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Abstract

Since the first lines of code were introduced in the automotive domain, vehicles
have transitioned from being predominantly mechanical systems to software
intensive systems. With the ever-increasing computational power and mem-
ory of vehicular embedded systems, a set of new, more powerful and more
complex software functions are installed into vehicles to realize core func-
tionalities. This trend impacts all phases of the system development includ-
ing requirements specification, design and architecture of the system, as well
as the integration and testing phases. In such settings, creating and manag-
ing different artifacts during the system development process by using tradi-
tional, human-intensive techniques becomes increasingly difficult. One prob-
lem stems from the high number and intricacy of system requirements that
combine functional and possibly timing or other types of constraints. Another
problem is related to the fact that industrial development relies on models, e.g.
developed in Simulink, from which code may be generated, so the correct-
ness of such models needs to be ensured. A potential way to address of the
mentioned problems is by applying computer-aided specification, analysis and
verification techniques already at the requirements stage, but also further at
later development stages. Despite the high degree of automation, exhaustive-
ness and rigor of formal specification and analysis techniques, their integration
with industrial practice remains a challenge.

To address this challenge, in this thesis, we develop the foundation of a
framework, tailored for industrial adoption, for formal specification and analy-
sis of system requirements specifications and behavioral system models. First,
we study the expressiveness of existing pattern-based techniques for creating
formal requirements specifications, on a relevant industrial case study. Next,
in order to enable practitioners to create formal system specification by using
pattern-based techniques, we propose a tool called SeSAMM Specifier. Fur-
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ther, we provide an automated Satisfiability Modulo Theories (SMT)-based
consistency analysis approach for the formally encoded system requirements
specifications. The proposed SMT-based approach is suitable for early phases
of the development for debugging the specifications. For the formal analysis
of behavioral models, we provide an approach for statistical model checking
of Simulink models by using the UPPAAL SMC tool. To facilitate the adoption
of the approach, we provide the SIMPPAAL tool that automates procedure of
generating network of stochastic timed automata for a given Simulink model.
For validation, we apply our approach on a complex industrial model, namely
the Brake-by-Wire function from Volvo GTT.



Sammanfattning

Från att de första kodraderna infördes inom fordonsindustrin så har fordon gått
från att vara övervägande mekaniska till alltmer programvaruintensiva. Den
ständigt ökande beräkningskraften och minnet i de inbyggda systemen i fordo-
nen har lett till att nya mer kraftfulla och komplexa programvarufunktioner
installeras för att realisera kärnfunktioner. Denna trend påverkar alla faser
av systemutvecklingen, inklusive kravspecificering, design och arkitektur av
systemet, samt integration och testning. I en sådan kontext så blir det allt
svårare att skapa och hantera olika artefakter under utvecklingsfaserna genom
att använda traditionella, människo-intensiva tekniker. Ett problem härrör från
det stora antalet komplicerade systemkrav som kombinerar funktionella egen-
skaper med timing eller annat. Ett annat problem är relaterat till det faktum
att systemutveckling i industrin grundar sig mycket i användandet av modeller,
t.ex. utvecklade i Simulink, från vilken kod kan genereras, så det är viktigt att
man kan garantera att sådana modeller är korrekta. Ett angreppssätt för att po-
tentiellt lösa de nämnda problemen är att använda datorstöd för specificering,
analys och verifiering redan vid kravspecificeringsfasen, men även vid senare
utvecklingsfaser. Trots att ett sådant datorstöds höga grad av automatisering,
fullständighet och stringens i formell specificering och analystekniker, är dess
integration med industriell praxis en utmaning.

För att adressera denna utmaning så utvecklar vi i denna avhandling grun-
den för ett industriellt anpassat ramverk för formell specificering och analys
av systemkrav och beteendemodeller. Först studerar vi uttrycksfullheten i
befintliga mönsterbaserade tekniker för formella kravspecifikationer i kontex-
ten av en relevant industriell fallstudie. Vidare, i syfte att göra det möjligt
för utövare att skapa formella systemspecifikationer med mönsterbaserade
tekniker, föreslår vi ett verktyg som heter SeSAMM Specifier. Därefter till-
handahåller vi en Satisfiability Modulo Theories (SMT)-baserad metod för
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automatisk konsistensanalys av formella systemkravsspecifikationer. Den
föreslagna SMT-baserade metoden är lämplig för felsökning av specifikationer
i tidiga utvecklingsfaser. För formell analys av beteendemodeller så tillhan-
dahåller vi en strategi för statistisk model checking av Simulink-modeller med
hjälp av verktyget UPPAAL SMC. För att underlätta införandet av metoden
så presenterar vi verktyget simppaal som automatiserar generereringen av ett
nätverk av tidsbaserade automater för en given Simulink modell. Vi validerar
metoden genom att tillämpar den på en komplex industriell modell, nämligen
funktionen Brake-by-Wire från Volvo GTT.
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Chapter 1

Introduction

Embedded systems are a special class of computer systems that consists of ded-
icated hardware and software designed for specific purposes, preprogrammed
to perform a predefined set of tasks. We interact with such systems on a reg-
ular basis, as they are integral parts of our lives, in forms of home appliances,
mobile phones, entertainment systems, hand-held computers, etc. Embedded
systems are also used in more specialized and safety-critical contexts such as
chemical and nuclear power plants, robotic production lines, all kinds of trans-
portation systems, etc. Nowadays, with the ever-increasing memory capacity
and computational power of embedded hardware platforms, we are producing
embedded software so big and complex, that it practically revolutionizes and
drives entire industries.

The automotive industry is one of the many that has been greatly influenced
by the increased versatility and power of the embedded systems. Traditionally,
vehicles were predominantly mechanical systems that, in addition, used simple
electronics mostly for infotainment that included features such as radio, media
player, air-conditioner, etc. However, with the introduction of a new generation
of vehicular embedded systems with increased computational power and oper-
ational memory, a new trend has started (often regarded as “drive-by-wire”
trend) in the automotive industry. In this trend, vehicular features traditionally
implemented using mechanical parts are being replaced by complex software
functions. Since then, embedded systems have become the centerpiece of the
vehicle development, with major expenses for producing new vehicles being
associated to software and the hardware that runs it [1]. Additionally, em-
bedded systems, especially the embedded software functions have become the
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4 Chapter 1. Introduction

major area of innovations within the domain [2], meaning that better, faster
and more reliable vehicular software is seen as main advantage of a vehicular
manufacturer over its competitors.

The software in vehicles runs on distributed processing units called Elec-
trical Control Units (ECUs). The set of all ECUs, plus the sensors, actuators
and the communication lines constitute the Electrical/Electronic (E/E) system
of a vehicle. Typically, the E/E system of a modern vehicle consists of more
than 70 independent ECUs, which combined run more than 10 million lines
of code [3, 4]. The size and complexity of the vehicular software functions
impact all the phases of system development, including the requirements spec-
ification, design and architecture of the system, as well as the integration and
testing phases [3].

A significant number of the software functions have implications on the
overall safety of the vehicle, thus they are being categorized as safety critical.
For developing high quality software the engineers in the automotive domain
rely on different state-of-the-practice techniques including manual peer-review
for requirements quality assurance [5], model-based development (MBD) for
problem abstraction, documenting the solution, as well as testing at various
levels (unit, integration testing, etc.). However, the effectiveness of such tech-
niques is limited as they do not scale well with the size and complexity of
the systems. The limitation is due to the fact that these techniques are per-
formed manually. Additionally, the verification effort for the traditional veri-
fication techniques (testing and simulation) grows proportionally with the size
and complexity of the systems. A way to assure high level of correctness in
such settings is to use specialized computer programs that automatically and
with high rigor assess the correctness of the system. Such techniques are called
formal verification methods. The goal is that a system represented as a precise
mathematical model (formal model) can be checked that it does not deviate
from its intended behavior, expressed as a set of logical properties (formal sys-
tem specification). The potential benefit of adopting formal verification tech-
niques for analyzing automotive software has been acknowledged in the latest
standard for automotive safety [6], according to which utilization of formal ver-
ification techniques is highly recommended. However, the adoption of formal
techniques in industrial settings is limited by the difficulty of creating formal
system specifications and generating formal system models.

In this thesis, we develop the foundation of a framework for formal specifi-
cation, analysis and verification of system requirements and behavioral models
of embedded systems, suitable for adoption in industrial settings, with special
emphasis on the automotive domain. The goal of the framework is to enable
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the engineers who are not experts in formal methods to use formal techniques
for increasing the confidence in the correctness of software. In order to support
our goal, we propose contributions on three fronts. First, we focus on provid-
ing an engineer-friendly way for creating formal system requirements specifi-
cations (further in the thesis referred as system specifications). To achieve this,
as a first research endeavor, we assess the suitability and expressiveness of an
existing technique, called real-time specification patterns (RTSPS) [7] for for-
malizing system specifications in the automotive domain [8]. To evaluate the
expressiveness of the given technique, we conduct a case study in which we
formalize a set of requirements gathered from several functions installed in ve-
hicles produced by Scania, Sweden. The results of the case study are aligned
with the results that emerged from earlier attempts carried out by research fel-
lows [9], which reveal that RTSPS patterns, in principle, are expressive enough
for formalizing automotive requirements, yet they bear important challenges to
be addressed, such as validation of the formal requirements encoding and the
steep learning curve on how to use the patterns. To address these challenges,
we propose a tool called SeSAMM Specifier as our second contribution [10].
The tool enables formal specification of requirements by using the specifica-
tion patterns without being specifically bound to a predefined catalog of pat-
terns. This feature allows the tool to be extensible and customizable in order to
fulfill the needs of specific users. Additionally, the tool provides a validation
mechanism by visualizing the behavior of the formalized requirements using
different mechanisms. To make it applicable in industry, we integrate the tool
into an existing toolchain (SeSAMM) [11] developed at Scania.

Next, we propose an approach for automated consistency analysis of for-
mally encoded requirements of industrial embedded systems based on Satisfi-
ability Modulo Theories (SMT) [12], by using the state-of-the-art SMT solver
Z3 [13]. The proposed approach belongs to the class of “model-free” sanity
checks [14], as it does not require details of the system’s behavioral or ar-
chitectural model, and is suitable for early debugging of system requirements
formalized using the specification patterns. To enable the SMT-based consis-
tency analysis, we provide: a) a pattern-based transformation of the Timed
Computation Tree Logic (TCTL) formulas into Z3 assertions, b) a set of rules
for simplifying the original Z3 assertions by reducing the number of quanti-
fied variables and quantifiers in the assertions and c) a mitigation strategy for
non-solvable requirements such that the procedure terminates [15].

As our final contribution, we propose a methodology for the formal anal-
ysis of Simulink models by means of statistical model checking [16] using
the statistical model checker UPPAAL SMC [17]. To enable this, we pro-
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pose a pattern-based transformation of Simulink models into stochastic timed
automata. To enable the transformation, first, we define the formal seman-
tics of the most frequently used Simulink blocks into stochastic timed au-
tomata. Second, we propose stochastic timed automata patterns for discrete-
and continuous-time Simulink blocks. Third, we propose a flattening algo-
rithm for composite Simulink blocks and a synchronization mechanism for pre-
serving the block execution order generated by Simulink. Finally, we validate
our approach on an industrial use-case, namely the prototype Brake-by-Wire
(BBW) system.

1.1 Thesis Overview

The thesis is divided into two major parts. The first part is an overall summary
of the thesis, organized as follows. In Chapter 2, we give a short overview of
the preliminaries; in Chapter 3, we describe the research method used for con-
ducting the research and producing the research results described in the thesis.
Chapter 4 introduces the research goals of the thesis. In Chapter 5, we briefly
describe the contributions of the thesis, and map them to the corresponding
research goals, respectively. The overview and comparison to the related work
is given in Chapter 6, after which we conclude the first part of the thesis and
present the directions for future work in Chapter 7.

The second part of the thesis is given as a collection of publications that
encompass all the thesis contributions. The included papers are:

Paper A. Reassessing the Pattern-Based Approach for Formalizing Re-
quirements in the Automotive Domain. Predrag Filipovikj, Mattias Nyberg,
Guillermo Rodriguez-Navas. In Proceedings of the 22nd IEEE International
Requirements Engineering Conference (RE’14), pages 444-450. Karlskrona,
Sweden. August 2014. IEEE Computer Society.

Abstract. The importance of using formal methods and techniques for
verification of requirements in the automotive industry has been greatly em-
phasized with the introduction of the new ISO26262 standard for road vehicles
functional safety. The lack of support for formal modeling of requirements
still represents an obstacle for the adoption of the formal methods in industry.
This paper presents a case study that has been conducted in order to evaluate
the difficulties inherent to the process of transforming the system requirements
from their traditional written form into semi-formal notation. The case study
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focuses on a set of non-structured functional requirements for the Electrical
and Electronic (E/E) systems inside heavy road vehicles, written in natural
language, and reassesses the applicability of the extended Specification Pattern
System (SPS) represented in a restricted English grammar. Correlating this
experience with former studies, we observe that, as previously claimed, the
concept of patterns is likely to be generally applicable for the automotive
domain. Additionally, we have identified some potential difficulties in the
transformation process, which were not reported by the previous studies and
will be used as a basis for further research.

Contributions. I was the main driver of the paper. I have performed most of
the activities related to the case study, including the requirements gathering and
extraction, applying the patterns and drawing conclusions. I also wrote most of
the paper. Guillermo Rodriguez-Navas and Mattias Nyberg participated in dis-
cussions and contributed with ideas and comments on the patterning process.

Paper B. Integrating Pattern-based Formal Requirements Specification
in an Industrial Tool-chain. Predrag Filipovikj, Trevor Jagerfield, Mattias
Nyberg, Guillermo Rodriguez-Navas, Cristina Seceleanu. In Proceedings of
the 10th IEEE International Workshop on Quality Oriented Reuse of Software
(QUORS’16), collocated with COMPSAC 2016, pages 167-173. Atlanta,
Georgia, USA. June 2016. IEEE Computer Society.

Abstract. The lack of formal system specifications is a major obstacle
to the widespread adoption of formal verification techniques in industrial
settings. Specification patterns represent a promising approach that can fill
this gap by enabling non-expert practitioners to write formal specifications
based on reusing solutions to commonly occurring problems. Despite the
fact that the specification patterns have been proven suitable for specification
of industrial systems, there is no engineer-friendly tool support adequate
for industrial adoption. In this paper, we present a tool called SESAMM
Specifier in which we integrate a subset of the specification patterns for formal
requirements specification, called SPS, into an existing industrial tool-chain.
The tool provides the necessary means for the formal specification of system
requirements and the later validation of the formally expressed behavior.

Contributions. I was the main driver of the work. The SeSAMM Specifier
tool was implemented by Trevor Jagerfield, while I was the main architect of
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the tool. The rest of the coauthors participated in discussions contributing with
ideas about the tool implementation and the paper. I wrote most of the paper,
with the rest of the coauthors writing some parts and giving valuable feedback.

Paper C. SMT-based Consistency Analysis of Industrial Systems Require-
ments. Predrag Filipovikj, Guillermo Rodriguez-Navas, Mattias Nyberg,
Cristina Seceleanu. In Proceedings of the 32nd ACM SIGAPP Symposium On
Applied Computing (SAC 2017). Marrakesh, Morocco. April 2017. ACM.

Abstract. As the complexity of industrial systems increases, it becomes
difficult to ensure the correctness of system requirements specifications with
respect to certain criteria such as consistency. Automated techniques for
consistency checking of requirements, mostly by means of model checking,
have been proposed in academia. However, such approaches can sometimes
be costly in terms of modeling and analysis time or not applicable for certain
types of properties. In this paper, we present a complementary method
that relies on pattern-based formalization of requirements and automated
consistency checking using the state-of-the-art SMT tool Z3. For validation,
we apply our method on a set of timed computation tree logic requirements of
an industrial automotive subsystem called the Fuel Level Display.

Contributions. I was the main driver of the paper. I collected the require-
ments which were included in the case study. Also, I did the requirements
formalization via specification patterns and encoding them into Z3 assertions.
Additionally, I wrote most of the paper. Cristina Seceleanu and Guillermo
Rodrigues-Navas contributed with useful comments for the proofs and struc-
ture of the paper. Mattias Nyberg provided feedback on the formalization of
the requirements from the FLD system.

Paper D. Analyzing Industrial Simulink Models by Statistical Model Check-
ing. Predrag Filipovikj, Nesredin Mahmud, Raluca Marinescu, Guillermo
Rodriguez-Navas, Cristina Seceleanu, Oscar Ljungkrantz, Henrik Lönn.
Mälardalen Real-Time Research Centre, Mälardalen University (MRTC
Technical Report). March 2017. Mälardalen University Press.

Abstract. The evolution of automotive systems has been rapid. Nowa-
days, electronic brains control dozens of functions in vehicles, like braking,
cruising, etc. Model-based design approaches, in environments such as
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MATLAB Simulink, seem to help in addressing the ever-increasing need to
enhance quality, and manage complexity, by supporting functional design
from predefined block libraries, which can be simulated and analyzed for
hidden errors, but also used for code generation. For this reason, providing
assurance that Simulink models fulfill given functional and timing require-
ments is desirable. In this paper, we propose a pattern-based, execution-order
preserving automatic transformation of Simulink atomic and composite
blocks into stochastic timed automata that can then be analyzed formally
with UPPAAL Statistical Model Checker (UPPPAAL SMC). Our method is
supported by the tool SIMPPAAL, which we also introduce and apply on an
industrial prototype called the Brake-by-Wire system. This work enables the
formal analysis of industrial Simulink models, by automatically generating
their semantic counterpart. .

Contributions. Together with Nesredin Mahmud I was the main driver and
contributor to the paper. I have designed and implemented the SIMPPAAL
tool as well as most of the plug-ins for generating the block routines. I wrote
three complete sections and three additional subsections in the paper. Fur-
ther, I applied the SIMPPAAL tool on the Brake-by-Wire Simulink model to
generate the network of STA. Nesredin Mahmud has developed a subset of
the block routine plug-ins. Raluca Marinescu validated the correctness of the
generated Brake-by-Wire UPPAAL model and performed the SMC analysis on
the same. Cristina Seceleanu developed the proof of correctness for the trans-
formation and wrote one section of the paper, also providing useful comments.
Guillermo Rodriguez-Navas wrote one section in the paper and provided useful
comments. Oscar Ljungkrantz and Henrik Lönn provided valuable feedback
both on the approach and the final version of the paper.





Chapter 2

Preliminaries

In this chapter, we introduce the preliminary concepts that are used through-
out the thesis. First, in Section 2.1 we present the model-based development
paradigm. Next, in Section 2.2 we give an overview of the Simulink tool. In
Section 2.3, we present an overview of the formal modeling, verification and
analysis techniques. In Section 2.4, we give an overview of the Satisfiability-
Modulo Theories (SMT) and the Z3 SMT solver. Next, in Section 2.5 we
describe the specification patterns, and finally, we conclude the chapter with
Section 2.6 with an overview of the sanity checking techniques.

2.1 Model-based Development

The biggest problem in all engineering disciplines is the complexity of the un-
derlying systems, and software engineering is no exception. The complexity
of any engineering problem can be observed from two standpoints [18]: first,
there is the inherent complexity of the problem itself, and second, the addi-
tional complexity arising from the tools and methods which are used for solv-
ing the problem. Model-based development (MBD) has proven to be an effec-
tive paradigm for developing complex systems. It facilitates system modeling
through multiple abstractions or views, corresponding to the system’s devel-
opment phases. This enables the seamless integration of design and analysis
techniques and tools throughout the system development.

Abstraction refers to the process of removing irrelevant details in order
to focus on the essential parts of the system. An abstracted version of the

11
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system, as observed from a particular point of view is called model. The main
characteristic of MBD is raising the abstraction level of the software systems
by shifting the focus from coding to modeling activities. To be useful, any
software model should be [19]:

• Abstract - the main purpose of the model is to hide all the irrelevant
details, such that the important features stand out;

• Understandable - the model must convey the information of interest in a
clear and unambiguous way;

• Accurate - the model must be an accurate abstraction of the system, that
is, it has to correctly reflect the properties of interest;

• Predictable - the model should behave in the expected way.

Any software model that has the above listed characteristics is usable in
different ways. Apart from abstracting the problem, the models that are under-
standable for the domain engineers can be used for documenting the solution.
The accuracy of the models, combined with their predictability allow one to
treat them as executable specifications. This is possible only if the language
used for developing the model has well-defined semantics, such that special-
ized tools can be used to generate executable code from the model directly.

Given all the above, the MBD paradigm, in essence, provides two key ben-
efits [19]: first, MBD raises the levels of abstraction of the specification to be
closer to the problem domain while hiding the implementation details, and sec-
ond, it facilitates the automation by bridging the gap between the specification
(the model) and the actual implementation (the code).

MBD paradigm has become the “go-to” way for developing software in
the automotive domain. This is due to the fact that still, most engineers who
develop automotive software are experts in domains such as electrical engineer-
ing, hydraulics, mechanics, etc., but have limited skills in coding and software
development in general. The MBD paradigm allows them to abstract away the
implementation of their solutions, by using specialized tools, which let them
to model their solutions in easy and intuitive ways. One such tool for model-
ing, simulation and code generation in industrial settings is Simulink, which
we introduce in the following section.
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2.2 Simulink

Simulink (often referred to as Matlab Simulink) is a graphical programming
environment for modeling, simulation and code generation for multi-domain
dynamic systems, integrated into the Matlab environment developed by Math-
Works [20]. Due to its versatility, Simulink has become the de-facto standard
for MBD in the automotive domain. A Simulink model is a hierarchical repre-
sentation of the system, composed of sets of blocks that communicate via sig-
nals. Simulink blocks can be either atomic or composite. An atomic Simulink
block represents a basic module that computes an equation or another model-
ing concept in order to produce an output, ether continuously or at predefined
time points.

Simulink by default provides a library that contains a number of atomic
blocks. These atomic blocks have a predefined behavior and allow customiza-
tion only via block specific parameters. For example, the Gain Simulink block
allows multiplication of the value of an input signal by a given value (scalar or
vector). The input-output relation of the Gain block is predefined, and as
such cannot be modified. In order to facilitate extension of the existing library
of atomic blocks, Simulink introduces the concept of S-function, which
allows one to define an atomic Simulink block by specifying its behavior in
Matlab, C, C++ or Fortran. One can additionally apply the concept of mask-
ing, by using a special extension called Mask, to define the interface of the
newly-introduced block and encapsulate its behavior as a black-box.

The composite Simulink blocks are used to describe the hierarchical struc-
ture of the model. They are usually represented via the Subsystem block,
which has multiple variations such as the Triggered Subsystem, Refe-
renced Subsystem, etc. Unlike the atomic ones, composite Simulink
blocks do not have predefined behavior. Instead, the behavior of the com-
posite blocks is modeled as a set of atomic blocks. Simulink allows arbitrary
levels of nesting composite blocks inside of a model. Composite blocks can
be either virtual or atomic. The encapsulated blocks of the virtual subsystem
blocks are invoked according to the overall system model, whereas for the the
atomic (also called non-virtual) subsystems the encapsulated blocks are exe-
cuted as a single unit that can be conditionally executed based on an external
triggering, function-call, or enabling input. Once triggered, all the blocks in-
side an atomic subsystem are executed as an atomic unit, meaning that there
is no interleaving with other blocks outside the subsystem. All the blocks in-
side a triggered subsystem are discrete, as they update their outputs only when
the external triggering event occurs. To facilitate reuse, Simulink allows the
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Figure 2.1: Example Sine Wave Block: (a) Simulink Diagram and (b) Simula-
tion Result

contents of a given subsystem to be saved into a separate model file.
Based on how they update their output, we classify all Simulink blocks, be

they composite or atomic into two categories: continuous-time and discrete-
time. The continuous-time blocks produce new outputs continuously, whereas
the discrete-time blocks produce new outputs at predefined points in time, de-
termined based on sample time of the block. Another exclusive feature of the
discrete-time Simulink blocks is the possibility to delay the first execution,
specified as offset of the block. In case when the offset of a given block is
greater than zero, the subsequent outputs are produced relative to the offset
period and not the beginning of the simulation. Figure 2.1 shows an example
of Sine block as modeled in Simulink (Figure 2.1a) and simulation traces for
both continuous (dashed red line) and discrete (full blue line) behavior of the
same (Figure 2.1b). During simulation, Simulink uses an internal algorithm to
determine the order at which the blocks inside the model are executed. The list
of execution order of the blocks during simulation is called the sorted order list
or slist for short. It can be obtained by running the slist command while the
Matlab is in debug mode.

Simulink capabilities are extended by two supportive tools: Simulink De-
sign Verifier (SDV) and Simulink Coder, both provided by Matlab. As adver-
tised by the vendor, the SDV tool uses formal methods to detect design errors,
such as integer overflow, division by zero, dead logic, array access violations,
etc. It can also verify system requirements expressed as verification objectives,
which are in fact simple Simulink models. The Simulink Coder is used for
automatic generation of executable C or C++ code, which is then deployed and
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run on the vehicle.

2.3 Formal Modeling and Verification

Formal verification is a set of techniques based on mathematics, which are used
to rigorously prove the correctness of a system model expressed in some formal
notation. Compared to other verification techniques such as simulation and
testing, formal verification techniques are deemed to deliver a higher degree of
assurance. Due to this, formal verification techniques can be used for proving
the absence of certain types of errors. There is a number of formal verification
techniques, which in principle can be divided into two categories: deductive,
used for proving the correctness of the system based on a number of axioms
and a set of proof rules, and model checking, which is a technique that performs
a systematic and exhaustive state space exploration to determine whether the
system model conforms to a set of defined logical properties. In practice, model
checking is preferred over deductive techniques as the verification algorithm is
fully automated.

2.3.1 Model Checking
As mentioned above, model checking is an automated technique that checks
a finite-state abstract system model in a systematic and exhaustive manner, to
prove whether it satisfies a given property modeled in logic. Model checking
if fully automated and is performed by a verifier tool called model checker.

The core of model checking is the verification algorithm, performed by the
model checker. The input to the model checker is a system model expressed
in a formal notation and a set of formally specified logical properties. For
verification of qualitative properties (that admit a yes/no answer) there are two
possible outcomes of the model checking procedure. If the model conforms to
a given property, the model checker returns a positive answer. For reachability
and some liveness properties (e.g., something good will eventually happen) the
model checker returns a witness trace in case of fulfillment. Then, the model
checking activity can be continued for the rest of system properties. When a
safety property is not satisfied, the model checker generates a counter example,
which is usually a path (error trace) to the state that violates the property.

Due to its systematic approach and the exhaustiveness of the state space
exploration, the model checking procedure can handle models with state spaces
up to a certain size, above which there is not enough memory to store new
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Figure 2.2: Statistical model checking procedure.

states. This is known as the state space explosion problem. However, with
the latest advances in the area of model checking, such as using optimal data
structures and smart algorithms, modern model checkers such as UPPAAL [21],
Spin [22] or NuSVM [23] can be applied on system models with state spaces
up to 10476 states [24].

Since in this thesis, we aim at applying model checking on industrial sys-
tems, the exhaustive model checking is likely not to scale. Therefore, we resort
to a special type of model checking called statistical model checking (SMC),
which computes the probability that a model satisfies a given property up to
some probability, based on a finite number of model simulations. A high-level
overview of the SMC is given in Figure 2.2. SMC uses a series of simulation-
based techniques to answer two types of questions: i) Qualitative: is the proba-
bility of a given property being satisfied by a random system execution greater
or equal than some threshold? and ii) Quantitative: what is the probability that
a random system execution satisfies a given property? The qualitative proper-
ties are also referred to as hypothesis testing, while the quantitative are called
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probability estimation. In both cases, the answer provided by the procedure
will be correct up to a certain level of confidence. Since the statistical model
checking is less memory intensive than the model checking, it can be used to
statistically verify models with infinite state spaces. Even though the technique
is less precise than the exact model checking, still it solves the verification
problem in a rigorous and efficient way.

In our work, we use UPPAAL Statistical Model Checker (SMC) [17] for
formal analysis of industrial models used as case studies. The input of the UP-
PAAL SMC tool is a network of stochastic timed automata and a set of proper-
ties formalized in temporal logic. In the following sub-sections, we briefly
overview the timed automata and stochastic priced timed automata frame-
works, and the temporal logic used for specification of the system properties
and the UPPAAL SMC model-checker.

2.3.2 Timed Automata and Stochastic Priced Timed
Automata (SPTA)

Timed automata [25] is an extension of finite-state automata with a set or real-
valued variables called clocks, suitable for modeling the behavior of real-time
systems. The clocks are non-negative variables that grow at a fixed rate with
the passage of time, and can be reset to zero. The formal definition of a timed
automaton (TA) is given as the following tuple:

TA = 〈L, l0, X,Σ, E, I〉 (2.1)

where: L is a finite set of locations, l0 ∈ L is the initial location, X is a
finite set of clocks, Σ is a finite set of actions, including synchronization and
internal actions, E ⊆ L × B(X) × Σ × 2X × L is a finite set of edges of
type e = (l, g, a, r, l′), where l and l′ are the source and the sink locations
of the edge, respectively, g is a predicate on RX called guard, a ∈ Σ is the
action label, and r is the set of clocks that are reset when the edge is traversed.
I : L → B(X) is a function that assigns invariants to locations, which bound
the time allowed in a particular location. An edge is going to be traversed
if its guard g evaluates to true. B(X) represents the set of formulas called
clock constrains of the following form x ./ c or x − z ./ c, where x, z ∈ X ,
c ∈ N and ./ ∈ {<,≤,=,≥, >}. A clock constraint is downwards closed if
./ ∈ {<,≤,=}.

The semantics of TA is defined as a timed transition system (S,→), where
S is set of states, and the→ is the transition relation that defines how the system
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evolves from one state to another. A state in the system is a pair (l, v), where
l is the location and the v is the valuation of the clocks. A timed automaton
can proceed, that is, move to a new state, by performing either a discrete or a
delay transition. By executing a discrete transition the automaton transitions
from one location into another without any time delay, whereas by executing a
delay transition the automaton stays in the same location while time passes. A
path (or trace) σ of a TA is an infinite sequence σ = s0a0s1a1s2a2... of states
alternated by transitions, be they discrete or delay, such that si

ai−→ si+1.
A system can be modeled as a set of communicating components. Let

A1, A2, ...An be a set of timed automata each corresponding to an individual
component in the system. A network of timed automata (NTA) is simply a
parallel composition A1‖A2‖ · · · ‖An of a finite number of timed automata.

Stochastic Priced Timed Automata
Priced Timed Automata [26] extend timed automata with a set of real-valued
variables that evolve at different rates. The formal definition of a priced timed
automaton (PTA) is given by the following equation:

PTA = 〈L, l0, X,Σ, E,R, I〉 (2.2)

where: L is a finite set of locations, l0 ∈ L is the initial location, X is a finite
set of real-valued variables, Σ = Σi ] Σo is a finite set of actions partitioned
into inputs (Σi) and outputs (Σo),E ⊆ L×L(X)×Σ×2X×L is a finite set of
edges whereL(X) denotes the set of lower bound guards overX ,R : L→ LX
assigns a rate vector to each location, and I : L → U(X) assigns an invariant
to each location where U(X) denotes the set of upper bound guards over X .

The stochastic priced timed automata (SPTA) [17] extend the PTA with a
delay density function (µ), which is a set of all density delay functions µs ∈
L×RX , which can be either uniform or exponential distribution, and an output
probability function (γ), which is the set of all output probability functions γs
over the Σo output edges of the automaton. Assuming the formal definition of
PTA given above, the formal definition of a SPTA is given by the following
tuple:

SPTA = 〈PTA, µ, γ〉 (2.3)

The stochastic semantics of a priced timed automaton SPTA with a cor-
responding set of states S is defined based on the probability distributions for
both delays and outputs for each state s = (l, v) ∈ S of the automaton [26].
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The delay density function (µs) over delays in R≥0 (positive reals), is either a
uniform or an exponential distribution depending on the invariant in l. With
El we denote the disjunction of guards g such that e = (l, g, o,−,−) ∈ E for
some output o. Then, d(l, v) denotes the infimum delay before the output is en-
abled d(l, v) = inf{d ∈ R≥0 : v+d |= El}, whereasD(l, v) = sup{d ∈ R≥0 :
v + d |= I(l)} is the supremum delay. If the supremum delay D(l, v) < ∞,
then the delay density function µs in a given state s is a uniform distribution
over the interval [d(l, v), D(l, v)]. Otherwise, when the upper bound on the de-
lays out of s does not exist, µs is an exponential distribution with a rate P (l),
where P : L→ R≥0 is an additional distribution rate specified for the automa-
ton. The output probability function γs for every state s = (l, v) ∈ S is the
uniform distribution over the set {o : (l, g, o,−,−) ∈ E ∧ v |= g}.

The stochastic semantics of networks of SPTA (NSPTA) is based on the
principle of independence between the components [26]. Each component,
based on the delay density function and the output probability function repeat-
edly decides on which output to generate and at which point in time. In such
race between components, the output will be determined by the component that
has chosen to produce output after the minimum delay.

In our work, for encoding the patterns, we use SPTA with real-valued
clocks that evolve with implicit rate 1. These automata are in fact timed au-
tomata with stochastic semantics, called stochastic timed automata (STA). A
network of STA (NSTA) is a parallel composition of STA, defined in a similar
way like NSPTA. The notion of SPTA is introduced due to the fact, that, for
analysis we use monitor automata (composed in parallel with the actual system
model) that implement the stop-watch mechanism, which renders the model an
NSPTA.

2.3.3 UPPAAL Statistical Model Checker (SMC)

UPPAAL [21] in an integrated development environment for modeling, simu-
lation and verification of real-time systems. It has been developed as a joint
research effort by the Uppsala University and Aalborg University. The tool
has been first released in 1995 and since has been constantly updated with new
features. UPPAAL Statistical Model Checker (SMC) [27] is an extension of
UPPAAL model checker for statistical model checking. The input language of
the UPPAAL SMC is a network of STA. In the following section, we present
an illustrative example of a stochastic timed automata as modeled in UPPAAL
SMC.
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(a) Timed Automata (b) Stochastic Timed Automata

Figure 2.3: Illustrative scenario of UPPAAL stochastic timed automata

UPPAAL SMC Stochastic Timed Automata

In this section we present an illustrative example of an ordinary timed automa-
ton and a stochastic timed automaton as supported by UPPAAL SMC tool.

The input language of the UPPAAL model checker extends the original
timed automata framework with a number of features, including: constants,
global and local data variables (integer variables with bounded domain), arith-
metic operators, arrays, synchronization channels, urgent and committed loca-
tions, as well as definition of procedures using a subset of the C language [28].
UPPAAL SMC uses STA as defined above as its input language. A network
of stochastic timed automata (NSTA) in UPPAAL is a parallel composition of
a finite set of stochastic timed automata over X and Σ, synchronizing over
channels and using shared variables.

Figures 2.3a and 2.3b show an example of stochastic timed automata as
supported by UPPAAL SMC. The automaton in Figure 2.3a shows an example
of an ordinary UPPAAL TA that models the behavior of a component in the
system that periodically executes some computational routine (compute())
that maps inputs into outputs. It is composed of two locations: Init and
Operate, out of which Init is marked to be the initial one, denoted by two
concentric circles. On the edge from Init to the Operate location the au-
tomaton performs an update action, in this particular case being a reset of the
clock variable timer. The Operate location is decorated with an invariant
timer ≤ ts, denoting that the automaton is allowed to stay in that location
as long as the value of the clock variable is smaller or equal to the value of the
sample time (ts). The Operate location represents the operational mode of
the automaton and has a single looping transition decorated with a guard ex-
pression timer ≥ ts. The automaton takes the looping edge on Operate
location if the guard timer ≥ ts is satisfied, that is, as soon as timer ==
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ts. On the same edge two update actions are performed, namely executing the
computational routine that produces output from the execution (compute()),
and reset of the clock variable. The computational routine is encoded as a C
function. PTA uses the same modeling concepts as TA except that it allows
real-valued values that can evolve non-linearly. For example, the TA in Figure
2.3a can be transformed into PTA if we consider energy consumption encoded
as differential equation e′ = n, where n ∈ N added to the Operate location.

Figure 2.3b shows an example of a timed automaton with stochastic se-
mantics. The automaton is composed of the same two locations (Init - the
initial one, and Operate) as the previous one in Figure 2.3a. The role of the
automaton is to emulate the behavior of a component that executes continu-
ously, that is, at very small time intervals. To model the continuous behavior
of the component, instead of an invariant, the Operate location is decorated
with a rate of exponential. The distribution parameter λ is the user-defined pa-
rameter in the delay function that calculates the probability of the automaton
leaving the Operate location at each simulation step, given as: Pr(leaving
after t) = 1 − e−λt. The greater the value of λ, the smaller is the probability
that the automaton stays in the location.

2.3.4 Specifying Properties in Temporal Logic
In this section we give an overview of the different temporal logics used in this
thesis for specifying properties of time-transition systems.

Computational Tree Logic (CTL) is a branching time logic used for formal
specification of finite-state systems [29]. The interpretation of CTL is defined
over a modelM that consists of a non-empty set of states S, a labeling function
Label : S → 2AP that assigns a set of atomic propositions (AP ) to each state
in the model and a successor function R : S → S which assigns a set of
successor states to each state s ∈ S.

The syntax of a CTL formula consists of quantifiers over paths and path-
specific temporal operators. In CTL, there are two path quantifiers: a universal
one “A” meaning “for all paths”, and an existential one “E” denoting “there
exists a path”. A valid CTL formula is of the type ϕU ψ, where “U” (“until”)
represents the basic path-specific temporal operator, that can be combined with
either of the path quantifiers. There are two additional derived path-specific
temporal operators, given as follows: the “Future” temporal operator (denoted
as F or ♦), denoting that a formula eventually becomes true, with its se-
mantics defined as: Fϕ ⇔ true U ϕ; and the “Globally” path-specific tem-
poral operator (denoted as G or �) meaning that a given formula is always
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true, with the following semantics: (Gϕ ⇔ ¬ F ¬ϕ). There exists also a
weaker version of the U operator called “weak-until” (denoted as W ) defined
as: ϕ W ψ ⇔ (ϕ U ψ) ∨ Gϕ, which is used to capture formulas where the
right hand side term (ψ) might never be satisfied.

Timed CTL (TCTL) [30] is a an extension of the CTL with clock con-
straints. In TCTL each of the path-specific operators has a timed version
that uses constrains over clocks. In this thesis, we use the following syntax:
Operator./T , where Operator ∈ {U,F,G,W} and ./ ∈ {<,≤,=,≥, >}
and T is a numeric bound on the real-valued variable. For instance the formula
EF≤Tϕ requires that there exists an execution path along which ϕ eventually
becomes true within T time units.

For specifying probabilistic time-constrained temporal properties, we use
the probabilistic extension of the weighted metrics temporal logics (PWMTL)
as supported by UPPAAL SMC [26]. A valid PWMTL property in UPPAAL
SMC is as follows:

ψ ::= P(FC≤cϕ) ./ p | P(GC≤cϕ) ./ p (2.4)

where C is the observer clock of the automaton under analysis, ϕ is a state-
property with respect to the automaton, ./ ∈ {<,≤,=,≥, >} and p ∈ [0, 1].

2.4 Satisfiability Modulo Theories (SMT) and Z3
The problem of determining whether a formula expressing constraints (equal-
ity, inequality, etc.) has a solution is called constraint satisfiability problem.
The most well-known constraint satisfiability problem is the propositional
satisfaction SAT, where the problem is to decide if a formula over Boolean
variables, formed using logical connectives can be made true by choosing
false/true values of the constituent variables.

To express our constraints, in this thesis we use first-order logic formulas.
A first-order logic formula is a logical formula formed using logical connec-
tives, variables, quantifiers and function and predicate symbols. A solution for
first-order logic formulas is a model, which in fact is an interpretation of the
variable, function and predicate symbols that makes the given formula true.
Additionally, the formulas that we use contain arithmetic operators such as
{<,≤,=,+,−, ∗}. For checking satisfiability of such formulas we use Satis-
fiability Modulo Theories (SMT) [12], which is basically an extension of the
classical SAT problem over first-order logic formulas where the interpretation
of some symbols is constrained by a background theory.
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It is a well-known fact that the decidability for SAT is NP-complete and
that the first-order logic is undecidable in general (under all possible interpre-
tations), thus it is not feasible to develop a procedure that can solve an arbitrary
SMT problem. To be able to use SMT solving in practice, most of the deci-
sion procedures used today focus on realistic examples and provide means for
efficiently solving problems that occur in practice. The basic assumption for
such procedures is that the satisfaction of formulas produced by verification
and analysis tools is due to a small fraction of the formula, while the rest is
deemed irrelevant. In recent years, thanks to advances in core algorithms, op-
timizations of data structures and heuristics, there is a tremendous progress
in problems that can be solved using SAT/SMT procedures. In addition, a
significant role in the advancement is played by the increasingly mature state-
of-the-art tools.

In our work, we use Z3 [13], which is a state-of-the-art SMT solver and
theorem prover developed and maintained by Microsoft RiSE group. The ad-
vantage of Z3 is that it has a stable group of developers who maintain the
tool, as well as a broad academic community that is actively using it. The
input of the tool is a set of assertions that can be either declarations or formu-
las. Originally, the assertions are specified using the SMT-LIB language [31].
Additionally, Z3 provides a number of application programmable interfaces
(APIs) for specifying assertions using common programming languages such
as C#, Python, Java, etc. Declarations in Z3 can be either constants or
functions. In fact, in Z3 everything is expressed as functions, with constants
being functions with arity 0. The types in Z3 are called sorts with the fol-
lowing provided by the tool: Int, Real, Bool and Function. The set
of supported types can be extended with user-defined types. Z3 supports two
types of quantifiers: universal quantifier (ForAll) and existential quantifier
(Exists). For optimization of the decision procedure, the tool uses a number
of tactics.

Z3 uses an internal stack where it stores the set of formulas whose sat-
isfiability is to be checked. The command assert adds a new formula to
the stack. The SMT decision procedure is invoked by executing the command
check-sat, which checks where there is a solution for the conjunction of
all the assertions on the stack. If the set of assertions is satisfiable, the Z3 tool
returns the result SAT, which can be accompanied by the model that contains
the witness assignment of the variables. The model is generated using the com-
mand get-model. In the opposite case, that is, when the set of assertions on
the stack is not satisfied, the tool returns UNSAT, together with a minimal set
of inconsistent assertions.
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2.5 Specification Patterns

One way of enabling practitioners who are not experts in formal techniques,
to create formal system specifications, is to provide them with methods and
tools for a structured and reusable style of specifying requirements, where the
structures have precise semantics (a defined relationship between their syntax
and the model of computation) such that the formal specification can be auto-
matically extracted.

An interesting approach called the specification patterns system (SPS) [32]
has been proposed to facilitate the formal specification of system properties for
practitioners who are not experts in formal methods. The proposed approach
is based on the assumption that systems’ specifications are framed within reoc-
curring solutions, from which a set of patterns can be extracted and saved for
future reuse. Each pattern is characterized by a behavior that it captures, and
an extent of the program execution in which the behavior must hold. The pat-
terns are expressed as a combination of literal and non-literal terminals. The
non-literal terminals can be either boolean expressions that describe system
properties, or integer values that capture timing aspects. The rest of the pattern
is made of literal terminals, which cannot be changed.

The original SPS catalog proposed by Dwyer et al. [32] is compiled by an-
alyzing more than 500 examples of property specifications for various systems.
The catalog contains 13 qualitative patterns, which for easier navigation are di-
vided into two categories: order and occurrence, expressed in various types of
temporal logics. The occurrence category contains patterns that describe the
occurrence of a given state/event in the system, while the patterns from the
ordering category are used to capture the relative ordering of the occurrence
of multiple events/states during system execution. The catalog also introduced
six different scopes, given as following:

• Globally, the entire program execution;

• Before Q, before the first occurrence of the state/event Q);

• After Q, after the first occurrence of the state/event Q;

• Between Q and R, any part of the program execution between
states/events Q and R;

• After Q until R, similar as Between Q and R, except that the execution
continues even if the second state/event never occurs.
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One of the limitations of the SPS catalog provided by Dwyer et al. [32] is
that it does not contain patterns for specification of real-time properties. For
that purpose, Konrad and Cheng introduced a new category of patterns, called
real-time, suitable for specification of real-time systems. Consequently, the ex-
tended catalog of specification patterns is called real-time specification pattern
system (RTSPS). In the same work, Konrad and Cheng additionally proposed
the controlled natural language (CNL) representation on top of the formal no-
tations to increase readability and accessibility of specifications to different
stakeholders. For illustration, let us consider the following requirement:

Globally, it is always the case that if (ECU was started) holds, then (CMS sent
valid signal to totalFuelLevel) holds after at most 2 seconds.

The given example presents a requirement from industrial operational system,
expressed via SPS using the Bounded Response pattern with Global scope. The
non-literal terminals are given in brackets.

The next major update of the initial SPS catalog has been proposed by
Grunske [33], as a set of patterns for commonly used probabilistic properties
of the system. The most comprehensive SPS catalog is compiled by Autili et
al. [34] by aligning different existing catalogs and performing systematic gap
analysis with the purpose of discovering missing patterns. All these approaches
are backed by tool support, as a necessary aid for applying them on realistic
systems [35, 36, 37, 38, 39].

2.6 Sanity Checking
The term sanity checking has been introduced by Kupferman [40] to denote
the process of automatically establishing the quality of formal system specifica-
tions represented as a set of temporal formulas with respect to formally defined
criteria. In the literature, there are a number of sanity checking approaches that
use different sets of formal criteria to assess the quality of the system spec-
ification, such as: vacuity (checking whether one or more requirements can
be implied by other requirements in the specification) [40, 41], coverage (how
much of the models’ behavior has been captured by its specification) [40] con-
sistency (lack of contradicting formulas within a specification) [42, 43, 44] and
completeness (distinguish desired system behavior from any other) [42, 45].

The sanity checking techniques are suitable for quantifying the relation-
ship between the model and its specification or for assessing internal quality of
the specification without requiring a system model. An example of the former



26 Chapter 2. Preliminaries

application of sanity checking, is to quantify which portion of all the possible
behaviors of a given model are covered by its specification, whereas the second
case of sanity checking can be used to assess for example the internal consis-
tency of the specification. Intuitively, the first type of sanity checking requires
a system model, thus the name model-based, while the second type of sanity
checking does not require a structural or functional model of the system, hence
the name model-free sanity checking [14]. The benefits of the model-free san-
ity checking is the possibility to detect errors in the specifications in the early
phases of development, thus preventing their propagation into the subsequent
artifacts.

Most of the existing sanity checking approaches define sanity checking cri-
teria in such a way that it can be automatically checked using model checking.
Despite the benefit of exhaustive sanity checking, such approaches can suffer
from number of limitations such as the state-space explosion, or a very long
analysis time (for complex specifications). Therefore, for early assessments of
the specifications’ quality, complementary techniques such as SAT/SMT-based
analysis could be beneficial.
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Figure 3.1: Our research process.

Research methods represent concrete ways of solving a given research
problem. According to the Meriam-Webster dictionary, research methodol-
ogy is a “body of methods, rules and postulates employed by a discipline”. In
this section we give an overview of the research process that we use to develop
and address the research goals in this thesis.

The research process that we use in our research for this thesis is given in
Figure 3.1. The research process represents an adaptation of the four steps re-
search methodology [46] to our particular research context and includes the fol-
lowing steps: problem formulation, propose solution, implement solution and
validation. The first step in the research methodology process is the research
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problem formulation. In order to define our research problem, first we perform
identification of the real-world software engineering issues. For instance, in or-
der to identify the problems that software engineers in the automotive domain
are facing during the system specification phase, first, we conducted a series
of interviews. Then we analyzed the quality of the existing artifacts (system
specifications) and the features of the state-of-the-practice tools used for creat-
ing the artifacts. Once we have identified the research problem, we transfer it
to the research setting by defining one or more research goals. To define our
research goals, apply the critical analysis of relevant literature and practice
method [47]. During this process, both the research problem and the research
goals are refined and narrowed down.

Next, we propose a solution that addresses the identified research goals.
For instance, we propose the SMT-based approach for the formal requirements
consistency analysis described in Paper C [15] to address the needs for early
debugging of system specifications in industrial settings. By critically assess-
ing the existing approaches for consistency analysis, we discovered that there
does not exist an approach for lightweight and fast consistency analysis in set-
tings when no system model is available. The initially proposed solution is
then refined in several iterations in a process that revolves around discussions,
analysis and improvement until a stable form is reached which can be then im-
plemented such that it can be applied in real-world scenarios. To assess the
correctness of the proposed solution and to investigate whether it addresses the
research goals in an adequate manner, we apply the following techniques: for-
mal proof of correctness, case studies or proof-of-concept implementation [46].
The direct results of solving the solution are concertized/transferred into a set
of research papers, presentations and tools.

During the last step, we perform the validation of our research results. The
main goal of the validation phase is to check whether our research results are
applicable to the real-world software engineering problems. This step is per-
formed in close cooperation with industry, by applying the “proof by demon-
stration” [46] research method, where both researchers and engineers evaluate
the research results. During the validation phase, the following aspects of the
results are assessed: i) what is the scope of the proposed solution, that is, check
whether the proposed solution fully or partially addresses the industrial prob-
lem; ii) scalability, to determine whether the proposed solution can be applied
on the actual industrial systems, and iii) usability, that is, to what extent does
the proposed solution support the transfer of the research results into indus-
trial practice. For instance, the SMT-based consistency analysis methodology
[15] (Paper C) is validated against an operational system (Fuel Level Display
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from Scania), while the approach for formal analysis of Simulink models us-
ing statistical model checking [48] (Paper D) is validated against a prototype
implementation of an industrial Simulink model of the Brake-by-Wire system.





Chapter 4

Research Problem

In this section, we define the research problem and goals of the thesis. In
Section 4.1 we describe the research problem, after which in Section 4.2 we
define the overall research goal based on the actual state of practice and state
of the art. To narrow the over-arching goal, we define in the same section
research goals that help us to structure our research and relate the results to the
problem.

4.1 Problem Definition

The predominant way of specifying requirements in the automotive domain is
still as free-text, using mostly English language due to internationalization.
The requirements are organized in system specification documents (system
specifications), which are created and managed either by using general pur-
pose text editors or specialized platforms such as IBM Rational Doors [49].
This practice of specifying requirements in natural language may lead to ambi-
guity in some of the requirements (due to the inherent ambiguity of the natural
language). It also provides limited traceability and hinders the analyzability of
requirements that are prone to inconsistencies for large specifications.

Currently, in industrial settings, manual peer-review is the most widespread
technique for checking the correctness of the systems’ specifications [5]. How-
ever, due to the increased size and complexity of the requirements specification
documents, the cost for manual peer-review increases, and the quality assur-
ance of the specifications becomes a challenge. A potential way to deal with
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the complexity of system specifications and to be able to reason about their
quality, is to employ computer-aided analysis and verification enabled by for-
mal techniques. Despite that the application of such techniques on some in-
dustrial use cases has been shown to be feasible [42, 50], their actual adoption
in industry is limited by the difficulty of producing formal specifications and
formal system models.

Even assuming that employing formal methods during industrial system
development could be beneficial, it is unrealistic to expect that the industrial
practitioners are able to effortlessly write formal specifications. Moreover,
system specifications have to be accessible to a wide range of stakeholders,
including managers, customer support and maintenance service people who
must be able to read and interpret the requirements.

One way of enabling industrial practitioners to create formal system speci-
fications is to provide them with methods and tools for a structured and reusable
style of specifying requirements, where the structures have precise semantics (a
defined relationship between their syntax and the model of computation), such
that the formal specifications can be automatically extracted. As mentioned in
Preliminaries (Chapter 2), an approach for pattern-based formal system specifi-
cation [32], its real-time extension [7], and supporting tools [35, 36, 37, 38, 39]
have been proposed to facilitate the formal specification of system properties
for practitioners who are not experts in formal methods. What is missing from
the existing endeavors is a study of the applicability of such approaches, and
of the expressiveness of patterns in capturing industrial systems’ requirements.
The questions that await answers are: How can industrial system’s require-
ments be formalized via specification patterns and how many of them can be
captured? Are there types of requirements that do not fit the existing set of
patterns? How does an engineer know what pattern to select? How to validate
that the formalized behavior captures the engineer’s intention?

Once the system specifications have been formally expressed, the next step
is to ensure its consistency. This can be done via sanity checking. The majority
of the existing work on automated sanity checking uses model checking as the
formal technique to carry out the task [14, 40, 41, 42, 43, 44, 50]. The analysis
might suffer from the well-known state-explosion problem, so its scalability is
limited. Industry has an imperative need for early checking of the correctness
of the system specifications for preventing potential specification errors from
propagating to subsequent artifacts, including system models and the code.
Consequently, a lightweight sanity-checking technique that can be applied in
the early phases of system development might be beneficial.

Most industries, and especially the automotive one enjoys the benefits of
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the MBD paradigm, as models provide a good way of abstracting the engineer-
ing problem and documenting the design. Consequently, most of the solutions
are implemented according to the MBD paradigm using different tools. In the
automotive domain, Simulink is the “de-facto” standard for developing system
models. For deployment, the engineers use specialized commercial tools to
generate code directly from the Simulink models. Assuming that the code gen-
eration itself is correct, establishing the correctness of the behavioral Simulink
models is of utmost importance as it has a direct impact on the correctness of
the code deployed in vehicles.

4.2 Research Goals Definition
Based on the above discussed problems, we formulate the overall research goal
of the thesis as follows:

Overall Research Goal. Facilitate the quality increase of industrial em-
bedded systems through automated formal techniques for: i) requirements
specification and ii) analysis of design-time Simulink models.

The overall goal sets to produce industrially-applicable formal methods and
enable automation, by proposing an adequate tool support for helping the engi-
neers who are not experts in formal methods, to formally specify and analyze
different artifacts. Nevertheless, it is obvious that the overall goal is highly
abstract and broad. In order to narrow down our goal and to be able to measure
the contributions, we divide it into three sub-goals in the following.

We define the first subgoal as:

Subgoal 1. Propose an engineer-friendly way for the formal specification of
industrial embedded systems’ requirements.

The result of addressing Subgoal 1 should be a concrete methodology, be
it new or an adaptation of an existing one, which is expressive enough for
formalizing the requirements of industrial embedded systems, out of which we
chose automotive systems as representative. To increase the user friendliness
of the approach, the methodology is to be accompanied by an adequate tool
support.

Once the formal system specification is generated, the next question to an-
swer is: how to determine if such a specification is qualitative, for instance, free
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of inconsistencies? For this purpose, we have formulated the second subgoal
as:

Subgoal 2. Enable early consistency checking of formalized requirements of
industrial systems.

The outcome of addressing Subgoal 2 should be an automated approach
for consistency checking of the formalized system specifications in the early
phases of the system development, when no structural or behavioral system
model is available.

Having precisely specified and consistent system requirements is not
enough to increase the quality of embedded systems. They need to be checked
for fulfillment on development artifacts usually employed in the design of in-
dustrial embedded systems. Such artifacts are Simulink models used by en-
gineers both for early simulations of the system’s functions, but also for code
generation. Therefore, our last subgoal targets the generation of formal sys-
tem models corresponding to Simulink models, on which formal analysis tech-
niques can be applied. Subgoal 3 is given below:

Subgoal 3. Enable formal analysis of industrial systems models described
in Simulink.

The outcome of addressing Subgoal 3 should be an automated procedure
for generating formal system model based on Simulink industrial models that
can be formally analyzed by using state-of-the art tools and methods.
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Thesis Contributions

In this chapter, we give an overview of the research results and contributions
that address the research goals defined in Section 4.2. The main contributions
of the thesis are on three fronts: i) engineer-friendly formal requirements spec-
ification method and tool; ii) an SMT-based method for the automated con-
sistency analysis of formalized system requirements specifications expressed
as TCTL formulas, and iii) a method and tool for formal analysis of indus-
trial system models described in Simulink using statistical model checking.
Throughout the thesis, we focus our research on automotive systems, due to
our cooperation with Swedish vehicle manufacturing companies.

5.1 Pattern-based Formal System Specification

Our first contribution is an engineering-friendly way for formal system require-
ments specification. It can be divided into two parts: in the first part we assess
the suitability of a candidate approach for creating formal system specifications
for practitioners who are not experts in formal methods, namely the RTSPS in-
troduced in Section 2.5, while in the second part, we propose a tool called
SeSAMM Specifier such that the methodology can be potentially adopted in
the industrial development process.
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5.1.1 Reassessing the Pattern-based Approach for Formal
System Specification in the Automotive Domain

We select the pattern-based approach and the RTSPS catalog as a candidate
approach for creating formal system specifications, based on the results of a
previous study [9]. In the given paper, the authors show that specification pat-
terns and the RTSPS catalog are expressive enough to formalize requirements
of systems produced by a single supplier in the automotive domain. In addition,
their results show that a subset of patterns is enough to express the majority of
the requirements. The limitation of their study is the fact that the considered
requirements belong to systems from a single vendor, thus generalizing the
results to the whole domain remains an open question.

In order to gain further understanding of the benefits, limitations and chal-
lenges encountered when formalizing requirements in a realistic setup, we per-
form a case study in collaboration with Scania, Sweden. In our work, we do not
attempt to remove the above-mentioned limitation, but just to investigate fur-
ther whether we can enlarge the “borders” of the previous results of Post et al.
[9]. The goal of the case study is to take a subset of non-structured functional
requirements of the E/E systems written in natural language, and formalize
them using the RTSPS catalog of the specification patterns. The case study is
performed in several steps, as follows: i) system specifications gathering, ii)
formalization using specification patterns, and iii) analysis of the results.

For collecting the requirements for the study, we contacted a number of en-
gineers from the company and asked them to provide requirements documents
exemplifying their usual work. In response, we received four documents with
a number of unstructured functional requirements written in natural language.
Once we obtained the documents, we extracted the requirements in a separate
data sheet, in order to make sure that only the requirements were assessed, and
not context information or other meta-data related to them. As a result, we
compiled a list of one hundred requirements. By doing this, we had an indirect
way of measuring the quality of the system specifications, meaning that if a
requirement cannot be patterned without knowing other information appearing
in the document, it will most likely not be prone to an automated formalization.

In the second phase, we formalized each of the extracted requirements by
employing RTSPS. The formalization was performed by expressing each of
the requirements via one of the available patterns, such that the formalized
representation could be automatically extracted. Since the goal of the exercise
was to assess the expressiveness and adequacy of the patterns, there was no
need to proceed further and obtain the expressions in temporal logics. For the
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purpose of our research, we claim that a requirement is formalizable if there
exists a pattern that captures its semantics.

The results of our case study show that the specification patterns are ex-
pressive enough to formalize the requirements included in the case study. As
presented in Figure 5.1, 70% of all the requirements included in the case study
could be expressed using RTSPS patterns. The remaining portion of require-
ments is divided into two categories, as follows: 6% of all the requirements are
categorized as not formalizable, meaning that the described behavior cannot
be expressed using patterns. According to our experience, high complexity,
high level of ambiguity and lack of information are the main reasons impeding
the patterning of such requirements. The third class of requirements are the
so-called phenomenon, which refer to requirements that do not express system
behavior, but give information about data or the system configuration. These
requirements cannot be mapped into patterns, but can be expressed by means
of non-literal terminals.

In total, in our case study we use 7 patterns to capture the behavior of
the formalized requirements (see Figure 5.2). This finding is aligned with the
claim of Post et al. [9], that a small subset of patterns is enough to express
most of the requirements of an embedded automotive system. Despite the pos-
itive results, our case study reveals some challenges during the formalization
of the requirements. First, the formalization of system specifications using pat-
terns has a learning curve. During the formalization, we have noticed that the
speed of formalization of requirements increases with experience. However,
finding ways to soften the learning curve is desirable. Second, and maybe a
more important finding is that it is hard to validate whether the requirements
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Figure 5.2: Pattern frequency.

expressed using specification patterns capture the intention of the engineers ac-
curately. The presented contributions are published as Paper A [8] and address
Subgoal 1.

5.1.2 Integrating the Pattern-based System Specification in
an Industrial Toolchain

Driven by the fact that the specification patterns are expressive enough to for-
malize most of the requirements in the automotive domain, as our second con-
tribution we propose a tool called SeSAMM Specifier, which enables engineers
to specify their systems using the specification patterns. The tool has been de-
signed to satisfy demands such as flexibility and extensiveness.

On one hand, flexibility means that the tool can be integrated into existing
toolchain(s) used in industrial settings instead of being developed as a stan-
dalone tool. By integration, the tool can benefit from existing features of other
tools already existing in industry. On the other hand, extensiveness means
that the tool must not be bound to a predefined catalog of patterns, instead it
can be extended and adapted further depending on the context. In order to
explain how the SeSAMM Specifier tool supports these features, we give an
overview of its architecture as presented in Figure 5.3. The architecture of the
tool consists of three data sources for storing information, and two user inter-
faces (UIs) that are used for managing it. The three data sources are given as
follows: Domain Ontology stores information about the various concepts of
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Figure 5.3: SESAMM Specifier Architecture

the system architecture, such as function and signal names, software variables,
etc.; Pattern Catalog contains all the patterns that can be used to formally spec-
ify requirements, whereas the Requirements Specification data source contains
all the requirements expressed via patterns.

The information in the data sources is manged by the two interfaces of the
tool. The arrows in the architectural design represent the data flow and the
permissions in the system. For example, the information stored in the Domain
Ontology can be accesses only through the Engineer UI that has permission
only to read the stored data, but not to change it. In contrast, the information
about the requirements expressed via patterns stored in the Requirements Spec-
ification data source can be accessed and modified by both user interfaces of
the tool.

The tool is accessible to two types of users through its interfaces: the Expert
UI enables experts in formal methods to manage the catalog of the specification
patterns of the tool, while the Engineer UI is intended to help the engineers
to create formal system specifications. The use and the functionalities of the
tools will be explained via the two work flows as presented in Figure 5.4. The
detailed explanation of both interfaces is given in our work [10] or in Chapter 9.

The work flow for the experts denotes the process of creating new, or mod-
ifying existing patterns in the pattern catalog stored in the Pattern Catalog data
source. In the first step (Step 1 in Figure 5.4), the expert user selects to create a
new pattern or modify an existing one. Once all the steps of the work flow are
completed (Steps 1, 2 and 3 in Figure 5.4), the pattern is saved into the Pattern
Catalog data source.
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Figure 5.4: Expert and Engineer work flows of SeSAMM Specifier

The other work flow in the system describes how the tool and the Engi-
neering UI can be used by the engineers to create formal system requirements
specifications expressed using patterns. The work flow in initialized by the en-
gineer by selecting the option to either create a new requirement or to modify
an existing one (Step 1 in Figure 5.4). Additionally, the interface incorporates
a mechanism for validation of the formalized behavior expressed via patterns
(Steps 3 and 4 in Figure 5.4). For that purpose, the tool incorporates three
different visual notations for visualizing the formalized requirements behav-
ior. The presented contributions are published as Paper B [10] and address
Subgoal 1.

5.2 Automated Consistency Analysis of
Formalized System Specifications

Sanity checking of formalized requirements prior to full formal analysis can
be used to detect errors that might decrease the subsequent verification effort,
while also increasing the quality of the requirements of a system that can later
be reused or evolved.

Therefore, our next contribution is an automated SMT-based consistency
analysis methodology for the formal system specifications expressed as a set
of TCTL formulas obtained by applying the specification patterns. The pro-
posed methodology belongs to the class of model-free sanity checking tech-
niques, meaning that it does not require any type of structural or functional



5.2 Automated Consistency Analysis of Formalized System Specifications
41

model of the system, thus it can be applied at early phases of system devel-
opment. The methodology includes several steps, as follows: first, we recall
the formal definition of a systems’ requirements specification inconsistency,
which we are in fact interested in detecting. Then, we transform the TCTL
patterns into first-order logic (FOL) formulas by instantiating the semantics of
the path and temporal operators. Next, the FOL formulas are transformed into
Z3 assertions, which are later optimized for analyzability via abstraction rules.
Lastly, for validation, we apply our methodology on a set of requirements from
an operational industrial system, that is the Fuel Level Display function, im-
plemented in Scania vehicles.

The definition of the logical inconsistency of formalized system require-
ments specifications that we rely on is given below:

Definition 1 (Inconsistent specification). Let Φ = {ϕ1, ϕ2, ..., ϕn} denote the
system requirements specification, where each of the formulas (ϕ1, ϕ2, ..., ϕn)
encodes a requirement. We say that the set Φ is inconsistent if the following
implication is satisfied: ϕ1 ∧ ϕ2 ∧ ... ∧ ϕn =⇒ False.

From the given definition, it follows that a system specification is incon-
sistent if there does not exist valuation of all terms of the conjunct, such that
the latter is true. To disprove the inconsistency, it is enough to provide a wit-
ness set of valuations of the variables, which satisfies the conjunction of all
the formulas. Checking whether there exists an interpretation that satisfies the
Boolean conjunction given above represents a classical Boolean satisfiability
(SAT) problem. Since in our work, the FOL formulas contain arithmetic oper-
ations such as {+,−, <,≤,≥, >} we use SMT.

The structured derivation proofs for transforming TCTL into FOL formulas
are given in Paper C [15] (also in Section 10.5 of Chapter 10). Once the set
of FOL formulas is generated, next we encode them as a set of Z3 assertions,
which can be checked for consistency using the Z3 tool. The encoding process
and the abstraction rules that we use to generate analyzable sets of Z3 assertions
are as follows:

R1: Directly map the FOL constructs into Z3 syntax elements. For instance,
mapping the quantifiers (∀ into ForAll, ∃ into Exists, etc.), model-
ing port values as functions of time, etc.

R2: Reduce complexity by abstraction: (a) eliminate path (σ) universal quan-
tifiers, and (b) collect location (i) and time in location (d) into a tuple
position (pos).



42 Chapter 5. Thesis Contributions

R3: Abstract the universally quantified pos = (i, d) to the universally quan-
tified pos.d.

The process of applying the rules R1, R2 and R3 on the set of patterns (Pi)
used for formalizing the system specifications can be illustrated as follows:

Pi
R1,R2−−−−→ P

′

i
R3−−→ Pi Z3, i ∈ [1, n]

By applying rule R1 we generate a set of Z3 assertions where each assertion
corresponds to one requirement in the specification. If we recall that the TCTL
formulas are interpreted over a branching model, the resulting FOL formulas
are quantified over three variables as follows: execution paths, locations and
clock valuations. Also, we know that the number of quantifiers and quantified
variables has a negative impact on the decidability of the SMT procedure. To
reduce the complexity of the assertions, we apply rules R2 and R3. As a result,
the path and location quantified variables are eliminated from the assertions,
meaning that the newly obtained set of formulas are quantified over time only.

Despite the application of the complexity reduction technique, the set of
Z3 assertions could not be analyzed for consistency, as the procedure did not
terminate with a result. The cause for this are additional nested quantifiers aris-
ing from use of the weak-until operator in some of the patterns, for modeling
the sporadic occurrence of some event. Since the occurrence of all sporadic
events in the system is bounded from above, we apply a mitigation strategy
according to which all sporadic events are transformed into periodic events
with the period equal to the upper bound of the allowed interval. Even though
such a model of the requirements is pessimistic, our abstraction is conserva-
tive (the satisfaction of the original formula follows from the satisfaction of the
abstracted one).

For validation, we apply the proposed approach on a set of requirements of
Scania’s Fuel Level Display (FLD) system. Using our approach, we manage to
prove the consistency of 24 FLD requirements within seconds. Since the FLD
is an operational system, such result is expected.

The presented contributions are published as Paper C [15] and address Sub-
goal 2.

5.3 Statistical Analysis of Simulink Models
As a last contribution of the thesis, we propose an approach for the formal anal-
ysis of industrial embedded system models described in Simulink using UP-
PAAL SMC. To enable the statistical model checking of Simulink models, we
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propose the following: i) first, we categorize Simulink blocks according to their
execution and introduce patterns for transforming atomic Simulink blocks into
networks of STA, and a flattening algorithm for composite Simulink blocks;
ii) second, we provide a tool called SIMPPAAL that completely automates the
procedure and iii) third, we validate our approach by applying the SIMPPAAL
tool on the Brake-by-Wire Simulink model from Volvo GTT, Sweden. In the
following, we present each of the aspects of the contribution in more details.
The contributions listed below are published as Paper D [48], and address Sub-
goal 3.

5.3.1 Transformation of Simulink Blocks into Stochastic
Timed Automata

We provide a pattern-based approach for transforming sets of atomic Simulink
blocks into networks of stochastic timed automata (STA). To achieve this, we
classify the atomic Simulink blocks into two categories: continuous and dis-
crete. A block is considered to be continuous if it updates its output continu-
ously (at infinitely small intervals). In contrast, the discrete Simulink blocks
compute their outputs at specific time intervals during the simulation. The
distance between two periods at which a discrete block produces an output is
called sample time. To be able to transform Simulink atomic blocks into cor-
responding STA in sound manner, we first provide a formal definition of the
syntax and semantics of an atomic Simulink block.

Definition 2 (Formal Definition of an atomic Simulink Block). An atomic
Simulink block can be formally defined as the following tuple:

B = 〈sn, Vin, Vout, VD,∆, Init, blockRoutine〉 (5.1)

where: sn is the execution order number of the block inside the respective
Simulink model, Vin, Vout and VD denote the sets of input, output and state
variables of the block, respectively; ∆ is the time stamp composed of the sam-
ple time (ts) and the offset parameters (ts, offset ∈ R≥0), at which the block
updates its outputs, Init() is the initialization function and blockRoutine() is
a function that maps the inputs and state variables into outputs.

The atomic Simulink blocks are transformed into networks of STA using a
pattern-based approach. We propose one pattern for each type of Simulink
block, discrete and continuous, as given in Figures 5.5a and 5.5b. The STA
pattern for discrete blocks (Figure 5.5a) consists of three locations: Start,



44 Chapter 5. Thesis Contributions

(a) Discrete block

(b) Continuous block

Figure 5.5: Transformation patterns for atomic Simulink blocks

Offset and Operate. The pattern captures the behavior of a discrete block
during simulation time as follows: the automaton initially is in the Start
location. It stays there until it is released, that is, waits for its turn for execution.
The time at which the block is released is calculated based on the execution
number of the block in the Simulink model (sn) and the inter-arrival time of
the signals in the model (IAT). The combination of these two parameters is
given as a constraint over the global clock variable (gtime). After the block
is triggered for execution, it can delay the computation of the first output for
a specific time interval denoted as offset, modeled via the Offset location
in the STA template. After the offset elapses, the automaton proceeds into
operation mode by going into the Operate location of the STA. On the edge
between the Offset and Operate the automaton produces the first output
and resets the local clock (t). The Operate location has only one outgoing
edge executed at every sample time (ts) to update the output.

The STA template for a continuous Simulink block is similar to the discrete
one with the following differences. Since the continuous Simulink blocks are
not allowed to delay the first execution, the Offset location has been re-
moved from the template. Secondly, in order to approximate the continuous
update of the output, instead of an invariant, the Operate location is deco-
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rated with a rate of exponential parameter, which is used in the density function
that computes the probability of the automaton to stay in that location at each
simulation step. The higher value for the parameter, the less the probability
of the automaton to stay in the given location. The actual function of each
Simulink block is encoded in C, as blockRoutine(). To ensure the correctness
of each block routine, we apply the program verifier Dafny [51], which uses
the assume-guarantee paradigm to check the correctness of the code.

The composite Simulink blocks are used for creating a hierarchical struc-
ture of the model. Unlike the atomic ones, the composite blocks do not have
a predefined behavior as they are realized through a set of atomic Simulink
blocks. To eliminate the hierarchy, we propose a flattening algorithm that re-
places the composite Simulink blocks with a set of atomic Simulink blocks,
which when executed in the correct order imposed by their respective execu-
tion order number, exhibit exactly the same behavior as the composite block.
While the set of blocks is always given inside the model, the challenge is to
ensure their correct execution, such that the original behavior modeled using
the composite Simulink block is preserved in the formal model. To assign the
correct execution order of the atomic blocks inside a given composite Simulink
block we apply the proposed flattening algorithm. For detailed description of
the flattening procedure, we refer out reader to our work [16] or Chapter 11 of
this thesis.

A Simulink model is then a composition of Simulink blocks as follows:

S = B1 ⊗B2 ⊗B3 · · · ⊗Bn (5.2)

where: sns =
n⋃
i=1

sni is an ordered list of execution, in which

∀(i, j).(i < j ⇒ si < sj), V Sin =
n⋃
i=1

V iin is the set of input variables,

V Sout =
n⋃
i=1

V iout is the set of output variables, V SD =
n⋃
i=1

V iD is the set of internal

state variables, ∆S =
n⋃
i=1

∆i is the set of time points at which the respective

data and output variables are updated, and (Init; blockRoutine)S ,
(Init1; blockRoutine1)|=∆1 ; (Init1; blockRoutine2)|=∆2 ;
. . . ; (Initn; blockRoutinen)|=∆n is an ordered list of pairs of (Init,
blockRoutine), which are executed atomically at given times ∆i.
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5.3.2 SIMPPAAL Tool

To automate the complete procedure of transforming Simulink models into net-
works of STA suitable for analysis using UPPAAL SMC, we propose SIMP-
PAAL tool whose function is as follows. The tool takes as input a Simulink
model and the list of execution order numbers of each Simulink block inside the
model, be it atomic or composite, and it automatically generates the network
of STA that UPPAAL SMC can be fed with, for formal analysis. Additionally,
for each of the transformed block, the tool automatically generates a Dafny en-
coding of the block routine that can be used for proving the correctness of the
computational routine.

The tool has been designed following the modular architecture principle,
in order to reduce the implementation complexity and to have dedicated parts
of the tool responsible for a specific set of tasks. Each of the components in
the tool is called module. The first prototype implementation of SIMPPAAL
as included in this thesis, is based on three modules given as follows: a mod-
ule for flattening the model by assigning an execution order number for each
atomic Simulink block relative to the root Simulink model; a module for pars-
ing and manipulating Simulink model files, and a module for transforming
atomic Simulink blocks into a network of STA. For details about the imple-
mentation of each module and the complete work flow of the tool we refer our
reader to earlier work [48] or Chapter 11 of this thesis.

5.3.3 Validation of SIMPPAAL on a Brake-by-Wire System

To validate our approach and to assess the effectiveness of the SIMPPAAL tool,
we applied it on a Brake-by-Wire Simulink model from Volvo Group Truck
Technology. Brake-by-Wire is a prototype implementation of a braking func-
tion equipped with an Anti-Lock Braking System (ABS) functionality, without
any mechanical connection between the brake pedal, and the brake actuators.
The sensor reads the position of the break pedal which is used by the algorithm
to determine how much breaking torque to apply on each of the wheels of the
vehicle.

The Simulink model of the Brake-by-Wire function consists of 320 atomic
Simulink blocks placed inside a number of Simulink model files and libraries.
The transformation procedure, including the flattening plus the transformation
of the atomic Simulink blocks takes about 20 seconds to complete. The gener-
ated network of STA consists of 149 STA and 12 constants represented as data
variables in UPPAAL. Of all the transformed blocks, 133 are continuous and
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Table 5.1 SMC analysis results for BBW.

Req. Query Result Runs
R1BBW Pr[<= 200](<> Monitor.End) Pr ∈ [0.998, 1] with confi-

dence 0.999
3797

R2BBW Pr[<= 200](<> Monitor1.End and
(Monitor1.x −Monitor2.x <= 20 and
Monitor1.x−Monitor2.x >= −20))

Pr ∈ [0.990014, 1] with
confidence 0.995

597

R3BBW Pr[<= 200](<> pedal map 161 signal
<= 100)

Pr ∈ [0.995002, 1] with
confidence 0.9975

1334

R4BBW Pr[<= 20](<> Monitor.End and
Monitor.s > 20 and Monitor.torque
== 0)

Pr ∈ [0.902606, 1] with
confidence 0.95

36

16 are discrete.
The obtained formal model is then subjected to formal analysis with respect

to both timing and functional properties. The properties that we have analyzed,
the probability for their satisfaction and the time for verification are given in
Table 5.1.





Chapter 6

Related Work

In this section, we present an overview of research endeavors related to the
three main research problems, that are considered in our work, including: for-
mal requirements specification via specification patterns, automated require-
ments’ consistency analysis, and formal analysis of behavioral models of in-
dustrial embedded systems specified with Simulink.

Specification Patterns. The work on specification patterns has two major
directions. The first direction is towards enriching the specification pattern
catalog by identifying new patterns, whereas the second one is more focused
towards bringing the specification patterns closer to the practitioners. While
there is a large body of work in academia that focuses on improving the spec-
ification pattern catalog [7, 32, 33, 34], there are not many studies that test the
applicability of the patterns in real-world scenarios. In our current work, the
main focus is on the usability side of the patterns as a way for formalizing sys-
tem specifications. In our work, we focus on two aspects of the usability of the
specification patterns: i) perform a case study to test the applicability of the
patterns and ii) provide an adequate tool support for addressing the needs of
the practitioners who are not experts in formal methods. Our contributions are
two-fold: first, the results of our case study strengthen the claims of the ear-
lier formalization attempts in industrial settings [9], and second, we propose a
tool called SeSAMM Specifier, which not only enables various practitioners in
formal specification of their systems, but also provides means for validation of
the formally specified behavior through a number different visual formalisms.

There is a number of academic tools that have been developed to facil-
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itate the formal requirements specification using the specification patterns.
The PROPerty ELucidation system (PROPEL) [35] and Property Specifica-
tion (Prospect) [37] support requirements specification using disciplined nat-
ural language and finite-state automata (FSA), relying solely on state-based
notations to formally represent requirements behavior. The Property ASSis-
tant (PASS) [38] tool has been implemented to facilitate the specification of
event-based systems. Other tools such as CHARMY [36] support the design
and validation of architectural specifications captured in UML. The PSPWizard
tool [34] is very similar to PROPEL and Prospect, yet it exhibits an advantage
by providing a more comprehensive catalog of specification patterns.

If compared to the tools listed above, our SeSAMM Specifier tool differs
in several ways. First, all previously mentioned tools rely on a specific pattern
catalog. In contrast, SeSAMM Specifier, does not include a predefined catalog,
rather it is designed and developed to be a general tool built on top of the
pattern-based approach [10]. Consequently, the SeSAMM Specifier has more
expressive power than the rest of the tools. Secondly, the SeSAMM Specifier
provides a mechanism for giving visual feedback to the users. Although not
unique with respect to this feature, our tool provides more options than most
tools, and we are currently working on extending the set of available graphical
notations for visualizing behavior. What is truly unique about the SeSAMM
Specifier is the fact that it has been developed with practitioners in the loop.
This has resulted in a tool that engineers can associate themselves with, which
can have a positive effect on the adoption of the tool in their everyday work.

Formal Analysis of Requirements Specification. In our work we have pro-
posed an approach for automated consistency analysis using Z3 SMT solver. In
the following, we list some of the related approaches for automated consistency
analysis of requirements specified as temporal formulas.

Barnat et al. [14] propose a model-free sanity checking procedure for
consistency analysis of system requirements specification in Linear Tempo-
ral Logic (LTL) [52] by means of model checking. The approach has later
been extended [50] to support generation of a minimal inconsistent set of re-
quirements. Despite the exhaustiveness, the approach suffers from the inher-
ent complexity of transforming the LTL formulas into automata, especially
for complex systems, potentially making it unusable in industrial settings. A
similar approach for consistency checking of requirements specified in LTL is
proposed by Ellen et al. [53]. The authors introduce a definition for the so-
called existential consistency, that is, the existence of at least one system run
that satisfies the complete set of requirements. Similar to what we propose, the
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analysis procedure has been integrated into an industrially relevant tool, aim-
ing at industrial application. The work by Post et al. [44] defines the notion of
rt-(in)consistency of real-time requirements. The definition covers cases where
the requirements in the systems requirements specification can be inconsistent
due to timing constrains. The checking for rt-inconsistency is reduced to model
checking, where a deadlock situation implies inconsistency of requirements.

Despite the exhaustiveness of the consistency checking approaches men-
tioned above, all of them suffer from two major limitations: the time required
for generating the requirements model as well as the time for analysis that
grows exponentially with the number of requirements that should be analyzed.
In comparison, our approach copes well with the time for generating the model
for analysis. This is due to the fact that the input model for analysis is a set of
Z3 assertions, which can be generated in negligible time as compared to build-
ing automata models as required by some of the approaches [14, 44]. However,
Z3 is not as expressive, and only accepts abstractions of our actual specifica-
tion model in order to be able to return a result. Therefore, we cannot detect
complete temporal inconsistencies. Another difference is the exhaustiveness of
consistency analysis. Model checking is exhaustive, whereas we sacrifice this
for avoiding the potential state space explosion. The model-checking-based
consistency analysis [14, 44] can guarantee the absence of any inconsistencies
in the system, while our approach (similarly to [53]) is suitable for checking
whether the system specification is realizable as such, that is, if there exists at
least one system run that satisfies the conjunction of all the requirements in the
specification. Mahmud et al. [54] propose a more high-level consistency anal-
ysis approach applied on Boolean level, without taking the temporal aspects
into consideration approach. In cases where inconsistencies are detected, all of
the approaches (including ours) are able to generate the minimal inconsistent
set, that is, the minimal set of inconsistent requirements. The above listed char-
acteristics make our approach suitable to be used in the early phases of system
requirements specification, where a more lightweight and considerably faster
procedure might be more suited.

The quality of the system requirements specifications can be assess even
when they are expressed informally, that is, in natural language. One such ap-
proach is proposed by Fabbrini et al. [55, 56], which assesses the quality of the
requirements specifications using natural language processing techniques with
respect to a quality model. The approach is complemented with an adequate
tool support for automating the analysis [57]. Recent study [58] shows that
such techniques can be applied large sets of industrial requirements to help the
engineers to prioritize the requirements to be manually analyzed for defects.
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Formal Verification of Simulink Models. The existing approaches for ver-
ification of complex Simulink models can be divided into three broad cate-
gories: i) generation and abstraction of simulation traces, ii) abstraction of
blocks into contracts/theories and their formal analysis, and iii) model-to-
model (M2M) transformation followed by model checking.

The approaches from the first category abstract Simulink simulation traces
into state machines representing the system’s behavior, which is then subjected
to model checking [59]. For instance, PlasmaLab follows this approach and
uses SMC for model checking [60]. The limitation of the approach, however,
is the lack of exhaustiveness when it comes to generation of the simulation
traces, as additional simulation traces may not be easy to obtain. Moreover,
since it is based on system traces, it is not adequate for verification of extra-
functional properties, at least without further changes on the initial model. On
the positive side, the approach is generic for any kind of Simulink diagram and
does not require adding more computation if new blocks are considered.

The approaches from the second category use a two step process for verifi-
cation. First, the system designer “lifts” the specification of each block using
some type of logical language. Second, the whole specification is composed
and fed into some kind of analysis engine. In [61], Ferrante et al. use contract-
based theory in order to model the block specification, and rely on a combina-
tion of SAT solvers and the NuSMV model checker for analysis. In some other
approaches [62], PVS is used for writing the specification, and its theorem-
proving capabilities are employed for the Simulink model verification. A limi-
tation of this strategy is that it is not generate the formal model automatically,
like SIMPPAAL does.

The approaches from the third category are intended for high level of au-
tomation. They usually rely on automated M2M transformation from Simulink
into an automata language that can be verified with model checking, and have
received much more attention in the literature. The approach proposed by Bar-
nat et al. [63] transforms the Simulink models into the language of an LTL
explicit model checker called DiViNE. The approach is applicable for discrete
blocks only, however they show it suitable for the aeronautics industry. Simi-
larly, the approach by Meenakshi et al. [64] proposes transforming of discrete
blocks into NuSMV. In contrast, Agrawal et al. [65] addresses the transfor-
mation of Simulink into networks of automata, without providing concrete
means for formal verification. The work by Miller [66] provides a transla-
tion from Simulink to Lustre and enables formal verification with a constella-
tion of model checkers and provers. The transformation of StateFlow design
elements has been addressed in research endeavors by Manamcheri [67] and
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Jiang et al. [68] in which they propose transformation frameworks from State-
Flow/Simulink into timed and hybrid automata, respectively, yet not consider-
ing other types of Simulink blocks.

In general, the solutions available for automated M2M transformation
of Simulink are quite restrictive with respect to the number of block types
supported, as typically only discrete blocks or only StateFlow diagrams are
addressed. Also, they have been applied only on academic or middle-
size Simulink diagrams, such as the engine control system appearing in the
Simulink distribution, which raises concerns about the scalability of the ap-
proaches. The only exception is the approach by Zuliani et al. [69], which
uses Bayesian statistical model checking for analyzing the specification, thus
it can scale better. Despite that, the approach has not been applied on Simulink
models of industrial systems, and it seems to have practical limitations such as
not accepting multi-file Simulink models.

Our proposed framework relies on M2M transformation and statistical
model checking, but it goes beyond the current state of the art by reducing
the modeling effort as M2M transformation is based on templates and fully au-
tomated. Additionally, we are supporting a larger number of Simulink blocks
(although some of them are still under development), whereas for validation we
use real-size industrial examples. We also aim at generating a formal model as
close to the Simulink model as possible, so we encode the functions of blocks
not as differential equations, when the case, but as C routines that are faithful
to the Simulink modeling. To the best of our knowledge, it is also the only
approach that introduces formal verification at the code level of the transfor-
mation, using Dafny [51].





Chapter 7

Conclusions and Future
Work

In this thesis we have established the foundations of a framework for increasing
the quality of embedded systems through automated specification and analy-
sis of the requirements and behavioral models created at different development
phases. To fulfill our goal, we have presented a number of contributions on
several fronts. First, we have shown that the specification patterns are expres-
sive enough for formalizing industrial requirements, particularly in the auto-
motive domain. Despite being expressive enough, our results show that the
patterns still have some limitations such as steep learning curve, problem of
validation of formalized behavior and lack of tool support tailored for indus-
trial needs. Some of the open problems in this area have been addressed by
our second major contribution, which is a prototype implementation of the
SeSAMM Specifier tool [10]. The tool has been designed and implemented
with close cooperation with the engineers in the loop, in order to increase the
chances that the tool addresses their needs and become integrated into the de-
velopment process. The tool provides features such as managing the specifi-
cation pattern catalog, such that the expressiveness is no longer a limitation,
an interface for non-expert practitioners to formally specify their systems, and
a validation mechanism based on visualization of the formalized behavior, to
check whether the specification captures the actual intentions of the engineers.

As our next contribution, we have proposed an SMT-based consistency
analysis technique suitable for consistency checking of industrial systems’ re-
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quirements early in the development process, when no behavioral or structural
model of the system exists. To enable this, we have provided a formal defini-
tion of consistency and an analysis procedure for checking it. For analysis we
rely on existing state-of-the-art SMT solver and theorem prover Z3 [13]. For
validation, the proposed approach has been applied on a prototype implemen-
tation of a running truck software function, namely Fuel Level Display from
Scania. The results from the validation show that our technique is suitable for
detecting inconsistencies in the requirements that describe mutually exclusive
events/states. Additionally, the execution time for the SMT-based procedure
is short as it terminates in a matter of seconds, compared to model-checking
based consistency analysis techniques, which for systems of similar size are
reported to require several hours.

Our last contribution is an approach for the formal analysis of behavioral
models specified using Simulink. To enable this, first we classify the most fre-
quently used Simulink blocks obtained by analyzing various systems models
from Scania and Volvo GTT, and second, we provide a template-based trans-
formation for each of the identified classes into timed automata with stochastic
semantics suitable for checking using UPPAAL SMC tool [17]. To validate our
approach we apply the transformation on one prototype industrial system, that
is, the BBW of Volvo GTT.

There are several directions for future research endeavors to fill in the voids
in the current state of the framework. The most immediate future work is on
improving the SIMPPAAL tool for generating the formal model. The improve-
ment encompasses mostly technical improvements and adding new features to
the tool. First, we want to refactor the code-base of the tool so that we can
open source it completely and offer it to the community. Secondly, we plan
to optimize the existing features of the tool in order to be able to apply it on
more systems, possibly with higher complexity and from other vendors. Lastly,
we intend to explore the possibility to apply other tools for formally analyzing
Simulink models. One such example is to try to use the STORM probabilistic
model [70] checker instead of UPPAAL SMC. Such transition would require
developing a new formal model of the system and incorporating this into the
SIMPPAAL platform. This will perhaps enhance the class of systems that we
can tackle, and improve the scalability of the analysis.

Concerning the formal system specification using specification patterns, we
plan to perform more empirical studies around formal requirements specifica-
tion via the specification patterns in order to identify new gaps and to more
accurately measure the benefits of using patterns in industry. Additionally,
we aim at extending our automated requirements analysis methodology by: i)
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improving the scalability of the current consistency analysis technique and ii)
including other criteria such as coverage, completeness, vacuity, etc. Finally,
our last goal is to unify the current and future contributions into a complete
framework for improving the quality of embedded systems and to validate it in
industrial settings.
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