
IFAC PapersOnLine 50-1 (2017) 6110–6115

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2017.08.2017

© 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

10.1016/j.ifacol.2017.08.2017 2405-8963

Modelling and Control of Big Data
Frameworks �

Alberto Leva ∗ Alessandro Vittorio Papadopoulos ∗∗

∗ DEIB, Politecnico di Milano, Italy (e-mail: alberto.leva@polimi.it)
∗∗ IDT, Mälardalen University, Väster̊as, Sweden (e-mail:

alessandro.papadopoulos@mdh.se)

Abstract We present a model library conceived to design and assess critical components of
big data frameworks, with a control-centric approach. The library adopts the object-oriented
paradigm, using the Modelica language. Continuous-time and algorithmic models can be mixed,
allowing to represent control code with high fidelity, and to reduce the simulation effort to the
minimum required. We discuss the used modelling principles, describe the library, and show
some design examples.

Keywords: Big data; Computing systems; Control-oriented modelling; Object-oriented
modelling and simulation.

1. INTRODUCTION

The advent of cloud computing, and of new generation
communication technologies opened the possibility to new
applications in different fields. Especially, the promise of
the “infinite” capacity of the cloud, provided the basis for
Big Data Applications (BDAs), that are devoted to the
elaboration of massive quantities of data, even in real-time
when combined with data streaming. There is a number of
different fields where BDAs are vital, ranging from cloud
robotics, autonomous vehicles, to energy management in
smart grids.

Independently of the specific application, a correct pro-
visioning of computing resources is important to achieve
the required efficiency. In fact, if too few computational
resources are allocated to a BDA with respect to the
current workload, i.e., the BDA is under-provisioned, the
provided service results in poor performance. On the other
hand, if too many computational resources are allocated
to a BDA, i.e., the BDA is over-provisioned, the provided
service results in good performance, but there is a waste
of computational resources.

Identifying what is the right amount of resources at run-
time, in face of varying environmental conditions is, in
general, not an easy task (Lorido-Botrán et al., 2014;
Papadopoulos et al., 2016). Feedback control solutions
can provide a viable approach to tackle such a problem,
and have been considered in some applications (Ali-Eldin
et al., 2012; Lorido-Botrán et al., 2014). Indeed, several
critical components of Big Data Frameworks (BDFs) are
controllers in nature.

For a control-centric design and assessment of such com-
ponents, models are however required. These have to rep-
resent the dynamic behaviour of the application, and the

� This work was partially supported by the Swedish Foundation for
Strategic Research under the project “Future factories in the cloud
(FiC)” with grant number GMT14-0032.

possible disturbances acting on it. Models also need to
expose inputs and outputs suitable for the implementation
of the devised solutions in the BDF at hand. Moreover,
they must suit a variety of needs, from the optimisation of
a single component, where a correct representation of the
boundary conditions presented by the rest of the frame-
work is necessary, up possibly to the design of an entire
framework. Finally, as the assessment of a solution may
require a huge number of simulation runs, computational
efficiency is a must.

In this paper, building on previous research (Arcelli
et al., 2016; Baresi et al., 2016), we propose a modelling
paradigm to fulfil the needs just sketched from a con-
trol theoretical perspective. In particular, we propose a
fluid approximations of BDF components, and a modular
approach for their combination. We finally present and
discuss a couple of application examples, to illustrate how
the adopted modelling choices lead to an approach that
can be very beneficial to tackle the addressed problems.

The paper is organised as follows. Section 2 presents state-
of-the-art Big Data frameworks and technologies, the mod-
elling paradigm proposed in this paper. Section 3 illus-
trates representative models for BDAs. Section 4 shows
two application examples, referring to an existing frame-
work, and concentrating in particular on control aspects.
Finally, Section 5 draws some conclusions, and outlines
future research.

2. BIG DATA APPLICATIONS

The amount of data produced by mobile phones, wear-
ables, sensors and computers brings novel challenges in
data storage and analysis. A number of different big data
technologies have been developed to cope with such an
increasing demand, such as Hadoop, Hbase or CouchDB.
Occasionally, big data technologies are used to imple-
ment data-mining techniques, but more often the they are
used for data processing in support of the data-mining

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 6299

Modelling and Control of Big Data
Frameworks �

Alberto Leva ∗ Alessandro Vittorio Papadopoulos ∗∗

∗ DEIB, Politecnico di Milano, Italy (e-mail: alberto.leva@polimi.it)
∗∗ IDT, Mälardalen University, Väster̊as, Sweden (e-mail:

alessandro.papadopoulos@mdh.se)

Abstract We present a model library conceived to design and assess critical components of
big data frameworks, with a control-centric approach. The library adopts the object-oriented
paradigm, using the Modelica language. Continuous-time and algorithmic models can be mixed,
allowing to represent control code with high fidelity, and to reduce the simulation effort to the
minimum required. We discuss the used modelling principles, describe the library, and show
some design examples.

Keywords: Big data; Computing systems; Control-oriented modelling; Object-oriented
modelling and simulation.

1. INTRODUCTION

The advent of cloud computing, and of new generation
communication technologies opened the possibility to new
applications in different fields. Especially, the promise of
the “infinite” capacity of the cloud, provided the basis for
Big Data Applications (BDAs), that are devoted to the
elaboration of massive quantities of data, even in real-time
when combined with data streaming. There is a number of
different fields where BDAs are vital, ranging from cloud
robotics, autonomous vehicles, to energy management in
smart grids.

Independently of the specific application, a correct pro-
visioning of computing resources is important to achieve
the required efficiency. In fact, if too few computational
resources are allocated to a BDA with respect to the
current workload, i.e., the BDA is under-provisioned, the
provided service results in poor performance. On the other
hand, if too many computational resources are allocated
to a BDA, i.e., the BDA is over-provisioned, the provided
service results in good performance, but there is a waste
of computational resources.

Identifying what is the right amount of resources at run-
time, in face of varying environmental conditions is, in
general, not an easy task (Lorido-Botrán et al., 2014;
Papadopoulos et al., 2016). Feedback control solutions
can provide a viable approach to tackle such a problem,
and have been considered in some applications (Ali-Eldin
et al., 2012; Lorido-Botrán et al., 2014). Indeed, several
critical components of Big Data Frameworks (BDFs) are
controllers in nature.

For a control-centric design and assessment of such com-
ponents, models are however required. These have to rep-
resent the dynamic behaviour of the application, and the

� This work was partially supported by the Swedish Foundation for
Strategic Research under the project “Future factories in the cloud
(FiC)” with grant number GMT14-0032.

possible disturbances acting on it. Models also need to
expose inputs and outputs suitable for the implementation
of the devised solutions in the BDF at hand. Moreover,
they must suit a variety of needs, from the optimisation of
a single component, where a correct representation of the
boundary conditions presented by the rest of the frame-
work is necessary, up possibly to the design of an entire
framework. Finally, as the assessment of a solution may
require a huge number of simulation runs, computational
efficiency is a must.

In this paper, building on previous research (Arcelli
et al., 2016; Baresi et al., 2016), we propose a modelling
paradigm to fulfil the needs just sketched from a con-
trol theoretical perspective. In particular, we propose a
fluid approximations of BDF components, and a modular
approach for their combination. We finally present and
discuss a couple of application examples, to illustrate how
the adopted modelling choices lead to an approach that
can be very beneficial to tackle the addressed problems.

The paper is organised as follows. Section 2 presents state-
of-the-art Big Data frameworks and technologies, the mod-
elling paradigm proposed in this paper. Section 3 illus-
trates representative models for BDAs. Section 4 shows
two application examples, referring to an existing frame-
work, and concentrating in particular on control aspects.
Finally, Section 5 draws some conclusions, and outlines
future research.

2. BIG DATA APPLICATIONS

The amount of data produced by mobile phones, wear-
ables, sensors and computers brings novel challenges in
data storage and analysis. A number of different big data
technologies have been developed to cope with such an
increasing demand, such as Hadoop, Hbase or CouchDB.
Occasionally, big data technologies are used to imple-
ment data-mining techniques, but more often the they are
used for data processing in support of the data-mining

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 6299

Modelling and Control of Big Data
Frameworks �

Alberto Leva ∗ Alessandro Vittorio Papadopoulos ∗∗

∗ DEIB, Politecnico di Milano, Italy (e-mail: alberto.leva@polimi.it)
∗∗ IDT, Mälardalen University, Väster̊as, Sweden (e-mail:

alessandro.papadopoulos@mdh.se)

Abstract We present a model library conceived to design and assess critical components of
big data frameworks, with a control-centric approach. The library adopts the object-oriented
paradigm, using the Modelica language. Continuous-time and algorithmic models can be mixed,
allowing to represent control code with high fidelity, and to reduce the simulation effort to the
minimum required. We discuss the used modelling principles, describe the library, and show
some design examples.

Keywords: Big data; Computing systems; Control-oriented modelling; Object-oriented
modelling and simulation.

1. INTRODUCTION

The advent of cloud computing, and of new generation
communication technologies opened the possibility to new
applications in different fields. Especially, the promise of
the “infinite” capacity of the cloud, provided the basis for
Big Data Applications (BDAs), that are devoted to the
elaboration of massive quantities of data, even in real-time
when combined with data streaming. There is a number of
different fields where BDAs are vital, ranging from cloud
robotics, autonomous vehicles, to energy management in
smart grids.

Independently of the specific application, a correct pro-
visioning of computing resources is important to achieve
the required efficiency. In fact, if too few computational
resources are allocated to a BDA with respect to the
current workload, i.e., the BDA is under-provisioned, the
provided service results in poor performance. On the other
hand, if too many computational resources are allocated
to a BDA, i.e., the BDA is over-provisioned, the provided
service results in good performance, but there is a waste
of computational resources.

Identifying what is the right amount of resources at run-
time, in face of varying environmental conditions is, in
general, not an easy task (Lorido-Botrán et al., 2014;
Papadopoulos et al., 2016). Feedback control solutions
can provide a viable approach to tackle such a problem,
and have been considered in some applications (Ali-Eldin
et al., 2012; Lorido-Botrán et al., 2014). Indeed, several
critical components of Big Data Frameworks (BDFs) are
controllers in nature.

For a control-centric design and assessment of such com-
ponents, models are however required. These have to rep-
resent the dynamic behaviour of the application, and the

� This work was partially supported by the Swedish Foundation for
Strategic Research under the project “Future factories in the cloud
(FiC)” with grant number GMT14-0032.

possible disturbances acting on it. Models also need to
expose inputs and outputs suitable for the implementation
of the devised solutions in the BDF at hand. Moreover,
they must suit a variety of needs, from the optimisation of
a single component, where a correct representation of the
boundary conditions presented by the rest of the frame-
work is necessary, up possibly to the design of an entire
framework. Finally, as the assessment of a solution may
require a huge number of simulation runs, computational
efficiency is a must.

In this paper, building on previous research (Arcelli
et al., 2016; Baresi et al., 2016), we propose a modelling
paradigm to fulfil the needs just sketched from a con-
trol theoretical perspective. In particular, we propose a
fluid approximations of BDF components, and a modular
approach for their combination. We finally present and
discuss a couple of application examples, to illustrate how
the adopted modelling choices lead to an approach that
can be very beneficial to tackle the addressed problems.

The paper is organised as follows. Section 2 presents state-
of-the-art Big Data frameworks and technologies, the mod-
elling paradigm proposed in this paper. Section 3 illus-
trates representative models for BDAs. Section 4 shows
two application examples, referring to an existing frame-
work, and concentrating in particular on control aspects.
Finally, Section 5 draws some conclusions, and outlines
future research.

2. BIG DATA APPLICATIONS

The amount of data produced by mobile phones, wear-
ables, sensors and computers brings novel challenges in
data storage and analysis. A number of different big data
technologies have been developed to cope with such an
increasing demand, such as Hadoop, Hbase or CouchDB.
Occasionally, big data technologies are used to imple-
ment data-mining techniques, but more often the they are
used for data processing in support of the data-mining

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 6299

Modelling and Control of Big Data
Frameworks �

Alberto Leva ∗ Alessandro Vittorio Papadopoulos ∗∗

∗ DEIB, Politecnico di Milano, Italy (e-mail: alberto.leva@polimi.it)
∗∗ IDT, Mälardalen University, Väster̊as, Sweden (e-mail:

alessandro.papadopoulos@mdh.se)

Abstract We present a model library conceived to design and assess critical components of
big data frameworks, with a control-centric approach. The library adopts the object-oriented
paradigm, using the Modelica language. Continuous-time and algorithmic models can be mixed,
allowing to represent control code with high fidelity, and to reduce the simulation effort to the
minimum required. We discuss the used modelling principles, describe the library, and show
some design examples.

Keywords: Big data; Computing systems; Control-oriented modelling; Object-oriented
modelling and simulation.

1. INTRODUCTION

The advent of cloud computing, and of new generation
communication technologies opened the possibility to new
applications in different fields. Especially, the promise of
the “infinite” capacity of the cloud, provided the basis for
Big Data Applications (BDAs), that are devoted to the
elaboration of massive quantities of data, even in real-time
when combined with data streaming. There is a number of
different fields where BDAs are vital, ranging from cloud
robotics, autonomous vehicles, to energy management in
smart grids.

Independently of the specific application, a correct pro-
visioning of computing resources is important to achieve
the required efficiency. In fact, if too few computational
resources are allocated to a BDA with respect to the
current workload, i.e., the BDA is under-provisioned, the
provided service results in poor performance. On the other
hand, if too many computational resources are allocated
to a BDA, i.e., the BDA is over-provisioned, the provided
service results in good performance, but there is a waste
of computational resources.

Identifying what is the right amount of resources at run-
time, in face of varying environmental conditions is, in
general, not an easy task (Lorido-Botrán et al., 2014;
Papadopoulos et al., 2016). Feedback control solutions
can provide a viable approach to tackle such a problem,
and have been considered in some applications (Ali-Eldin
et al., 2012; Lorido-Botrán et al., 2014). Indeed, several
critical components of Big Data Frameworks (BDFs) are
controllers in nature.

For a control-centric design and assessment of such com-
ponents, models are however required. These have to rep-
resent the dynamic behaviour of the application, and the

� This work was partially supported by the Swedish Foundation for
Strategic Research under the project “Future factories in the cloud
(FiC)” with grant number GMT14-0032.

possible disturbances acting on it. Models also need to
expose inputs and outputs suitable for the implementation
of the devised solutions in the BDF at hand. Moreover,
they must suit a variety of needs, from the optimisation of
a single component, where a correct representation of the
boundary conditions presented by the rest of the frame-
work is necessary, up possibly to the design of an entire
framework. Finally, as the assessment of a solution may
require a huge number of simulation runs, computational
efficiency is a must.

In this paper, building on previous research (Arcelli
et al., 2016; Baresi et al., 2016), we propose a modelling
paradigm to fulfil the needs just sketched from a con-
trol theoretical perspective. In particular, we propose a
fluid approximations of BDF components, and a modular
approach for their combination. We finally present and
discuss a couple of application examples, to illustrate how
the adopted modelling choices lead to an approach that
can be very beneficial to tackle the addressed problems.

The paper is organised as follows. Section 2 presents state-
of-the-art Big Data frameworks and technologies, the mod-
elling paradigm proposed in this paper. Section 3 illus-
trates representative models for BDAs. Section 4 shows
two application examples, referring to an existing frame-
work, and concentrating in particular on control aspects.
Finally, Section 5 draws some conclusions, and outlines
future research.

2. BIG DATA APPLICATIONS

The amount of data produced by mobile phones, wear-
ables, sensors and computers brings novel challenges in
data storage and analysis. A number of different big data
technologies have been developed to cope with such an
increasing demand, such as Hadoop, Hbase or CouchDB.
Occasionally, big data technologies are used to imple-
ment data-mining techniques, but more often the they are
used for data processing in support of the data-mining

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 6299

techniques and other data-science activities. MapReduce
is a popular programming model and execution environ-
ment for BDAs (Dean and Ghemawat, 2008), and there
have been some pioneering works on performance mod-
eling (Ganapathi et al., 2010; Verma et al., 2011) and
control (Cardosa et al., 2011; Berekmeri et al., 2014; Cerf
et al., 2016). Spark is an alternative to MapReduce that
generalises the types of data flows supported, overcoming
the limitation of acyclic data flow models, and extending
it with a data-sharing abstraction called “resilient dis-
tributed datasets,” or RDDs (Zaharia et al., 2010). From a
control theoretical viewpoint, however, Spark, MapReduce
and similar technologies can be described in analogous
ways without loss of generality.

In fact, when designing a controller for such kind of sys-
tems, one is mostly interested in models able to capture
the system dynamics, that might come, for example, from
queuing theory (Harchol-Balter, 2013), or fluid approxima-
tions of discrete-time queuing models (Wang et al., 1996).
More specifically, fluid approximations are particularly
useful to capture the average behaviour of a steady-state
queuing system.

In general, there are many ways to describe a BDA
to define and structure a BDF, but some elements are
invariantly present:

• a Direct Acyclic Graph (DAG), where nodes represent
operations on the data, while the edges represent the
data transfers, irrespectively of which and how hard-
ware/software entities carry out those operations;

• a bounded set of available resources, from which the
entities just mentioned are to be taken and allotted
to the operations;

• one or more managing entities, taking care of allotting
resources so as to attain certain objectives—most
frequently, a deadline for the application to complete.

In the proposed paradigm the BDA is a control system,
where the managing entities form the controller, and the
rest is the “process”. An important difference with respect
to control systems in other domains, however, is that
the controller does not only manipulate process inputs to
govern process outputs, for example allotting more CPU
time to have a task progress at a desired rate, but at
certain instants modifies the structure of the process, for
example deciding how many processors will be allotted to
process a set of data in parallel.

To account for this, we notice that BDAs evolve following a
well defined and physics-induced pattern. The operations
for which data is ready are started and produce output
data, which will make other operations ready to start, and
so on until everything completes. No matter which is the
management policy, thus, the execution of the application
is substantially driven by the availability of data. As
such, we compose the model of a BDA by assembling
the elements described below in their general form. The
detailed implementation of these elements is specific of the
BDF to be described (or designed).

Operations, possibly grouped into stages, are modelled as
a set of queues (for example an input, a processing and an
output queue) plus a Finite State Machine (FSM). Queues
can be described in the continuous time as integrators

with a lower saturation to zero. The FSM accounts for
the phases of the operation. For example, a certain FSM
may fire up the processing tasks only when the input
queue finished receiving data, while another may start a
processing task as soon as there is a certain amount of
data in the input queue, and so on. Observe that the
difference just shown pertains more to control than to
“process physics”, as the latter is just the evolution of
the integrators. This shows that in the domain addressed
herein, the separation between process and control is often
not obvious. In general, however, the FSM dictates how
the derivatives of the queue occupations are computed,
and this principle allows for a straightforward model
structuring.

Resource allocators act before an operation is started, to
decide the maximum amount of resources to be allotted,
and set the objectives for the resource controllers. These
are modelled as event-driven systems.

It is important to notice that the adopted view makes the
BDF, the BDA and the management entities a unity from
the modelling standpoint, thereby substantiating – and in
the hope of the authors, fostering – the application of the
process/control co-design paradigm.

3. MODELS OF BIG DATA COMPONENTS

In this section we first present a few models, so as to ex-
emplify and explain the concepts introduced in Section 2.
The presented models refer to the Spark BDF 1 , whence
the specific terminology adopted, but the ideas presented
herein are general. We end the section with a sketch of
implementation.

3.1 Stage and task

A stage can be viewed as a compound operation (in Spark
operations are grouped into stages based on data locality).
A stage is composed of parallel tasks, each one run by
an executor, that can be allotted a time-varying number
of cores. We can view the task as the cascade of three
queues: an input, a processing, and an output one. The
continuous-time part of the model can be described as:


ṅI(t) = rin(t)− rIP (t)

ṅP (t) = rIP (t)− rPO(t)

ṅO(t) = rPO(t)fr(t)− rout(t)

(1)

where nI , nP , and nO are the input, processing and output
queue lengths, rin is the exogenous input rate of the
incoming data flow, rIP and rPO are the transfer rates
from the input to processing and from the processing
to the output queues, and rout is the transfer rate of
the processed requests. Apparently, all the rates, apart
from rin can be controlled by allocating or deallocating
resources to the different processing stages. Given the
addressed context we assume that a deadline can be
missed owing to incorrectly allocated resources, but no
data can be lost due to not fitting in a finite-length
queue. Accordingly, we just care about the occupation
of the queue, not about individual jobs in it, hence for
the control-oriented purpose of this work, the particular
service policy (e.g., FIFO) is irrelevant. Finally, fr is the

1 http://spark.apache.org/

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

6300

	 Alberto Leva et al. / IFAC PapersOnLine 50-1 (2017) 6110–6115	 6111

techniques and other data-science activities. MapReduce
is a popular programming model and execution environ-
ment for BDAs (Dean and Ghemawat, 2008), and there
have been some pioneering works on performance mod-
eling (Ganapathi et al., 2010; Verma et al., 2011) and
control (Cardosa et al., 2011; Berekmeri et al., 2014; Cerf
et al., 2016). Spark is an alternative to MapReduce that
generalises the types of data flows supported, overcoming
the limitation of acyclic data flow models, and extending
it with a data-sharing abstraction called “resilient dis-
tributed datasets,” or RDDs (Zaharia et al., 2010). From a
control theoretical viewpoint, however, Spark, MapReduce
and similar technologies can be described in analogous
ways without loss of generality.

In fact, when designing a controller for such kind of sys-
tems, one is mostly interested in models able to capture
the system dynamics, that might come, for example, from
queuing theory (Harchol-Balter, 2013), or fluid approxima-
tions of discrete-time queuing models (Wang et al., 1996).
More specifically, fluid approximations are particularly
useful to capture the average behaviour of a steady-state
queuing system.

In general, there are many ways to describe a BDA
to define and structure a BDF, but some elements are
invariantly present:

• a Direct Acyclic Graph (DAG), where nodes represent
operations on the data, while the edges represent the
data transfers, irrespectively of which and how hard-
ware/software entities carry out those operations;

• a bounded set of available resources, from which the
entities just mentioned are to be taken and allotted
to the operations;

• one or more managing entities, taking care of allotting
resources so as to attain certain objectives—most
frequently, a deadline for the application to complete.

In the proposed paradigm the BDA is a control system,
where the managing entities form the controller, and the
rest is the “process”. An important difference with respect
to control systems in other domains, however, is that
the controller does not only manipulate process inputs to
govern process outputs, for example allotting more CPU
time to have a task progress at a desired rate, but at
certain instants modifies the structure of the process, for
example deciding how many processors will be allotted to
process a set of data in parallel.

To account for this, we notice that BDAs evolve following a
well defined and physics-induced pattern. The operations
for which data is ready are started and produce output
data, which will make other operations ready to start, and
so on until everything completes. No matter which is the
management policy, thus, the execution of the application
is substantially driven by the availability of data. As
such, we compose the model of a BDA by assembling
the elements described below in their general form. The
detailed implementation of these elements is specific of the
BDF to be described (or designed).

Operations, possibly grouped into stages, are modelled as
a set of queues (for example an input, a processing and an
output queue) plus a Finite State Machine (FSM). Queues
can be described in the continuous time as integrators

with a lower saturation to zero. The FSM accounts for
the phases of the operation. For example, a certain FSM
may fire up the processing tasks only when the input
queue finished receiving data, while another may start a
processing task as soon as there is a certain amount of
data in the input queue, and so on. Observe that the
difference just shown pertains more to control than to
“process physics”, as the latter is just the evolution of
the integrators. This shows that in the domain addressed
herein, the separation between process and control is often
not obvious. In general, however, the FSM dictates how
the derivatives of the queue occupations are computed,
and this principle allows for a straightforward model
structuring.

Resource allocators act before an operation is started, to
decide the maximum amount of resources to be allotted,
and set the objectives for the resource controllers. These
are modelled as event-driven systems.

It is important to notice that the adopted view makes the
BDF, the BDA and the management entities a unity from
the modelling standpoint, thereby substantiating – and in
the hope of the authors, fostering – the application of the
process/control co-design paradigm.

3. MODELS OF BIG DATA COMPONENTS

In this section we first present a few models, so as to ex-
emplify and explain the concepts introduced in Section 2.
The presented models refer to the Spark BDF 1 , whence
the specific terminology adopted, but the ideas presented
herein are general. We end the section with a sketch of
implementation.

3.1 Stage and task

A stage can be viewed as a compound operation (in Spark
operations are grouped into stages based on data locality).
A stage is composed of parallel tasks, each one run by
an executor, that can be allotted a time-varying number
of cores. We can view the task as the cascade of three
queues: an input, a processing, and an output one. The
continuous-time part of the model can be described as:


ṅI(t) = rin(t)− rIP (t)

ṅP (t) = rIP (t)− rPO(t)

ṅO(t) = rPO(t)fr(t)− rout(t)

(1)

where nI , nP , and nO are the input, processing and output
queue lengths, rin is the exogenous input rate of the
incoming data flow, rIP and rPO are the transfer rates
from the input to processing and from the processing
to the output queues, and rout is the transfer rate of
the processed requests. Apparently, all the rates, apart
from rin can be controlled by allocating or deallocating
resources to the different processing stages. Given the
addressed context we assume that a deadline can be
missed owing to incorrectly allocated resources, but no
data can be lost due to not fitting in a finite-length
queue. Accordingly, we just care about the occupation
of the queue, not about individual jobs in it, hence for
the control-oriented purpose of this work, the particular
service policy (e.g., FIFO) is irrelevant. Finally, fr is the

1 http://spark.apache.org/

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

6300

6112	 Alberto Leva et al. / IFAC PapersOnLine 50-1 (2017) 6110–6115

data reduction factor, i.e., how smaller the output data set
is with respect to the input one; notice that 0 < fr < 1
when the data is reduced, but it can be even equal to or
larger than 1 when the task is not able to filter any data or,
when the data need to be replicated in order to be filtered.
The data reduction factor can be considered a parameter,
set to conservative minimum or maximum values to carry
out worst-case studies, or taken as a random variable for
long-term simulations to capture the system’s behaviour
in the face of statistically characterised loads.

Letting σ being a switching signal describing the status of
the task (that can be in one of the states represented in
Figure 1), the rates are computed as follows:

rIP (t) =

{
Rr, if σ = R & nI(t) ≥ 0 & c(t) > 0

0, otherwise

rPO(t) =

{
Rp · c(t), if σ = P & nP (t) ≥ 0

0, otherwise

rout(t) =

{
Rw, if σ = W & nO(t) ≥ 0 & c(t) > 0

0, otherwise

(2)

where c is the number of cores allotted to the stage, Rr

and Rw are parameters representing the read and write
processing rates, and Rp represents the processing rate per
core. Practically speaking, the processing rates depend on
availability of computational capacity (whence no core are
present the rates are zero), the availability of elements in
the queue, and the state σ of the BDA.

R

D

O

C

S

W

P

↑ON

tσ=D > TD

nI ≤ 0

nP ≤ 0

nO ≤ 0 & TS > 0TS = 0

tσ=S > TS

↑CLR

Figure 1. The FSM in the task model.

The status σ can take the values in Σ = {O,D,R,P,
W, S,C}, i.e., Off, Deserialise (basically, load the code
from disk), Read data, Process, Write data, Serialise
result (to disk, if required), and Cleanup. The evolution
of σ is governed by the FSM shown in Figure 1, where
parameters TD and TS are the deserialising and serialising
time (setting TS to zero means that serialising data to disk
is not required). The input ON is a logic signal used by a
managing entity to trigger the task execution, while CLR
indicates that cleanup is completed; CLR is an input as
well, since the task may want to generate it autonomously,
for example after a fixed time since the FSM entered state
C, but the same signal may come form the exterior if more
than one task needs terminating before the stage ends.

The FSM, coupled to (1)–(2), models the task as a
switched linear system—notice that the way derivatives

are computed allows to not introduce integrator saturation
in the equations.

Based on this, a stage is readily modelled as a vector
of task models, of dimension equal to the number nE of
executors allotted at the stage beginning by the managing
entity. In this case the ON signal is distributed to all the
tasks, and the CLR signal for all of them is obtained as
the logical and operator of all the tσ=S < TS conditions
(i.e., the last task entering the C state triggers the cleanup
and the end of the stage).

Finally, a vector input η ∈ RnE of “executor efficiencies”
can be introduced. Its components lie in the [0, 1] range,
with a unity nominal value, and reducing them is a
means to subject the system, for example, to a processing
speed reduction due to a clock frequency decrease, in turn
possibly caused – among a number of reasons – by thermal
issues.

3.2 Stage controller

During the execution of a stage, a modulating controller
can be used to ensure that some specifications are met.
Specifically, we complemented our description of Spark
with a stage-level controller composed of a discrete-time PI
per executor, that decides how many cores to allot based
on the measured progress in processing the data, and on
the corresponding set point—see Section 3.3 later on for
the set point generation. Since there is no inter-executor
communication, we have to deal with a decentralised
system, and thus we reason at the single executor level.

Denote by η(t) the efficiency of the executor at hand, and
observe that the controller has to operate only during
the processing phase, i.e., when σ = P. In this case,
recalling (1)–(2) and the FSM of Figure 1, the controlled
system, with input c and output nP , is

ṅP (t) = −Rpη(t)c(t). (3)

This system is time-varying and has type 1. Hence a PI
controller allows to asymptotically track a ramp set point
with zero steady state error, which in the following we will
show to be what is needed for this type of applications.
However, we must guarantee stability accounting for the
time-varying nature of (2). Coupling this system with the
fixed-parameter PI{

ẋR(t) = kI (n
◦
P (t)− nP (t))

c(t) = xR(t) + kP (n◦
P (t)− nP (t))

(4)

where n◦
P is the set point for nP , produces the lin-

ear, time-varying closed-loop system with state x(t) =
[nP (t) xR(t)]

� and state equation

ẋ(t) = A(t)x(t) + b(t)n◦
P (t) (5)

where

A(t) =

[
−Rpη(t)kP Rpη(t)

−kI 0

]
, b(t) =

[
Rpη(t)kP

kI

]
. (6)

Assuming that ηmin ≤ η(t) ≤ 1, where ηmin is a minimum
efficiency below which the executor simply has to be shut
off together with its controller, it is possible to state the
following theorem.

Theorem 1. A sufficient condition for guaranteeing that
the autonomous system ẋ(t) = A(t)x(t), with matrix

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

6301

A(t) as per (6), has the origin of the state space as
a globally asymptotically stable equilibrium, is that the
pair of positive parameters (kP , kI) satisfies the following
inequality:

kI ≤ Rpηmin

ηmin + 1
k2P (7)

Proof. The matrix A(t) can be written as α(t)A1 + (1−
α(t))A2 by setting

A1 =

[
−RpηminkP R1ηmin

−kI 0

]
, A2 =

[
−RpkP R1

−kI 0

]
(8)

where 0 ≤ α(t) ≤ 1. It is easy to prove that that both A1

and A2 are Hurwitz if kP > 0 and kI > 0, hence a sufficient
condition for the origin to be a globally asympotically
stable equilibrium is that A1 and A2 have a common
Lyapunov function.

Theorem 3.1 in Shorten and Narendra (2002) states that
A1 and A2 have a common (quadratic) Lyapunov function
if and only if A1A2 and A1A

−1
2 do not have real negative

eigenvalues. The characteristic polynomials of A1A2 and
A1A

−1
2 are respectively

π1(s) =s2 +Rp

(
kI(ηmin + 1)− k2PRpηmin

)
s+

+ ηmink
2
IR

2
p,

π2(s) =s2 − (1 + ηmin)s+ ηmin.

(9)

Polynomial π1(s) has no roots with negative real part if
and only if

kI(ηmin + 1)− k2PR1ηmin ≤ 0, (10)

while π2(s) evidently has two roots with positive real part.

Therefore, a sufficient condition for the hypothesis to hold
true, is (7). �

Given this condition, the tuning of the PI is quite straight-
forward with a number of different methods, hence we do
not delve here into further details if not for a short remark
later on. We also omit considerations on the quantised
nature of the control signal, see e.g. (Maggio et al., 2013,
Section IV-C) for a possible way to address this problem
in the case of core allocation.

3.3 Stage set point generator

Before starting a stage, the set points for the PI controllers
(assumed here all equal for simplicity) need generating.
The simple solution shown here is to start from a deadline
TDL for the stage, measure the initial occupation of each
processing queue (nP0 to name it, as we refer to a single
controller for the same reason as above) and build a
trapezoid n◦

P profile as

n◦
P (t) = max

(
nP0 −

nP0

TDL(1− β)− tP0
tP , 0

)
, (11)

where tP is the time spent in the processing phase, and
β ∈ [0, 1) dictates how earlier with respect to the deadline
the controlled task is expected to terminate. In the first
place β has to account for the expected duration of the
writing phase, but the more disturbances are expected,
the higher β has to be; tP0 and nP0 are measured at
the beginning of the processing phase. The set point
generation is illustrated graphically in Figure 2.

time

σ

stage begins

D R P

data processing starts

tP

n◦
P nP0

W

all data processed

0 TDLTDL(1− β)tP0

0 TDL(1− β)− tP0

stage ends

Figure 2. Set point generation as per (11).

The deadline for a stage, as well as possibly its β, is set
by higher levels in the control hierarchy, not described in
this paper. The only precaution to take is that the settling
time of the PI loop, as computed with the tuned controller,
be smaller then the expected duration of the processing
phase. This is to guarantee that the controlled variable
settles on the set point ramp well before the termination of
that phase. The required duration estimates can come e.g.
from profiling or historical data; one could also consider an
adaptive controller, although we do not discuss the matter
in this paper.

3.4 Implementation

We realised the presented models – and others – in
the form of a Modelica library. We chose Modelica
for two main reasons. First, the language allows to
mix continuous-time, equation-based and event-driven,
algorithm-based modelling. This permits to describe sys-
tem and control in the continuous time, to exploit the
efficiency of variable-step solvers, or to model the latter as
code replica, to assess the devised control algorithms. Sec-
ond, the equation-based, object-oriented paradigm behind
Modelica is inherently multi-physics. To give just one ex-
ample of the perspectives this opens, the models presented
here could be seamlessly coupled to thermal ones, so that
the available computational speed be realistically related
to the heating of processors.

xqteff

eON

rateIn

Nx
stageDL

END

rateOut

Stage

Stage SPgen

StageLCQ

Figure 3. Stage with modulating control – Modelica dia-
gram.

Modelica tools – some of which are free software – also
allow to assemble models with a user-friendly visual inter-
face. For example, combining the models just described,

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

6302

	 Alberto Leva et al. / IFAC PapersOnLine 50-1 (2017) 6110–6115	 6113

A(t) as per (6), has the origin of the state space as
a globally asymptotically stable equilibrium, is that the
pair of positive parameters (kP , kI) satisfies the following
inequality:

kI ≤ Rpηmin

ηmin + 1
k2P (7)

Proof. The matrix A(t) can be written as α(t)A1 + (1−
α(t))A2 by setting

A1 =

[
−RpηminkP R1ηmin

−kI 0

]
, A2 =

[
−RpkP R1

−kI 0

]
(8)

where 0 ≤ α(t) ≤ 1. It is easy to prove that that both A1

and A2 are Hurwitz if kP > 0 and kI > 0, hence a sufficient
condition for the origin to be a globally asympotically
stable equilibrium is that A1 and A2 have a common
Lyapunov function.

Theorem 3.1 in Shorten and Narendra (2002) states that
A1 and A2 have a common (quadratic) Lyapunov function
if and only if A1A2 and A1A

−1
2 do not have real negative

eigenvalues. The characteristic polynomials of A1A2 and
A1A

−1
2 are respectively

π1(s) =s2 +Rp

(
kI(ηmin + 1)− k2PRpηmin

)
s+

+ ηmink
2
IR

2
p,

π2(s) =s2 − (1 + ηmin)s+ ηmin.

(9)

Polynomial π1(s) has no roots with negative real part if
and only if

kI(ηmin + 1)− k2PR1ηmin ≤ 0, (10)

while π2(s) evidently has two roots with positive real part.

Therefore, a sufficient condition for the hypothesis to hold
true, is (7). �

Given this condition, the tuning of the PI is quite straight-
forward with a number of different methods, hence we do
not delve here into further details if not for a short remark
later on. We also omit considerations on the quantised
nature of the control signal, see e.g. (Maggio et al., 2013,
Section IV-C) for a possible way to address this problem
in the case of core allocation.

3.3 Stage set point generator

Before starting a stage, the set points for the PI controllers
(assumed here all equal for simplicity) need generating.
The simple solution shown here is to start from a deadline
TDL for the stage, measure the initial occupation of each
processing queue (nP0 to name it, as we refer to a single
controller for the same reason as above) and build a
trapezoid n◦

P profile as

n◦
P (t) = max

(
nP0 −

nP0

TDL(1− β)− tP0
tP , 0

)
, (11)

where tP is the time spent in the processing phase, and
β ∈ [0, 1) dictates how earlier with respect to the deadline
the controlled task is expected to terminate. In the first
place β has to account for the expected duration of the
writing phase, but the more disturbances are expected,
the higher β has to be; tP0 and nP0 are measured at
the beginning of the processing phase. The set point
generation is illustrated graphically in Figure 2.

time

σ

stage begins

D R P

data processing starts

tP

n◦
P nP0

W

all data processed

0 TDLTDL(1− β)tP0

0 TDL(1− β)− tP0

stage ends

Figure 2. Set point generation as per (11).

The deadline for a stage, as well as possibly its β, is set
by higher levels in the control hierarchy, not described in
this paper. The only precaution to take is that the settling
time of the PI loop, as computed with the tuned controller,
be smaller then the expected duration of the processing
phase. This is to guarantee that the controlled variable
settles on the set point ramp well before the termination of
that phase. The required duration estimates can come e.g.
from profiling or historical data; one could also consider an
adaptive controller, although we do not discuss the matter
in this paper.

3.4 Implementation

We realised the presented models – and others – in
the form of a Modelica library. We chose Modelica
for two main reasons. First, the language allows to
mix continuous-time, equation-based and event-driven,
algorithm-based modelling. This permits to describe sys-
tem and control in the continuous time, to exploit the
efficiency of variable-step solvers, or to model the latter as
code replica, to assess the devised control algorithms. Sec-
ond, the equation-based, object-oriented paradigm behind
Modelica is inherently multi-physics. To give just one ex-
ample of the perspectives this opens, the models presented
here could be seamlessly coupled to thermal ones, so that
the available computational speed be realistically related
to the heating of processors.

xqteff

eON

rateIn

Nx
stageDL

END

rateOut

Stage

Stage SPgen

StageLCQ

Figure 3. Stage with modulating control – Modelica dia-
gram.

Modelica tools – some of which are free software – also
allow to assemble models with a user-friendly visual inter-
face. For example, combining the models just described,

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

6302

6114	 Alberto Leva et al. / IFAC PapersOnLine 50-1 (2017) 6110–6115

the Modelica scheme for a stage endowed with its modu-
lating controller takes the aspect shown in Figure 3.

4. SIMULATION EXAMPLES

4.1 Stage-level control

In this example we show a single stage endowed with
its modulating control. The simple Modelica scheme is in
Figure 4, where the Stage block is the icon for the internal
representation in Figure 3.

if time > 1 and time < 2 then 5000 else 0

DataRateIN

3

Executors

time > 10

StageON

{if time < 40 or time > 50 then 1 else 0.3, 0.7 + 0.25 * sin(time / 5), 0.95, 1}

efficiencies

90

StageDL

Stage
CtrlQ

Figure 4. Simulation example 1 – Modelica diagram.

0

500

1,000

1,500

n
I
[M

jo
b
s]

0

500

1,000

1,500

n
P

[M
jo
b
s]

0

500

1,000

n
O

[M
jo
b
s]

0.4

0.6

0.8

1

η
[#

]

0

2

4

6

8

c
[c
o
re
s]

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

O
D
R
P
W
S
C

time [s]

st
a
tu

s

x1 x2 x3

Figure 5. Simulation example 1 – results: queue lengths,
executor efficiencies, allotted cores, and traversed sta-
tus values.

Figure 5 shows the simulation results for a stage deadline
of 90s and an activation instant at 10s, allotting the stage
three parallel executors (x1 to x3). From top to bottom,
the six plots report the length of the input, processing and
output queues, the time-varying efficiencies of the three

executors, the cores allotted to them, and the status values
traversed by them till the completion of the stage.

4.2 A complete application

We now show a second example, in which a larger case
is treated. The diagram of Figure 6 depicts the applica-
tion. The scheme is composed of Stage blocks (already
described) plus Shuffle ones, that distribute – possibly with
duplications if needed – the output of upstream stages to
the input of downstream ones.

S1
rin

S2.1 S2.2

S2.3

S3

S4.1

S4.2

S5.1

S5.2

S5.3

S6
rout

Figure 6. Simulation example 2 – scheme: the coloured
blocks indicate the stages, the circles with the crossed
arrows indicate the shuffle operations.

Figure 7 shows a synthesis of the results, reporting the
states traversed by each stage along the evolution of the
application; the colours of plots match those of the Stage
blocks in Figure 6.

It is worth reporting that for 500 s of simulated time, and
with a timestep of 1s for all the Stage PI controllers, only
450 ms of CPU time were used, which is about 1100× real
time. This is a good argument in the favour of the adopted
modelling framework.

5. CONCLUSIONS AND FUTURE WORK

We presented a modelling paradigm for big data frame-
works, the first nucleus of a simulation library built along
the said paradigm, and a couple of simulation examples to
support the proposal.

The paradigm allows to describe existing frameworks by
evidencing and abstracting their common elements, and is
keen to produce efficient simulation models. Also, thanks
to the adoption of an object-oriented modelling language,
models are inherently open to multi-physic environments.
This allows, in perspective, to couple models of Big Data
applications to models of the physical environment (e.g.,
from the thermal behaviour of a CPU to potentially an
entire data centre) for more comprehensive and effective
evaluations of sizing and management strategies.

The paradigm also allows to introduce controllers in a
straightforward manner. This paves the way to a control-
based design – not just management – of Big Data appli-
cations and frameworks—an approach that already proven
successful in other domains like operating systems.

Future work will be directed at completing the simulation
library, exploiting the further possibilities just sketched,
and apply the presented ideas – from both the control and
the design viewpoint – to real-world applications.

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

6303

O
D
R
P
W
S
C

S1

O
D
R
P
W
S
C

S2.1

O
D
R
P
W
S
C

S2.2

O
D
R
P
W
S
C

S2.3

O
D
R
P
W
S
C

S3

O
D
R
P
W
S
C

S4.1

O
D
R
P
W
S
C

S4.2

O
D
R
P
W
S
C

S5.1

O
D
R
P
W
S
C

S5.2

O
D
R
P
W
S
C

S5.3

0 50 100 150 200 250 300 350 400 450 500
O
D
R
P
W
S
C

time [s]

S6

Figure 7. Simulation example 2 – results: status values (O
through C) traversed by the stages from the beginning
till the end of the application.

REFERENCES

Ali-Eldin, A., Tordsson, J., and Elmroth, E. (2012). An
adaptive hybrid elasticity controller for cloud infrastruc-
tures. In IEEE Network Operations and Management
Symposium, NOMS 12, 204–212. doi:10.1109/NOMS.
2012.6211900.

Arcelli, D., Cortellessa, V., and Leva, A. (2016). A library
of modeling components for adaptive queuing networks.
In Proc. 13th European Workshop on Performance En-
gineering. Chios, Greece.

Baresi, L., Guinea, S., Leva, A., and Quattrocchi, G.
(2016). A discrete-time feedback controller for con-
tainerized cloud applications. In Proc. 24th ACM SIG-
SOFT International Symposium on the Foundations of
Software Engineering (to appear). Seattle, WA, USA.

Berekmeri, M., Serrano, D., Bouchenak, S., Marchand,
N., and Robu, B. (2014). A control approach for per-
formance of big data systems. IFAC Proceedings Vol-
umes, 47(3), 152–157. doi:http://dx.doi.org/10.3182/
20140824-6-ZA-1003.01319. 19th IFACWorld Congress.

Cardosa, M., Narang, P., Chandra, A., Pucha, H., and
Singh, A. (2011). STEAMEngine: Driving mapreduce
provisioning in the cloud. In 2011 18th International
Conference on High Performance Computing, 1–10. doi:
10.1109/HiPC.2011.6152649.

Cerf, S., Berekmeri, M., Robu, B., Marchand, N., and
Bouchenak, S. (2016). Adaptive optimal control of
mapreduce performance, availability and costs. In Feed-
back Computing. doi:10.1145/1235.

Dean, J. and Ghemawat, S. (2008). Mapreduce: Simplified
data processing on large clusters. Commun. ACM,
51(1), 107–113. doi:10.1145/1327452.1327492. URL
http://doi.acm.org/10.1145/1327452.1327492.

Ganapathi, A., Chen, Y., Fox, A., Katz, R., and Patterson,
D. (2010). Statistics-driven workload modeling for the
cloud. In Data Engineering Workshops (ICDEW), 2010
IEEE 26th International Conference on, 87–92. doi:
10.1109/ICDEW.2010.5452742.

Harchol-Balter, M. (2013). Performance Modeling and De-
sign of Computer Systems: Queueing Theory in Action.
Cambridge University Press.

Lorido-Botrán, T., Miguel-Alonso, J., and Lozano, J.A.
(2014). A review of auto-scaling techniques for elastic
applications in cloud environments. Journal of Grid
Computing, 1–34. doi:10.1007/s10723-014-9314-7.

Maggio, M., Hoffmann, H., Santambrogio, M., Agarwal,
A., and Leva, A. (2013). Power optimization in em-
bedded systems via feedback control of resource alloca-
tion. IEEE Transactions on Control Systems Technol-
ogy, 21(1), 239–246.

Papadopoulos, A.V., Ali-Eldin, A., Årzén, K.E., Tordsson,
J., and Elmroth, E. (2016). PEAS: A performance eval-
uation framework for auto-scaling strategies in cloud ap-
plications. ACM Transactions on Modeling and Perfor-
mance Evaluation of Computing Systems (TOMPECS),
1(4), 15:1–15:31. doi:10.1145/2930659.

Shorten, R. and Narendra, K. (2002). Necessary and suffi-
cient conditions for the existence of a common quadratic
Lyapunov function for a finite number of stable second
order linear time-invariant systems. International Jour-
nal of Adaptive Control and Signal Processing, 16, 709–
728.

Verma, A., Cherkasova, L., and Campbell, R.H. (2011).
Resource Provisioning Framework for MapReduce
Jobs with Performance Goals, 165–186. Springer
Berlin Heidelberg, Berlin, Heidelberg. doi:10.1007/
978-3-642-25821-3 9.

Wang, W.P., Tipper, D., and Banerjee, S. (1996). A simple
approximation for modeling nonstationary queues. In
Proceedings of the Fifteenth Annual Joint Conference
of the IEEE Computer and Communications Societies
Conference on The Conference on Computer Communi-
cations - Volume 1, INFOCOM’96, 255–262. IEEE Com-
puter Society, Washington, DC, USA. URL http://dl.
acm.org/citation.cfm?id=1895807.1895846.

Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker,
S., and Stoica, I. (2010). Spark: Cluster computing
with working sets. In Proceedings of the 2Nd USENIX
Conference on Hot Topics in Cloud Computing, Hot-
Cloud’10, 10–10. USENIX Association, Berkeley, CA,
USA. URL http://dl.acm.org/citation.cfm?id=
1863103.1863113.

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

6304

	 Alberto Leva et al. / IFAC PapersOnLine 50-1 (2017) 6110–6115	 6115

O
D
R
P
W
S
C

S1

O
D
R
P
W
S
C

S2.1

O
D
R
P
W
S
C

S2.2

O
D
R
P
W
S
C

S2.3

O
D
R
P
W
S
C

S3

O
D
R
P
W
S
C

S4.1

O
D
R
P
W
S
C

S4.2

O
D
R
P
W
S
C

S5.1

O
D
R
P
W
S
C

S5.2

O
D
R
P
W
S
C

S5.3

0 50 100 150 200 250 300 350 400 450 500
O
D
R
P
W
S
C

time [s]

S6

Figure 7. Simulation example 2 – results: status values (O
through C) traversed by the stages from the beginning
till the end of the application.

REFERENCES

Ali-Eldin, A., Tordsson, J., and Elmroth, E. (2012). An
adaptive hybrid elasticity controller for cloud infrastruc-
tures. In IEEE Network Operations and Management
Symposium, NOMS 12, 204–212. doi:10.1109/NOMS.
2012.6211900.

Arcelli, D., Cortellessa, V., and Leva, A. (2016). A library
of modeling components for adaptive queuing networks.
In Proc. 13th European Workshop on Performance En-
gineering. Chios, Greece.

Baresi, L., Guinea, S., Leva, A., and Quattrocchi, G.
(2016). A discrete-time feedback controller for con-
tainerized cloud applications. In Proc. 24th ACM SIG-
SOFT International Symposium on the Foundations of
Software Engineering (to appear). Seattle, WA, USA.

Berekmeri, M., Serrano, D., Bouchenak, S., Marchand,
N., and Robu, B. (2014). A control approach for per-
formance of big data systems. IFAC Proceedings Vol-
umes, 47(3), 152–157. doi:http://dx.doi.org/10.3182/
20140824-6-ZA-1003.01319. 19th IFACWorld Congress.

Cardosa, M., Narang, P., Chandra, A., Pucha, H., and
Singh, A. (2011). STEAMEngine: Driving mapreduce
provisioning in the cloud. In 2011 18th International
Conference on High Performance Computing, 1–10. doi:
10.1109/HiPC.2011.6152649.

Cerf, S., Berekmeri, M., Robu, B., Marchand, N., and
Bouchenak, S. (2016). Adaptive optimal control of
mapreduce performance, availability and costs. In Feed-
back Computing. doi:10.1145/1235.

Dean, J. and Ghemawat, S. (2008). Mapreduce: Simplified
data processing on large clusters. Commun. ACM,
51(1), 107–113. doi:10.1145/1327452.1327492. URL
http://doi.acm.org/10.1145/1327452.1327492.

Ganapathi, A., Chen, Y., Fox, A., Katz, R., and Patterson,
D. (2010). Statistics-driven workload modeling for the
cloud. In Data Engineering Workshops (ICDEW), 2010
IEEE 26th International Conference on, 87–92. doi:
10.1109/ICDEW.2010.5452742.

Harchol-Balter, M. (2013). Performance Modeling and De-
sign of Computer Systems: Queueing Theory in Action.
Cambridge University Press.

Lorido-Botrán, T., Miguel-Alonso, J., and Lozano, J.A.
(2014). A review of auto-scaling techniques for elastic
applications in cloud environments. Journal of Grid
Computing, 1–34. doi:10.1007/s10723-014-9314-7.

Maggio, M., Hoffmann, H., Santambrogio, M., Agarwal,
A., and Leva, A. (2013). Power optimization in em-
bedded systems via feedback control of resource alloca-
tion. IEEE Transactions on Control Systems Technol-
ogy, 21(1), 239–246.

Papadopoulos, A.V., Ali-Eldin, A., Årzén, K.E., Tordsson,
J., and Elmroth, E. (2016). PEAS: A performance eval-
uation framework for auto-scaling strategies in cloud ap-
plications. ACM Transactions on Modeling and Perfor-
mance Evaluation of Computing Systems (TOMPECS),
1(4), 15:1–15:31. doi:10.1145/2930659.

Shorten, R. and Narendra, K. (2002). Necessary and suffi-
cient conditions for the existence of a common quadratic
Lyapunov function for a finite number of stable second
order linear time-invariant systems. International Jour-
nal of Adaptive Control and Signal Processing, 16, 709–
728.

Verma, A., Cherkasova, L., and Campbell, R.H. (2011).
Resource Provisioning Framework for MapReduce
Jobs with Performance Goals, 165–186. Springer
Berlin Heidelberg, Berlin, Heidelberg. doi:10.1007/
978-3-642-25821-3 9.

Wang, W.P., Tipper, D., and Banerjee, S. (1996). A simple
approximation for modeling nonstationary queues. In
Proceedings of the Fifteenth Annual Joint Conference
of the IEEE Computer and Communications Societies
Conference on The Conference on Computer Communi-
cations - Volume 1, INFOCOM’96, 255–262. IEEE Com-
puter Society, Washington, DC, USA. URL http://dl.
acm.org/citation.cfm?id=1895807.1895846.

Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker,
S., and Stoica, I. (2010). Spark: Cluster computing
with working sets. In Proceedings of the 2Nd USENIX
Conference on Hot Topics in Cloud Computing, Hot-
Cloud’10, 10–10. USENIX Association, Berkeley, CA,
USA. URL http://dl.acm.org/citation.cfm?id=
1863103.1863113.

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

6304

