
Parallel Execution of I/O System and Application
Functionality

Leif Enblom

Department of Computer Science and Engineering
Mälardalen University, Västerås, Sweden.

Abstract—Many real-time control systems in industry

are designed today for single processor architectures. At
the same time, more functionality needs to be integrated
into the software system. In order to enable correct
timely execution of the control and protection
applications, designers may need to optimize application
code aggressively. Unwanted simplifications of
algorithms or low sampling frequencies of the
environment may be the result. Functionality in a
system, which already has a degree of concurrency, may
enable the system to scale onto a multiprocessor
environment. This paper discusses and presents results
from a study, which separates a substation automation
real-time I/O communication system from application
level threads in order to exploit existing concurrency.
Within the system model described here, as well as in
many other system models, it is possible to execute
communication mechanisms and applications in
parallel. The motivation for this work is let parallel
execution of the I/O System and the application enable
higher performance for application functionality. The
result is more flexibility for the application designers.
By describing a model of the real-time substation
automation I/O System and extending that model with a
mechanism to enable execution in a multiprocessor
architecture, we contribute to the understanding of both
the composition and the performance issues concerning
parallel execution in such industrial systems.
Measurements and results originate from execution in
an existing system and from the multiprocessor system
created.

Index Terms – Real-Time System, I/O System,

Multiprocessor.

1. INTRODUCTION

Computer systems which operate in an environment in
which they are required to respond to external events, not
only in a functionally correct way, but also in a correct
timely way, are labeled real-time systems. If a system is to
be able to respond to and act upon an increasing number of
events, or perform an increasing volume of calculations,
system performance requirements must be increased. The
trend today is to incorporate more functionality into
systems both with real-time characteristics and without
real-time characteristics. An example of functionality with
real-time characteristics is the calculation performed by the
real-time parts of the application, while an example of
functionality with no or less real-time characteristics is web
services. With a real-time software platform built and

designed for a single processor hardware architecture, all
system components contend for shared resources such as
the processor, memory and the interconnects.

Communication and interaction with the environment is
an important component in a real-time system. Sensors and
actuators respond to and act upon the surrounding
environment. The sensors or sampling devices present the
collected data to the application, and usually do this by
interrupting the processor as data is delivered to an I/O
communication system. In the case of a single processor
system, the execution of the application is interrupted.
Multiple processors can be deployed in order to increase
communication performance. Differentiation of the
communication system and the application functionality
onto separate processor boards has been implemented in
different architectures. Examples include the Intel Paragon
system [1] and the Spring System [2] in which the purpose
was to gain performance and predictability. Dedicated
hardware architectures such as the Motorola PowerQUICC
architecture [3], have given on-chip support for custom
protocol communication, and network processors are
becoming commercially available today [9]. Parallel
protocol stacks on shared memory multiprocessors have
been investigated by, among others, Yates [4] and
Björkman [5]. Communication systems can internally
exploit parallelism in different forms, such as layer-level
parallelism or connection-level parallelism [6], but the work
presented in this paper will exclusively investigate the
effect of separating I/O communication middleware and
application functionality onto different processor boards. In
industry, many data collection and sampling I/O boards are
developed in-house for special purposes. Protocols and I/O
communication systems used in the delivery of data are
designed for a specific system. Because of this it can be
hard to integrate special purpose hardware accelerators for
communication, such as network processors, into the
system. The separation of the I/O System and the
application onto separate general-purpose processor-based
boards can therefore be a way of increasing performance.

The purpose of this work is twofold. Firstly, we are
interested in investigating whether a separation of I/O
system and application functionality can increase
performance for the application functionality. Secondly, we
are interested in the real-time aspects of the timeliness of
data for systems utilizing such a separation.

In order to investigate the effects of such a separation we
first describe in chapter 2, a model of an existing data-
driven real-time system. This model describes the I/O
system middleware and its interaction with applications.
The model is relevant for many industrial control
applications and systems. In chapter 3 the model is

extended and we describe how it could be used in
distributed multiprocessor system architectures, and in
chapter 4 we analyze the execution of the system.
Thereafter, in chapter 5, we measure the performance of the
different hardware architectures in an existing real-time
industrial platform and discuss the benefits and threats of
the single processor and multiprocessor configurations of
the system. Finally, in chapter 6, we summarize and discuss
how further research on the subject could evolve.

2. A MODEL OF A DATA-DRIVEN REAL-TIME SYSTEM

In this section we describe a model of a data-driven real-
time control system. A data-driven system is defined as a
system in which the execution of the application is
dependent on the reception of data from data producers,
such as I/O nodes or peripherals. Each time data arrives, the
application begins executing on the basis of new data and
makes decisions based on the history of the collected data.
The core component of the system is the I/O system (from
now on abbreviated as the IOSys), which provides access to
peripheral boards, actuators and possibly other system
components.

2.1. System Architecture
The modules of a processor node in the system are

illustrated in Figure 1 below. Components which
communicate with peripheral components such as data
producers, network peripherals and actuators are illustrated
at the bottom of the figure.

CPU
Board

Application

Application Programmers
Interface

I/O System,
IOSys

Output
to
Peripheral
A

Input/Output
from
Peripheral
C

Comp.
B

Comp.
C

Comp.
A

Peripheral
A

Peripheral
B

Input
from
Peripheral
B

Peripheral
C

Figure 1. A single processor data-driven node.

Three types of peripherals are represented in the system:
1. An output peripheral component which

performs actuations toward the environment
according to requests from the IOSys via
component A.

2. An input peripheral component which produces
data to corresponding system component B.

3. A combined input/output component (for
example a network interface) handled by
component C.

These three types of peripheral components can be added
to the IOSys by the application designer, and the
application can define which data is to be received from
and/or sent to these. Data is delivered through the
Application Programmers Interface (API) to the
application, and actuation data is delivered to the IOSys
through the same API.

2.2. System Semantics and Functionality
The IOSys provides functionality which can be

categorized as middleware functionality, serving as a layer
of software between the communication facilities, more
specifically the transport layer, and the application. Data
arriving from I/O producers is delivered to the application
thread or threads according to the semantics of the IOSys.
The API provided to the application developers enables
them to control the run-time functionality of the IOSys. The
application can, with the help of the IOSys, be configured
towards a certain set of data producers by using this API.

In this data-driven system model, it is possible to
combine the delivery of collected and grouped data (see the
discussion regarding grouping of data below) from the
producers. The application can define data structures (DS)
containing data from possibly multiple sources. Thus the
application can wait for data items destined for a DS to
arrive at the IOSys before the receiving application thread
is ready to run. The I/O producers can be said to “publish”
data to the IOSys and the application can be said to
“subscribe to” data from the I/O producers via the IOSys.

IOSys

Application

Data
Producers

In-Buffer

Items

Items

Items

DS1

DS2

DS3

Data
Consumers

Out-Buffer

Items

Items

Items

DS1

DS2

DS3

Items Items

DS DS

Figure 2, Illustration of data exchange between the data
producers/consumers, the I/O communication system and
the application.

The IOSys is in effect executing concurrently with the
application, buffering and grouping data to be delivered
later. Related available mechanisms for real-time systems

are SPLICE [10], NDDS [11] from RTI. A standard for
publish/subscribe mechanisms between applications, called
Data Distribution Service for Real-Time Systems, is also
being defined by OMG [12].

Figure 2 above illustrates a buffer of three data structures,
each data set containing a number of data items (possibly
from multiple data sources). The communication system
will independently from the application group incoming
data. Data item correlation is based upon timestamps
related to each data item in order to achieve a correct
snapshot of the environment. Each data producer must
therefore be synchronized to a high degree of precision in
order to group data into the data structures. Data from
remote nodes (which timestamp items produced) to the
local node may be delayed, but the IOSys can still group the
data into the corresponding DS correctly. The main
functionality of the IOSys can be summarized as:

1. Applications can select to receive data items
from multiple sources and package them into
data structures (DS).

2. Data is delivered whenever a DS is completely
filled with items.

3. The correlation, i.e. grouping, of data in the data
structures is performed upon the timestamps of
each item, i.e. correlation is performed
depending on the time at which data items were
produced.

4. All data producers must produce data at the
same rate; otherwise partly filled data sets would
overflow the communication system buffers.
The concept of data structure (DS) delivery is
dependent on this property.

3. THE DATA-DRIVEN REAL-TIME SYSTEM MODEL
APPLIED TO A MULTIPROCESSOR SYSTEM

In a single processor system, as illustrated in Figure 1
above, both software and hardware system components
contend for shared resources, such as the processor, the
memory hierarchy and the interconnects. Priority-based
operating systems therefore provide the assignment of
priorities on threads. Threads on a single node are
scheduled in an interleaved fashion according to “highest
priority first”. A thread with a lower priority, ready to
execute, may therefore have to wait to run due to the
contention for the processor. Whenever such situations
develop, the amount of thread level parallelism (TLP) is
higher than the underlying computer architecture is able to
utilize. Our system model allows for the parallel execution
of the IOSys and the application threads. The concurrent
execution and buffering that our model provides can
therefore be exploited by a parallel system at the interface
between the application and the IOSys.

In Figure 3 below, we have introduced a delivery
mechanism which enables the application and the IOSys to
exchange information. If, for example, the application
issues a request to wait for the next data structure, the
IOSys will deliver it when it is filled with items through the
use of the DS delivery mechanism.

Base
Board

IOSys

Peripheral
B

Peripheral
A

Peripheral
C

OS

Comp.
B

Comp
C.

Comp.
C

Application
Board

DS
Delivery
Mech.

DS
Delivery
Mech.

Application
with

Wrapper

 DS DS

100VG

Application
Peer

API
Call

Figure 3, The multiprocessor system model.

In comparison with the single processor system, we have
introduced an application peer thread for each application
thread which exists on other boards in the system. Calls
from the application threads to the IOSys are marshaled by
a wrapper class on the application board and demarshaled
by the application peer at the base board. This enables the
applications to execute Remote Procedure Calls (RPC)
across the IOSys API, such as “waiting for data” and
“acknowledging data”. A problem common to every remote
procedure call mechanism is that of opaque references [7].
References to complex data types owned by the IOSys
cannot be passed back to the application thread. Therefore
such references are substituted with opaque references and
complex data structures are flattened. The effect of this
mechanism is that the application can be written with the
same semantics as are used in the single processor case.

4. EXECUTION ANALYSIS OF THE MODEL

In order to understand the behavior of the system we
analyze the execution pattern of the system for a delivery of
a data structure to the application for both the single
processor case and the multiprocessor case. In Figure 4 we
illustrate data delivery over two sample periods (TSample).

CPU 1

0 1 2

IOSys Com
IOSys
-App

App Com
App-
IOSys

TSample

AP APDAP

DAP = Data Acquisition Phase
AP = Application Phase

Legend

Legend

DAP

Figure 4. A single processor execution scenario.

We can identify two major phases in the execution, which
are common in real-time control systems based on
continuous sampling of I/O peripherals. The Data
Acquisition Phase (DAP) describes the total execution time
for all data collection functions and the Application Phase
(AP) consists of the execution time associated with the
application:

TDAP = TIOSysDAP + TComIOSysApp
TAP = TApp + TComAppIOSysAP + TIOSysAP

Where
§ TIOSysDAP represents the execution time for the

IOSys during the Data Acquisition Phase.
§ TComIOSysApp represents the communication overhead

between the IOSys and the application.
§ TApp depicts the execution time for the application.
§ TComAppIOSysAP represents the communication

overhead between the application and the IOSys.
§ TIOSysAP represents the execution time in the IOSys

during the application phase (acknowledgement of
DS).

When the demand on system functionality increases, it
may not be possible to execute the application on the single
processor as illustrated in Figure 5 below. The first
execution of the application thread has not been completed
when the data acquisition phase begins. Basically, the rate
at which data is produced is higher than the rate at which
the application can consume data. This example illustrates
only a small timeframe of execution, but is intended to
illustrate a transient overload.

0 1 2

1

TSample

1

App run one
not finished!

2

Figure 5. A scenario in which the application has
insufficient execution resources.

The execution of the same application in the
multiprocessor system would yield an execution diagram as
shown in Figure 6 below. A potentially parallel execution
of the DAP and the AP which could enable an increase in
computing resources for the application is possible. The
increased computing resources provided to the application
must be compared with how much the communication
overhead actually is. As can be seen in Figure 6, there is an
overhead in communication which must be weighed against
the benefit of having enabled parallel execution.

Base
Board

0 1 2

1

TSample

2

DAP

AP AP

App
Board

APDAP

Figure 6. The execution of the application in Figure 5 in
the multiprocessor system.

For the application, the communication overhead
TComIOSysApp on the base board plus the communication
overhead of TComAppIOSysAp on the application board is pure
overhead. Note that as compared with the single processor
system, this overhead is divided into three phases. The first
is the execution time of the communication mechanism on

the base board. The second is the communication latency of
the link (illustrated by the dotted arrows) and the third
phase is the execution time of the communication
mechanism on the application board. In effect this also
means that the “acknowledge” part of the application phase
is executing on the base board.

A relevant question is how we view and detect deadline
misses in the system. Data structures (DS) are produced
periodically by the stream of data items which originate
from the data producers. At every instant when a data
structure (DS) is ready to be delivered to the application,
we can study how many previous DS’s have not yet been
acknowledged by the application. In short, this property of
the system provides the age of buffered data. This view is
due to the data-driven structure of the system and deadlines
are thus not associated with the execution times of threads,
but rather with the delivery and consumption of incoming
data.

5. MEASUREMENTS AND RESULTS

The measurement platform that has been used resembles
the architecture illustrated in Figure 3. In order to
investigate the effects of a separation of the I/O system and
the application, we have created a number of system
configurations which match the behavior of a data-driven
periodic system. The main components in the system which
we are interested in investigating are single/multiprocessor
configurations with varying I/O data loads and with
different application thread characteristics.

5.1. Variation of Hardware and Communication
Different configurations are obtained through the

variation of three parameters. These parameters are the
hardware configurations, I/O configurations and other
system workloads.

The purpose of varying hardware configurations is to
permit reasoning about the feasibility of a separation of the
IOSys and applications for the respective hardware
architectures. The hardware configurations are:

• HW1. Single processor system based on an Intel P3
architecture in a configuration as illustrated Figure 1.

• HW2. Multiprocessor system with two Intel P3
processor boards in a configuration as illustrated in
Figure 3.

HW1 represents a computer architecture based on an Intel
P3 clocked at a frequency of 266MHz and with a L2 cache.
HW2 represents a hardware configuration in which two
Intel based processor boards are connected a fiber optical
100VG AnyLAN switched network. The 100VG network
technology has been ratified by IEEE as standard 802.12
and achieves a minimum data rate of 100Mb/s.

We also vary the origin of produced data, and four
configurations have been set up. As Table 1 states, data
originates from remote nodes through communication over
a connection-oriented protocol developed in-house. Data is
periodically produced at a rate of TSample and as data items
arrive at the node, the IOSys groups them into the data
structures (DS).

I/O
Configuration

Characteristics

I/O1 I/O originating from one remote peripheral
producer. Remote peripherals
communicate with the processor board
through an in-house communication
protocol over the 100VG network.

I/O2 I/O originating from two remote peripheral
producers.

I/O3 I/O originating from three remote
peripheral producers.

I/O4 I/O originating from four remote
peripheral producers.

Table 1, I/O Configurations.

5.2. Processor Utilization
A measure of available system performance is the amount

of processor utilization over time. The measurements are
based on a data collection interval 400 TSample periods long
and in which TSample is one millisecond in duration. The
processor utilization metric gives no actual information
regarding for example real-time responsiveness, but
indicates the amount of available processing power.

The test includes one application thread which waits for
an incoming data structure (DS) and immediately
acknowledges this. No other work is performed. All four
hardware configurations have been tested together with the
four I/O loads, and the results are presented in Figure 7 and
Table 2 below.

 I/O1 I/O2 I/O3 I/O4

HW1 20,5 31,7 46,2 58,6
Base App Base App Base App Base App HW2
50,6 31,2 60,0 31,0 69,3 31,2 82,3 31,4

Table 2. Processor utilization over the data collection
interval.

We see that the communication mechanism used between
the boards does affect performance significantly, but that
this overhead is rather constant. For example, HW1 (single
Intel P3 board) with the I/O1 configuration leads to a
processor utilization of 20,5%. The HW2 multiprocessor
configuration indicates that the overhead for the
communication between the boards increases the load on
each processor by approximately 30%. The actual figures
for I/O1 indicate a 30,1% (50,6%-20,5%) and 31,2%
overhead for the communication on the base board and the
application board respectively. Remember that all I/O from
the data producers are handled by the base-board, hence the
higher load on that board (50,6% processor utilization with
the I/O1 configuration).

0

20

40

60

80

100

I/O1 I/O2 I/O3 I/O4

I/O Configuration

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

MP Base
(HW2)

MP App
(HW2)

Single
(HW1)

Figure 7. A plot of processor utilization based on the
figures in Table 2.

The application thread has, in the multiprocessor case
HW2, an almost constant amount of processing power
available, regardless of the increased amount of I/O in the
I/O1 and I/O2 case. This is due to the effect of only one
data structure (DS) delivery across the boards being
necessary, irrespective of how many origins the individual
items in that DS have. In the I/O1 configuration only one
data producer delivers data items, while in configuration
I/O2 two data producers deliver data items to the base-
board. This form of de-multiplexing of incoming data into
data structures (DS) is the foundation of the benefits of such
a separation of I/O system and application functionality.
The I/O4 multiprocessor configuration showed the largest
performance gain for the application functionality
configuration. In that case, the gain was 27,2% (58,6%-
31,4%) less processor utilization.

Measurements on hardware configurations equipped with
PowerPC 603 processors have been conducted as well. The
multiprocessor configuration of the PowerPC processor
boards does not manage to consume as many data structures
(DS) as are produced.

5.3. High Priority System Threads
In order to see how high priority threads affect the

execution of application threads we introduce a system
thread with various workloads. The priority of the system
thread in the single processor configuration was higher than
that of the application threads, but lower than that of the
communication threads. The thread was to represent
functionality such as clock synchronization mechanisms in
which synchronization pulses need be handled instantly.
Different threads representing different workloads were
created, the characteristics of these being the time it took to
run them without disturbance on a single board. One-
millisecond workloads up to 10-millisecond workloads
were created and run on both hardware configurations HW1
and HW2.

In the single processor configuration (HW1) we see that
we have a continuously increasing execution time for the
system thread compared with the ideal undisturbed
execution.

0

5

10

15

20

1 2 3 4 5 6 7 8 9 1

Workload in ms

R
es

p
o

n
se

 T
im

e
in

 m
s

Single
(HW1)

Multi (HW2)

Ideal

Figure 8. Response time of system thread vs. its

undisturbed workload.

The disturbance from the system thread’s point of view
that leads to this increasing execution time is the data
stream arriving continuously from the data producers at a
rate of TSample (in our measurement 1 ms). In the
multiprocessor configuration (HW2), the system thread
kept the same priority but in this case, the application
thread and the system thread did not compete for the same
processor. The extra communication overhead between the
boards, which is higher prioritized than the system thread,
leads however, to an even longer execution time for the
system thread (see Figure 8).

For the same measurement, we also kept a log of how
many outstanding data structures (DS) not yet
acknowledged were queued on the delivery of a new DS,
i.e. at each sample period. The result is presented in Figure
9 below.

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 1

Workload in ms

M
ax

im
u

m
 q

u
eu

in
g

 o
f

D
S

Single (HW 1)

Multi (HW 2)

Figure 9. Maximum data structure buffer utilization.

We see that the multiprocessor configuration (HW2)
never has the queue to grow. This is due to the parallel
execution of the application and the system thread. The
single processor configuration on the other hand has a
continuously growing queue due to the fact that the
application thread never has the time to consume data on
the incoming queue. A queue with, for example, six queued
data structures (DS) will lead to a system that has not
reacted on incoming sampled data for at least six TSample
periods. It can be concluded that for such a multiprocessor
design (HW2) a tradeoff can be made between the

responsiveness of the application vs. how much longer the
execution of other system threads will take.

5.4. Synchronous RPC
The multiprocessor design of HW2 assumes a clean

interface between the application and the IOSys. In the
multiprocessor case, all function calls in the single
processor application design must be mapped to a
synchronous remote procedure call (RPC). If the function
call expects a result of any kind from the base-board,
execution of that application thread is stalled. Function calls
that do not need a result could be exchanged with an
asynchronous RPC call. RPC calls can be very demanding
and can have large round-trip times. In our system, in which
application threads are executed every millisecond (TxSample
is 1 millisecond) a high round-trip time can have very
degrading effects on performance. We therefore measured
the round-trip time of null RPC calls utilizing our inter-
board mechanism. The result was a round-trip time of
approximately 0.36 milliseconds, which in our system
means about a third of a sample period TSample. A
conclusion which must be drawn from this is that RPC calls
between the boards must be minimized to the greatest
possible extent since even a single RPC call would cause a
very high performance degradation of the application. If the
semantics of the application permit, all data needed by the
application thread should be delivered together with the
data structures at the beginning of each sample period.

6. FUTURE WORK

Many parameters interact during the execution of a real-
time control system. The demand on supporting new
functionality is increasing as is the demand for supporting
high rates of data from sensors. Multiprocessor solutions
need to be considered even in systems which have been
designed solely for a single processor environment. We
have investigated a separation of application functionality
from a communication middleware. Parallelism can be
exploited at various other levels of the system and we
would like to point out some interesting possible branches
of research revolving around this topic for systems with the
characteristics similar to the model described in this paper.

The parallel system explored in this paper statically
partitions functionality onto different processor boards and
into different processing environments. Alternative
multiprocessor hardware architectures would for example
be Symmetric Multiprocessors (SMPs). The main benefit of
such hardware architectures is that it provides a shared view
of memory for all the processors and where coherency
among processors is achieved by hardware. Since all
processors have the same access to hardware components
and memory, it should be possible to move a multithreaded
application, originally designed for a single processor
system, into such an environment. The need for an
operating system with SMP support does arise in this
context as well as the price/performance ratio. Are SMP
systems a valuable alternative and are they feasible in real-
time and embedded control environments are questions that
need to be answered.

With the introduction of multiple processors, the software
developer is faced with more complexity. Much attention
needs to be focused on designing multiprocessor software
which achieves adequate performance and scales well. As
described in this paper, identifying clean interfaces between
I/O middleware and applications for existing products can
potentially increase performance.

The results have been obtained from a distributed test
platform based on network communication, but
conceptually, the results should be similar for non cache-
coherent non-uniform memory access (NCC-NUMA)
hardware architectures based on message passing. Such a
solution has been proposed in [8]. An example of NCC-
NUMA architecture would be, for example, a Compact PCI
(CPCI) back-plane bus-based system equipped with
multiple slots, each possibly holding a processor board. The
processor boards inserted into the slots are able to access
shared memory over the bus-hierarchy, but no memory
coherency support is provided by hardware. Issues
regarding functional partitioning are much the same as in
the distributed system. On the other hand, round-trip
latency times for RPC calls would be much smaller due to
lower bus latencies and the less processor-demanding
message-passing communication mechanism.

The test system presented in this article has been
configured working with only one sample frequency.
Interesting measures with such systems would be to
decrease the sample period time, thus achieving a more
frequent data delivery. Questions asked in that area would
be how well modern processor architectures behave with
this increase in both the amount of arriving data as well as
the increased notification overhead in the form of an
increased amount of interrupts.

In this paper we have only examined the performance of a
system with one application node. Having multiple
application nodes with a single I/O node could yield
interesting new insights into both the advantages and
disadvantages of a separation of the I/O system and the
applications.

7. CONCLUSION

In this paper we have investigated a distributed separation
of a real-time I/O communication system (middleware) and
application functionality. We have described a model of an
existing industrial I/O system and implemented a RPC
mechanism between processor boards tailored for the
existing I/O system API in order to enable multiprocessor
execution.

We have shown that, provided that the interaction
between system functionality on the different processors is
kept to a minimum, our multiprocessor system can yield up
to 27,2% more processor time for the application. Other
system functionality, such as high-prioritized system
threads, can on the other hand suffer loss of performance.
For the substation automation system which has been the
target of this work, a distributed multiprocessor system
solution may yield more performance for application
designers.

8. REFERENCES

[1] Rudolf Berrendorf, Heribert C. Burg, Ulrich Detert,
Ruediger Esser, Michael Gerndt, Renate Knecht, "Intel
Paragon XP/S - Architecture, Software Environment,
and Performance", Forschungszentrum Juelich GmbH,
Interner Bericht KFA-ZAM-IB-9409, 1994.

[2] John A. Stankovic, Krithi Ramamritham, Douglas
Niehaus, Marty Humphrey, Gary Wallace, “The Spring
System: Integrated Support for Complex Real-Time
Systems”, The International Journal of Time-Critical
Computing Systems, 16, 223-251, Kluwer Academic
Publishers, Boston, 1999.

[3] Motorola Webpage, e-www.Motorola.com.
[4] David J. Yates, “Connection-level parallelism for

network protocols on shared-memory multiprocessor
servers”, Dissertation at the Department of Computer
Science, University of Massachusetts Amherst, July
1997.

[5] Mats Björkman, “Architectures for High Perfromance
Computing”, Dissertation at the Department of
Computer Systems, Uppsala University, ISSN 0283-
0574, September 1993.

[6] M. Heddes and E. Rutsche “A survey of parallelism in
communication subsystems”, Research Report RZ
2570, IBM Zurich Research Laboratory, 1994.

[7] George Coulouris, Jean Dollimore, Tim Kindberg,
“Distributed Systems, Concepts and Design”, Second
Edition, Addison-Wesley, ISBN 0-201-62433-8, 1994.

[8] Leif Enblom, Lennart Lindh, “Adding Flexibility and
Real-Time Performance by Adapting a Single
Processor Industrial Application to a Multiprocessor
Platform”, Proceedings of the ninth Euromicro
Workshop on Parallel and Distributed Processing,
February 2001.

[9] Stamatis Vassiliadis, Stephan Wong, Sorin Cotofana,
“Network Processors: Issues and Prospectives”,
Proceedings of the 2001 International Conference on
Parallel and Distributed Processing Techniques and
Applications (PDPTA2001), Las Vegas, Nevada, USA,
June 2001.

[10] Maarten Boasson, “Subscription as a Model for the
Architecture of Embedded Systems”, Second
International Conference on Engineering of Complex
Computer Systems, 1996.

[11] Gerardo Pardo-Castellote, Stefaan Sonck Thiebaut,
Mark Hamilton, Henry Choi, Real-Time Innovations,
inc., http://www.rti.com, September2001.

[12] Data Distribution Service for Real-Time Systems,
Request for Proposal, http://www.omg.org,
orbos/2001-10-01, October 2001.

