
Enabling GSD Task Allocation via Cloud-based
Software Processes

Sami Alajrami, Barbara Gallina and Alexander Romanovsky

Abstract Allocating tasks to distributed sites in Global Software Development
(GSD) projects is often done unsystematically and based on the personal experi-
ence of project managers. Wrong allocation decisions increase the project’s risks
as tasks have dependencies that are inherited by the distributed sites. Decision sup-
port can help make the task allocation a more informed and systematic process.
The challenges in allocating tasks to distributed sites exist because of three dis-
tance dimensions between sites (geographical, temporal and cultural). An informed
task allocation decision needs to consider these distances. Therefore, in this paper,
we propose to integrate and semi-automate the calculation of an existing Global
Distance Metric (GDM) into an architecture that supports executing cloud-based
software processes. We analyze the potential of integrating the GDM into this archi-
tecture and identify the needed extensions to the architecture.

Key words: Global software development , Distributed tasks allocation decision
support, Cloud-based software processes, Global distance

1 Introduction

Global Software Development (GSD) [11] has moved software firms from mono-
lithic development (one team at one location) to multiple geographically-distributed
teams collaborating on a development project. GSD benefits are established in liter-
ature [6, 11, 8] and include: a) utilizing cheaper labour in different countries hence

Sami Alajrami
Newcastle University, Newcastle upon Tyne, UK, e-mail: s.h.alajrami@ncl.ac.uk

Barbara Gallina
Mälaradalen Univeristy, Sweden e-mail: barbara.gallina@mdh.se

Alexander Romanovsky
Newcastle University, Newcastle upon Tyne, UK, e-mail: alexander.romanovsky@ncl.ac.uk

1

2 Alajrami et al.

implying cost reduction, b) having multiple teams working in different time zones
which leads to shorter development cycles, and c) being in closer proximity to cus-
tomers and emerging markets.

Despite the benefits, teams collaborating in GSD projects face geographical, tem-
poral and cultural distances which make managing such projects a challenging task.
Naturally, dependencies exist between the distributed tasks. These task dependen-
cies (during process enactment) make it essential to ensure no deadlocks happen
between distributed sites.

The distances between distributed sites introduce management challenges that
can increase the risks for GSD projects. Such management challenges are inherent
in GSD projects and are linked to issues of communication, control and supervision,
coordination, creating social bonds, and building trust [7]. Among the main GSD
challenges, allocating the right resources/tasks to each site is of critical importance.

The complexity of the dependencies in GSD projects is reflected on the task
allocation decisions [12]. Task allocation can either decrease or increase the risks
associated with GSD projects (such as: decreased productivity and lack of trust be-
tween sites) [13]. Despite the importance of task allocation decisions, in practice,
the decision making process is not very systematic and often is based on the per-
sonal experience of the managers [14]. For example, allocating activities to sites
with low differences (nearshoring [7]) seems to reduce GSD risks, while having
large cultural differences between sites affects the trust between them. Therefore, a
systematic decision support is needed to support allocating GSD activities.

The larger the distance between distributed sites, the larger the difference.
Nearshoring [7] (allocating tasks to sites with low differences) reduces the risks
associated with GSD projects management [13]. Carmel and Abbott argue that the
rise of nearshoring proves that distance still matters [7]. Therefore, in this paper, we
explore how we can make informed decisions about task allocation in GSD projects
based on the distances between the distributed sites. In order to base the decision
making on the distance factor, this factor needs to be quantified. For that purpose,
we use the Global Distance Metric [17] which assesses and quantifies the distance
between collaborating sites.

In a previous work, we proposed a reference architecture for supporting Soft-
ware Development as a Service (SDaaS) in the cloud [5]. The potential for using
the cloud to facilitate GSD projects has been discussed in [10]. The SDaaS archi-
tecture goes one step further and uses a model-based approach to execute software
processes (which can be distributed processes). The SDaaS architecture facilitates
by default: global project awareness, enhancing communication and understanding
amongst distributed teams and supporting global monitoring and synchronization
of tasks. In addition, executable process models (when supported with the appro-
priate execution environment) can help addressing technical GSD challenges such
as: incompatible data formats and tools [2]. Therefore, in this paper, we propose to
extend the SDaaS architecture to support semi-automatic calculation of the Global
Distance Metric in order to provide task allocation decision support for project man-
agers.

Enabling GSD Task Allocation via Cloud-based Software Processes 3

The rest of the paper is structured as follows: Section 2 provides brief background
on the SDaaS architecture and Global Distance Metric (GDM). Section 3 describes
our proposed extension of the SDaaS architecture to provide GSD task allocation
decision support. Section 4 explains the paper proposal using an example process.
Section 5 reviews some existing works that target task allocation support in GSD
projects. Finally, Section 6 concludes the paper and discusses the current limitations.

2 Background & Motivation

In this section, we briefly cover essential background information on our architec-
ture for executing cloud-based software processes and on GSD distance metric and
task allocation.

2.1 The SDaaS architecture

We proposed a reference architecture for supporting executing software process
models in the cloud [5]. As shown in Fig. 1, the architecture consists of two main
services: the design time service and the run-time service. The design time ser-
vice deals with modelling and manipulation of software processes while the run-
time service deals with scheduling, executing and monitoring software processes
execution in the cloud. The execution takes place in a set of distributed workflow
engines (with different computational and privacy specification). The workflow reg-
istry component tracks and manages the active workflow engines. During the execu-
tion, process models consume and produce software artefacts (code, docs, models,
tests etc.). These artefacts are maintained along with meta-data describing them by
the artefact manager component. The tools needed to support each process activity
can be integrated within the environment or can be interfaced as a service. Activities
can be: a) automated (triggering tools to perform certain tasks e.g., testing), b) in-
teractive (receiving input from users e.g., for editing artefacts), or c) decision points
(deciding -automatically or interactively- on which branch of the process to follow).

SDaaS facilitates distributed development. It uses a unified SaaS user interface
which enables teams across distributed sites to access a shared development envi-
ronment. This means that teams will be collaborating within the same virtual envi-
ronment which is highly accessible and available via the cloud. The cloud model is
based on provisioning of services and the SDaaS architecture provisions develop-
ment environments and tool-chains as services. Hashmi et al. [10] argue that GSD
challenges can be overcome via the use of services (Service Oriented Architecture
- SOA). Their argument is that SOA increases the interoperability and technology
and business alignment between sites [10]. Since the SDaaS architecture adopts a
SOA, we argue that it can overcome GSD challenges.

4 Alajrami et al.

Model
Transformations

Model
Storage Service

Model
Authoring

Access & Sync.
Service

RE
ST

 A
PI

Ex
te

rn
al

 T
oo

ls

Workflow Engines Registry

Artefacts Manager

External
Workflow

Collaboration

Consistency &
Compliance

Checker

Sc
he

du
le

r

SLA
Monitor

Execution
Manager

Workflow Engines

Tools

Repositories

Runtime (PaaS) (Enactment Service)
Design Time (SaaS)

(Process Modelling)

Fig. 1 The SDaaS reference architecture. Taken from [5]

In addition, the SDaaS architecture adopts a model-driven approach and supports
modelling of dynamic processes like the ones that would be found in GSD projects.
The use of models allows for raising the levels of abstraction and improves com-
munication and understanding between distributed sites. The artefact manager of
the SDaaS architecture allows for tracing and maintaining shared artefacts. Finally,
SDaaS leverages the scalability of cloud to allocate computing resources and tools
as services on the fly to meet the needs of individual tasks in a GSD project. How-
ever, the SDaaS architecture does not provide decision support for task allocation.

2.2 EXE-SPEM

The SDaaS architecture uses EXE-SPEM [3] as the modelling language for mod-
elling cloud-based executable software processes. EXE-SPEM is an extension of the
OMG Software Process and System Engineering Meta-model (SPEM 2.0 [1]). EXE-
SPEM enables modelling important information needed for cloud-based process
enactment such as: control flow (i.e., order, conditions and loops), the responsible
team/team member for enacting each activity (task) in the process, and the cloud-
specific enactment information such as: the choice of cloud deployment model (pri-
vate vs. public) and the amount of computational resources required. EXE-SPEM
is created by extending the meta-model of SPEM2.0 as shown in Fig. 2 (which is
simplified for readability) where meta-classes with dark grey background are added

Enabling GSD Task Allocation via Cloud-based Software Processes 5

to the original SPEM2.0 meta-model and the ones with light grey background have
new attributes.

Classifier

WorkDefinition

+postcondition: String
+precondition: String

ExtensibleElement

ProcessElement

BreakDownElement

WorkBreakDownElement

Milestone

Activity

+useKind: ActivityUseKind
+version: String
+cloudPrivacyKind: CloudPrivacyKind
+instanceType: String
+noOfInstances: Integer
+timeout: Integer
+standard[0..1]
+guidance[0..1]
+tool_qualification[0..1]
+priority: Boolean

«enumeration»
ActivityUseKind

extension
localContribution
localReplacement

InteractiveActivity

+message: String
+parameterList: List

ControlPoint

+message: String
+optionsList: List

«enumeration»
CloudPrivacyKind

publicCloud
privateCloud

Fig. 2 The meta-model of EXE-SPEM

Using model-to-text transformational rules, EXE-SPEM process models are
mapped into XML-based textual representations which are compliant with the
schema shown in Fig. 3.

6 Alajrami et al.

Process

Element

ActivityControl Point

InPortOutPort

CloudConfig

0..*

+contains

1..*

0..1

ArtefactPort

1..*

+linked to

1

Actor
+responsible for

1..*

Fig. 3 The XML schema for representing EXE-SPEM process models

2.3 GSD task allocation

Allocating GSD tasks to distributed sites has a direct impact on the risks associated
with distributed development projects. Allocation is often done based on multiple
criteria (labor cost rates, availability of workforce and expertise) [13].

Lamersdorf et al. have reviewed several tactics followed in practice to avoid the
risks associated with distance between distributed sites [14]. The first tactic is to
minimize the collaboration needed (separation of concerns between sites) which
reduces the GSD communication problems. Another tactic is to minimize the dif-
ferences (e.g., cultural, temporal) between sites. Grinter et al. [9] proposed the use
of strategies from organizational theory to task allocation in GSD projects.

The optimal task allocation decision needs to be based on understanding of the
capabilities, differences and distances among the distributed tasks. Distance be-
tween sites is the main source of risk in GSD projects and it takes different dimen-
sions (geographical, temporal and cultural). Thus, quantifying these dimensions of
distance helps to make an effective and informed task allocation decision by project
managers.

Enabling GSD Task Allocation via Cloud-based Software Processes 7

2.4 Global Distance Metric

Noll and Beecham [17] have developed the global distance metric (GDM) to mea-
sure global distance between distributed sites collaborating on GSD projects. The
metric combines and quantifies the three dimensions of GSD distance: geographic,
temporal, and cultural between two sites. The metric is then calculated as follows:

Dglobal =
√

D2
geographic +D2

temporal +D2
cultural (1)

where Dc is the value of the distance dimension and c∈{geographic, temporal,cult-
ural}. Each of the dimensions in Eq.1 is calculated as the sum of the impact values
for different distance factors. A list of these factors and there impact values is pro-
vided in Table 1. Each team (site) computes the global distance metric from other
collaborating sites. This provides a quantified representation of the perceived dis-
tances between the distributed sites towards each other.

Table 1 is taken from [17] and shows the factors contributing to each distance
dimension along with their impact values. These impact values have been identified
by surveying practitioners. As we can see in the table, factors affecting both the
geographical and temporal distances are straightforward to assess (based on the lo-
cations and timezones of distributed sites). However, the cultural distance depends
more on the perception and trust between teams. For example, as noted by Noll and
Beecham [17], having a team member from the same nationality (of a certain site)
in another site may lead to increase the perceived trust and reduce the perceived
language barriers.

Table 1 Factors contributing to distances [17]

No. Factors affecting geographic distance Impact Value
1 Different building on same campus 1
2 Different towns in same region (two hour drive) 2
3 Less than three hour flight (Frankfurt to Helsinki) 3
4 Transcontinental flight (New York to San Francisco) 4
5 Intercontinental flight (London to Shanghai) 4

No. Factors affecting temporal distance Impact Value
1 Transcontinental (five hour overlap) 0
2 Intercontinental (three or four hour overlap) 3
3 Global (one or two hour overlap) 4
4 No overlap 4

No. Factors affecting cultural distance Impact Value
1 Uneven language skills 3
2 East/West divide in culture 3
3 Different national culture 2
4 Different organizational culture 3

8 Alajrami et al.

3 SDaaS-based task allocation

In this section, we build on existing GSD support in the SDaaS architecture by facil-
itating decision making about allocating tasks across distributed sites. Since know-
ing the distance (in all its dimensions) between distributed sites is crucial for making
the right allocation decision, we propose to integrate the measurement of the Global
Distance Metric (GDM) [17] (see Section 2.4) within the SDaaS architecture.

The SDaaS architecture can automate the measurement of the geographical and
temporal distances of the GDM based on knowing the collaborating sites and their
locations. In addition, it can calculate the cultural distance perceived by each site
towards each other site by relying on input from team members. These calculated
values can then be used to calculate the overall GDM between each two sites using
equation 1.

3.1 The SDaaS architecture extension

In order to support the GDM calculation, the SDaaS architecture needs to be ex-
tended. Task allocation is needed during the process design-time phase. The follow-
ing extensions are needed in the SDaaS architecture:

1. Extending the process models.
The teams which might be involved in executing the process and their respec-
tive sites need to be integrated in the process models (which are created using
EXE-SPEM [3]). We extend the EXE-SPEM meta-model which defines EXE-
SPEM process models elements. As shown in Fig. 4, the extended meta-model
of EXE-SPEM integrates the Site and Team meta-classes (in dark grey). The
Activity meta-class has a new attribute stating the site that the activity has been
allocated to. Finally, the CulturalDistanceKind enumeration is added to represent
different cultural distance factors as shown in Table 1.
In addition to extending the meta-model of EXE-SPEM, we extend the schema
for defining the XML representation of EXE-SPEM process models as shown in
Fig. 5 where the Site and Team have been added.

2. Adding a GDM calculation module
The design-time part of the SDaaS architecture (see Fig. 1) needs to be extended
by adding a module for calculating the GDM (following Eq 1). The geographical
and temporal distance factors can be automatically calculated by this module us-
ing the team and site information from the process model. The cultural distance,
however, is a subjective factor. Therefore, this module should interact with the
team members to calculate their perceived cultural distance factors towards other
teams at different sites. This can be done using the factors from Table 1.

3. Visualizing the GDM between distributed sites
Once the GDM between each pair of distributed sites is calculated, the project
manager needs to view the overall perceived distances between distributed sites

Enabling GSD Task Allocation via Cloud-based Software Processes 9

Fig. 4 The extended meta-model of EXE-SPEM

in order to make the best allocation decisions. The distances can be visualized
following the example in Fig. 6 which is taken from Noll and Beecham [17] and
shows the distances between three distributed teams (Germany, Spain and UK).
The numbers represent the perceived distance from one site towards another.
The larger the number, the larger the distance and consequently, the larger the
differences and risks.

The decision making process is depicted in Fig. 7. It starts with the project man-
ager or process author creating the process model and specifying the teams that
might be involved in this process. Then, the GDM between these sites is calculated
and visualized. Finally, the project manager makes a decision to allocate specific
tasks to specific teams based on a trade-off between multiple factors (e.g., labour
cost, availability, expertise and GDM). Based on the trade-offs, the project manager
may decide to make modifications to the process in order to reduce the risks asso-
ciated with involvement of distributed teams. For example, to reduce dependencies
between two teams with high GDM value.

10 Alajrami et al.

Process

Element

Activity

Control Point

InPortOutPort

CloudConfig

0..*

+contains

1..*

0..1

ArtefactPort

1..*

+linked to

1

Actor

+responsible for
0..*

Site

Team

1..*

+allocated to

1..*

+responsible for

1..*

1..*

Fig. 5 The software process model XML schema
236 J. Noll and S. Beecham

Spain UK5.53.7

Germany

7.3

11.3

6.4

 11.3

Fig. 1. Global distance among three distributed teams.

German team was a native English speaker, but language skills across the team
were somewhat uneven.

Regardless of the root cause for the differences in perception, the fact that
teams viewed their cultural distance differently is a signal for higher management
that some interventions (such as the workshop the participants in this trial
were attending) would be appropriate, to bring the teams closer together along
the cultural dimension. An informal survey at the beginning of the workshop
confirmed this: the overwhelming majority of attendees had meeting members
of other teams as one of their objectives for the workshop.

6 Conclusions

In this paper, we presented the results of a survey designed to assess the impact
of various factors that contribute to, or help reduce, global distance in software
development projects. We used these results to calibrate a global distance metric,
that provides a comparative measure of the impact of distance on communication
and collaboration.

Project managers and team leaders can use this metric to measure the global
distance between collaborating teams. As shown in Sect. 5.1, this metric can
provide valuable insight into how teams perceive their counterparts; this insight
would be invaluable when planning interventions to reduce distance between
teams that must communicate and collaborate.

Second, researchers can use the results to calibrate models, such as the project
survivability model proposed by Avritzer and colleagues [2]. Also, the values
placed on different interventions can be used to prioritize recommendations com-
prising process models for global software development.

Finally, the results provide a way to compare the effect of different interven-
tions an organization might take to reduce the effect of distance on a software
development project. This is important because it allows an organization to assess
the cost-effectiveness of different approaches to dealing with global distance.

Fig. 6 The global distance between three distributed teams. Taken from [17]

Enabling GSD Task Allocation via Cloud-based Software Processes 11

Modify the process according to the trade-offs.

Create the process
model and define

collaborating sites.

Calculate and
visualize the GDM

between sites.

Allocate tasks to
sites based on

trade-offs.

Control Point:
Deciding whether to
modify the allocation

or terminate.

Fig. 7 The decision making process

4 Demonstrating Example

To demonstrate the proposed approach in this paper, we use a process model we
developed in a previous work [4]. The process is a safety process for generating
product and process safety arguments to be used in building safety cases for safety
critical systems. Fig. 8 shows the original process (before introducing the extension
for task allocation support) modelled in EXE-SPEM. The process consists of ac-
tivities which consume and produce work products (artifacts) and are performed by
role use (actors).

Legend

 Start Activity Role use
 Finish Work product

System
Architecture

Model

FPTC
results

In

Performed by

Process-Based
Argument Generation

FPTC-based
Analysis Product-Based

Argument Generation

Out

Safety Case
Argument
Fragment

In

Safety
Engineer

In

Hazardous
Events

Product-Based
SACM Argument

Out

Process-Based
SACM Argument

Out

In

In

Arguments
Composition Out

Textual
Argument

Out

Textual
Argument Out

In

Process
 Model

Out

Product Argument

Process Argument

Fig. 8 Safety process modelled using EXE-SPEM. Adapted from [4]

12 Alajrami et al.

Figure 9 shows the same process modelled with the extended EXE-SPEM. As
the figure shows, the model now describe the collaborating sites (one in the UK
and another in India). By analyzing calculating the GDM between these two sites
from the process model, the distances can be reported and visualized to project
managers who can then make an informed decision to allocate certain activities to
certain sites. For example, as shown in Fig. 9, the decision could be to allocate the
Product-based Argument Generation activity to the UK site and the Process-based
Argument Generation to the Indian site. After allocating the activities to sites, the
process model can be executed in the SDaaS architecture.

Legend

 Start Activity Role use
 Finish Work product Site

System
Architecture

Model

FPTC
results

In

Performed by

Process-Based
Argument Generation

FPTC-based
Analysis Product-Based

Argument Generation

Out

Safety Case
Argument
Fragment

In

Safety
Engineer

In

Hazardous
Events

Product-Based
SACM Argument

Out

Process-Based
SACM Argument

Out

In

In

Arguments
Composition Out

Textual
Argument

Out

Textual
Argument Out

In

Process
 Model

Out

Product Argument

Process Argument

Site 1
{UK, GMT}

Site 2
{India, DST}

Site = Site1

Site = Site2

Fig. 9 Safety process modelled using the extended EXE-SPEM

5 Related Work

Several approaches for task allocation in GSD projects have been studied in lit-
erature. Some studies have reviewed these approaches (e.g. [12, 14]). Imtiaz and
Ikram [12] have identified several factors that impact task allocation in GSD projects
such as: labour cost, expertise, task-site dependency,temporal and cultural differ-
ences, etc. Task allocation approaches often target one or few of these factors and

Enabling GSD Task Allocation via Cloud-based Software Processes 13

a trade-off between them need to be performed based on the situation and the
project [12].

Task allocation for GSD projects can be categorized into two groups [16]: a)
optimization approaches (aiming to decide on the best task allocation with respect
to a specific goal) and b) predictive approaches (aiming to evaluate different task
allocations individually).

Mockus and Weiss [15] propose an optimization algorithm which aims to min-
imize the communication needed between sites and thus reducing the communica-
tion overhead. However, this approach only addresses a single criterion (i.e., com-
munication overhead). Another approach developed by Setamanit et al. [18] uses
a simulation model to compare different task allocation strategies with respect to
productivity and development time. This approach, however, does not provide task
allocation decision support for individual projects and instead compare the strate-
gies generally. Lamersdorf and Münch [13] study the risk identification and effort
estimation perspectives in GSD task allocation and conclude that although some
approaches can be used to support certain aspects of task allocation, there is no
comprehensive approach for systematic task allocation covering all the needed as-
pects.

6 Conclusion & Future Work

In this paper, we extend the SDaaS architecture [5] to provide task allocation de-
cision support for GSD projects. SDaaS facilitates conducting GSD projects in the
cloud and automate the computational ad tool resources allocation on demand. The
extension uses the Global Distance Metric (GDM) [17] to quantify the three dimen-
sions of GSD distance (geographical, temporal and cultural). This extension allows
projects managers to make task allocation decisions baring in mind the distances
(differences) between the collaborating distributed tasks and the risks associated
with it.

In practice, the decision on task allocation is made based on multiple factors
(e.g. labour cost, expertise, availability, etc.) Although this paper focuses only on
one factor which impacts task allocation in GSD projects (the distance factor), other
factors could similarly be integrated within the SDaaS architecture in future works.
The motivation for extending the SDaaS architecture is that it already support other
aspects of GSD projects (as discussed in Section 2.1).

This paper comes as a first step towards a comprehensive approach for task al-
location decision support within the SDaaS architecture. In the future, other factors
affecting task allocation decisions need to integrated. It is also possible to adapt the
model-based approach developed by Lamersdorf and Münch [13] which integrates
three models: a risk model which identifies risks for each allocation alternative, an
optimization model which suggests alternative allocation based on multiple criteria,
and an effort overhead model which estimates the effort needed for each allocation
alternative.

14 Alajrami et al.

References

1. Software and Systems Process Engineering Meta-Model Specification, V2.0. formal/2008-
04-01. Object Management Group (OMG), MA, USA (2008)

2. Alajrami, S., Gallina, B., Romanovsky, A.: Enabling global software development via cloud-
based software process enactment. Tech. Rep. TR-1494, Newcastle University, School of
Computing Science (2016)

3. Alajrami, S., Gallina, B., Romanovsky, A.: EXE-SPEM: Towards Cloud-based Executable
Software Process Models. In: MODELSWARD’16 - Proceedings of the 4rd International
Conference on Model-Driven Engineering and Software Development, Rome, Italy, 19-21
February., pp. 517–526. Scitepress (2016)

4. Alajrami, S., Gallina, B., Sljivo, I., Romanovsky, A., Isberg, P.: Towards Cloud-Based Enact-
ment of Safety-Related Processes. In: A. Skavhaug, J. Guiochet, F. Bitsch (eds.) Computer
Safety, Reliability, and Security - 35th International Conference, SAFECOMP’16, Trondheim,
Norway, September 21-23, Proceedings, pp. 309–321. Springer (2016)

5. Alajrami, S., Romanovsky, A., Gallina, B.: Software Development in the Post-PC Era: To-
wards Software Development as a Service. In: P. Abrahamsson, A. Jedlitschka (eds.) The 17th
International Conference on Product-Focused Software Process Improvement, PROFES’16,
Trondheim, Norway, November 22-24, Proceedings. Springer (2016)

6. Carmel, E.: Global Software Teams: Collaborating Across Borders and Time Zones. Prentice
Hall PTR, Upper Saddle River, NJ, USA (1999)

7. Carmel, E., Abbott, P.: Why ’nearshore’ means that distance matters. Commun. ACM 50(10),
40–46 (2007)

8. Conchúir, E.O., Ågerfalk, P., Olsson, H., Fitzgerald, B.: Global Software Development: Where
Are the Benefits? Commun. ACM 52(8), 127–131 (2009)

9. Grinter, R.E., Herbsleb, J.D., Perry, D.E.: The geography of coordination: Dealing with dis-
tance in r&d work. In: Proceedings of the International ACM SIGGROUP Conference
on Supporting Group Work, GROUP ’99, pp. 306–315. ACM, New York, NY, USA (1999)

10. Hashmi, S.I., Clerc, V., Razavian, M., Manteli, C., Tamburri, D.A., Lago, P., Nitto, E.D.,
Richardson, I.: Using the cloud to facilitate global software development challenges. In: 2011
IEEE Sixth International Conference on Global Software Engineering Workshop, pp. 70–77
(2011)

11. Herbsleb, J.D., Moitra, D.: Global Software Development. Software, IEEE 18(2), 16–20
(2001)

12. Imtiaz, S., Ikram, N.: Dynamics of task allocation in global software development. Journal of
Software: Evolution and Process 29(1) (2017)

13. Lamersdorf, A., Münch, J.: Model-Based Task Allocation in Distributed Software Develop-
ment, pp. 37–53. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

14. Lamersdorf, A., Munch, J., Rombach, D.: A survey on the state of the practice in distributed
software development: Criteria for task allocation. In: 2009 Fourth IEEE International Con-
ference on Global Software Engineering, pp. 41–50 (2009)

15. Mockus, A., Weiss, D.M.: Globalization by chunking: a quantitative approach. IEEE Software
18(2), 30–37 (2001). DOI 10.1109/52.914737

16. Münch, J., Lamersdorf, A.: Systematic Task Allocation Evaluation in Distributed Software
Development, pp. 228–237. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

17. Noll, J., Beecham, S.: Measuring Global Distance: A Survey of Distance Factors and Inter-
ventions, pp. 227–240. Springer International Publishing (2016)

18. Setamanit, S.o., Wakeland, W., Raffo, D.: Planning and improving global software develop-
ment process using simulation. In: Proceedings of the 2006 International Workshop on Global
Software Development for the Practitioner, GSD ’06, pp. 8–14. ACM, New York, NY, USA
(2006)

