
Data Fields

Bj�orn Lisper

Dept. of Teleinformatics, KTH

Electrum 204

S-164 40 Kista, Sweden

lisper@it.kth.se

May 15, 1998

Abstract

This position paper describes the data �eld model, a general model for

indexed data structures. The aim of this model is to capture the essence of

the style of programming where computing on data structures is expressed by

operations directly on the structures rather than operations on the individual

elements. Array and and data parallel languages support this programming

style, and functional languages often provide second order operations on lists

and other data structures for the same purpose. The data �eld model is

designed to be abstract enough to encompass a wide range of explicitly or

implicitly indexed structures. Thus, algorithms which are expressed in terms

of data �elds and general operations on them will be independent of the choice

of structure from this range { i.e., generic w.r.t. this choice. This means that

the data �eld approach has some in common with polytypic programming and

the theory of shapes.

1 Introduction

Many computing applications require indexed data structures, i.e., a collection of

uniformly typed data which can be (directly or indirectly) indexed in order to re-

trieve a certain value. Examples are homogenous lists, arrays, data parallel entities,

trees, and nested sequences to mention a few. The indexing capability need not be

explicit (like, for instance, when representing a set by a list), but in many applica-

tions it provides an important part of the model. Examples of the latter is when

solving partial di�erential equations (PDE's), where the index is closely related to

a physical coordinate, in image and signal processing, and in linear algebra.

Since the time of APL [5] it has been recognized that a programming model

which provides operations directly on data structures can be very convenient. The

data parallel programming model [10] is an exponent of this style (albeit often with a

close connection to some underlying parallel architecture providing support for these

operations). Modern array- and data parallel languages like Fortran 90 [3], High

Performance Fortran (HPF) [7], NESL [2], and Sisal [6, 17] provide support, as well

as many functional languages which have a rich set of list operations corresponding

to the array- and data parallel operations.

Most of these languages have in common, though, that they restrict the scope

of direct operations on data structures to a single data type or class of data types,

such as arrays or lists. But clearly there are some underlying patterns which recur

throughout. The data �eld model is an attempt to capture the essence of these by

providing an general programming model for indexed structures, whose design is

1

based on the more abstract view of indexed structures as partial functions. The

goal is to provide a model with a uniform semantics over a wide range of structures,

which is exible, expressive and not boxed in by the idiosyncrasies of a certain kind

of structure.

Some papers on the data �eld model have been published. The early [9] gives

an account of the data-structure-as-partial-function view and uses an informal met-

alanguage for partial functions to de�ne common operations on data structures

as operations on partial functions. In [14] an abstract interpretation called extent

analysis is developed, which can �nd the domain of de�nition for certain recursively

de�ned partial functions. A tutorial on the early data �eld model of indexed data

structures as partial functions is found in [13]. This position paper gives a short

account for the present data �eld model which is presented in full detail in [15].

1.1 Operations on indexed data structures

Which operations on indexed data structures are there, then? One can distinguish

�ve major groups of operations which occur throughout.

Elementwise applied operations apply a \scalar" operation f to every element in

a data structure A. The canonical example is the map operation on lists. Languages

with explicitly indexed structures typically provide elementwise applied n-ary oper-

ations: for instance, Fortran 90 allows constructs like X+Y which adds the elements

of the arrays X and Y elementwise. Here, the indexing is used to �nd out which

elements from X and Y to add.

A second group of operations reorder indexed data structures. This can be seen

as communication where elements of data structures are transferred between index

locations. Parallel read from a data structure A yields a new data structure whose

value at index i is A(source(i)). Here, source is some function from indices to

indices. Parallel write concurrently sends, for all indices i, the element with index i

to dest(i). This is a potentially nondeterministic operation, but it can also be given

a deterministic semantics in various ways.

The third group of operations perform some kind of replication. For instance,

The Sisal operation array_fill creates an array of copies of a given value. Array

languages often support the replication of arrays into arrays of higher dimensions,

e.g., replicating a vector into a matrix with copies of the vector as columns.

Restriction operations apply a boolean condition elementwise, as a \mask", in

order to select a part of a data structure. For instance, in Fortran 90,

WHERE (A < 0.0) A = -A

e�ectively sets every element of the array A to its absolute value. For lists, restriction

is provided by filter operations.

Reduction operations, �nally, compute some single value as a function of the

elements of a data structure. Usually, the function is composed of some repeatedly

applied binary operation. Examples are the foldl and foldr operations on lists.

Finally, a note on syntax for these operations. The most direct approach is of

course to provide explicit operations, like map for elementwise applied operations.

But other syntaxes exists and have proven to be useful. Array languages like For-

tran 90 often provide elemental intrinsics, a number of scalar operations which also

are overloaded as elementwise applied operations on arrays. The elementwise addi-

tion of X and Y above is an example. A third form of notation \quanti�es" over a

given range of indices, e.g., in Sisal,

for i in 1,n returns array of X[i]+Y[i]

adds X and Y elementwise for the indices 1 to n. The imperative FORALL statement [1]

in HPF is very related.

2

1.2 The Data Field View of Indexed Data Structures

Data �elds are pairs (f; b) where f is a function and the \bound" (or shape) b is

an entity that can be interpreted as a predicate [[b]]. (f; b) can be interpreted as a

partial function where b provides a safe approximation of its domain. The canonical

example is the array: then b is a tuple of index bounds and [[b]] is a conjunction

of linear inequalitites which returns true for indices within the bounds and false

otherwise. Data �elds are, however, designed in an abstract fashion which makes it

possible to encompass many other structures than arrays. The design of data �elds

and operations on them is guided by their interpretation as partial functions. Thus,

before providing a more exact de�nition of data �elds and their operations we will

develop the more abstract model of indexed data structures as partial functions.

The term \data �elds" is borrowed from Crystal [4].

2 Partial Functions

We use the following representation of partial functions. \Calls" to a partial function

falling \out of bounds" return a distinguished error value �. Semantically this is a

total, isolated element. It is thus distinct from the bottom element ? although it

is supposed to have similar algebraic properties, i.e., strict functions are supposed

to be strict in � as well (some complications will however arise for operations strict

in more than one argument [15]).

For any function f :D ! D

0

where � 2 D

0

we de�ne the index set of f as the

set of all x 2 D such that x is a total, compact element and f(x) 6= ?. This is

supposed to model the set of indices where an indexed data structure is de�ned.

In the following we will use a simple metalanguage for partial functions de�ned

as above, consisting of �-abstraction, simple n-ary operations \op" strict in all

arguments, a conditional \if ", the constant �, and possibly other constructs added

as the need arises. If we add recursion we have a PCF-like language [16]. The

conditional is de�ned as usual with the addition that if (�; x ; y) = � (since if is

strict in its �rst argument).

2.1 Operations on Partial Functions

All the �ve kinds of operations on indexed data structures described in Sect. 1.1

can be expressed as higher order operations on partial functions:

� Elementwise application of an operation g on the partial functions f

1

; : : : ; f

n

is

a kind of function composition: �x:g(f

1

(x); : : : ; f

n

(x)). It will often be conve-

nient to use \elemental intrinsics style overloading" of g and write g(f

1

; : : : ; f

n

).

We will make frequent use of this syntax.

� Parallel read of the partial function f w.r.t. source function g is also function

composition, but to the \right": �x:f(g(x)) (or f(g)). Parallel write is not

so straightforward to model, due to its nondeterministic nature, but certain

deterministic variants can be de�ned with the aid of reduction [9, 15].

� Replication is �-abstraction with respect to a fresh variable. If x does not

occur free in t, then �x:t is independent of x and can be seen as the value of

t replicated to each possible index value for x.

� Explicit restriction of a partial function f w.r.t. the predicate b is de�ned viz.:

f n b = �x:if (b(x); f (x); �).

� Reduction, �nally, can be expressed through a simple recursion, if the size of

the index set as well as an enumeration of this set is provided [9, 15].

3

It should now be fairly obvious how the three syntactical styles for operations

on indexed data structures in Sect. 1.1 appear in our metalanguage for partial

functions. The �rst kind of syntax is obtained by explicitly de�ning higher order

functions, e.g., funplus(f; g) = �x:(f(x) + g(x)). The elemental intrinsics style of

syntax is obtained as overloading of application resolved into function composition.

The third, \quanti�ed" syntax for operations, �nally, exempli�ed by the FORALL-

construct in Fortran 90 and HPF, is simply given by lambda abstraction.

2.2 Laws for Explicit Restriction

A number of algebraic laws can be proved for explicit restriction. They are interest-

ing because they can be seen as propagation laws for predicates restricting partial

functions. Restricting predicates for partial functions correspond to bounds for

data �elds. Thus, the laws for explicit restriction can guide the design of operations

on data �elds, e.g., how bounds for data �elds resulting from elementwise applied

operations should be calculated from the bounds of the arguments.

In the following we use elementwise intrinsics syntax throughout. \^" and _"

refer to the non-strict versions of conjunction and disjunction, respectively, for which

false ^ ? = false and true _ ? = true, extended to handle � in the following way:

� ^ x = �

true ^ � = �

false ^ � = false

? ^ � = ?

� _ x = �

true _ � = true

false _ � = �

? _ � = ?

Flattening of nested restrictions:

(f n b) n b

0

= f n (b

0

^ b) (1)

Communication of restriction:

(f n b)(g) = f(g) n b(g); (2)

and if g has a left inverse g

�1

, then

f(g) n b = (f n b(g

�1

))(g) (3)

Assume that g is strict in all its arguments. The following law holds under the

condition that � and ? are identi�ed, i.e., that the equation ? = � is valid.

g(f

1

n b

1

; : : : ; f

n

n b

n

) = g(f

1

; : : : ; f

n

) n (b

1

^ : : : ^ b

n

) (4)

It is possible to �nd conditions under which (4) holds also when � and ? are dis-

tinguished [15]. Finally, for the elementwise applied conditional, we have:

if (b; f n b

1

; g n b

2

) = if (b; f ; g) n (b ^ b

1

) _ ((:b) ^ b

2

) (5)

3 Data Fields

For certain domains � we assume the existence of a domain B(�) of bounds for �.

A simple example is B(int) = int � int , i.e., pairs of lower and upper bounds for

one-dimensional arrays. For any domains �, �, where B(�) is de�ned, the domain

of data �elds from � to �, D(�; �), is de�ned by

D(�; �)

�

=

(�! �)� B(�)

In the sequel, symbols f range over �! �, d over D(�; �), and b over B(�). Thus,

a data �eld is a pair (f; b). We assume that the following holds for B(�):

4

� B(�) = B

1

(�) + B

�n

(�), where B

1

(�) is a domain of in�nite bounds for �

and B

�n

(�) is a domain of �nite bounds.

� Every bound b 2 B(�) has an interpretation as a predicate [[b]]:�! bool .

� There is an operation \!" for data �eld application de�ned by d ! x = [[d]]x for

all d 2 D(�; �) and x 2 �.

� Every data �eld (f; b) 2 D(�; �) has an interpretation [[(f; b)]] = f n [[b]] in

� ! �. (f denotes the hyperstrict version of f , for which f(x) = f(x) when

x is a maximal, compact element and f(x) = ? otherwise.)

� For every �nite bound b 2 B

�n

(�) there are total, hyperstrict functions

enum:B(�) ! (int ! �) and size :B(�) ! int which enumerate the set

de�ned by a bound and give the size of this set, respectively. We require

that size(b) � 0. If size(b) = 0 then b is empty, otherwise nonempty. We

require the existence of an enum(b) with the properties above only when b is

nonempty.

� There are binary operations u, t on B(�). These are supposed to correspond

to elementwise ^ and _ on predicates.

� B(�) contains a particular element all such that [[all]] = �x:true , and B

�n

(�)

contains an element nothing such that [[nothing]] = �x:false and size(nothing) =

0.

� If B(�

1

); : : : ;B(�

k

) are de�ned (for k > 1), then B(�

1

� � � � � �

k

) is de�ned,

and there is an operation �

k

:B(�

1

) � � � � � B(�

k

) ! B(�

1

� � � � � �

k

) for

forming k-dimensional bounds such that:

[[�

k

(b

1

; : : : ; b

k

)]](x

1

; : : : ; x

k

) = [[b

1

]](x

1

) ^ � � � ^ [[b

k

]](x

k

) (6)

size(�

k

(b

1

; : : : ; b

k

)) = size(b

1

) � : : : � size(b

k

) (7)

enum(�

k

(b

1

; : : : ; b

k

); n) = (enum(b

1

)(n mod size(b

1

));

enum(�

k�1

(b

2

; : : : ; b

k

))(n� size(b

1

)));

when size(b

1

) > 0 (8)

for all b

i

2 B(�

i

), 1 � i � k (b

i

2 B

�n

(�

i

) for (7) and (8)), and n 2

int . We de�ne �

1

(b) = b. We do not specify the strictness properties of

[[�

k

(b

1

; : : : ; b

k

)]] fully. \�" is integer division.

It is straightforward to verify that size(�

k

(b

1

; : : : ; b

k

)) and enum(�

k

(b

1

; : : : ; b

k

))

ful�l the requirements for size and enum functions, provided that size and enum

for b

1

; : : : ; b

k

, respectively, do.

Inspired by (1), we de�ne explicit restriction of data �elds, #:D(�; �)�B(�)!

D(�; �), by (f; b) # b

0

= (f; b

0

u b) for all data �elds (f; b) and bounds b.

3.1 Data Field Evaluators and Reductions

A function is evaluated only when applied to an argument. The major di�erence

between data �elds and partial functions is that we want a mechanism to evaluate

all the possibly de�ned elements of a data �eld. This mechanism could be seen as a

hyperstrict environment requesting all these elements. It would be called by a print

function, just as for arrays and lists occurring at the top level of an interpreter for

5

a functional language. The data �eld evaluator [�] : D(�; �) ! D(�; �), de�ned by

the following equations, is such a mechanism:

[(f; b)] = (�x:lookup(x; genlist(0 ; f ; b); �); b);

when b 2 B

�n

(�)

genlist(n; f ; b) = if (n = size(b);NIL;

(enum(b; n); f(enum(b; n))):genlist(n + 1 ; f ; b)

Thus, [�] is an operator that takes a basic data �eld (f; b), examines b, enumerates

the index set de�ned by [[b]] if b is a �nite bound, creates a table of all de�ned

elements of (f; b), and returns a new data �eld where the body is a lookup function

into the table. The central part of the evaluator is the call to genlist which produces

an association list of the values. A print function would call genlist directly. Given

the enum and size functions for bounds, it is also easy to de�ne reduction operations

for data �elds.

3.2 '-abstraction

'-abstraction is a syntax with bound variables for data �elds (a functional, gen-

eralized FORALL): If x has type � and t has type �, then 'x:t has type D(�; �).

'-abstraction parallels �-abstraction for functions: the idea is that '-abstraction

should provide a syntax for de�ning data �elds which is as simple and general as

�-abstraction is for de�ning partial functions as shown in Sect. 2.1. We de�ne

'-abstraction to propagate bounds similar to the laws for explicit restriction in

Sect. 2.2.

The semantics of '-abstraction over a given host language is given as a higher

order rewrite system �(R) (a Combinatory Reduction System, or CRS [11, 12]). R

is a CRS which gives semantics for the host language in question. �(R) consists of

a number of reduction rules of the form

'~x:t! (�~x:t; B(t; ~x; ;))

for all t such that B(t; ~x; ;) is de�ned. ~x denotes the tuple (x

1

; : : : ; x

n

): thus,

'~x:t = '(x

1

; : : : ; x

n

):t. Furthermore, B(t; ~x; ;) 2 B(~�) when ~x has type ~� (=

�

1

� � � � � �

n

). In general, B is a function which takes terms, tuples of variables,

and sets of variables into bounds. B is a partial function, and we require that

B(t; ~x; Y) should be de�ned if and only if:

� FV (t) � ~x [Y ,

� t is a R-nf, and

� t has no closed subterm of the form '~y:t

0

.

Here and henceforth, ~x also stands for fx

1

; : : : ; x

n

g when implied by the context.

It is easy to prove that �(R) is orthogonal and left-normal. Furthermore, if R

is left-linear and if no left-hand sides of any rules in R have subterms of the form

'~x:t, then �(R) and R are mutually orthogonal. If, in addition, R is orthogonal

and left-normal, then �(R) +R is orthogonal and left-normal.

B(t; ~x; Y) is de�ned as follows, for di�erent forms of t, under the condition that

t is such that B(t; ~x; Y) should be de�ned according to above. In cases not covered,

where B(t; ~x; Y) still should be de�ned, we assume a default de�nition

B(t; ~x; Y) = all :

6

First some straightforward cases:

B(c; ~x; Y) = all (c constant) (9)

B(x; ~x; Y) = all x 2 ~x [Y (10)

B(op(t

1

; : : : ; t

m

); ~x ;Y) = B(t

1

; ~x; Y) u � � � uB(t

m

; ~x; Y) (op strict) (11)

B(if (t

1

; t

2

; t

3

); ~x ;Y) = B(t

1

; ~x; Y) u (B(t

2

; ~x; Y) t B(t

3

; ~x; Y)) (12)

B(�~y:t; ~x; Y) = B(t; ~x; ~y [Y) (13)

B('~y:t; ~x; Y) = B(t; ~x; ~y [Y) (14)

They are motivated by the desired similarity between the index set of the partial

function �~x:t and the bounds of the data �eld '~x:t. In particular, (11) is motivated

by (4) and (12) by (5).

Then comes the interesting case where a data �eld is applied to some variable(s)

in ~x. These cases will have the form

B((f;�

n

(b

1

; : : : ; b

n

)) ! F (~x); ~x; Y) = : : :

A minimalistic approach would be to consider only the one-dimensional case, with

F as the identity function, and de�ne

B((f; b) ! x; x; Y) = b:

This is probably satisfactory if we do not pay particular attention to multidimen-

sional data �elds. We however make a quite general and complex de�nition, subsum-

ing the case above, which covers the case when F maps ~x to an argument containing

elements of ~x mapped in some fashion, possibly interspersed with constants. The

complexity is motivated by the need to perform operations on array- and array-like

data like transposition, selection of a row or column, etc., which are covered by our

de�nition. The details are found in [15].

As an example, consider B((f; b) ! (c; x

3

; x

2

; x

2

); (x

1

; x

2

; x

3

); ;), where b =

�

4

(b

1

; b

2

; b

3

; b

4

). Intuitively, this bound should be nothing if c falls outside the

set de�ned by b

1

, otherwise x

3

should be constrained by b

2

, x

2

by b

3

u b

4

, and x

1

should be unconstrained. That is, the bound should equal if ([[b

1

]] c;�

3

(all ; b

3

u

b

4

; b

2

);nothing). A resulting rule for reduction of '-abstraction is

'(x

1

; x

2

; x

3

):(f; b) ! (c; x

3

; x

2

; x

2

)!

(�(x

1

; x

2

; x

3

):(f; b) ! (c; x

3

; x

2

; x

2

); if ([[b

1

]] c;�

3

(all ; b

3

u b

4

; b

2

);nothing)):

Other interesting examples are

'(x

1

; x

2

):(f;�

2

(b

1

; b

2

)) ! (x

2

; x

1

)! (�(x

1

; x

2

):(f;�

2

(b

1

; b

2

)) ! (x

2

; x

1

);�

2

(b

2

; b

1

))

(transposition) and

'x:(f;�

2

(b

1

; b

2

)) ! (x; x) ! (�x:(f;�

2

(b

1

; b

2

)) ! (x; x); b

1

u b

2

)

(selection of diagonal).

We believe that '-abstraction provides an interesting format for generic de�ni-

tions of data �elds, since the rules in �(R) are expressed with the general bounds

operators t, u, � and the polymorphic bounds constants all and nothing . Syntac-

tical conveniences can be given a semantics in terms of '-expressions. For instance,

elemental intrinsics style overloading can be resolved into such expressions:

X + Y) 'x:(X ! x+ Y ! x)

if (A < 0 ;�A;A)) 'x:if (A ! x < 0 ;�A ! x ;A ! x)

7

l1

u1

l2 u2

l1

u1

Figure 1: Some bounds in B

arr

(int

2

), of type: (int � int)

2

, (int � int) � List int ,

(List int)� (List int), and List int

2

.

Figure 2: u and t for array bounds (l

1

; u

1

)� (l

2

; u

2

), (l

0

1

; u

0

1

)� (l

0

2

; u

0

2

).

Note that these '-expressions will reduce in a uniform way through rules in �(R)

regardless of the \shapes" of X , Y and A: the shape of X + Y will be the \inter-

section" (u) of the shapes of X and Y , and if (A < 0 :0 ;�A;A) will have the same

shape as A regardless of whether it is array-like, or sparse, or whatever. Some more

developed examples are given in [15].

3.3 Bounds for Sparse and Dense Arrays

As an example how the data �elds can go beyond traditional arrays, we de�ne

domains of array bounds B

arr

(int

n

) for array-like mixed sparse-dense data �elds:

B

�n

arr

(int) = (int � int) + List int +Nothing (15)

B

1

arr

(int) = All + (int ! bool) (16)

B

arr

(int) = B

1

arr

(int) + B

�n

arr

(int) (17)

B

arr

(int

n

) = B

arr

(int)

n

+ All + (int

n

! bool); n > 1 (18)

All is the two-point cpo with non-bottom element all , and Nothing the one with

non-bottom element nothing . int � int is the cpo of one-dimensional dense array

bounds, where each integer pair de�nes an array range. List int is the domain of

�nite, sorted lists of integers. It provides sparse bounds for array coordinates. Some

examples of bounds in B

arr

(int

2

) are shown in Fig. 1.

B

�n

arr

(int

n

) equals B

�n

arr

(int)

n

(i.e., an n-dimensional bound is �nite i� it is a

product of �nite one-dimensional bounds). All other bounds in B

arr

(int

n

) are

in�nite.

Exact de�nitions for [[]], size , enum, u and t are given in [15]. For a simple

case, see Fig 2.

8

4 Ongoing Work

Our work so far has mainly consisted of the formulation of abstract models. Besides

a small early implementation experiment [8], little implementation work has been

done. We are currently investigating the possibility to extend Haskell with data

�elds. This choice of host language is motivated by the possibility to do much of the

rapid prototyping of data �elds in Haskell itself, by the strong typing, which seems

essential if syntactical conveniences such as elemental intrinsic style overloading is

to be included, and also by the class system which seems apt for bounds. Haskell's

class system would also make it possible to add user-de�ned bounds, tailored to

speci�c classes of applications.

The introduction of elemental intrinsics overloading in a language with type

inference �a la Hindley-Milner requires a modi�cation in the type system to make

the overloading and type inference coexist without interference. In Haskell, this

overloading could be de�ned on a per-operator basis but it would be nice to have it

automatically available for all functions, including user-de�ned ones. We are cur-

rently working on a modi�ed Hindley-Milner type system which provides this [18].

References

[1] Eugene Albert, Joan D. Lukas, and Guy L. Steele Jr. Data parallel computers

and the forall statement. J. Parallel Distrib. Comput., 13:185{192, October

1991.

[2] Guy E. Blelloch, Siddhartha Chatterjee, Jonathan C. Hardwick, Jay Sipelstein,

and Marco Zagha. Implementation of a portable nested data-parallel language.

J. Parallel Distrib. Comput., 21(1):4{14, April 1994.

[3] Walter S. Brainerd, Charles H. Goldberg, and Jeanne C. Adams. Programmer's

Guide to FORTRAN 90. Programming Languages. McGraw-Hill, 1990.

[4] Marina C. Chen, Young-Il Choo, and Jingke Li. Crystal: Theory and prag-

matics of generating e�cient parallel code. In Boleslaw K. Szymanski, edi-

tor, Parallel Functional Languages and Compilers, chapter 7, pages 255{308.

Addison-Wesley, 1991.

[5] A.D. Falko� and K.E. Iverson. The Design of APL. IBM Journal of Research

and Development, pages 324{333, July 1973.

[6] John T. Feo, David C. Cann, and Rodney R. Oldehoeft. A report on the Sisal

language project. J. Parallel Distrib. Comput., 10:349{366, 1990.

[7] High Performance Fortran Forum. High Performance Fortran language speci-

�cation. Scienti�c Programming, 2(1):1{170, June 1993. HPF Version 1.0.

[8] Joacim Hal�en, Per Hammarlund, and Bj�orn Lisper. An experimental imple-

mentation of a highly abstract model of data parallel programming. Technical

Report TRITA-IT R 97:02, Dept. of Teleinformatics, KTH, Stockholm, March

1997.

[9] Per Hammarlund and Bj�orn Lisper. On the relation between functional and

data parallel programming languages. In Proc. Sixth Conference on Func-

tional Programming Languages and Computer Architecture, pages 210{222.

ACM Press, June 1993.

[10] W. Daniel Hillis and Guy L. Steele, Jr. Data parallel algorithms. Comm. ACM,

29(12):1170{1183, December 1986.

9

[11] Jan Willem Klop. Combinatory Reduction Systems. PhD thesis, CWI, Ams-

terdam, 1980. Mathematical Centre Tracts Nr. 127.

[12] Jan Willem Klop, Vincent van Oostrom, and Femke van Raamsdonk. Com-

binatory reduction systems: Introduction and survey. Theoret. Comput. Sci.,

121:279{308, 1993.

[13] Bj�orn Lisper. Data parallelism and functional programming. In Guy-Rene�e Per-

rin and Alain Darte, editors, The Data Parallel Programming Model: Founda-

tions, HPF Realization, and Scienti�c Applications, Vol. 1132 of Lecture Notes

in Comput. Sci., pages 220{251, Les M�enuires, France, March 1996. Springer-

Verlag.

[14] Bj�orn Lisper and Jean-Fran�cois Collard. Extent analysis of data �elds. In Bau-

douin Le Charlier, editor, Proc. International Symposium on Static Analysis,

Vol. 864 of Lecture Notes in Comput. Sci., pages 208{222, Namur, Belgium,

September 1994. Springer-Verlag.

[15] Bj�orn Lisper and Per Hammarlund. The data �eld model. Submitted., 1998.

[16] Gordon Plotkin. LCF considered as a programming language. Theoret. Com-

put. Sci., 5(3):223{256, December 1977.

[17] Stephen K. Skedzielewski. Sisal. In Boleslaw K. Szymanski, editor, Paral-

lel Functional Languages and Compilers, chapter 4, pages 105{157. Addison-

Wesley, 1991.

[18] Claes Thornberg. Polymorphic type inference with elemental function over-

loading. Licentiate Proposal, June 1997.

10

