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ABSTRACT
Knowing the Worst-Case Execution Time (WCET) of a pro-
gram is necessary when designing and verifying real-time
systems. A correct WCET analysis method must take into
account the possible program flow, such as loop iterations
and function calls, as well as the timing effects of different
hardware features, such as caches and pipelines.

A critical part of WCET analysis is the calculation, which
combines flow information and hardware timing information
in order to calculate a program WCET estimate. The type
of flow information which a calculation method can take
into account highly determines the WCET estimate preci-
sion obtainable. Traditionally, we have had a choice between
precise methods that perform global calculations with a risk
of high computational complexity, and local methods that
are fast but cannot take into account all types of flow infor-
mation.

This paper presents an innovative hybrid method to han-
dle complex flows with low computational complexity, but
still generate safe and tight WCET estimates. The method
uses flow information to find the smallest parts of a program
that have to be handled as a unit to ensure precision. These
units are used to calculate a program WCET estimate in a
demand-driven bottom-up manner. The calculation method
to use for a unit is not fixed, but could depend on the in-
cluded flow information and program characteristics.
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1. INTRODUCTION
The purpose of Worst-Case Execution Time (WCET) anal-

ysis is to provide a priori information about the worst pos-
sible execution time of a program before using the pro-
gram in a system. Reliable WCET estimates are neces-
sary when designing and verifying real-time systems, es-
pecially when real-time systems are used to control safety-
critical systems like vehicles, military equipment and indus-
trial power plants.

WCET estimates are used in real-time systems develop-
ment to perform scheduling and schedulability analysis, to
determine whether performance goals are met for periodic
tasks, and to check that interrupts have sufficiently short re-
action times. To be valid for use in safety-critical systems,
WCET estimates must be safe, i.e. guaranteed not to under-
estimate the execution time. To be useful, they must also
be tight, i.e. avoid large overestimations.

A correct WCET calculation method must take into ac-
count the possible program flow, like loop iterations and
function calls, as well as effects of hardware features, like
caches and pipelines. The flow information can be consid-
ered as a set of flow facts, each providing a certain piece of
information about the program (like loop bounds, infeasible
paths, etc.). The expressiveness of the flow facts a calcula-
tion method can handle is in high degree determining the
WCET estimate precision that can be achieved.

In this paper we present a method to handle complex flow
information with low computational complexity while still
generating safe and tight WCET estimates. We use the key
observation that flow facts are usually local in their nature,
expressing information that only affects a small region of a
program. However, these regions might be larger than the
units used in local calculation schemes (a loop nest rather
than a loop, or an entire function rather than just a loop in-
side that function). In general, the boundaries for a flow fact
might not agree with the boundaries of a calculation scheme
based on the structure of a program. When flow facts cross
structural boundaries, and thus calculation boundaries, they
cannot be accounted for, which leads to lower precision.

One solution to the boundary problem is to work glob-
ally on the entire program at once. However, this has a
potentially high complexity, and makes scaling to large pro-
grams risky. Almost all techniques for performing global
calculations are based on integer linear programming (ILP)
or constraint programming (CP) techniques, thus having a
complexity potentially exponential in the program size.

However, by structuring a local calculation after the bound-
aries dictated by the flow facts, it is possible to achieve both
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efficient local calculation and high precision, since all facts
can thus be accounted for while still avoiding the need for
global calculation (unless there are actual flow facts that
make this necessary).

Another key observation is that in many cases it is not
sufficient to consider each provided flow fact in isolation.
Many different types of flow facts might be generated for
the same program and such flow facts can interact and to-
gether constrain program flow in a manner not possible by
single flow facts. A WCET calculation method working over
smaller program parts therefore must, to achieve maximum
precision, find interacting flow facts and treat them as a
unit.

This is achieved by our clustered calculation, which basi-
cally works as follows: The provided flow information is used
to construct units where the included flow facts all have to
be considered together. For each such fact cluster the part of
the program covered by the included flow facts is extracted.
The fact clusters and corresponding program parts are used
to calculate a program WCET estimate in a demand-driven
bottom-up manner. The calculation method to use for a
particular fact cluster is not fixed, but could depend on the
characteristics of the included flow facts and corresponding
program parts.

The concrete contributions of this paper are:

• We introduce the concept of organizing flow information
into fact clusters.

• We present various algorithms to construct fact clusters.

• We present an algorithm that uses fact clusters to calcu-
late a program WCET estimate.

• We evaluate the clustered calculation method against
global and local calculation schemes.

The rest of this paper is organized as follows: Section 2 in-
troduces previous work, Section 3 presents our WCET tool
architecture, and Section 4 presents our flow representation
for WCET analysis. Section 5 presents how flow facts can
be organized into fact clusters, and Section 6 gives the clus-
tered WCET calculation method. Section 7 presents differ-
ent calculation alternatives. Section 8 gives an illustrating
example of the clustered calculation method. Finally, Sec-
tion 9 presents our experimental evaluation, and Section 10
gives our conclusions and ideas for future work.

2. WCET ANALYSIS OVERVIEW
To generate a WCET estimate, we consider a program to

be processed through the phases of flow analysis, low-level
analysis and calculation.

The purpose of the flow analysis phase is to extract the dy-
namic behaviour of the program. This includes information
on what functions get called, how many times loops iter-
ate, if there are dependencies between if-statements, etc.
Since the flow analysis does not know the execution path
which corresponds to the longest execution time, the in-
formation must be a safe (over)approximation including all
possible program executions. The information can be ob-
tained by manual annotations (integrated in the program-
ming language [18] or provided separately [8, 11, 19]), or by
automatic flow analysis [12, 13, 16, 22, 29].

The purpose of low-level analysis is to determine the tim-
ing behaviour of instructions given the architectural features
of the target system. For modern processors it is especially
important to study the effects of various performance en-

hancing features, like caches and pipelines. Low-level anal-
ysis can be further divided into global low-level analysis, for
effects that require a global view of the program, and local
low-level analysis, for effects that can be handled locally for
an instruction and its neighbours.

In global low-level analysis, instruction caches [15, 13, 19,
20, 29], data caches [17, 29, 31], and branch predictors [5,
23] have been analyzed. Local low-level analysis has dealt
with scalar pipelines [5, 6, 7, 10, 13, 20, 22, 29] and su-
perscalar CPUs [21, 28]. Heckmann et al. [15] present an
integrated cache and pipeline analysis, and argue that such
integration is necessary for processors with heavy interde-
pendencies between various functional elements. Attempts
have also been made to use measurements and the hardware
itself to extract the timing [26].

The purpose of the calculation phase is to calculate the
WCET estimate for a program, combining the flow and tim-
ing information derived in the previous phases. There are
three main categories of calculation methods proposed in
literature: tree-based, path-based, and IPET (Implicit Path
Enumeration Technique).

In a tree-based approach, the WCET is calculated in a
bottom-up traversal of a tree generally corresponding to a
syntactical parse tree of the program, using rules defined for
each type of compound program statement (like a loop or
an if-statement) to determine the WCET at each level of
the tree [3, 4, 5, 20]. The method is conceptually simple
and computationally cheap, but has problems handling flow
information, since the computations are local within a single
program statement and thus cannot consider dependencies
between statements.

In a path-based calculation, the WCET estimate is gen-
erated by calculating times for different paths in a program,
searching for the overall path with the longest execution
time [13, 29, 30]. The defining feature is that possible exe-
cution paths are explicitly represented. The path-based ap-
proach is natural within a single loop iteration, but has prob-
lems with flow information stretching across loop-nesting
levels.

In IPET, program flow and low-level execution time are
modeled using arithmetic constraints [8, 11, 16, 19, 25, 27].
Each basic block and program flow edge in the program is
given a time variable (tentity), and a count variable (xentity),
and the WCET is extracted by maximizing

∑
i∈entities

xi∗ti,
where the xi are subject to constraints reflecting the struc-
ture of the program and possible flows. The result is a worst-
case count for each node and edge. As shown in [8], very
complex flows can be expressed using constraints, but the
computational complexity of solving the resulting problem
is potentially very high, since the program is completely un-
rolled and all flow information is lifted to a global level.

Both the path-based and tree-based calculation methods
are performed in a bottom-up fashion. Bottom-up calcula-
tion methods calculate a safe (timing) abstraction for a part
of the program, which is later used in the calculation of
surrounding parts of the program. For the tree-based calcu-
lation the abstraction unit is a program statement, while for
the path-based calculation it is a loop or a function. Bottom-
up calculations are beneficial, since the overall WCET calcu-
lation problem can be subdivided into smaller easier-to-solve
problems. At the other extreme we have the IPET methods,
where no subdivision is made and the unit of calculation is
the entire program.
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Figure 1: WCET tool architecture

In this paper we present an approach where the part of
the program calculated locally is not predetermined stati-
cally but depends on the flow information available for the
program. The calculation is performed bottom-up, but is
demand-driven in that a WCET for a program part is only
calculated when its timing estimate is needed in a surround-
ing program part.

3. TOOL OVERVIEW AND TERMINOLOGY
The work presented in this paper is implemented within

the framework of our existing WCET analysis tool. In ad-
dition to previous implemented extended IPET-based [8, 9]
and path-based [9, 30] calculation methods, we have imple-
mented a calculation module based on clustering. Figure 1
gives an overview of the WCET tool, when using a clustered
calculation module (as presented in this paper). Compared
to our previously presented work [8, 30] all components of
the system except the calculation phase remain unchanged,
demonstrating the modular structure of the tool. The modu-
lar architecture allows independent replacement of the mod-
ules implementing the different steps, which makes it easy
to customize a WCET tool for particular target hardware
and analysis needs.

All data structures and analysis phases in our WCET tool
are based on the possibility of partitioning the instructions
in the object code into basic blocks1. Figure 2(a) shows an
example C function, Figure 2(b) and Figure 2(c) show the
corresponding assembler code and basic block graph.

We have an automatic flow analysis currently under de-
velopment [12]. The flow analysis results in a description of
the dynamic behaviour of the program, consisting of a scope
graph annotated with flow facts (Figure 2(d)), as described
in more detail in Section 4 below.

For the current experiments, we rely on a machine model
for a NEC V850E [6, 7] that accurately models a proces-
sor pipeline using a trace-driven cycle-accurate simulator.
For the V850E target, caches are not used. The nodes in
the scope graph can be annotated with additional execution
information, e.g. giving what instructions that will hit or
miss the cache and the type of memory being accessed [6, 9]
(not explicitly shown in Figure 2(e)). The resulting timing
model, see Figure 2(f), is a data structure containing times
for each entity (node or edge) in the scope graph. Times
for nodes correspond to the execution times of basic blocks
(with additional execution information) in isolation , e.g. tA
in Figure 2(f), and times for edges, e.g. δAC in Figure 2(f), to
the timing effect when two successive nodes are executed in

1A basic block is a maximal sequence of instructions that
can be entered only at the first instruction in the sequence
and exited only at the last instruction in the sequence [24].

sequence [6, 7, 30]. These timing effects are usually negative
due to the pipeline overlap between the two nodes. Timing
effects reaching across node sequences longer than two are
also taken into account where necessary.

This timing model is powerful enough to capture the ef-
fects of pipelines and caches, separating the analysis of ma-
chine aspects from the calculation phase. It is also not tied
to our particular fashion of low-level analysis. For example,
the integrated cache and pipeline analysis for the Motorola
ColdFire 5307 processor presented by Ferdinand et al. [10]
generates a model where times are assigned to basic blocks in
a program (including the effect of both pipelines and caches
on the timing of each block). Such a timing model can
be used within our framework, with the clustered calcula-
tion method presented in this paper. Similarly, the timing
model for Infineon C167 presented by Atanassov et al. [1]
attributes times only to edges in the flow graph, and this
model would also fit in our timing model framework.

4. REPRESENTING PROGRAM FLOW
The scope graph is a hierarchical representation of the dy-

namic behaviour of a program suitable for WCET analysis.
The graph consists of nodes and edges where each node is
referring to a basic block in the object code. A basic block
might be referenced by several different scope nodes.

The nodes and edges in the scope graph are partitioned
into scopes reflecting the dynamic structure of the program
in terms of function calls, loops, recursive calls and unstruc-
tured code parts. Scopes are necessary in order to carry pro-
gram flow information, in particular bounds for all loops and
context-sensitive flow information for function calls. Fig-
ure 2(d) shows the scope graph generated for the code in
Figure 2(a).

Each scope has a distinguished header node, (e.g. node A

resp. C in Figure 2(d)), with the property that no other node
in the scope can be executed more than once without passing
the header node. Each scope should have a loop bound
attached to it, providing an upper bound on the number of
times its header node can be executed for each entry of the
scope.

The scopes in the scope graph are organized in a scope-
hierarchy, a directed tree with scopes as vertices and edges
from a scope going to all its children. Figure 2(e) illus-
trates the scope-hierarchy generated for the scope graph in
Figure 2(d). In the tree each scope has zero or more de-
scendants, i.e. scopes below it in the tree, and zero or more
ancestors, i.e. scopes above it in the tree. The immediate de-
scendants of a scope are its child scopes and the immediate
ancestor is its parent scope. A scope without any descen-
dant is called a leaf scope. E.g. in Figure 2 scope loop is a
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int foo(int max)
{
   int i,j,total;
   i = 0;
   j = 1;
   total = 0;
   while(i <= max)
      {
         if(i < 5)
       j++;
         if(j > max)
     break;
         total = total + j - 2;
         i++;
      }
   return total;
}

foo:
      mov r0,r6
      movi #1,r7
     mov r0,r5
      br foo_1
foo_0:
      add r7,r5
      addi #-2,r5
      addi #1,r6
foo_1:
      cmp r6,r1
      blt foo_5
foo_2:
      cmpi   #5,r6
      bge foo_4
foo_3:
      addi #1,r7
foo_4:
      cmp r7,r1
      bge foo_0
foo_5:
      mov r5,r1
      jmp [31]

(a) C source code (b) Assembler code (c) Basic block graph

foo:

foo_2:

foo_5:

foo_4:

foo_0:

foo_3:

foo_1:

(d) Scope graph and flow facts
(e) Scope hierarchy

with flow facts

A

B

C

D

E

F

G

tA= 8

tB= 6

tC= 5

tD= 4

tE= 5

tF= 4

tG= 5

dAC= -1

dBC= -1

dCD= -1

dCG= -2
dDE= -1

dEF= --2

dFG= -2

dFB= -1

(f) Timing model

A foo:

B foo_0:

C foo_1:

D foo_2:

E foo_3:

F foo_4:

G foo_5:

start

exit

scope: loop;
header: C;
loopbound: 10;
loop:<1..5>:#E=1;
loop:[ ]:#E £ 5;

scope: foo;
header: A;
loopbound: 1;

fo
o

lo
op

scope foo

loop:<1..5>:#E=1;
loop:[ ]:#E £ 5;

scope loop

Figure 2: WCET analysis stages

descendant and a child to scope foo. Scope loop is also a
leaf scope.

The complete subtree for a scope s is formed by all scopes
having s as ancestor in the scope-hierarchy (including s).
Each tree of scopes formed by removing the complete sub-
trees of one or several descendant scopes of s is a subtree of
s. An in-edge of a scope s is an edge having its source node
in a scope not within the complete subtree of s and having
its target within the complete subtree of s. An in-node is
a target node of an in-edge. An out-edge of a scope s is
an edge having its source node in a scope within the com-
plete subtree of s and having its target outside the complete
subtree of s. Timing effects reaching across scope bound-
aries are always taken into account via out-edges. That is,
the timing effect associated with an out-edge of a scope s

is included in the timing calculation of s, and, vice versa,
the timing effect of an in-edge of s is taken into account by
the calculation of the corresponding source scope. A scope
can be entered at several in-nodes, allowing for unstructured
jumps into loops, and might have several out-edges. An edge
going to a header node of a scope s and having its source
node located in the complete subtree of s is a back-edge of
s. E.g. in Figure 2(d) A→C is an in-edge, F→G an out-edge
and B→C a back-edge of scope loop.

4.1 Flow facts
To express more complex program flow information than

just basic loop bounds each scope can carry a set of flow
facts [8, 9]. The flow facts combine the expressive power of
IPET, using constraints to limit possible executions of scope
graph entities, with the ability to give the flow information
in a scope-local context.

Each flow fact consists of three parts: the name of the
defining scope where the fact is attached, a context specifier,
and a constraint expression (see Figure 2(d)). Each flow
fact is considered local to its defining scope and the fact is
interpreted as being valid for each entry of the scope.

The context specifier describes the iterations for which the
constraint expression is valid. This can be for all iterations
or for just some iterations. The type of a context specifica-
tion is either total (written with “[” and “]”), for which the
fact is considered as a sum over all iterations of the spec-
ified scopes, or foreach (written with “<” and “>”), which
considers the fact as being local to a single iteration of the
scope. Facts valid for all iterations are expressed by “<>” or
“[]”, while facts valid for certain iterations are expressed as

<min..max> or [min..max], where min ≤ max are integers
larger than 0.

The constraints are specified as a relation between two
arithmetic expressions involving execution count variables
and constants. An execution count variable, #entity, corre-
sponds to an entity (node or edge) in the scope graph, and
represents the number of times the entity is executed in the
context given by the context specification.

A fact can only refer to count variables corresponding to
entities located in the complete subtree of the defining scope
of the fact. For example, a fact defined in scope loop cannot
refer to executions of entities located in the foo scope. All
scopes between the defining scope and the scopes containing
referred count variables are said to be covered by the fact.
Thus, the scopes covered by a fact form a subtree with the
defining scope as root.

For each scope covered by a fact the fact spans a number
of iterations. For the defining scope the span is the number
of iterations specified by the context specifier. For all other
covered scopes the span is all iterations of the scope.

In Figure 2(d), the loop scope has two flow facts attached
to it. The first flow fact specifies that for each time loop

is entered, node E must be taken during each of the first
five loop iterations (but not that the loop needs to iterate
5 times). The second fact specifies that for each time loop

is entered node E can be taken at most five times. Observe
that the facts are local to scope loop, and should be valid for
each entry of the loop, independently on how many times
function foo is called from other functions in the program.

5. CLUSTERING OF FLOW FACTS
The goal of clustering is to find the flow facts that need to

be considered together in order not to lose precision. Such
interacting flow facts are caused by facts sharing application
area with some other facts, by reaching down into descen-
dant scopes and by having overlapping range specifications.
Together the flow facts also indirectly specify a part of the
scope graph that needs to be considered together with the
flow information in the calculation.

We define a fact cluster to be a set of flow facts. The
defining scope of a fact cluster is defined to be the first com-
mon ancestor of all the facts in the cluster. The cover of
a fact cluster is all scopes between the defining scope and
the scopes containing count variables referred to by a flow
fact in the scope. Thus, the covered scopes form a subtree
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n:[1..5]:#N1 £ #N2+2 (f1)
n:<3..7>:#N1+ #N3 =1 (f2)

scope p

scope q scope r

scope s

m:<>:#M1£ #Q1 (f4)

(a) Example scope-hierarchy with associated facts

f1 n{n}

Defining
scopeFact Covered

scopes

f2 n {n}
f3 o {o}
f4 m {m,p,q}

f6 s {s}

(b) Information about facts (c) Information about fact clusters

Fact
cluster

{f1,f2}
o{f3}
m{f4}
r{f5,f6}

n

Defining
scope

Covered
scopes

{n}
{o}

{m,p,q}
{r,s}

scope o
r:[]:#header(s) £ 55 (f5)

s:<1..5>:#S1 = 1  (f6)
o:<8..10>:#O2    N3 = 0 (f3)

scope n

f5 {r,s}r {f6} s {s}

scope m

Span def
scope

1..5
3..7

8..10
1..lb(m)
1..lb(r)

1..5

1..7
8..10

1..lb(m)
1..lb(r)
1..5

Span def
scope

Figure 3: Fact clustering example

in the scope-hierarchy with the defining scope as root. For
the defining scope s of a cluster the span is all iterations be-
tween the lowest and highest iteration of s spanned by any
fact in the cluster. For all other covered scopes the span is
equal to all iterations of the scope.

In Figure 3(a) an example scope-hierarchy with associated
flow facts is given. In Figure 3(b) we show the defining
scopes, defining scope spans, and cover of each given flow
fact. The name of a referred count variable gives the scope
in which the corresponding entity is located, e.g. #N1 refers
to executions of node N1 located in scope n. The function
lb(s) returns the loop bound for a scope s.

The fact clusters generated from the facts are given in
Figure 3(c). For each generated fact cluster we show its
defining scope, its defining scope span, and the scopes cov-
ered by the cluster. Note that the same flow fact can be
present in several clusters, and that not all flow facts in a
cluster need to have the same defining scope.

5.1 Flows causing clusters
Program flows causing fact clusters and reaching over sev-

eral scopes are actually quite common. The simplest exam-
ple is illustrated in Figure 4. It is the classical “triangular”
loop, i.e. a nested loop where the number of iterations of the
inner loop depends on the current iteration number of the
outer loop (cf. scopes r and s in Figure 3(a)).

for(i=0; i<10; i++) // Bound: 10, (scope r)
for(j=i; j<10; j++) // Local bound: 10, (scope s)

{ ... } // executed at most 55 times

Figure 4: Triangular loop

The inner loop considered in isolation will have an iter-
ation bound of 10, and so will the outer loop. If WCET
calculation is performed locally, the WCET calculation for
the inner loop will assume 10 iterations, and the WCET cal-
culation for the outer loop will use 10 executions of the inner
loop, leading to the body of the inner loop being counted
100 times, when it is actually never executed more than 55
times. This requires that we handle the inner and outer loop
together. Flow fact f5 in Figure 3(a) shows how this type of
triangular loop dependency can be captured, (#header(s)
refers to the count variable of the header node of a scope s).

Flows in nested scopes can be related in other ways, for

void foo(bool x) { // Function foo(), (scope m)
if( cond )

x = true; // Block M1
for( ... ) // Outer loop, (scope p)

for (... ) // Inner loop, (scope q)
if( x )

Q1 // Block Q1, execution implied by M1
}

Figure 5: Long reaching dependency

example if the outcome of a decision in a scope determines
the paths taken in a loop (maybe deeply) nested in the scope
(with varying outcome), like e.g. for the scopes m, p and q in
Figure 3(a). Figure 5 shows example code with such a long
reaching dependency. Flow fact f4 in Figure 3(a) captures
this type of nested dependency. It gives that an execution of
M1 implies an execution of Q1, (node Q1 can still be executed
on its own).

for( ... ) { // Bound: 10, (scope o)
if( cond ) { // Block 02, false during last 3 iters

N3; // Block N3, big chunk of work
break;

}
...
}

Figure 6: Condition dependent dependency

In the next example, shown in Figure 6, block N3 does
not belong to the loop (due to the break statement), and
the way the loop is exited will determine whether it should
be counted or not. Thus, N3 depends on the decision cond

in the loop body, but N3 is a node in the parent scope of o

(scope n). Fact f3 in Figure 3 captures this dependency by
specifying that the edge O2→N3 can not be taken during the
last three iterations of the o scope.

Another case of flow information causing clusters is when
information from different types of flow analysis methods or
manual annotations interact, and therefore need to be con-
sidered together in the WCET calculation. An example of
such overlapping flow information is shown in Figure 3(a)
with flow facts f1 and f2. Both flow facts have the same
defining scope n and they overlap in the ranges of their con-
text specifications.

5.2 Fact clustering algorithm
An algorithm to create the clusters of flow facts is given

in Figure 7. The algorithm makes a post-order traversal of
the scope graph, where all clusters for a descendant scope
are generated before its parent scope is processed.

For each scope s, we look at the facts defined on the
scope, and partition the facts based on their range speci-
fications. Two facts with ranges that overlap, i.e. have some
iteration numbers in common, go to the same set: ∀fi, fj ∈
facts(s) : (overlap(span(fi, s), span(fj , s)) ∧ fi ∈ c) ⇒
fj ∈ c. This creates sets of facts where the defining scope
span of each fact overlaps one or more of the facts in the
same set.

For example, fact f1 and f2 in Figure 3 have overlapping
ranges and the same defining scope n, and should therefore
be put in the same set. Note that if there are any “all itera-
tions” facts (using context specification [ ] or < >), there will
only be one fact set for this scope since these facts include
all iterations, and thus overlap with all other facts defined
on the scope.

We also need to consider interactions of flow facts located
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ClusterFacts(scopegraph sg):

FC := ∅ // To hold generated fact clusters
// Traverse scopes in scope graph bottom up
for each scope s in sg in bottom-up order do

F := flow facts in sg with s as defining scope
// Partition facts into clusters
C := partition facts in F over span of s into

overlapping sets of facts
// Add fact clusters already created in descendant scopes
for each fact cluster c in C do

Cov := scopes covered by c except scope s
for each fact cluster csub in FC defined in Cov do

c := c ∪ csub

end for
end for
// Update set of fact clusters
FC := FC ∪ C

end for
return FC

Figure 7: Minimal fact clustering algorithm

in different scopes. For each extracted fact-cluster we check
if it covers any descendant scopes. For all covered descen-
dant scopes all facts in clusters defined on these scopes are
added to the cluster, together covering a set of scopes that
have to be considered jointly. Note that this means that a
fact can be part of several fact clusters. For example, fact
f5 in Figure 3 covers both scope r and s and should there-
fore be clustered together with fact f6, resulting in the fact
cluster {f5,f6} with r as its defining scope. Fact f6 is at the
same time the only fact in the cluster having s as defining
scope.

The algorithm given in Figure 7 generates minimal fact
clusters, i.e. sets of facts where all included facts need to be
considered together, but includes as few facts as possible.
We call this clustering algorithm minimal fact clustering.
It is also possible to form larger clusters, (note that any
clustering has to put all interacting facts in the same unit),
and natural examples of such clusterings are:

• Scope-based clustering : All facts defined in a scope are
put in the same cluster, together with all the facts in fact
clusters defined in covered descendant scopes.

• Maximum clustering : All flow facts in the scope graph are
put into one big cluster with the first common ancestor
scope as its defining scope. Scopes not covered by the
resulting fact cluster will be calculated separately from
the scopes in the cluster.

• Global clustering : All flow facts in the scope graph are
put into one big cluster with the root scope of the scope
graph as its defining scope. All scopes in the scope-graph
are part of the cluster. This is identical to the global
calculation view used by our Extended IPET method [9].

Furthermore, we can construct even smaller clusters by
subdividing foreach facts into facts valid for smaller ranges.
A foreach fact gives flow information valid for each indi-
vidual iteration and therefore does not need to force over-
lapping subranges to the same cluster. Instead, we apply
the algorithm given in Figure 7 to total facts only. The re-
maining foreach facts are split into new foreach facts across
the ranges of the resulting clusters. E.g. in Figure 3(a)
the total fact f1 does not overlap f2 completely, so we
split f2 into the facts n:<3..5>:#N1 + #N3 = 1 (f2’) and
n:<6..7>:#N1 + #N3 = 1 (f2”). The resulting fact clusters
become {f1,f2’} and {f2”}. We call such clustering split-
foreach-fact minimal clustering. Compared to the minimal
clustering algorithm, splitting of foreach facts will result in

ScopeWCET(scope s, scopegraph sg, factclusterset FC,
timedatabase tdb):

// Initialize timing variables for scopes and clusters
ts,back := ts,out := tc,back := tc,out := 0
// Get fact clusters for scope s
Cs := fact clusters in FC with s as defining scope
Cs := add empty cluster for each range of s not

covered by fact clusters in Cs

// Make WCET calculation over clusters
for each cluster c in Cs in increasing range order do

stc := subtree of scopes in sg covered by c
// Replace non-covered descendant scopes with timing nodes
for each child scope sub to leaf scopes in stc do

// Do demand-driven analysis of descendant scopes
if time for sub is not in tdb then

tdb := ScopeWCET (sub, st, cs, tdb)
// Replace calls to descendant scopes with timing nodes
tsub := time for scope sub in tdb
stc := in stc replace call to sub with

node taking tsub time
end for
// Get begin nodes for cluster
if c spans first iteration of s then b := in nodes(s)
else b := header node(s)
// Calculate time to out-edges for cluster
tc,out := ClusterWCET (c, b, out edges(s), stc, tdb)
// Update time to out-edges for scope
if valid(tc,out) then

ts,out := max(ts,back + tc,out,ts,out)
// Calculate time to back-edges for cluster
if c does not span last iteration of s then

tc,back := ClusterWCET (c, b, back edges(s), stc, tdb)
// Update time to back-edges for scope
if valid(tc,back) then

ts,back := ts,back + tc,back

// Break if execution can’t continue
else break loop

end for
// Update timing database and return
add time ts,out for scope s to tdb
return tdb

Figure 8: Clustered WCET calculation

more fact clusters with smaller covers.

6. CLUSTERED WCET CALCULATION
The algorithm for calculating a WCET estimate using fact

clusters is shown in Figure 8. The algorithm performs a
demand-driven traversal of the scopes in the scope-hierarchy.
For each scope we find the fact clusters defined on the scope,
and for each fact cluster the scopes covered by the cluster are
extracted as a subtree over which a local WCET calculation
is made. This means that if there are fact clusters that cover
more than one scope, a WCET calculation is performed over
all covered scopes as a unit.

The WCET estimate for a scope s is obtained by iter-
ating over the clusters having s as defining scope in range
order, i.e. fact clusters spanning the first iterations of s are
processed before fact clusters spanning later iterations of s.
If some scope range is not spanned by any fact cluster, an
empty fact cluster is created. Such empty clusters cover just
the current scope and span only consecutive iterations not
spanned by any fact. For a scope not covered by any flow
fact, an empty cluster is created, spanning all iterations of
the scope.

A timing estimate for a program fragment should be cal-
culated from where the execution can enter the fragment to
where the execution can exit the fragment. A calculation
for a cluster is therefore performed from some begin-nodes,
where the execution can enter the covered scopes, to some
end-edges, where the execution can exit the covered scopes.
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in header

(a) Scope-hierarchy with flow facts

scope v

scope u loopbound: 20
u:[1..5]:#U1£ #U2+2  (f1)
u:<3..7>:#U1+#U3=1  (f2)
u:[10..20]:#U2

 
£

 
#V1 (f3)

loopbound: 10
v:<1..4>:#V1+#V2£1  (f4)

{f4}
v:1..4

in

out back

{f1,f2}
u:1..7

{  }
u:8..9

out

{  }
v:5..10

header header

out

time for v becomes a new
node in u:1..7 and u:8..9

v:1..4  and
v:5..10 is calc-
ulated together
with u:10..20

(b) WCET calculation scope v (c) WCET calculation scope u

out back out back

 WCET(in,u,out) =
  max(WCET(in,u:1..7,out),

WCET(in,u:1..7,back) +
WCET(header,u:8..9,out),
WCET(in,u:1..7,back) +
WCET(header,u:8..9,back)+
WCET(header,u:10..20,out)  )

WCET(in,v,out) =
  max(WCET(in,v:1..4,out),

WCET(in,v:1..4,back)+
WCET(header,v:5..10,out))

u:10..20
v:1..10

{f3,f4}

scope v scope v

Figure 9: Calculation over clusters

The cluster spanning the first iteration of a scope has begin-
nodes equal to the in-nodes of the scope. For the remaining
clusters the begin-nodes are equal to the header-nodes of the
scope, since this defines the start of a new iteration.

Similarly, for all clusters except the one including the last
iteration, we make two distinct calculations, one ending at
an out-edge and one ending at a back-edge. This is because
the execution path taken to exit a scope might be different
from the path taken when continuing to the next cluster. If
a WCET estimate for the back-edges cannot be calculated,
e.g. due to some contradicting flow information in the clus-
ter, the execution can not continue. If so, we stop iterating
over the ranges and return the total time accumulated for
the scope.

Figure 9 shows an example of a WCET calculation work-
ing over clusters. The algorithm starts at scope u where
there are several facts covering the iteration range. The
name of a referred count variable gives the scope in which
the corresponding entity is located, e.g. #V1 refers to exe-
cutions of node V1 located in scope v. The facts f1 and f2

together form a cluster, {f1,f2}, spanning range 1..7 of u.
Since neither f1 nor f2 cover v, a local calculation is made
for v by a recursive call to the algorithm.

The local WCET calculation for v only needs to consider
facts and fact clusters defined on v. Fact f4 creates a fact
cluster on its own, {f4}. Two calculations are made for the
{f4} cluster: one to the out-edges and one to the back-edges.
The remaining iterations (5..10) of v are not spanned by
any fact and an empty fact cluster { } is therefore created
for these iterations. Since the fact cluster covers the last
iteration of v, a WCET estimate is only made to the out-
edges, and not to the back-edges as in the previous clusters.

After calculating a WCET estimate for v, the calcula-
tion restarts at u with the fact cluster {f1,f2}. There are
no facts spanning range 8..9, and an empty fact cluster { }
(covering just scope u) is created. For both these calcula-
tions, the call to scope v is represented by a call node with
the timing of the extracted WCET estimate for v, i.e. no
details of v except its timing are included in the calculation.

Fact f3, however, covers both scope u and v and will be
clustered together with the f4 fact as {f3,f4}. This means
that when calculating a WCET estimate for scope u over the
range 10..20 we cannot use the previously generated time
for scope v, but must do the calculation over both u and v.

(b) Scope graph
      fragment

One WCET
for scope o

Separate WCETs
for each out edge

(c) Calculation alternatives

N3

N4

N2 N2

N3

N4

01

02

03

N3

N2

sc
op

e 
o

N4

...
N2
for( ... ) O1
  {
     if(...) O2
       {
          N3
          break;
       }
     O3
  }
N4
...

(a) Example
     code

scope: o
loopbound: 10
o:<8..10>:#02  N3 = 0

Figure 10: Calculation alternatives for graph frag-

ment with multiple exits

Observe, that {f3,f4} covers the last iteration of u so no
calculation for the back-edges is needed.

7. CALCULATION ALTERNATIVES
Some graph fragments have several points where the ex-

ecution can enter or exit. For such fragments we have the
option to make a separate WCET calculation for each pair of
entry and exit points, or to make just one WCET calculation
for all entry or exit points together, or to do something in
between. This allows us to trade WCET estimate precision
for calculation speed.

Figure 10 gives an example of the need for the calculation
to differentiate between different exit points for increased
precision. The code and scope graph corresponds to the
example in Figure 6, where flow fact f3 specifies that edge
O2→N3 cannot be taken during the last three iterations of
scope o.

If only one calculation is made for scope o for both its out-
edges it will result in a timing estimate for o which gives that
the loop is iterated 10 full iterations. Later, when doing a
WCET calculation for scope n the worst case path will be
passing the call node for scope o together with the nodes N3
and N4. This gives a safe but pessimistic WCET estimate,
since the extracted worst case path could not be taken in an
actual execution.

The other calculation alternative, which is to make a sep-
arate WCET calculation for each out-edge of scope o, will
discover that the out-edge to node N3 can not be taken dur-
ing the last three iterations of o. The WCET estimate for
scope o will therefore be different depending on the used out-
edge. In the calculation of scope n, this will result in two
separate call nodes for scope o, each with different timing.
Thus, by making separate calculations for different in-nodes
and out-edges the calculation cost increases, but more pre-
cise WCET estimates can be achieved.

Note that we only need to extract one single program
fragment even though we perform separate calculations for
its begin-nodes and end-edges. By adding extra flow facts
stating which begin-nodes and end-edges are possible for
each particular calculation, the extracted graph fragment
can be reused.

8. COMPLETE EXAMPLE
In Figure 11(a)-(k) we give a compact illustration of the

steps involved in our clustered calculation method. To sim-
plify the presentation, no timing for entities is included in
the example.

Figure 11(a) shows an example control-flow graph con-
sisting of a single loop and a loop nest consisting of two

7



(j) Scope graph and calculations of scope outer (k) Scope graph and calcs of scope main
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loopbound: 10
outer:[]:#J £ 55
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(a) Basic-block graph
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inner:<1..5>:#L = 1 (f4)loop

main

(c) Scope-hierarchy with associated flow facts

(i) Scope graph and calculations of scope loop

Calc 1: loop:1..40 to back-edge
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Calc 2: loop:1..40 to out-edge
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Calc 3: loop:41..50 to out-edge
loopbound: 10
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Figure 11: Complete example of clustered calculation

loops. Figure 11(b) shows the corresponding scope graph
with scopes main, loop, outer and inner. Each scope has
a loop bound and some have flow facts attached. Note that
both loop and outer have multiple out-edges. Figure 11(c)
shows the corresponding scope-hierarchy, with flow facts at-
tached to the different scopes. Figure 11(d) shows the defin-
ing scope, defining scope span, and cover of the flow facts.

Figure 11(e) shows the fact clusters generated when ap-
plying the minimal clustering algorithm given in Figure 7.
Since fact f1 and f2 overlap in their ranges they will be put
in the same cluster. Fact f3 refers to the header node of
scope inner and is therefore put in the same cluster as f42.

Figure 11(f) shows the fact clusters generated when apply-
ing the split-foreach-fact minimal clustering (see Section 5.2).
Fact f1 has been split into two new facts loop:<1..5>:#D =
1 (f1’) and loop:<6..40>:#D = 1 (f1’’). The fact clusters
{f1’,f2} and {f1’’} together span the same range as the
{f1,f2} cluster given in Figure 11(e).

Figure 11(g) shows the fact cluster generated when apply-
ing the global clustering (see Section 5.2). All facts are put
into one cluster, with main as defining scope, and will all be
considered together as a unit in the final calculation.

For the rest of the example we use the clusters in Fig-

2Fact f4 is also constituting a fact cluster on its own, {f4},
defined on scope inner, but this is not included in Fig-
ure 11(e), since f4 will always be calculated together with
f3.

ure 11(e) as generated by the minimal clustering. Fig-
ure 11(h) shows the resulting set of clusters, after adding
empty clusters for all ranges of scopes not covered by any
cluster. This is done as part of the algorithm given in Fig-
ure 8. An empty cluster for range 1..1 of main and one
empty cluster for range 41..50 of loop is created.

Our demand-driven WCET calculation algorithm given in
Figure 8 starts at scope main. Since only main is covered by
the empty fact cluster, recursive calls are made for scope
loop and outer, before calculating the WCET of main.

Scope loop is covered by two fact clusters, {f1,f2} and an
empty cluster. The calculation starts with cluster {f1,f2},
since it spans the first iteration of loop. The scopes covered
by the cluster are extracted to form a separate graph frag-
ment as given in Figure 11(i). Two different calculations
are made: one ending at the back-edge of loop (Calc 1)
and one ending at the out-edge of loop (Calc 2). The same
scope graph is used for both calculations, but some extra
flow facts are added in each calculation to constrain where
the execution should end.

The calculation continues with the empty cluster spanning
range 41...50 of scope loop. When calculating a WCET es-
timate for this cluster we reuse the extracted scope graph
for scope loop. Since the cluster is empty, no flow facts are
included, except one specifying that the execution must end
at the out-edge (Calc 3). The three different WCET esti-
mates extracted are used together, as given by the algorithm
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Program Properties BB Sc FF

compress Nested loops, goto-loop, function calls. 91 24 9
crc Complex loops, lots of decisions, loop

bounds depend on function arguments.
29 9 6

duff Loop with multiple entry points 20 6 2
expint Inner loop that only runs once, structural

WCET estimate gives heavy overestimate.
24 7 4

fibcall Parameter-dependent function, single-
nested loop.

7 4 0

fir Inner loop with varying number of itera-
tions, loop-iteration dependent decisions.

14 5 7

insertsort Input-data dependent nested loop with
worst-case of n2/2 iterations.

7 4 1

lcdnum Loop with iteration-dependent flow. 26 4 2
matmult Multiple calls to the same function, nested

function calls, triple-nested loops.
27 16 0

ns Return from the middle of a loop nest, deep
loop nesting.

18 7 1

nsichneu Automatically generated code containing
massive amounts of if-statements (� 250)

754 3 129

Figure 12: Benchmark programs

in Figure 8, to calculate a WCET estimate for scope loop.
The next step is to calculate a WCET estimate for scope

outer. Since the fact cluster {f3,f4} covers both scope
outer and inner, a WCET estimate will be extracted for
both scopes together. A new scope graph is extracted for
the two scopes, as shown in Figure 11(j). For the extracted
scope graph and fact cluster, two different calculations are
made, one to the out-edge with node I as source (Calc 4),
and one to the out-edge with node O as source (Calc 5).

After calculating WCET estimates for scope loop and
outer a WCET estimate for scope main can be calculated.
A scope graph for scope main is extracted, as shown in Fig-
ure 11(k), with the calls to scope loop and outer replaced
with call nodes. Each node is given a timing equal to the
WCET estimate extracted for the call to the corresponding
scope. Note that scope outer gets replaced with two differ-
ent call nodes, since it had multiple out-edges. No fact is
covering scope main, and only one calculation needs to be
made for this scope (Calc 6). The result of the calculation
is a WCET estimate for the whole program.

Note that we do not put any demands on the calculation
method to use when calculating a WCET estimate for a fact
cluster and its covered scopes. For example, for the calcula-
tions of the main scope or the last range of loop, both our
Path-based [9, 30] and extended IPET [8, 9] methods can
be used. For fact clusters with more complicated flow in-
formation, such as {f3,f4}, our extended IPET calculation
method is preferably used.

9. MEASUREMENTS AND EVALUATION
In order to demonstrate the precision and effectiveness of

our clustered calculation method we have performed a num-
ber of measurements, using the programs listed in Figure 12.
We have tried to find a number of test programs contain-
ing various types program structures and of varying size, in
order to test the calculation method thoroughly. The BB

column gives the number of basic blocks when compiled for
the V850E processor, Sc gives the number of scopes and FF

the number of flow facts in the corresponding scope graph.
All flow facts where manually added.

Our WCET tool supports three different calculation meth-
ods: a Path-based [9, 30], an Extended IPET [8, 9] and a
clustered method (as outlined in this article). Each calcu-

lation module takes the same two inputs: a scope graph
with flow facts (representing possible program flows) and a
timing model (representing hardware timing).

Our Path-based method is very fast, only exploring a few
of the total number of possible program paths, but can only
handle flow facts of foreach type and with a cover of a sin-
gle scope3. The Extended IPET calculation method allows
for more complex flow information than classical IPET. It
works by converting the whole program into one large con-
straint system and can handle all type of flow facts. The
current implementation of the clustered method does not
support the possibility to perform path-based calculation
within clusters, i.e. only our extended IPET can be used
within clusters, but is planned for future work. The ex-
tended IPET and clustered calculation method both rely on
the mixed ILP solver lp solve [2] to solve generated con-
straint systems.

All measurements were performed on a AMD Athlon 1800+
with 512 MB RAM. Since the V850E processor used does
not have a cache, cache analysis was not included in the
experiments.

The table in Figure 13 shows the WCET estimate preci-
sion (cycles) in clock cycles and computation time (time) in
seconds, of the different calculation methods. The Actual

WCET column gives the actual WCET of the program ob-
tained by running a worst-case trace of the program through
the same CPU simulator used by the WCET analysis. The
Path-based method does not work with the duff benchmark,
since it contains an unstructured loop.

The path-based WCET estimate precision is of the same
quality as the clustered and extended IPET for most pro-
grams, indicating that foreach facts with a single scope cover
are often sufficient for obtaining precise WCET estimates.
However, programs like insertsort and fir need extra flow
facts covering several scopes for high WCET estimate preci-
sion. This indicates that scope-local methods are not always
sufficient to achieve high precision. The precision of the clus-
tered method is of the same quality as the extended IPET,
the current method with highest precision.

For all our benchmarks, except nsichneu, the time spent
in the calculation stages is almost negligible. This is because
most of the benchmarks programs given in Figure 12 are
quite small and do not really stress our calculation methods.

To evaluate how the different calculation methods scale
with added flow facts and the program size, we used an
altered version of the nischneu benchmark. The original
scope graph generated for nsichneu consists of three scopes
(see Figure 12). The innermost scope is very large, con-
taining 752 scope nodes. By adding extra dummy flow facts
(i.e. facts that do not reflect the real program execution, but
increase the complexity of the resulting constraint system),
spanning a particular iteration of the inner scope and not
actually removing any possible execution paths, we increase
the computational load. For example, adding one dummy
fact will create an extended scope graph for our extended
IPET method consisting of 1508 scope nodes (752 + 752
+ 4). The IPET method will create a constraint system
over the whole graph while the clustered and path-based
calculation methods will partition the problem into smaller
subproblems. For each calculation run all WCET estimates

3Path-based methods can be extended to handle triangular
loop dependencies and unstructured code [14], this is how-
ever not implemented in our path-based method.

9



Program Path-based Ext. IPET Clustered Actual
cycles +% time cycles +% time cycles +% time WCET

compress 8670 +0.09 0.01 8670 +0.09 0.25 8670 +0.09 0.29 8662
crc 30275 +0.01 0.01 30271 0 0.02 30271 0 0.04 30271

duff - - - 1083 0 0.01 1083 0 0.04 1083
expint 8588 0 0.01 8588 0 0.01 8588 0 0.04 8588

fibcall 313 0 0.01 313 0 0.01 313 0 0.01 313
fir 352073 +1.14 0.01 348095 0 0.02 348095 0 0.07 348095

insertsort 1794 +67.04 0.01 1074 0 0.01 1074 0 0.01 1074
lcdnum 198 0 0.01 198 0 0.03 198 0 0.13 198

matmult 221824 0 0.01 221824 0 0.01 221824 0 0.04 221824
ns 23746 +70.49 0.01 17353 +24.59 0.01 17353 +24.59 0.03 13928

nsichneu 51133 +0.03 0.09 51116 0 1.78 51116 0 2.15 51116

Figure 13: WCET estimate precision and calculation time

Extra Path-based Ext. IPET Clustered
facts time expl. paths time lptime constr. vars. time lptime calcs

0 0.09 3 3.73E97 1.78 0.66 1651 2139 2.15 0.72 2
1 0.2 5 1.11E98 14.45 5.02 3417 4528 8.64 1.85 4
2 0.31 7 1.87E98 32.84 11.71 4931 6665 13.28 3.06 6
3 0.46 9 2.61E98 58.38 21.80 6445 8802 19.98 4.24 8
4 0.58 11 3.36E98 92.43 35.32 7959 10939 27.04 5.48 10
5 0.74 13 4.11E98 135.90 51.94 9473 13076 36.13 6.73 12
6 0.92 15 4.85E98 187.86 71.35 10987 15213 49.33 7.99 14
7 1.05 17 5.59E98 248.87 95.06 12501 17350 54.35 9.14 16
8 1.19 19 6.34E98 319.51 120.81 14015 19487 59.44 10.34 18
9 1.32 21 7.09E98 390.73 149.54 15529 21624 66.80 11.52 20

10 1.34 23 7.83E98 476.26 182.84 17043 23761 78.20 12.82 22

Figure 14: Scaling measures of calculation methods
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Figure 15: Computation time scaling

achieved were exactly the same as reported in Figure 13.
Figure 14 gives computation times obtained for our calcu-

lation methods when adding dummy flow facts. The Extra

facts column gives the number of added dummy facts. For
each calculation method we give some values of interest for
understanding its particular execution time properties. For
the path-based calculation the computation time (time),
the number of explored paths (expl.) and the number of
potential paths (paths) are given. For the Extended IPET
calculation, the computation time (time), the time spent
in the linear programming solver lp solve (lptime), and
the number of constraints (constr.) and variables (vars.)
generated are given. For the clustered calculation the com-
putation time (time), the number of lp solve calls made
and the total time spent in lp solve (lptime) are given.
The computation time for Extended IPET and Clustered
calculation includes the time spent in lp solve.

Figure 15 shows computation times of each calculation
method plotted against the number of added dummy flow
facts. We note that the computation time seems to be lin-

early increasing with the problem size both for the path-
based and clustered calculation, while the extended IPET
has a more than linear increase. Both the extended IPET
and the clustered calculation method spend most of the cal-
culation time in constructing graphs and generating con-
straint systems.

The graph also plots the time spent in lp solve for the
extended IPET and clustered calculation. For the extended
IPET a single call to lp solve is made for each calcula-
tion, with constraints and variables for the complete virtual
scope graph. For the clustered calculation, the number of
lp solve calls increases with the number of added dummy
facts, but not the size of each generated constraint system.
Each call to lp solve by the clustered calculation of the in-
nermost scope contained 2156 variables and 1660 constraints
and took approximately 0.65 seconds.

We conclude that extended IPET has quite bad scaling
properties. This could be a general problem for calcula-
tion methods relying on global ILP solvers for calculating
WCET estimates. Our path-based calculation method is
very efficient, only exploring a few of the total number of
possible paths, and seems to scale very well. The clustered
calculation is somewhere in between in complexity, scaling
reasonably well, while still being able to handle complex flow
information.

We have implemented all five clustering algorithms out-
lined in Section 5.2. The algorithms differ in how many flow
facts will be considered together, and consequently in the
size of the scope graph that will be covered by each local
WCET calculation performed. Figure 16 shows the effect of
applying different fact cluster algorithms to our benchmarks.
Columns labelled cl give the number of fact clusters gener-
ated (not including empty clusters). Columns labelled call

give the number of local WCET calculations performed, i.e.
the number of calls to lp solve, and time gives the com-
putation time of the calculation.
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Program min-split minimum scope max global
cl call time cl call time cl call time cl call time cl call time

compress 6 34 0.29 4 34 0.28 4 30 0.3 1 23 0.34 1 1 0.28
crc 6 6 0.04 6 6 0.01 6 6 0.04 1 1 0.01 1 1 0.02

duff 2 12 0.04 2 12 0.04 2 12 0.03 1 4 0.02 1 1 0.01
expint 4 11 0.04 4 11 0.04 2 7 0.03 1 6 0.03 1 1 0.01

fibcall 0 4 0.01 0 4 0.01 0 4 0.01 0 4 0.01 0 1 0.01
fir 5 12 0.05 2 6 0.04 2 3 0.03 1 1 0.02 1 1 0.02

insertsort 1 1 0.01 1 1 0.01 1 1 0.01 1 1 0.01 1 1 0.01
lcdnum 2 23 0.13 2 23 0.12 1 19 0.11 1 21 0.12 1 1 0.03

matmult 0 15 0.04 0 15 0.04 0 15 0.05 0 15 0.04 0 1 0.01
ns 1 13 0.03 1 13 0.03 1 10 0.02 1 13 0.03 1 1 0.01

nsichneu 1 2 2.18 1 2 2.17 1 2 2.06 1 2 2.17 1 1 1.72

Figure 16: Clustered calculation measures

The minimum (minimum) and split-foreach-fact (min-

split) fact clustering algorithms generate many small clus-
ters, and result in many local WCET calculations. At the
other extreme we have the global clustering (global) which
performs one single WCET calculation for the whole pro-
gram or maximum clustering (max) which puts all flow facts
into one cluster but does not include non-covered scopes.
Scopes not covered by any fact clusters are traversed bottom-
up generating one or more local WCET calculations, ex-
plaining the different number of WCET calculation calls
made for different benchmarks. For all benchmarks all clus-
tering algorithms gave the same WCET estimates as pre-
sented for the clustered calculation in Figure 13.

As discussed in Section 7, some fact clusters define graph
fragments with several entry and exit points, allowing us
to trade WCET estimate precision for speed. Figure 17
presents measurements performed using the minimal clus-
tering algorithm. The diff in-out measurements differenti-
ate between entry and exit points, while the no diff mea-
surements do not. The amount of fact clusters generated is
identical for both algorithms (cl). The calls column gives
the number of local WCET estimates performed for each
program. We note that for many programs, the number
of local WCET estimates decreases quite significantly when
not differentiating between entry and exit points. For all
programs, except ns, the calculated WCET estimates preci-
sion is of the same quality. Program ns contains a non-local
return from a deeply nested loop, causing an overestimation
in a fashion similar to the example presented in Section 7.

10. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a new method for calculat-

ing the WCET of a program. The method can be considered
a hybrid between fast but less precise calculation methods
like tree-based and path-based methods, and the precise but
potentially slow global IPET method. It is based on finding
the smallest possible parts of a program that have to be han-
dled as a unit to ensure precision. The calculation method to
use for each such part is not fixed but could depend on the
characteristics of the given flow information and program
structure. Since these parts are typically small compared to
the overall program, the method is fast, but no precision is
lost from introducing arbitrary boundaries in the calculation
as is done in tree-based and path-based approaches.

Our experiments indicate that the clustered calculation
achieves the same precision as the global extended IPET,
while being much less prone to high analysis times. In gen-
eral, the suitability of a particular calculation method de-
pends on the structure of the program and the properties of
the provided flow information. We have outlined several dif-

Program diff in-out no diff
cl call WCET cl call WCET

compress 6 38 8670 6 31 8670
crc 6 6 30271 6 6 30271
duff 2 12 1083 2 5 1083
expint 4 11 8588 4 10 8588
fibcall 0 4 313 0 3 313

fir 5 12 348095 5 12 348095
insertsort 1 1 1074 1 1 1074

lcdnum 2 23 198 2 7 198
matmult 0 15 221824 0 15 221824

ns 1 13 17353 1 8 23746
nsichneu 1 2 51116 1 2 51116

Figure 17: Effect of differing between flows in and

out of clusters

ferent alternatives to perform clustered calculation, making
it easy to adapt the calculation to particular requirements
of computation speed and precision.

We are currently working on fully integrating an auto-
matic flow analysis module [12] into our WCET analysis
tool. Preliminary results indicate that such analyses are
likely to produce a large number of flow facts, while a hu-
man user usually only provides a handful of facts for a typ-
ical program. In this scenario we believe that the clustered
calculation method will become important to keep the cal-
culation time down.
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