.  As 
described in this paper, identifying clean interfaces between 
I/O middleware and applications for existing products can 
potentially increase performance.  

The results have been obtained from a distributed test 
platform based on network communication, but 
conceptually, the results should be similar for non cache-
coherent non-uniform memory access (NCC-NUMA) 
hardware architectures based on message passing. Such a 
solution has been proposed in [8]. An example of  NCC-
NUMA architecture would be, for example, a Compact PCI 
(CPCI) back-plane bus-based system equipped with 
multiple slots, each possibly holding a processor board. The 
processor boards inserted into the slots are able to access 
shared memory over the bus-hierarchy, but no memory 
coherency support is provided by hardware. Issues 
regarding functional partitioning are much the same as in 
the distributed system. On the other hand, round-trip 
latency times for RPC calls would be much smaller due to 
lower bus latencies and the less processor-demanding 
message-passing communication mechanism. 

The test system presented in this article has been 
configured working with only one sample frequency. 
Interesting measures with such systems would be to 
decrease the sample period time, thus achieving a more 
frequent data delivery. Questions asked in that area would 
be how well modern processor architectures behave with 
this increase in both the amount of arriving data as well as 
the increased notification overhead in the form of an 
increased amount of interrupts. 

In this paper we have only examined the performance of a 
system with one application node. Having multiple 
application nodes with a single I/O node could yield 
interesting new insights into both the advantages and 
disadvantages of a separation of the I/O system and the 
applications. 

7. CONCLUSION 

In this paper we have investigated a distributed separation 
of a real-time I/O communication system (middleware) and 
application functionality. We have described a model of an 
existing industrial I/O system and implemented a RPC 
mechanism between processor boards tailored for the 
existing I/O system API in order to enable multiprocessor 
execution. 

We have shown that, provided that the interaction 
between system functionality on the different processors is 
kept to a minimum, our multiprocessor system can yield up 
to 27,2% more processor time for the application. Other 
system functionality, such as high-prioritized system 
threads, can on the other hand suffer loss of performance.  
For the substation automation system which has been the 
target of this work, a distributed multiprocessor system 
solution may yield more performance for application 
designers. 
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