
Arguing on Software-level Verification
Techniques Appropriateness

Carmen Cârlan, Barbara Gallina, Severin Kacianka, and Ruth Breu

fortiss GmbH, Munich, Germany email: carlan@fortiss.org
Mälardalen University, Västeras, Sweden email: barbara.gallina@mdh.se

Technische Universität München, Garching, Germany email: kacianka@in.tum.de
Institut für Informatik, Innsbruck, Austria email: ruth.breu@uibk.ac.at

Abstract. In this paper, we investigate the pondered selection of inno-
vative software verification technology in the safety-critical domain and
its implications. Verification tools perform analyses, testing or simula-
tion activities. The compliance of the techniques implemented by these
tools to fulfill standard-mandated objectives (i.e., to be means of com-
pliance in the context of DO-178C and related supplements) should be
explained to the certification body. It is thereby difficult for practitioners
to use novel techniques, without a systematic method for arguing their
appropriateness. Thus, we offer a method for arguing the appropriate ap-
plication of a certain verification technique (potentially in combination
with other techniques) to produce the evidence needed to satisfy certifi-
cation objectives regarding fault detection and mitigation in a realistic
avionics application via safety cases. We use this method for the choice
of an appropriate compiler to support the development of a drone.

Keywords: safety cases, faults, standard compliance, verification techniques

1 Introduction

For the certification of safety-critical systems, safety engineers are frequently
required to present a safety case of the system. A safety case is a documented
body of evidence that provides a convincing and valid argument that a system
is adequately safe for a given application in a given environment [3]. The cer-
tification authority investigates the confidence in the claims of a safety case,
namely the probability of the claim being true [3]. This probability depends
on how uncertainties regarding the safety case (e.g., regarding the evidence ex-
pected to support the claims) are handled. For example, one uncertainty regards
the correctness of the implementation. This uncertainty lays in the verification
procedure and is caused by 1) uncertainty in the correct implementation of the
verification tool – Can the output of the tool be trusted?, 2) uncertainty in the
rationale of the verification technique – Is this the right way for verifying the ful-
fillment of system requirements? [7]. Thus, in order to employ a state-of-the-art
verification tool, the engineer needs to assess the appropriateness of the tech-
nique it implements. A technique is appropriate if it provides trustworthy and

2 Carmen Cârlan, Barbara Gallina, Severin Kacianka, and Ruth Breu

relevant verification results. Considerable research effort has been put into the
investigation of arguing tool assurance (i.e., integrity and qualification accord-
ing to standard) [7]. Safety standards provide certain objectives techniques must
satisfy. These objectives are typically used in industry in form of checklists for
the selection of verification techniques. However, the standards do not clarify
1) why the objectives contribute to demonstrate the confidence in results and
2) how they relate to the characteristics of the verification technique that must
achieve them. For example, before DO-333 [22], it was unknown 1) what was
the relevance of this objective for the system’s safety, and 2) how the testing
structural coverage objective could be addressed with a formal verification tech-
nique. This problem has been dealt with by supplements providing guidance on
how to adapt these innovative technologies to a DO-178C project (e.g., DO-333
Formal Methods Supplement). However, the creation of such supplements can
take years. One of the main causes for this is that little is known about arguing
whether a technique is appropriate to support a given activity. The appropriate-
ness of a technique is its quality to satisfy the corresponding objectives. Thus, in
this paper, we take on the problem of appropriately employing verification tech-
niques for the construction of systems according to a specific level of stringency,
specified via an assurance level (AL).

This paper’s contribution at tackling this problem is three-fold. First, we offer
an alternative for the pondered selection of verification techniques. Pondered
selection means a selection of techniques, based on how they are contributing to
typical systematic failure avoidance. We achieve this by extending the Structured
Assurance Case Metamodel (SACM) [19]. Second, we describe relationship types
between heterogeneous verification results collaborating to the achievement of
one safety goal. Third, based on this meta-model, we provide safety case patterns
for arguing the appropriateness of a certain technique.

In Section 2, we provide the context of our problem statement. In Section 3,
we present our metamodel. Then, in Section 4, we present a set of safety case
patterns that help with the pondered selection of a certain verification technique
for the performance of a certain activity. We evaluate our approach by instanti-
ating the proposed metamodel to assess the appropriateness of the results from
a compiler, performed on a drone (see Section 5). The last two sections contain
related work and conclusions.

2 Background

The development of safety-critical systems is guided by standards. In avion-
ics, it is recommended that software developers reach the objectives defined in
the DO-178C de-facto standard [21]. DO-178C is technology-independent, ab-
stractly defining development and verification activities to be performed. For
each activity, it defines a set of objectives that need to be satisfied by concrete
verification techniques. How these objectives are to be fulfilled is up to concrete
means of compliance. A means of compliance is the technique that the devel-
oper uses to satisfy the objectives stated in the standard [21]. The certification

Arguing on Techniques Appropriateness 3

authority needs to agree on the means of compliance proposed by the developer.
Techniques of the software verification process need to be proposed during the
certification liaison process. The verification process has two purposes: 1) show
that the system implements its safety requirements and 2) detect and report
faults that may have been introduced during the software development pro-
cesses. DO-178C focuses on analysis, reviews and software testing techniques for
performing verification activities. Whereas its supplement DO-333 [22] provides
guidance for using formal methods (e.g., abstract interpretation, model check-
ing, theorem-proving and satisfiability solving) in the certification of airborne
systems. The supplement modifies DO-178C objectives, activities, and software
life cycle data to address when formal methods are used as part of the software
development process.

The Object Management Group offers a standardized modeling language
for describing safety cases: the Structured Assurance Case Metamodel
(SACM) 2.0 [19]. SACM contains a structured way of describing evidence-
related efforts, namely the Artefact Metamodel. The Artefact Metamodel con-
tains classes depicting the following: artefacts, participants, resources, activities,
and techniques. The Activity class represents units of work related to the man-
agement of ArtefactAssets. The Technique class describes the techniques per-
forming the activities. For example, the Verification of Low-level Requirements
activity, from DO-178C/DO-333, may be performed either via a testing tech-
nique (e.g., unit testing) or a formal analysis technique (e.g., theorem proving).
There are three types of evidence in safety cases, namely direct, backing and re-
inforcement [24]. Whereas direct evidence refers to proofs that the system under
certification meets the safety goal, the backing evidence proves that the direct
evidence can be used in the argumentation with confidence [16, 1]. In order to
justify the confidence, the relevance of the evidence serves as a proof of safety
claim’s satisfaction [24]. The relevance of an evidence type is assessed by docu-
menting the role and limitations of the underlying technique. Such limitations
may be that the verification technique is not able to cover the entire input space
or to identify deep faults due to insufficient unrolling. This information helps
to make an informed decision when choosing a type of evidence for satisfying a
certain claim [16].

3 Pondering the Selection of Verification Techniques

In this section, we propose guidelines for the selection of techniques in order
to fulfill verification objectives of DO-178C/DO-333. We propose a metamodel
that offers a description of standard-mandated compliance and considers the
relationships between standard objectives, software verification techniques and
safety evidence. Our metamodel extends the SACM Artefact Metamodel. We re-
fine the Technique and Activity classes in the SACM metamodel, by Verification
Technique and, respectively, Verification Activity classes (see Fig. 1).

Next, we will explain the attributes pallet of our proposed SACM Verification
Technique class, depicted in Fig. 1. These attributes enable the characterization

4 Carmen Cârlan, Barbara Gallina, Severin Kacianka, and Ruth Breu

of the appropriateness of a verification technique. Some of the attributes come
from the objectives a technique needs to fulfill in order to be employed for a
DO-178C/DO-333-compliant activity (e.g., structural coverage). Additional at-
tributes are taken from specialized literature depicting safety verification tech-
niques (e.g., works such as [2], [23]). These attributes are taken into consideration
during safety assurance, but have not been documented in the standard and are
typically not included in checklists, since they are considered implicit attributes
(e.g., technique soundness). Explicitly addressing these attributes helps at tak-
ing an informed decision and to build a convincing argument for the technique
appropriateness. For some of the described attributes, we provide enumerations
of the values the attributes can take. The permitted values are extracted from
the standard.

Any verification technique has a certain name, which uniquely identifies it
(see techniqueName attribute). Verification techniques address different verifica-
tion objectives because of their different rationale. Thus, the Verification Tech-
nique class should contain an attribute referencing a description of the rationale
(see the verificationRationale attribute). Documenting the context is required
when assessing how appropriate the technique is and indicates the feasibility of
the technique’s application. For instance, the exampleApplication attribute, ref-
erencing projects which already made use of the technique, can only be used if
the verification’s context is similar. The context includes the constraints on the
environment of the system (see envConstraints) [4]. This attribute ensures that

Verification Technique

techniqueName: string

checkablePropertyTypes: list<SafetyProperty>

verificationRationale:RefToDocument

structuralCoverage: StructuralCoverageType

falseNegativeVulnerable:boolean

falsePositiveVulnerable:boolean

boundedTime:boolean

terminationCriterion: string

exampleApplication: RefToDocument

detectableSystematicFaultTypes:

list<SystematicFaultType>

detectableSystematicFaultTypesRates: list<int>

envConstraints:list<String>

limitations: list<String>

Verification Activity

systematicFaultTypes: list<SystematicFaultType>

propertyTypes: list<SafetyPropertyType>

canBe

ImplementedBy

Activity

assuranceLevel: AssuranceLevel
Technique

sup
po

rts

complements

<<enumeration>>

SafetyPropertyType

HighLevelSafetyRequirement

LowLevelSafetyRequirement

IntegrationSafetyRequirement

SoftwareArchitectureSafetyRequirement

SourceCodeSafetyRequirement

<<enumeration>>

VerificationTechniqueType

Testing

Formal Methods

Static Analysis

Model Checking

Review

Other

<<enumeration>>

StructuralCoverageType

FunctionCoverage

StatementCoverage

BranchCoverage

ConditionCoverage

Exhaustive

Other

<<enumeration>>

SystematicFaultType

Memory overlaps

Incorrect interrupt handling

Stack overflow

Incorrect initialization

Data corruption

Incorrect loop operations

Incorrect logic decisions

Incorrect exceptions

handling

 Arithmetic faults

Violations of array limits

Static Memory

Dynamic Memory

Numerical

Resource Management

Pointer-Related

Concurrency

Inappropriate Code

Miscellaneous

<<enumeration>>

SystemDescription

SourceCode

ObjectCode

DesignArchitecture

<<enumeration>>

AssuranceLevel

AL1

AL2

AL3

AL4

AL5

Fig. 1. A meta-model for depicting verification techniques and activities

Arguing on Techniques Appropriateness 5

the technique is appropriate for verifying the system, in the context in which
the system is supposed to work.

No unique technique can cover all objectives of the verification process. For
example, the rationale of testing techniques is to execute the code to reveal
faults. However, testing has its limitations. One limitation is that testing tech-
niques may detect concurrency faults, but overall, the level of confidence about
the quality of the code is not high. This is due to the fact that concurrent software
is inherently non-deterministic. Thus, it is necessary to describe the objectives of
the verification technique, namely the types of properties it can check (see check-
ablePropertyTypes attribute). The checkablePropertyTypes attribute enumerates
all the standard-mandated properties the respective technique can cover.

Static analysis takes all thread execution pathways and deployment scenarios
into account. Thus, static analysis verification techniques are more appropri-
ate for discovering and diagnosing concurrency faults. Hence, it is important to
know to what extent the scope may be verified by the technique (i.e., number
of explored states or loop unrolling). Thus, we add to the VerificationTechnique
class the structuralCoverage attribute. Static analysis techniques have the ben-
efit of verifying the system’s code exhaustively. However, they also have their
limitations, which need to be specified, understood and assessed for the fulfill-
ment of an objective (see limitations attribute). In the Verification Technique
class we suggest possible limitations of verification techniques. One possible lim-
itation is the detection of false negatives (see attribute falseNegativeVulnerable).
This does not affect the certification process per se, but it delays the process,
since the safety engineer might investigate an error which does not exist. An-
other limitation may be that a verification technique verifies a property and may
say that the property is satisfied, when it is not. Such techniques are unsound.
We capture this limitation in the falsePositiveVulnerable boolean attribute. Ex-
ample of false-positives is when a test result wrongly indicates that a particular
condition or attribute is present. Unsound techniques cannot be used in the
verification process of safety-critical systems, since they may be harmful. For
example, the consequences of falsely confirming that a state is reachable may
be catastrophic. Thus, verification techniques that have the falsePositiveVulner-
able attribute set to ”true” may not be used for employing safety verification
activities. Furthermore, a frequent type of limitation, which is specific to model
checking techniques, is the fact that the verification might not terminate in due
time. In such cases, model checking cannot be set to explore all the states due
to their large number: large number of states makes the verification last longer
than feasible (see the boolean boundedTime attribute). If the boundedTime at-
tribute is true, the terminationCriterion attribute should also be set, in order to
know when the verification is supposed to stop and to know up to which length
counterexamples have been searched.

The verification process is described by DO-178C as a process for discover-
ing faults. Thus, in order to analyze a verification technique, it is important to
know what types of faults it may uncover - detectableSystematicFaultTypes (e.g.,
arithmetic faults, violations of array limits). In studies presenting tools checked

6 Carmen Cârlan, Barbara Gallina, Severin Kacianka, and Ruth Breu

against benchmarks, there is a so called defect rate, which refers to the percent-
age of erroneous tests. The detectableSystematicFaultTypesRates attribute of the
Verification Technique class offers a quantitative assessment of how a selected
technique is better than others. Each element from the detectableSystematic-
FaultTypesRates list corresponds to the element with the same position from
the detectableSystematicFaultTypes list.

This metamodel describes a set of traces between two different aspects of
safety argumentation artefacts: the verification activity and the verification tech-
nique (see Fig. 1). These traces enable the assessment of the appropriateness of a
technique for performing some activity. The Verification Activity class, depicted
in Fig. 1, offers a general structure for depicting any verification activities in
DO-178C. The attributes of this class are derived from the structure of these
verification activities. As presented in [11], every development activity, includ-
ing verification activities, has an assurance level. In the context of DO-333 it
is called assurance level (AL). Thus, we add to the Activity class the assur-
anceLevel attribute. The Activity class also depicts the typical faults that are to
be identified and mitigated during the referred activity type (see the attribute
systematicFaults). The propertyTypes, which must be achieved by the verification
process, given the assurance level, are indicated by Tables A 3-6, in DO-178C.
A verification technique is appropriate to perform a certain verification activity
(see canBeImplementedBy relationship), if the technique is able to check at least
some of the propertyTypes required by the activity to be checked (i.e., the set
checkablePropertyTypes of the technique is at least a subset of the propertyTypes
set of the activity), applicable by the assuranceLevel. Also, the technique should
be able to detect at least some of the systematicFaultTypes specified by the ac-
tivity (i.e., the set detectableSystematicFaultTypes of the technique is at least
a subset of the systematicFaultTypes set of the activity). However, a technique
may only be able to check certain properties or to identify certain faults. Differ-
ent techniques may be combined in order to perform a verification activity. For
example, in Cârlan et al. [6], we present a testing technique and a model checker
collaborating for discharging verification goals.

Heterogeneous Verification Techniques. Evidence tends to be incom-
plete (e.g., a single test case, or model checking of a single property). In this sit-
uation, multiple items of evidence are needed. In Fig. 1, we document and reason
about the relationships between the heterogeneous verification techniques gen-
erating evidence items. One type of relationships is supports. This relationship
covers the case where a verification technique is used to assess the fulfillment
of an objective by the results of another verification technique. Techniques in
a supports relationship work orthogonally, addressing different concerns – one
discharges safety goals, the other is used to verify the results discharging the
safety goals, in order to assess the trustworthiness of the evidence provided by
the first technique. Thus, a verification technique supports another if it is used
to detect faults in the other’s verification results, by providing backing evidence.
For example, a model checking technique may support a static analysis technique
by verifying the faults detected [5]. The other relationship type is complements.

Arguing on Techniques Appropriateness 7

This relation represents two verification techniques that collaborate for provid-
ing relevant evidence for discharging together safety goals. On the one hand, a
verification technique may complement another if it is used to detect the faults
not identified by the other. On the other hand, a verification technique com-
plements another technique if it is able to verify types of requirements which
cannot be verified by the other technique. Both of the techniques provide direct
evidence. For example, verifying a set of properties via bounded model checking,
combined with testing [6].

4 A Pattern for Arguing Technique Appropriateness

In the system’s safety cases, the developer has to argue that the verification
results are trustworthy and relevant. As mentioned in Sec. 1, this enables the
assessor to have confidence in the results. The techniques associated with the
creation, inspection, review or analysis of assurance artefacts contribute to the
level of relevance of the safety case evidence [19, 8]. In this section, we offer a
pattern for arguing the appropriateness of verification techniques, driven by the
need to deliver relevant safety evidence. We call this argumentation structure the
technique appropriateness argument pattern. Each element of the pattern relates
to an attribute of our proposed metamodel. The attributes from the metamodel
are italicized in the safety claims. The fact that the pattern is based on the
metamodel eases the (semi-)automatic pattern instantiation.

The top-level goal of the pattern depicted in Fig. 2 is that the technique
implemented by the tool employed in the execution/automation of a certain ac-
tivity is appropriate for generating activity outputs (G1). Goal G1 may only be
satisfied if the technique is sound (C4). In order to argue over the capabilities
of a technique for discharging safety goals, one should explicitly state the ver-
ification scope and the environmental constraints (C1, C2). The fact that the
verification technique has been previously used in other projects with similar
environmental constraints may be used as justification for its appropriateness.
Each verification technique needs to demonstrate the satisfaction of several goals
(i.e., required objectives to be fulfilled and outputs to be provided), as defined in
Tables A 3-7, from DO-178C (C3). The main goal of the performed verification
activity is the verification of a certain type of requirements (G3), as recom-
mended by the assuranceLevel (C7). One should argue this using the rationale
of the technique (G6.1). The argumentation further developing goal G6.1 mir-
rors the verification steps (presented in [5]). When arguing over goal G3, it is
relevant to cover the requirement types that are imposed by the activity type to
be detected by the technique (C6). Each requirement type has different suitable
verification techniques. Thus, the selected verification technique may not be able
to cover all the requirement types (G3.1). When the technique cannot cover all
the verification space (i.e., to have 100 percent structural coverage), another
technique may be employed to cover the rest of the verification space, as stated
in goal G6.2. However, this is an optional goal, since structural code coverage
is not an applicable coverage criterion for all verification techniques (e.g., de-

8 Carmen Cârlan, Barbara Gallina, Severin Kacianka, and Ruth Breu

ductive verification). When arguing over goal G1, one should also consider the
limitations (weaknesses) implied when employing the respective technique (S4).
Techniques may work together to compensate for such limitations (G4.1, G4.2,
G4.3). Table A-7 from DO-178C and DO-333 recommends that any verification
results should be verified (G1.1).

A considerable set of standard-mandated compliance requirements for ver-
ification techniques targets the detection of certain typical faults (see G2, in
Fig. 2). Indeed, if a verification technique does not eliminate any fault, the per-
formed verification activity does not increase the confidence in the claim [13].
While arguing for the main goal G1, the capability of detecting (some) typical
faults is also relevant (G2.1). If the selected verification technique cannot detect
some of expected fault types, it must be supported by another verification tech-
nique (G2.2). Whereas all the other sub-goals of G1 offer a mere compliance
to standard-mandated objectives, this part of the safety argumentation (G2.1)
offers pondered compliance (i.e., aware selection of techniques). The contribution
to failure avoidance is two-fold 1) the coverage of the typical fault types that are
imposed by the activity type - qualitative argument (G5) and 2) the number
of detectable faults - quantitative argument (J2). The strength of the technique
is given by the number of implementation problems (faults) types it can de-
tect. For arguing the coverage of a typical fault type, an argument based on the
fault-based argumentation pattern depicted in Fig. 3. The scope of the fault-based
argumentation pattern is to offer a structure for arguing the selection of a certain
technique, by stating its contribution to failure mode avoidance/reduction.

5 Example

In this section, we present our experience with selecting an adequate open-source
compiler for a drone in compliance with DO-178C. In the context of safety critical
projects, there are few compiler selection approaches [25]. DO-178C compliant
software may not contain software faults that lead to failure. Compilers are de-
signed to perform minimal static analysis on the program in order to detect
software faults [17]. In a project involving high costs, where time is money, engi-
neers should take advantage of the static analysis techniques provided “for free”
by compilers. Cârlan et. al. [5] present a code review workflow, which employs
a set of static analysis for discharging safety goals. Instead of employing a large
number of expensive static analysis, we want to also rely on the used compiler(s)
for detecting some of the software faults and thus possibly reducing the size of
the static analysis set. According to Höller et. al. [17], diverse compiling is able
to detect a larger number of software faults than single compiling. For example,
diverse compiling can help to detect up to about 70 percent of memory-related
software faults. These indicate that 1) different compilers implement different
static analysis techniques and 2) static analysis techniques underlying compilers
may play a significant role in the verification process. Different static analysis
techniques embedded in different compilers are appropriate to detect different
types of faults. Thus, rather then selecting an adequate compiler, we will select

Arguing on Techniques Appropriateness 9

G
1

:
M

er
e

 c
om

p
lia

n
ce

 T
ec

hn
iq

ue

{t
ec

hn
iq

ue
N

am
e}

 is
 a

n
ap

pr
op

ria
te

m
ea

ns
 o

f c
o

m
pl

ia
nc

e
fo

r
ve

rif
ic

at
io

n

ac
tiv

ity
 {

a}
, i

n
 o

rd
er

 to
 a

ch
ie

ve

{a
ss

ur
an

ce
L

ev
el

}

C
1:

 S
ys

te
m

 e
le

m
en

t

un
de

r
ve

rif
ic

at
io

n
{s

u
v}

G
1.

1
V

er
ifi

ca
tio

n
of

 v
er

ifi
ca

tio
n

te
ch

ni
qu

e
{v

t}
 r

es
ul

ts
 w

as

pe
rf

or
m

ed

 S
1

 A
rg

um
en

t o
ve

r
ac

tiv
ity

-s
p

ec
ifi

c

ob
je

ct
iv

es

G
1.

1.
1:

 H
et

er
o

ge
n

eo
u

s
ba

ck
in

g

ev
id

en
ce

 V
er

ifi
ca

tio
n

to
ol

 {
vt

1}

su
pp

or
ts

 {
te

ch
ni

qu
eN

am
e}

 b
y

in
de

pe
nd

en
tly

 v
er

ify
in

g
is

t r
es

ul
ts

G
3

V
er

ifi
ca

tio
n

te
ch

ni
qu

e

{t
ec

hn
iq

ue
N

am
e}

 c
h

ec
ks

 a
ct

iv
ity

-

sp
ec

ifi
c

pr
op

er
ty

 o
f t

yp
e

{p
t}

 S
3

 A
rg

um
en

t o
ve

r
ac

tiv
ity

-s
p

ec
ifi

c

pr
op

er
ty

 ty
pe

s
to

 b
e

ch
ec

ke
d

G
2:

 P
o

n
de

re
d

c
om

p
lia

nc
e

T
he

de
te

ct
ab

le
S

ys
te

m
at

ic
F

au
ltT

yp
e

s
th

at

ne
ed

 to
 b

e
re

ve
al

ed
 w

hi
le

 p
er

fo
rm

in
g

ac
tiv

ity
 {

a}
 a

re
 d

et
ec

te
d

G
5:

 D
ef

ec
t-

b
as

ed
 a

rg
um

en
ta

tio
n

D
et

ec
ta

bl
e

sy
st

em
at

ic
 fa

ul
ts

 o
f t

yp
e

{t
}

ha
ve

 b
ee

n
de

te
ct

ed
 v

ia
 {

te
ch

ni
qu

eN
am

e}

an
d

m
iti

ga
te

d
du

rin
g

ac
tiv

ity
 {a

}

 S
5

 A
rg

um
en

t o
ve

r
de

te
ct

ab
le

sy
st

e
m

at
ic

 fa
ul

t t
yp

es
 d

et
ec

te
d

 b
y

 {
te

ch
ni

qu
eN

am
e}

 d
ur

in
g

a
ct

iv
ity

 {
a}

G
6.

2:
 C

o
m

p
le

m
en

ta
ry

 h
et

er
o

g
en

eo
u

s

ev
id

en
ce

 C
om

pl
em

en
ta

ry
 h

et
er

og
en

e
ou

s

ev
id

en
ce

 fr
o

m
 v

er
ifi

ca
tio

n
te

ch
ni

qu
e

{v
t5

}
is

us
ed

 fo
r

ve
ry

ifi
ng

 th
e

 p
ar

t o
f t

he
 s

ys
te

m
 a

rte
fa

ct

no
t c

om
pr

is
ed

 in
 s

tru
ct

ur
al

 c
ov

er
ag

e
of

{t
ec

hn
iq

ue
N

am
e}

st
ru

ct
ur

al
C

o
ve

ra
g

e
<

 1
0

0
%

 S
4

 A
rg

um
en

t o
ve

r

lim
ita

tio
ns

 o
f {

te
ch

ni
qu

eN
am

e}

G
4

.1
:

S
u

p
po

rt
in

g
h

et
er

o
ge

ne
o

u
s

ev
id

en
ce

 S
up

p
or

tin
g

he
te

ro
ge

ne
ou

s
 v

er
ifi

ca
tio

n

te
ch

ni
qu

e
{v

t6
}

is
 u

se
d

fo
r

m
iti

ga
tin

g
th

e
fa

ct
 th

at

{t
ec

hn
iq

ue
N

am
e}

 is
 fa

ls
e

ne
ga

tiv
e

vu
ln

er
ab

le

J
1

:
 V

er
ifi

ca
tio

n

te
ch

ni
qu

e

{t
ec

hn
iq

ue
N

am
e}

 h
as

be
en

 s
uc

ce
sf

u
lly

 u
se

d
in

{e
xa

m
pl

eA
pp

lic
at

io
n}

C
2:

 E
nv

iro
m

en
t

co
ns

tr
ai

nt
s

en
vC

on
st

ra
in

ts

G
2.

2:
 C

o
m

p
le

m
en

ta
ry

 h
et

er
o

g
en

eo
u

s

ev
id

en
ce

 fo
r

fa
u

lt
 c

ov
er

ag
e

C
om

pl
em

en
ta

ry
 h

et
er

og
en

e
ou

s
ev

id
en

ce

fr
om

 v
er

ifi
ca

tio
n

te
ch

ni
qu

e
{v

t2
}

is
 u

se
d

fo
r

de
te

ct
in

g
th

e
fa

ul
t t

yp
es

 th
at

 c
an

n
ot

 b
e

de
te

ct
ed

 b
y

{t
ec

hn
iq

ue
N

am
e}

 S
2

 A
rg

um
en

t o
ve

r
ac

tiv
ity

-s
p

ec
ifi

c

sy
st

e
m

at
ic

 fa
ul

t t
yp

es
 to

 b
e

de
te

ct
ed

G
2.

1:
 P

o
n

de
re

d
c

om
p

lia
nc

e
(P

ar
t o

f)

th
e

sy
st

em
at

ic
 fa

ul
t t

yp
es

 th
at

 n
ee

d
to

 b
e

re
ve

al
ed

 w
hi

le
 p

er
fo

rm
in

g
ac

tiv
ity

 {
a

}
ar

e

de
te

ct
ed

 b
y

{t
ec

hn
iq

ue
N

am
e}

 S
6

 A
rg

um
en

t o
ve

r
ac

tiv
ity

-

sp
ec

ifi
c

pr
op

er
tie

s
of

 ty
pe

 {
pt

}

G
3.

1:
 C

o
m

p
le

m
en

ta
ry

h
et

er
og

en
eo

us
 e

v
id

en
ce

C
om

pl
em

en
ta

ry
 h

et
er

og
en

e
ou

s

ev
id

en
ce

 fr
o

m
 v

er
ifi

ca
tio

n
te

ch
ni

qu
e

{v
t3

}
is

 u
se

d
fo

r c
he

ck
in

g
ac

tiv
ity

-

sp
ec

ifi
c

pr
op

er
ty

 o
f t

yp
e

 {
pt

},
 w

he
n

{p
t}

 is
 n

ot
 c

om
pr

is
e

d
in

{c
h

ec
ka

bl
eP

ro
pe

rt
yT

yp
es

}

o
p

ti
o

n
a

l

G
6.

1
A

rg
um

en
t o

ve
r

ve
rif

ic
at

io
n

ra
tio

na
le

C
6:

 S
ys

te
m

a
tic

 f
au

lt

ty
pe

s
to

 b
e

 d
et

ec
te

d
:

{s
ys

te
m

at
ic

F
au

ltT
yp

es
}

S
1

{t
ec

hn
iq

ue

N
am

e
}

re
su

lts

C
7

:
 A

pp
lic

ab
le

 b
y

{a
ss

ur
an

ce
Le

ve
l}

C
3:

 D
O

-1
78

C

T
ab

le
s

A
 3

-7

C
4:

 T
ec

hn
iq

ue
 {

t}
 is

no
t f

al
se

 p
o

si
tiv

e

vu
ln

er
ab

le

C
6

:
 P

ro
pe

ry
 ty

pe
s

to
 b

e
ch

ec
ke

d
:

{p
ro

pe
rt

y

T
yp

es
}

C
8

:
 D

et
ec

te
d

S
ys

te
m

a
tic

 f
au

lt
ty

pe
s:

{d
et

ec
ta

bl
eS

ys
te

m
at

ic

F
au

ltT
yp

es
}

fa
ls

eN
eg

at
iv

eV
u

ln
ar

ab
le

=

tr
u

e

C
5:

 {
lim

ita
tio

ns
}

G
4.

2:
 T

he
 e

ffe
ct

s
of

 th
e

lim
ita

tio
n

ha
ve

 b
ee

n
m

iti
ga

te
d

G
4.

3:
 T

he
 e

ffe
ct

s
of

 th
e

 fa
ct

 th
at

th
e

te
ch

ni
q

ue
 is

 b
ou

nd
ed

 h
av

e

be
en

 m
iti

ga
te

d

bo
u

n
de

d
Ti

m
e

=
 t

ru
e

F
ig
.
2
.

T
ec

h
n
iq

u
e

a
p
p
ro

p
ri

a
te

n
es

s
a
rg

u
m

en
t

p
a
tt

er
n

10 Carmen Cârlan, Barbara Gallina, Severin Kacianka, and Ruth Breu

a compiler which integrates a static analysis technique appropriate for comple-
menting static analysis techniques.

As compilers may merely offer some simple static checks, a static analysis
technique implemented by a compiler may only have a complements relationship
to a verification technique, which is able to performing the verification activity.
In order for the compiler to complement a verification technique to perform
a particular activity, its underlying static analysis technique should be capa-
ble of detecting some of systematicFaultTypes that need to be detected during
the respective activity. For brevity reasons, in this paper, we investigate the
support a compiler offers for the performance of one activity, namely the 6.3.4
Reviews and Analyses of Source Code activity. For the pondered selection of
the static analysis technique underlying a compiler, we modeled this activity in
accordance to the Verification Activity class, presented in Section 3 (see Fig. 4).
This activity checks the system at source level. The types of properties that
should be checked during this activity (checkablePropertyTypes attribute), to-
gether with the objectives to be fulfilled by the performance of this activity (see
detectableSystematicFaultTypes) are taken from the DO-178C standard. The de-
tectableSystematicFaultTypes attribute is filled with information given by the
f. Accuracy and consistency paragraph of the 6.3.4.

The battle between clang and gcc. We have two candidate techniques
for the role of compiler in our project, namely clang and gcc. We model the
static analysis techniques implemented by these two compilers based on our pro-
posed metamodel in Section 3. Compilers are able to check the entire code, with
no exceptions, hence the structuralCoverage for both compilers is depicted as
Exhaustive. We based our decision also on the experience of RV Team, while
compiling the code from the Toyota Benchmark [23] with these two compil-
ers (see the exampleApplication attributes). The detectableSystematicFaultTypes
attribute, together with the detectableSystematicFaultTypesRates attribute for
both of the models have been filled in with information from the same experience
report. While selecting the appropriate static analysis, its impact on the worst-

G15 Faults from fault type {ft}

have been identified and mitigated

 S5 Argument over

each fault identified

from fault type {ft}

G17 Fault {f} of type

{ft} has been identified

and mitigated

 C2 Behavior definition

(implementation) {bd}

 C6 Incorrect part of

behaviour description which

may lead to {e}

 C3 Valid specification

{spec}

Sn1

Verification results

proving that

implementation is

correct w.r.t. the

specification {spec}

 C4 Incorrect behaviour

description {ibd}

 C5 Incorrect

behaviour

description {ibd}

G20 Fault {f} has been

identified as causing a

failure mode {fm}

 C7 Input

elements that

lead to incorrect

output

G18 Fault {f} has

been identified

G19 Fault {f} has

been mitigated

Fig. 3. The fault-based argumentation pattern

Arguing on Techniques Appropriateness 11

case execution timing should be considered and assessed (see potentialDeficits
attribute). In Fig. 4, we see that both of the techniques are able to detect
systematicFaultTypes, which should be detected during the 6.3.4 activity. This
makes them equally appropriate candidates. However, while the technique im-
plemented by the clang compiler may detect defects of type static memory (e.g.,
static buffer overrun/underrun), the technique in gcc compiler does not have
this ability. In turn, the gcc technique is capable of finding imperfect code de-
fects, such as dead code detection, floating-point arithmetic, use of uninitialized
variables, unused variables and improper error handling. The selection is now
reduced to selecting the type of defects that would have a bigger impact on
the safety of the system under verification (in our example the drone). In our
concrete case, static buffer overflows are a bigger concern than floating-point
arithmetic defects, because they may lead the vehicle’s software to crash. As
learned from the Ariane 5 accident, buffer overflows may have devastating con-
sequences on a flying system’s safety [12]. As such, we selected the static analysis
of clang compiler and, implicitly, the clang compiler. From this experience, we
learned that, in the selection of a verification technique, it is not only important
what kind of faults a verification technique is able to detect, but also the impact
of the type of fault on system safety.

Proving the selection. In order to confirm that we chose the appropriate
compiler, we compile a small sample of code in the environment in which we will
compile the code for the drone, namely the robot operating system (ROS) [20].
To simplify the discussion, we show the problems on a much smaller ROS in-
troductory example, turtlesim1. This example allows the user to control an an-
imated turtle by sending it ROS messages. In principle the control software for
the UAV2 uses the same mechanisms and build environment. We mutated that
code with four buffer overflow defects (see Fig. 5). We observe that, as our scope

1 http://wiki.ros.org/turtlesim, the source code can be found on github: https:
//github.com/ros/ros_tutorials

2 We used the Erlecopter: http://erlerobotics.com/blog/erle-copter/

6.3.4 Reviews and Analyses of Source

Code Verification Activity

assuranceLevel: AL1

systematicFaultTypes: stack usage,

memory usage, fixed point arithmetic

overflow and resolution, floating-point

arithmetic, resource contention and

limitations, worst-case execution timing,

exception handling, use of uninitialized

variables, cache management, unused

variables, data corruption due to task or

interrupt conflicts

propertyTypes:

LowLevelSafetyRequirement,

SoftwareArchitectureSafetyRequirement

Clang Compiling Technique

techniqueName: Clang

checkablePropertyTypes:nul

verificationRationale:RefToDocument

structuralCoverage:Exhaustive

 falseNegativeVulnerable:true

 falsePositiveVulnerable:false

boundedTime:false

exampleApplication: https://

runtimeverification.com/match/1.0-SNAPSHOT/

docs/benchmark/

detectableSystematicFaultTypes:

<StaticMemory, Numerical,

ResourceManagement, PointerRelated, Misc>

detectableSystematicFaultTypesRates: <15,

11, 3, 13, 11>

scope-suv:Source Code

env-constraints:nul

limitations: <may affect worst-case execution

timing>

GCC Compiling Technique

techniqueName: GCC

checkablePropertyTypes:nul

verificationRationale:RefToDocument

structuralCoverage:Exhaustive

falseNegativeVulnerable:true

falsePositiveVulnerable:true

boundedTime:false

exampleApplication: https://

runtimeverification.com/match/1.0-SNAPSHOT/

docs/benchmark/

detectableSystematicFaultTypes:

<InappropriateCode, Numerical,

ResourceManagement, PointerRelated, Misc>

detectableSystematicFaultTypesRates: <2,

11, 3, 13, 11>

scope-suv:Source Code

env-constraints:null

limitations: <may affect worst-case execution

timing>

Verification

Technique

Yet Unknown

supports

canBeImplementedBy

supports

Fig. 4. A model for clang and gcc and the DO-178C 6.3.4 verification activity

12 Carmen Cârlan, Barbara Gallina, Severin Kacianka, and Ruth Breu

// mList is declared as float mList [4];
void Turtle :: velocityCallback(const geometry_msgs ::Twist :: ConstPtr& vel)
{ last_command_time_ = ros:: WallTime ::now();

lin_vel_ = vel ->linear.x;
ang_vel_ = vel ->angular.z;
// remeber the last 5 velocities to replay them
mList [0] = lin_vel_; mList [1] = mList [0];
mList [2] = mList [1]; mList [3] = mList [2];
// static buffer overflow
mList [4] = mList [3]; }

Fig. 5. Mutated code of method that sets the velocity values for the turtle

was to have a compiler supporting the detection of buffer overflow faults, clang
was more appropriate, since it discovered all the four faults (see Fig. 6 for an
example), whereas gcc was not able to discover any buffer overflow faults.

/home/user/catkin_ws/src/turtlesim/src/turtle.cpp :72:2: warning: array index
4 is past the end of the array
(which contains 4 elements) [-Warray -bounds]

mList [4] = mList [3];
^ ~

/home/user/catkin_ws/src/turtlesim/include/turtlesim/turtle.h:79:3: note:
array ’mList ’ declared here

float mList [4];
^

1 warning generated.

Fig. 6. The error message given by clang. gcc does not point out the error

In Fig. 7, we show how clang compiler contributes at discharging the main
goal of the Technique appropriateness argument pattern. Goal G2.2.1 is to be
further-developed by instantiating the Fault-based argumentation pattern. All
the warnings from the compiler are to be documented and referenced in the
documentation. We suggest building a test case for every warning. After dealing
with these warning, in order to prove that they have been mitigated (see G19
from the Fault-based argumentation pattern), we would run the test cases and
reference their results.

G1: Mere compliance

Technique {vt} is an appropriate means of compliance

for verification activity 6.3.4 Reviews and Analyses of

Source Code, in order to achieve {assuranceLevel}

 S1 Argument over activity-

specific objectives

G2: Pondered compliance

The systematic faults that need to be revealed while

performing activity 6.3.4 Reviews and Analyses of

Source Code are detected

G2.2: Complementary heterogeneous evidence for fault

coverage

Complementary heterogeneous evidence from verification

technique Clang compiler is used for detecting the fault

types not comprised in detectableSystematicFaultTypes

 S2 Argument over activity-specific

systematic faults

G2.2.1: Defect-based argumentation

Detectable systematic faults of type static memory have

been detected via Clang compiler and mitigated during

activity 6.3.4 Reviews and Analyses of Source Code

 S2.2 Argument over detectableSystematicFaultTypes

detected by Clang compiler during activity

6.3.4 Reviews and Analyses of Source Code

Fig. 7. Partial instantiation of Technique appropriateness argument pattern

Arguing on Techniques Appropriateness 13

6 Related Work

The problem of arguing compliance with standards by using patterns has been
investigated quite heavily during the last decade. Habli et al. [15] and Denney
et al. [7] present safety case patterns for the use of formal methods results for
certification. Bennion et al. [2] present a safety case for arguing the compliance
of the Simulink Design Verifier model checker to DO-178C. Gallina et al. [9]
argue about adequacy of a model-based testing process. Cârlan et al. [5] offer a
pattern which integrates static analysis results in an argument for the fulfillment
of certain safety objectives. While all these works focus on a certain verification
technique as strategy for discharging a safety goal, we offer a safety case pat-
tern to argue the pondered selection of a verification techniques of any type for
discharging a safety goal.

Similarly, the problems related to compliance of the certification artefacts
and their confidence have also been tackled. Gallina et al. [10] proposes a pro-
cess compliance pattern for arguing about reuse of tool qualification certification
artifacts. One of the identified sub-goals for the claim of trustworthy performance
of a certain tasks is that the guidance (how the activity should be performed)
has been followed. We offer a reusable argumentation structure for the appro-
priateness of a technique for a certain activity. We argue that the technique
implemented by that tool follows the guidance given by the standard. The prob-
lem of confidence in the certification artefacts has been addressed by Graydon
et al. [14], who offer a framework for utilizing safety cases for the selection of
certain technologies for building safety-critical systems. How to make a decision
is, however, not explained. We propose one criterion for making justified deci-
sions on used verification technologies, namely that they need to contribute to
the identification or the mitigation of systematic faults known to affect systems’
safety. Holloway [18] presents safety case patterns mirroring DO-178C software
correctness objectives. In contrast to the work of Holloway, we present safety case
patterns, which are built mirroring the important characteristics to be compliant
with the DO-178C verification objectives.

7 Conclusions

The output of a tool implementing a certain verification technique may be used
as evidence in a safety case. For this, one needs to assess if the respective veri-
fication technique is appropriate to generate results for supporting the truth of
safety case claims. In this paper, we proposed a metamodel to provide guidelines
for the pondered selection of appropriate verification technologies for perform-
ing standard-mandated verification activities. Based on this metamodel, we also
presented a set of safety case patterns arguing the appropriateness of the ver-
ification techniques providing assurance evidence. As future work, we plan to
validate our proposed pattern by applying it to argue about appropriateness of
verification techniques used in the projects we currently work on. Also, we want
to extend our approach in order to support (semi-)automatic creation of safety
arguments based on the proposed metamodel.

14 Carmen Cârlan, Barbara Gallina, Severin Kacianka, and Ruth Breu

Acknowledgements. This work has been partially sponsored by the Austrian
Ministry for Transport, Innovation and Technology (IKT der Zukunft, Project
SALSA) and the Munich Center for Internet Research (MCIR). The author B.
Gallina is financially supported by the ECSEL JU project AMASS (No 692474).

References

1. Ayoub, A., Kim, B., Lee, I., Sokolsky, O.: A Systematic Approach to Justifying
Sufficient Confidence in Software Safety Arguments. In: Proceedings of Computer
Safety, Reliability, and Security. vol. 7612 of Lecture Notes in Computer Science,
pp. 305–316. Springer, Berlin, Heidelberg (2012)

2. Bennion, M., Habli, I.: A Candid Industrial Evaluation of Formal Software Verifica-
tion Using Model Checking. In: Companion Proceedings of the 36th International
Conference on Software Engineering. pp. 175–184. ACM, New York, NY, USA
(2014)

3. Bloomfield, R.E., Bishop, P.G.: Safety and Assurance Cases: Past, Present and
Possible Future - an Adelard Perspective. In: Making Systems Safer - Proceed-
ings of the 18th Safety-Critical Systems Symposium. pp. 51–67. Springer, London
(2010)

4. Bourdil, P.A., Dal Zilio, S., Jenn, E.: Integrating Model Checking in an In-
dustrial Verification Process: a Structuring Approach (2016), https://hal.

archives-ouvertes.fr/hal-01341701, working paper or preprint
5. Cârlan, C., Beyene, T.A., Ruess, H.: Integrated Formal Methods for Constructing

Assurance Cases. In: Proceedings of International Symposium on Software Relia-
bility Engineering Workshops. pp. 221–228. IEEE (2016)

6. Cârlan, C., Ratiu, D., Schätz, B.: On Using Results of Code-Level Bounded Model
Checking in Assurance Cases. In: Proceedings of Computer Safety, Reliability, and
Security Workshops. vol. 9923 of Lecture Notes in Computer Science, pp. 30–42.
Springer, Cham (2016)

7. Denney, E., Pai, G.: Evidence Arguments for Using Formal Methods in Software
Certification. In: Proceedings of International Symposium on Software Reliability
Engineering Workshops. pp. 375–380. IEEE (2013)

8. Gallina, B.: A Model-Driven Safety Certification Method for Process Compliance.
In: Proceedings of International Symposium on Software Reliability Engineering
Workshops. pp. 204–209. IEEE (2014)

9. Gallina, B., Andrews, A.: Deriving Verification-Related Means of Compliance for a
Model-Based Testing Process. In: Proceedings of IEEE/AIAA 35th Digital Avion-
ics Systems Conference. pp. 1–6 (2016)

10. Gallina, B., Kashiyarandi, S., Zugsbratl, K., Geven, A.: Enabling Cross-Domain
Reuse of Tool Qualification Certification Artefacts. In: Proceedings of Computer
Safety, Reliability, and Security Workshops. vol. 8696 of Lecture Notes in Computer
Science, pp. 255–266. Springer, Cham (2014)

11. Gallina, B., Pitchai, K.R., Lundqvist, K.: S-TunExSPEM: Towards an Extension
of SPEM 2.0 to Model and Exchange Tunable Safety-Oriented Processes. In: Pro-
ceedings of the 11th International Conference on Software Engineering Research,
Management and Applications. pp. 215–230. Springer SCI (2014)

12. Garfinkel, S.: History’s worst software bugs (2005), http://archive.wired.com/
software/coolapps/news/2005/11/69355?currentPage=all

13. Goodenough, J., Weinstock, C.B., Klein, A.Z.: Toward a Theory of Assurance Case
Confidence. Tech. Rep. CMU/SEI-2012-TR-002, Software Engineering Institute,
Pittsburgh, PA, USA (2012)

Arguing on Techniques Appropriateness 15

14. Graydon, G., Knight, J.: Process Synthesis in Assurance-Based Development of
Dependable Systems. In: Proceedings of 8th European Dependable Computing
Conference. pp. 75–84. IEEE (2010)

15. Habli, I., Kelly, T.: A Generic Goal-Based Certification Argument for the Justifica-
tion of Formal Analysis. Electronic Notes in Theoretical Computer Science 238(4),
27–39 (2009)

16. Hawkins, R., Kelly, T.: A Structured Approach to Selecting and Justifying Software
Safety Evidence. In: Proceedings of 5th International Conference on System Safety.
pp. 1–6. IET (2010)

17. Höller, A., Kajtazovic, N., Rauter, T., Römer, K., Kreiner, C.: Evaluation of Di-
verse Compiling for Software-Fault Detection. In: Proceedings of the Design, Au-
tomation & Test in Europe Conference & Exhibition. pp. 531–536. IEEE (2015)

18. Holloway, C.M.: Explicate’78: Uncovering the Implicit Assurance Case in DO-178C.
Tech. Rep. 20150009473, NASA Langley Research Center (2015)

19. Object Managment Group: Structured Assurance Case Metamodel - SACM, ver-
sion 2.0 Beta. Tech. rep. (2016), http://www.omg.org/spec/SACM/2.0/Beta1/PDF/

20. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E.,
Wheeler, R., Ng, A.: Ros: An Open-Source Robot Operating System. In: Pro-
ceedings of Open-Source Software Workshop Int. Conf. Robotics and Automation.
vol. 3. IEEE (2009)

21. RTCA: DO-178C, software considerations in airborne systems and equipment cer-
tification. RTCA & EUROCAE (2011)

22. RTCA: DO-333 formal methods supplement to DO-178C and DO-278A. RTCA &
EUROCAE (2011)

23. Shiraishi, S., Mohan, V., Marimuthu, H.: Test Suites for Benchmarks of Static
Analysis Tools. In: Proceedings of International Symposium on Software Reliability
Engineering Workshops. pp. 12–15. IEEE (2015)

24. Weaver, R., McDermid, J., Kelly, T.: Software Safety Arguments: Towards a Sys-
tematic Categorisation of Evidence. In: Proceedings of the 20th International Sys-
tem Safety Conference. System Safety Society (2002)

25. Wei, C., Xiaohong, B., Tingdi, Z.: A Study on Compiler Selection in Safety-Critical
Redundant System based on Airworthiness Requirement. Procedia Engineering 17,
497–504 (2011)

