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Background and Motivation. Early design artifacts of embedded systems, such as architectural
models, represent convenient abstractions for reasoning about a system’s structure and functionality.
One such example is the Electronic Architecture and Software Tools-Architecture Description Lan-
guage (East-adl) [3], a domain-specific architectural language that targets the automotive industry.
East-adl is used to represent both hardware and software elements, as well as related extra-functional
information (e.g., timing properties, triggering information, resource consumption). Testing architec-
tural models [1] is an important activity in engineering large-scale industrial systems, which sparks a
growing research interest. Modern embedded systems, such as autonomous vehicles and robots, have
low-energy computing demands, making testing for energy usage increasingly important. Nevertheless,
testing resource-aware properties of architectural models has received less attention than the functional
testing of such models. In our previous work [11], we have outlined a method for testing energy con-
sumption in embedded systems using manually created faults based on statistical model checking of
a priced formal system model. In this paper, we extend our previous work by showing how mutation
testing [6] can be used to generate and select test cases based on the concept of energy-aware mutants–
small syntactic modifications in the architectural model, intended to mimic real energy faults. Test
cases that can distinguish a certain behavior from its mutations are sensitive to changes in the model,
and hence considered to be good at detecting faults. The main contributions of this paper are: (i)
an approach for creating energy-related mutants for East-adl architectural models, (ii) a method for
overcoming the equivalent mutant problem [9] (i.e., the problem of finding a test case which can distin-
guish the observable behavior of a mutant from the original one), (iii) a test generation approach based
on Uppaal Statistical Model Checker (SMC) [4], and (iv) a test selection criteria based on mutation
analysis using our Mats tool1 [8].

Proposed Framework. In this section, we describe our mutation testing framework that uses energy
consumption goals to automatically select test suites based on random system simulations. The frame-
work is enabled by transforming the East-adl model into a network of priced timed automata (PTA)
[10]. It is composed of several steps, mirrored in Figure 1:
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Figure 1: Overview of the energy-aware mutation testing framework.

1 Mats is an open source software and is available at https://github.com/JLN93/MATS-Tool
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(1) Energy-Aware Mutant Generation. The consumption of a resource r for an East-adl com-
ponent represents the accumulated resource usage up to some point in time. Based on this assumption,
resources can be classified as continuous or discrete [13] . In this paper, we focus on energy consump-
tion, which is a continuous resource assumed to evolve linearly in time (r(t) = n × t, where n ∈ N
and t is the elapsed time). Since in East-adl the resource usage annotation is provided at component
level, we define the total energy consumption of the system as rtotal(t) =

∑m
i=1 ri(t), where m is the

number of functional components. In mutation testing, faults are injected based on a predefined set of
mutation operators. Ideally, such mutants should represent commonly-occurring faults, but to the best
of our knowledge, there is no previous work on identification of resource-related faults at the architec-
tural level. Given this, we propose a set of mutation operators applied on: (i) the East-adl resource
annotation (Energy Consumption Replacement Operator (ero)), (ii) the timing behavior of an East-
adl component (Period Replacement Operator (pro), Execution Time Replacement Operator (ero)),
and (iii) the structure of the functional architecture (Component Removal Operator (cro), Compo-
nent Insertion Operator (cio), and Triggering pattern Replacement Operator (tro)). These mutation
operators are systematically applied to the entire East-adl model, resulting in a set of energy-aware
mutants, each simulating one syntactic model change.

(2) East-adl to PTA. In order to use Uppaal SMC for test case generation, we transform the East-
adl model (with energy consumption annotations) into a PTA model. Each East-adl component
is automatically transformed into a network of two PTA: an interface automaton, which encodes
the interface of the component, and a behavior automaton, used to model the component’s internal
behavior. The triggering of each component, timing information, as well as the resource annotations, are
included in the interface PTA. The energy consumption starts at the moment data is read from the input
ports until the component writes the data to the output ports. This means that the energy consumed
by each component increases with the execution time, modeled as a cost “c” in PTA (c(t) = nc × t,
where nc ∈ N is the rate of consumption over time t), but not when the component is idle (c′(t) = 0). A
monitor automaton is added to compute the energy used by the system based on the energy consumed
by each component. For more details, we refer the reader to our previous work [10].

(3) Detection of Equivalent Mutants. Let On be the original PTA model and Mm be a mutant
of the former obtained by applying a predefined mutant operator. We say that models On and Mm are
equivalent if there is no input parameter for which the difference in energy consumption of the models
exceeds some predefined threshold within some bounded time limit. Otherwise, there is a valuation of
the input parameters for which the mutant can be detected. From the above, it is obvious that the
mutant equivalence check can be reduced to a satisfiability problem [5]. Let Φ = {ϕ1, ϕ2, ..., ϕk} and
Ψ = {ψ1, ψ2, ..., ψl} denote the set of constraints for the energy consumption of cn and cm in On and
Mm, respectively. The mutant Mm is not equivalent to On if the following conjunction evaluates to true:

∃ lk.
k∧

i=1

ϕi(lk)∧
l∧

j=1

ψj(lk)∧(|cn−cm| ≥ threshold), where lk is an arbitrary input parameter. Reducing

the mutant equivalence checking to a satisfiability problem has been considered in other frameworks.
Brillout et. al [2] exploits a similar technique for functional testing of Simulink models. In comparison,
our framework is specifically tailored for resource-aware mutation testing of architectural models. The
HiLiTe tool [12] is another example of using an SMT solver for improving test case generation for large-
scale complex and constrained models. Given the fact that the energy consumption is of continuous
nature, we have to resort to a specialized type of SMT-solving suitable for hybrid systems [7].

(4) Test Suite Generation. We create executable test cases using the Mats tool [8], by extracting
the input parameters and the energy values at predefined time points from the simulation traces
produced by Uppaal SMC. Each test input is a vector of signals where the time-dependent behavior
of the model is executed using an ordered sequence of signals. Mats uses Uppaal SMC for obtaining
simulation traces over a predefined number of runs of the system model. A simulation can be formulated
as the property: simulate n[bound]{E1, .., Ek} in Uppaal SMC, where n is the number of simulations to
be performed, bound is the time bound on the simulations, and E1, .., Ek are the monitored expressions.
Each test case is executed on both the original model and its mutated counterpart. In order to minimize
the final set of test cases we remove the test cases not contributing to the mutation score [8].

(5) Mutant Detection Criteria. We show how to detect energy mutants using the Mats tool. A
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mutant is detected by a test suite if the energy signal diverges drastically at certain time points from
the expected values (e.g, substantial energy deviations). To measure the mutant-revealing ability of a
test suite, we use a quantitative measure of a mutant detection oracle. Let a test case T be generated
for a mutated model M, and let EM = EM1, ..., EMN be the set of energy signals obtained by running
M for the test inputs in T and sampled at N time points. Let EO = EO1, ..., EON be the corresponding
expected energy signals. We use a threshold to check if the distance between each value of EO and EM

at each time point is larger than this threshold. If there is at least one energy value in EM for which
the distance is larger than the expected threshold then we consider the mutant M detected.

Conclusions and Future Work. In this paper we have outlined a framework for energy-aware
mutation testing of East-adl architectural models. Given the large number of energy mutations
we aim to reduce the number of equivalent mutants by employing an SMT-solver. In addition, this
framework selects test suites contributing to the overall mutation score using Uppaal SMC and Mats.
Future work aims to apply this framework on an industrial case to expose its strengths as well as
limitations both in terms of test efficiency and effectiveness.
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