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Abstract—This paper introduces a novel model-driven
methodology for the software development of real-time dis-
tributed vehicular embedded systems on single- and multi-core
platforms. The proposed methodology discloses the opportunity
of improving the cost-efficiency of the development process by
providing automated support to identify viable design solutions
with respect to selected non-functional requirements. To this
end, it leverages the interplay of modelling languages for the
vehicular domain whose integration is achieved by a suite of
model transformations. An instantiation of the methodology is
discussed for timing requirements, which are among the most
critical ones for vehicular systems. To support the design of
temporally correct systems, a cooperation between EAST-ADL
and the Rubus Component Model is opportunely built-up by
means of model transformations, enabling timing-aware design
and model-based timing analysis of the system. The applicability
of the methodology is demonstrated as proof of concepts on
industrial use cases performed in cooperation with our industrial
partners.

Keywords—Model-driven development; vehicular embedded sys-
tems; EAST-ADL; component model; model transformations.

I. INTRODUCTION

As vehicles transitioned from being mechanical-intensive
to software-intensive systems [1], a cost-effective software
development became paramount in the vehicular domain. Re-
searchers and practitioners agreed that abstraction and automa-
tion, the founding pillars of Model-Driven Engineering (MDE),
could be game changers towards the achievement of a cost-
effective software development process as they contribute to
shorten the development time and employ expensive resources
more efficiently [2]. To this end, several domain-specific
modelling languages were introduced both for designing the
vehicular software and for representing its non functional
properties such as timing. Among other languages, the Elec-
tronics Architecture and Software Technology Architecture
Description Language (EAST-ADL) has been developed by
the automotive industry to support modelling of vehicular
functions and both their software realisation and desired non
functional properties [3]. Within EAST-ADL, the system mod-
elling is performed at four different levels of abstraction which
are vehicle-, analysis-, design- and implementation-level (from
highest to lowest abstraction level). The requirements on the
vehicle functionality of the system are captured at the vehicle

level. At the analysis level, the system is defined in terms of
abstract functional architecture with a provision for high-level
analyses. Typically, the vehicular software is modelled at the
design level by means of function, hardware and allocation
models. At the implementation level, the design models are
enriched with detailed execution information on e.g., timing
(worst-case execution time, etc.). The implementation models
are defined by means of other languages, such as the AUTomo-
tive Open System ARchitecture (AUTOSAR) [4] or the Rubus
Component Model (RCM) [5]. Often, implementation models
are used as the base for code synthesis. However, support to
models integration (e.g., among EAST-ADL and RCM models)
in the development of vehicular embedded systems is still
scarce and the translation from design- to implementation-
level is mainly performed manually. Too often, this lack of
automation defers the verification of non functional properties
to the last phases of the development process. Empirical re-
search shows that modifications during these phases can be 40
times more expensive than the same modifications done during
the design of the software and can introduce inconsistencies if
they are not properly back propagated [6].

In this context, our hypothesis is that providing automation
for model integration would enable early verification of non
functional requirements (e.g. timing requirements) during the
design of vehicular embedded systems thus improving the cost-
efficiency of their development. In fact, early verification of
non functional requirements would limit the need for expensive
modifications on the almost ready-to-deliver software, and
automation would reduce the overall development time as well
as enhance the use of expensive (engineering) resources.

In this paper, we propose a solution for early verification
of non functional requirements by introducing MoVES, a
model-driven methodology for the development of distributed
vehicular real-time embedded systems on single- and multi-
core platforms. Considering the importance of timing in
the development of vehicular real-time systems, as acknowl-
edged by several international projects and industrial initiatives
(TIMMO-2-USE1 and AUTOSAR2.), the proposed methodol-
ogy is instantiated to support the development and architec-
tural exploration of system-designs with temporal awareness.

1https://itea3.org/project/timmo-2-use.html
2https://www.autosar.org



MoVES leverages the interplay of EAST-ADL and RCM for
expressing functional and implementation models, respectively.
Moreover, it features a fully automated mechanism defined in
terms of six different model transformations that describe pre-
cise relationships between EAST-ADL and RCM. In particular,
starting from the EAST-ADL function and hardware models,
model transformations generate a set of RCM models. Model
transformations automatically generate allocation information
on the RCM models from the EAST-ADL allocation model,
too. As there might be multiple implementation models for the
same design, a source EAST-ADL model cannot be univocally
translated into a single target RCM model [7]. Currently,
most approaches only consider one particular model out of
the many possible alternatives [8]. In this work, we leverage
the properties of a constraint-based transformation language,
the Janus Transformation Language [9] (JTL), to automatically
derive all the possible RCM models entailing meaningful and
unique timing and allocation configurations. Timing analysis
is run on the generated RCM models. Eventually, model
transformations propagate the generated RCM models and
the related timing verification results to the design level for
enabling timing-aware design decisions. It is important to note
that, the process of generating and analysing RCM models
is transparent to the engineer and can be guided by means
of logic constraints. Moreover, the engineer does not have to
manually define or investigate RCM models, but rather select
the preferred RCM models from the set of the automatically
generated ones. We validated MoVES through a set proof of
concepts conducted in tight cooperation with our industrial
partners in the automotive domain. These showed promising
results in terms of i) applicability of the methodology and ii)
reduction of late modifications at implementation level. The
main scientific contributions brought by MoVES are:

• a mechanism for the automatic translation of design
models into implementation models,

• a mechanism for the automatic allocation of software to
hardware, and

• a mechanism for the back-propagation of the verification
results and related implementation models to design mod-
els.

The rest of the paper is organised as follows. Section II sets
the background for this research work along with its contribu-
tions and relations with authors’ previous work. Section III
describes the methodology and its constituents. Section V
describes the application of the methodology on a running
example mimicking industrial settings. Section VI discusses
strengths and weakness of the proposed methodology. Sec-
tion VII describes related approaches documented in the liter-
ature and compares them to our solution. Finally, Section VIII
concludes the paper.

II. BACKGROUND

MDE is a discipline which aims at improving software
development by employing abstraction and automation by
using models, metamodels and model transformations [2].
Metamodels formalise the requirements, the structure and the
behaviour of software systems within a particular domain.
Models allow to design software systems declaratively using
the elements and the concepts formalised by the metamodels,
thus using constructs pertaining to the problem domain rather

than constructs pertaining to the underlying technology. Model
transformations are automatic means for analysing models
and for synthesising new artefacts (models, source code, etc.)
from a set of source models [10]. In the automotive domain,
as vehicle transitioned from being mechanical- to software-
intensive systems [11], MDE has gained industrial recogni-
tion as demonstrated by several international initiatives and
projects, such as EAST-ADL [3], RCM [5] and AUTOSAR [4].

In the followings, we describe the background of this
research work and its contribution in terms of the modelling
languages and the model-based timing analysis leveraged for
the definition of MoVES. In particular, in Section II-A and
in Section II-B we introduce and describe the main elements
of the EAST-ADL and RCM languages, respectively. In Sec-
tion II-C we discuss the leveraged timing analysis, while in
Section II-D we detail the contributions presented in this paper
and put them in relation to the authors’ previous work.

A. EAST-ADL

EAST-ADL is a modelling language which captures the
essentials of vehicular Electrical and Electronic (E/E) systems
concerning their documentation, design, analysis and synthesis.
EAST-ADL is specified through ten different packages, each
of which addresses different aspects of vehicular E/E system
and their development. In the proposed instantiation of the
methodology, we leverage specific concepts from the structure,
requirements and timing packages3.

The structure package serves for the specification of the
software architecture in terms of basic elements and interac-
tions among them. In order to ensure separation of concerns
through the development process, the structure package makes
use of four abstraction levels, which are vehicle, analysis,
design and implementation. However, such a separation is
only conceptual and some modelling elements can span over
several abstraction levels. MoVES connects to the design level
and more specifically to the FunctionalDesignArchitecture,
HardwareDesignArchitecture and Allocation concepts.

Within EAST-ADL, a FunctionalDesignArchitecture de-
scribes how software functions interact. At this level, software
functions are represented by means of DesignFunctionPro-
totype elements linked by FunctionConnector elements. A
DesignFunctionPrototype is typed to a DesignFunctionType
element which specifies its interface, in terms of FunctionPort
elements, and its inner architecture, in terms of additional De-
signFuntionPrototype elements. Within EAST-ADL, a Hard-
wareDesignArchitecture describes the physical architecture of
the vehicular embedded system. The basic modelling entity
is the HardwareComponentPrototype which is typed to a
HardwareComponentType. The HardwarePortConnector ele-
ments model the communication between two or more Hard-
wareComponentPrototype elements by connecting the related
HardwarePort elements. An EAST-ADL Allocation model
consists of a set of FunctionAllocation elements binding Allo-
catableElement to AllocationTarget elements. AllocatableEle-
ment is an abstract superclass which specifies the elements
that can be allocated. DesignFunctionPrototype and Function-
Connector are defined as extensions of the AllocatableElement

3Please note that the complete explanation of EAST-ADL is outside the
scope of this work. The interested reader can refer to [3].



Fig. 1: Simplified EAST model containing concepts from the EAST-ADL structure, timing and requirements packages

superclass. Similarly, AllocationTarget is an abstract superclass
which specifies to which elements an AllocatableElement
can be allocated. HardwareComponentPrototype and Hard-
warePortConnector elements are defined as extensions of the
AllocationTarget class. Within the proposed methodology, the
concepts from the function, hardware and allocation models are
used by the model transformations for the automatic generation
of RCM models, as described later.

In this work, we show an instantiation of MoVES focusing
on the verification of timing requirements. Therefore, let us
see how the timing requirements and properties are modelled
within EAST-ADL. The EAST-ADL timing package contains
concepts for modelling the timing constraints stemming from
the extra-functional requirements. Within EAST-ADL, a timing
constraint is modelled by means of TimingConstraint elements,
which are associated to DesignFunctionPrototype elements.
The specification of the timing constraints is realised using two
Event elements, which mark the scope of the related timing
constraint and are contained within an EventChain element.
The EventChain and Event elements are used by the proposed
methodology for the specification of automatically generated
timing constraints in the RCM models.

The requirement package offers means for describing the
properties that the vehicular embedded system has to possess
and their verification. To this end, the requirement package

is further divided into two sub-packages which are UseCases
and VerificationValidation. MoVES leverages specific concepts
from the latter only. Within the VerificationValidation pack-
age, the VVCase elements represent concrete test activities
which are associated to theDesignFucntionPrototype elements.
A VVCase is modelled in terms of the VVProcedure and
an VVLog elements which represent the adopted verification
and validation technique and its description, respectively. A
VVLog element is modelled in terms of a VVActualOutcome
element, which specifies the actual output of the verification
and validation activity. The proposed methodology uses the
VVLog elements for back propagating the RCM models
together with their timing verification results to the related
EAST-ADL model.

Figure 1 shows a simplified EAST-ADL model represented
as a block diagram using the EAST-ADL concepts discussed
above. The model depicts a DesignFunctionPrototype called
Function, which is allocated to a HardwareComponentProto-
type called ECU. The Function and ECU elements are typed
to the related DesignFunctionType and HardwareComponent-
Type, respectively. Accordingly, ECU is an atomic node while
Function is composed by two sub-functions called SubFunc-
tion 1 and SubFunction 2 connected via a FunctionConnector
called Connector. Additionally, Function is associated with a
VVCase called Case and a timing constraint called Timing-



Constraint.

B. RCM

RCM is a modelling language for the predictable de-
velopment of resource-constrained embedded real-time sys-
tems developed by Arcticus Systems4 in collaboration with
Mälardalen University. With respect to the EAST-ADL struc-
tural abstraction levels, RCM acts at the implementation level
and it is currently used by several OEM, Tier-1 and Tier-2
companies (e.g., Volvo Construction Equipment, BAE Systems
Hägglunds, Hoerbiger and Knorr Bremse) in the vehicular
domain. In its current definition, RCM provides support for the
modelling of the software architecture, the execution platform,
the allocation information and the timing properties of vehic-
ular embedded systems5 [12]. Within RCM, the embedded
software architecture is modelled by means of the Software
Function (SWC) elements and interactions among them. An
SWC is the lowest-hierarchical element, which encapsulates
basic software functions, and is defined by a Behaviour and
an Interface elements. The Interface element is responsible for
grouping the ports of a SWC. As RCM distinguishes between
data and control flows among SWCs, an interface element
contains two kinds of port: data and control. The interactions
among SWCs are modelled by means of Connector elements.
SWCs can be grouped in Assembly elements for constructing
the software architecture in a hierarchical manner. SWCs and
Assembly elements are contained in Mode elements, which
are means for distinguishing different states or conditions in a
system. For example, a system can execute the start-up mode
when bootstrapping and afterwards shifts to the operational
mode. Mode elements are contained within Application ele-
ments, which represent independent software functionalities of
the system. Application elements provide means for isolating
different software functionalities as well as for specifying
the safety-criticality level in accordance to the ISO 26262
standard for the functional safety of road vehicles [13]. We
refer to the RCM software models as the RCM models which
contain the modelling elements for representing the software
architecture, only. As the main goal of RCM is to provide
support for the development of predictable vehicular embedded
systems, timing properties and constraints are pivotal in the
language, and they can be specified at different hierarchical
levels of the software architecture (Application, Mode, Assem-
bly). Timing constraints are modelled by Timing Constraint
elements which are specified on the data ports of the related
software element. Within RCM, the execution platform of the
vehicular embedded system under development is modelled in
terms of Node, Core and Partition elements. A Node element
models the specific processor architecture and defines a unique
run-time environment for the software architecture. A Node
element contains one or more Core elements, which model the
processing or computing unit of a Node element. Similarly,
Core elements can contain one or more Partition elements,
which represent the logical division of a Core elements into
multiple computing resources. We refer to the RCM execution
platform models as the RCM models which contain the mod-
elling elements for representing the execution platform, only.
Allocation information is modelled by means of the isAllocated

4https://www.arcticus-systems.com
5Please note that the complete explanation of the RCM language is outside

the scope of this work. The interested reader can refer to [12].

relation specified between any two Allocatable and Allocator
elements. Allocatable is an abstract superclass which specifies
the RCM software elements that can be allocated. Application,
Mode, Assembly and SWC elements are defined as extensions
of the Allocatable superclass. Similarly, Allocator is an abstract
superclass which specifies to which execution platform element
an Allocatable element can be allocated. Node, Core and Parti-
tion elements are defined as extensions of the AllocationTarget
class.

Figure 2 shows a simplified RCM model represented as a
block diagram using the RCM concepts described above. In
particular, the model depicts a System called System which
consists of a Node called ECU and an Application called
Application. ECU is modelled as a single-core and single-
partition node. Application is modelled by means of a Mode
called Operational which contains an Assembly called Func-
tion. The internal architecture of the Assembly consists of two
SWCs, called SubFunction 1 and SubFunction 2, connected
by two Connector elements, called ConnectorData and Con-
nectorTrig, for the data and the control flows, respectively.
A TimingConstraint element is specified between the data
output port of SubFunction 1 and the data input port of
SubFunction 2.

C. Timing Analysis

Many vehicular embedded systems are constrained by
stringent timing requirements that must be satisfied during their
development. End-to-end timing analysis is a well-established
technique to verify the timing requirements that are specified
on these systems. Such an analysis must be integrated to the
tool chain that is used for the model- and component-based
development of these systems. In order to support the timing
analysis an appropriate system view, called end-to-end timing
model, should be extracted from the software architecture
of the system under analysis. The end-to-end timing model
consists of two models, namely timing model and linking
model. The timing model includes the timing properties (e.g.,
priorities, periods, worst- and best-case execution times, offsets
and jitter) and timing requirements (e.g., deadlines and delay
constraints) regarding all tasks, messages and task chains in
the distributed embedded system. On the other hand, the
information about links, dependencies, control flows (activa-
tion information) and data flows (information regarding data
exchanges) among tasks and messages in all task chains are
captured in the linking model. For example, consider a task
chain shown in Figure 3. The chain is distributed over three
nodes that are connected by a network. The system timing
model includes all the timing information (discussed above) in
the three nodes and the network. Whereas, the linking model
includes all the linking information (discussed above) in the
chain that initiates at Task1 in the Sensor Node and terminates
at Task4 in the Actuation Node. It should be noted that the
end-to-end timing model discussed above is in line with the
classical timing model for distributed embedded system [14],
[15], [16]. The analysis engines use the end-to-end timing
model to analyse the timing behavior of the system. In this
paper we consider the end-to-end timing analysis given in [15],
[17]. The analysis has been implemented in several industrial
tools, e.g., [17]. The analysis results consist of response times
of tasks and messages as well as system utilization. The
analysis also calculates end-to-end response times and delays.



Fig. 2: Simplified RCM model
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Fig. 3: Example showing end-to-end response time

The end-to-end response time of a task chain is equal to the
elapsed time between the arrival of a stimulus, e.g., the brake
pedal sensor input at the sensor node and the corresponding
response, e.g., the brake actuation signal at the actuation node
as shown in Figure 3. If the tasks in a chain are activated
independently (e.g., by periodic clocks) then various types of
end-to-end delays must also be computed to verify the timing
behavior of the system. Age and Reaction are two such delays
that are commonly found in vehicular embedded systems. The
age delay in a task chain corresponds to the freshness of the
data that is available at the output of the chain. This delay
finds its importance in the control systems domain in vehicles.
Whereas, the reaction delay in a task chain corresponds to the
first reaction at the output of the chain for a given stimulus at
the input of the chain. This delay finds its application in the
body electronics domain in vehicles. In order to explain the
age and reaction delays, consider a task chain in a single-node
system as shown in Figure 4.

The chain consists of two tasks, namely τ1 and τ2. The
tasks are activated by independent clocks of periods 25 mil-
liseconds and 5 milliseconds respectively. Assume that the
Worst-Case Execution Times (WCETs) of these tasks are 2
milliseconds and 1 millisecond respectively. Task τ1 reads data
from register Reg-1 and writes data to Reg-2. Similarly, task
τ2 reads data from Reg-2 and writes data to Reg-3. Since, the
tasks are activated independently with different clocks, there
can be multiple outputs (Reg-3) corresponding to any single

1tReg-1 2tReg-2 Reg-3

Period = 25 Period = 5

WCET = 2 WCET = 1

Fig. 4: A task chain with independent activations of tasks

input (Reg-1) to the chain as shown by several uni-directional
arrows in Figure 5.

3525
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2t
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Task

35250 20105 15 30
Task

PERIOD1 = 15
WCET1 = 2

PERIOD2 = 5
WCET2 = 1

Reaction delay

Age delay

Fig. 5: Example showing end-to-end delays

The age and reaction delays are also identified in Figure 5.
These delays are equally important in distributed embedded
systems.

D. Paper Contributions in Relation with Authors’ Previous
Work

In this work, we present MoVES, a model-driven method-
ology for real-time distributed vehicular systems on single-
and multi-core, supporting the development and architectural
exploration of system designs with temporal awareness. The
methodology leverages the interplay of EAST-ADL and RCM
and consists of a fully automated mechanism defined in
terms of a set of model transformations. RCM was origi-
nally thought for providing modelling purposes, but it did



Fig. 6: Comparison between a development process without (a) and with MoVES (b)

not feature a canonical definition of the language in terms
of a metamodel. In [18], we reverse-engineered the RCM
language and presented a preliminary metamodel definition
of the RCM core elements. In [19], we provided a complete
metamodel definition for RCM for modelling and timing
analysis of vehicular embedded systems on single-core. In [12]
we extended the RCM metamodel definition for the devel-
opment of vehicular systems on multi-core. This extension
introduced modelling elements for the representation of the
execution platform and the allocation information. In this
paper, we leverage an even more enhanced version of the
RCM metamodel definition given in [12], which includes the
concept of application. Early timing verification is paramount
in the vehicular domain. To this end, in [20] we proposed a
mechanism for the exploitation of RCM timing capabilities
at EAST-ADL design level. Such a mechanism leveraged the
RCM metamodel definition given in [19] and consisted of a
single model transformation for the generation of the RCM
software architecture and timing properties from an EAST-
ADL model, only. Moreover, the mechanism in [19] can not
be applied for the development of vehicular embedded systems
on multi-core. In this paper, by exploiting the new modelling
capabilities of RCM, we introduce a methodology for the
development of real-time distributed vehicular embedded sys-
tems on single- and multi-core, which guides the engineer to
viable solutions with respect to timing requirements. To this
end, the presented methodology leverages a refined version of
the model transformation described in [20] and introduces i)
four new model transformations for the automatic translation
of the EAST-ADL FunctionalDesignArchitecture, Hardware-
DesignArchitecture and Allocation to RCM models and ii) a
new model transformation that captures the timing analysis
results and the corresponding RCM models and propagates
them to the design level. Finally, we discuss the applicability of
the proposed methodology by leveraging an industrial running
example.

III. THE MOVES METHODOLOGY: WHY?

Among other factors, early verification of non functional
requirements can positively affect the cost-efficiency of the
software development for vehicular real-time embedded sys-
tems. Currently, early verification of non functional require-
ments is hard to achieve due to the lack of automation
supporting models integration and analysis. For instance, let
us consider a typical development process as described by the
flowchart in Figure 6 (a).

As meaningful non functional analysis (such as timing)
must be run on implementation models, the engineer is re-
quired to create a RCM model manually. The non functional
analysis of interest is run on the manually created RCM
model and the result is verified against the given set of
non functional requirements. If the specified requirements
are not met, the engineer is required to iterate the process
and modify or create a new RCM model until a compliant
one is found. Since the process of creating and verifying
implementation models is expensive, it is not leveraged early in
the development process for having quick and early feedback
on the design level models. To boost early verification, in this
paper we propose MoVES, a novel model-driven methodology
for the development of vehicular real-time embedded systems
supporting early verification of non functional properties.

Let us consider a development process equipped with
the proposed methodology as described by the flowchart in
Figure 6 (b). In this setting, all meaningful RCM models are
automatically generated from the design models and analysed
by means of model transformations. Given a set of non
functional requirements, model transformations are responsible
for the selection and back propagation of the best RCM model
(or set of models), too. Besides relieving the engineer from the
manual and iterative definition of a RCM model, the proposed
methodology enables early verification at design level. More-
over, while several iterations may be needed in the manual
process to reach a RCM model that fulfils non functional



requirements, MoVES is able to generate all meaningful RCM
models and identify the best one(s) (as shown in Section VI)
automatically in one single iteration.

IV. MOVES FOR TIMING

Timing requirements are crucial for our domain of interest,
vehicular real-time embedded systems, and that timing-related
issues are typical problems arising very late in the develop-
ment. For this reasons, in this work we discuss an instantiation
of MoVES for supporting the development and architectural
exploration of system-designs with temporal awareness.

MoVES leverages the interplay of EAST-ADL and RCM
and provides automation for their integration by means of six
model transformations. Figure 7 gives a graphical representa-
tion of the methodology and its composing tasks.

The first step of the methodology is the automatic genera-
tion of the RCM models representing the software architecture
and its timing properties at the implementation level. Such a
generation process is characterised by a one-to-many mapping
meaning that multiple RCM software models can be a valid
translation of an EAST-ADL FucntionalDesignArchitecture,
where each of the RCM model would entail different timing
and control flow information. Within MoVES, this generation
is entrusted to the FDA2RCM model transformation. In par-
ticular, starting from an EAST-ADL FucntionalDesignArchi-
tecture complemented with EAST-ADL timing requirements,
FDA2RCM generates, in a single execution, the set of the cor-
responding RCM software models equipped with RCM timing
constraints as opposite to a manual generation considering only
one specific solution. The second step of the methodology
is the automatic generation of the RCM model representing
the execution platform at the implementation level. This step
is performed by the HDA2RCM model transformation which
starts from an EAST-ADL HardwareDesignArchitecture and
generates a corresponding RCM execution platform model.
As RCM models the execution platform in a more detailed
way than EAST-ADL (RCM employs the concepts of core
and partition), the engineer can manually refine the generated
RCM execution platform models. Detailed execution platform
models are pivotal for the specification of the allocation
information which, in turn, affects timing analysis. The third
step of the methodology merges the RCM software and execu-
tion platform models into complete RCM models, where the
allocation information can be translated from the EAST-ADL
Allocation. To this end, the MERGE model transformation is
responsible for merging each generated RCM software model
with the generated RCM execution platform model. The result
is a set of complete RCM models. The fourth step of the
methodology is the generation of the allocation information on
the complete RCM models and it is entrusted to the A2RCM
model transformation. In particular, A2RCM is responsible for
the translation of the allocation information from an EAST-
ADL Allocation model to the RCM complete models generated
as a result of the MERGE transformation. Since RCM lever-
ages a more fine-grained allocation mechanism than EAST-
ADL, the methodology, by means of the ALLOCATION model
transformation, is able to generate additional RCM allocation
configurations that can not be derived from EAST-ADL. At
this point, the RCM models contain all the information needed
for the model-based timing analysis. Once the timing analysis

is run6, the analysis results are produced and collected. The
last step of the methodology is the back-propagation of the
analysis results at the design level for enabling timing-aware
design decisions and it is performed by the BP transformation.
To this end, BP enriches the initial EAST-ADL model with
the analysis results and the related RCM models such that the
engineer can take timing-aware design decision on the EAST-
ADL models without creating or nor editing RCM models.

In the following sections, we present a detailed discussion
of each of the above mentioned model transformations. The
complete implementation of the proposed methodology is
available at http://www.mrtc.mdh.se/MoVES/.

A. FDA2RCM

FDA2RCM is a one-to-many model-to-model transforma-
tion between EAST-ADL and RCM, which is realised in
the Eclipse Modeling Framework (EMF)7 using the Janus
Transformation Language (JTL) [9]. JTL is a constraint-
based bidirectional model transformation language specifically
tailored to support non-determinism by generating all the
possible target models in a single execution. Its implementation
relies on the Answer Set Programming (ASP) [21], which
is a type of declarative programming able to address hard
(primarily NP-hard) search problems and based on the model
(answer set) semantics of logic programming. The ASP solver
is responsible to find and generate, in a single execution,
all the possible target models that are consistent with the
transformation rules following a deductive process. JTL adopts
a QVTr-like syntax and allows a declarative specification
of relationships between MOF models. It supports object
pattern matching and automatically creates traces information
to record what occurred during a transformation execution.

The FDA2RCM transformation is the starting point of the
methodology and provides for the translation of the software
architecture of the vehicular embedded system under devel-
opment and its timing properties. An initial version of the
FDA2RCM transformation is given in [20]. The proposed
version i) extends the one in [20] with new rules for the
translation of the EAST-ADL FunctionalDesignArchitecture
elements into the RCM software elements composing the
current RCM structural hierarchy (e.g., System, Application,
etc.) and ii) replaces the logic constraints in the pre- and
post-conditions of the transformation rules in favour of more
compact and understandable transformation rules. In a nutshell,
the FDA2RCM transformation is responsible for translating
the elements of the EAST-ADL FunctionalDesignArchitecture
to RCM software elements. In particular, it maps the EAST-
ADL DesignFunctionPrototype, FunctionPort, FunctionCon-
nector, AgeConstraint and ReactionConstraint elements to
the RCM Assembly, SWC, Port, ConnectorData, DataAge
and DataReaction elements, respectively. Additionally, the
FDA2RCM transformation provides for the automatic gener-
ation of the RCM ConnectorTrig, Clock and Sink elements
representing detailed control flow and timing information. As
detailed control flow and timing information is not described in
the EAST-ADL FunctionalDesignArchitecture, a single source

6The proposed methodology leverages model-based timing analysis. How-
ever, the analysis itself is not part of the contributions of this work. The
interested reader can refer to [17] for further details.

7https://eclipse.org/modeling/emf/



Fig. 7: The MoVES and its composing tasks

EAST-ADL FunctionalDesignArchitecture can not be univo-
cally translated in a single RCM model. For instance, the
DFP2C and the DFP2CCS rules in Listing 1 define a non
deterministic portion of the FDA2RCM transformation where
a DesignFunctionPrototype element can be translated either to
a SWC element or to a SWC element equipped with a Clock
and a Sink element.

1transformation FDA2RCM(dl:designLevel, rcm:RubusMM) {
2 relation DFP2C {
3 name, id:String;
4 checkonly domain dl ps:designLevel::

DesignFunctionPrototype {
5 name = name,
6 id = id,
7 type = t:designLevel::DesignFunctionType {
8 isElementary = true
9 }

10 };
11 enforce domain rcm at:RubusMM::Assembly {
12 circuit = c : RubusMM::Circuit {
13 name = name,
14 id = id
15 }
16 };
17 where{...}
18 }
19 relation DFP2CCS {
20 name, id:String;
21 checkonly domain dl ps:designLevel::

DesignFunctionPrototype {
22 ...
23 };
24 enforce domain rcm at:RubusMM::Assembly {
25 circuit = c:RubusMM::Circuit {
26 name = name,
27 id = id,
28 interface = i:RubusMM::Interface {...}
29 },
30 clock = clk:RubusMM::Clock {...},
31 sink = snk:RubusMM::Sink {...},

32 connectorTrig = con1:RubusMM::ConnectorTrig {...},
33 connectorTrig = con2:RubusMM::ConnectorTrig {...}
34 };
35 where{...}
36 }
37}

Listing 1: Fragment of the FDA2RCM model transformation
in JTL.

In this context, the JTL engine is able to generate, in a single
execution, all the RCM software models entailing different and
unique configurations of, e.g., SWC, Clock and Sink elements
as opposite to a manual translation considering only a specific
model. It is important to notice that, logic constraints can
be applied for narrowing the space of the generated models.
For instance, the execution of the FDA2RCM transformation
to the source EAST-ADL model depicted in Figure 8 (a)8

could be narrowed by means of logic constraints which could
guide the generation of RCM models to those entailing valid
configurations of SWC, Clock and Sink elements, only.

Accordingly, only the two RCM models in Figure 8 (b)
and Figure 8 (c) would be generated. In the former, the
SWC Actuator is activated from the SWC Sensor through the
Connector Connector Trig, while in the latter it is activated
by the independent Clock Clock Actuator.

B. HDA2RCM

HDA2RCM is a model-to-model transformation between
EAST-ADL and RCM, which is realised by means of JTL.

8For better understandability, we represent EAST-ADL and RCM models
by means of a simplified graphical concrete syntax.



Fig. 8: Example of simplified source and target models for the
FDA2RCM transformation

Together with the FDA2RCM transformation, HDA2RCM is
the staring point of the methodology and provides automation
means for the translation of the execution platform of the
vehicular embedded system under development. In fact, exe-
cution platform models are pivotal for the specification of the
allocation information which, in turns, affects timing analysis.
Trivially, the over utilisation of a processor or a core can lead
to timing deadline misses.

1transformation HDA2RCM(dl:designLevel, rcm:RubusMM) {
2 relation AtomicHardwareComponentPrototype2Node {
3 id, name: String;
4
5 checkonly domain dl hardwareComponentPrototype :

designLevel::HardwareComponentPrototype {
6 id = id,
7 name = name,
8 type = hardwareComponentType : designLevel::Node {...}
9 };

10
11 enforce domain rcm system : RubusMM::System {
12 connectorNetwork = connectorNetwork : RubusMM::

ConnectorNetwork {},
13 node = node : RubusMM::Node {
14 id = id,
15 name = name
16 core = core : RubusMM::Core {
17 ...
18 partition = partition : RubusMM::Partition {...}
19 }
20 };
21 where {...}
22 }
23}

Listing 2: Fragment of the HDA2RCM model transformation
in JTL

The HDA2RCM transformation is responsible for translat-
ing the EAST-ADL HardwareComponentPrototype elements
to RCM execution platform elements. In particular, it maps
the EAST-ADL Node, HardwarePortConnector and Hardware-

Fig. 9: Example of simplified source and target models for the
HDA2RCM transformation

Port elements to the RCM Node, ConnectorNetwork and
Port elements, respectively. As discussed in Section II, RCM
models the execution platform with a structural hierarchy of
elements consisting of Node, Core and Partition. However,
EAST-ADL provides modelling element for the representation
of Node elements, only. Therefore, in order to generate valid
RCM models, the HDA2RCM transformation automatically
generates, for each RCM Node element, a Core and a Partition
element, too. Please note that, the engineer can still manually
refine the generated RCM execution platform model, if needed.
Listing 2 depicts an extract of the HDA2RCM transformation
consisting of the transformation rule responsible for the gen-
eration of RCM Node, Core and Partition elements. Figure 9
depicts an example of an execution of the HDA2RCM model
transformation. In particular, the EAST-ADL model depicted
in Figure 9 (a) and consisting of two connected Node elements,
Node1 and Node2, is translated into the RCM model depicted
in Figure 9 (b) consisting of two connected Node elements,
Node1 and Node2, containing a Core and a Partition element
each.

C. MERGE and A2RCM

MERGE and A2RCM are two model-to-model transfor-
mations realised within EMF using the QVT Operational
(QVT-O) language [22]. Query/View/Transformation (QVT)
is a standard set of model transformation languages defined
by the Object Management Group and it is composed by
three model transformation languages, which are QVT-O, QVT
Relations and QVT Core. QVT-O is an imperative language
especially designed for writing unidirectional model transfor-
mations when declarative model transformations are hard to
specify due to the absence of direct correspondence between
elements of the source and target models. Thereby, a QVT-O
model transformation explicitly specifies the steps to execute
in order to generate a target model starting form a source one.

Once the FDA2RCM and the HDA2RCM transformations



Fig. 10: Example of simplified source and target models for
the MERGE transformation

are run, a set of RCM software models and one RCM execution
platform model are produced. In this context, the MERGE
transformation is responsible for merging a RCM software
model to the RCM execution platform model with the purpose
of creating a complete RCM model where the allocation infor-
mation can be translated and refined. In a nutshell, the MERGE
transformation performs a weaving of the RCM models, where
the modelling elements of the RCM execution platform model
are linked to the System element of the RCM software model
through its Node reference. Let us consider the RCM execution
platform and software models depicted in Figure 10 (a) and
Figure 10 (b), respectively. The former consists of a System
element called BBW containing a Node element called Node1,
which contains a Core element Core1. Eventually, Core1 con-
tains a Partition element called Partition1. The latter consists
of a System element called BBW, which in turns contains
an Application element called Function. Function contains a
Mode element called Operational, which contains an Assem-
bly element called Assembly1. Assembly1 contains a SWC
called Circuit1. Accordingly, the application of the MERGE
transformation would produce the RCM model depicted in
Figure 10 (c) where the RCM execution platform elements
in Figure 10 (a) are integrated into the RCM software model
in Figure 10 (b) by means of the Node reference of the System
BBW element. A2RCM is an in-place transformation [23]
which follows the MERGE transformation and it is responsible
for translating the allocation information from the EAST-ADL

Fig. 11: Example of a simplified source and target models for
the A2C transformation

Allocation to each of the RCM models generated from the
MERGE transformation. Allocation information is crucial for
the model-based timing analysis as, e.g., the over utilisation
of a node or a core element can result in violating the timing
requirements. As discussed in Section II, in EAST-ADL the
allocation information is modelled by means of a set of
Function Allocation elements which links the DesignFunc-
tionPrototype element to the HardwareComponentPrototype
element. For instance, the Function Allocation Allocation1 in
Figure 11 (a) allocates the DesignFunctionPrototype Function
to the HardwareComponentPrototype Node1. In RCM, the
allocation information is specified by means of the isAllocated
reference of the Allocatable elements. Therefore, the A2RCM
transformation is responsible for setting the RCM isAllocated
references according to the EAST-ADL Function Allocation
elements. For instance, if we apply the A2RCM model trans-
formation to the EAST-ADL Allocation depicted in Figure 11
(a), we obtain the RCM model in Figure 11 (b). Accordingly,
the isAllocated reference of the Application element called
Function is set to the Node element called Node1.

D. ALLOCATION

ALLOCATION is a one-to-many, in-place model trans-
formation on the RCM language realised by means of JTL.
As discussed in Section II, compared to EAST-ADL, RCM
leverages a more fine-grained structural hierarchy for the
modelling of the execution platform and the allocation. In
particular, within RCM, any Allocable element (Function,
Mode, Assembly and SWC) can be allocated to any of the
Allocator element (Node, Core and Partition). Due to the
different granularity between RCM and EAST-ADL, complete
allocation information can not be directly translated from an
EAST-ADL Allocation. In this context, the ALLOCATION
transformation provides automation means for the generation



of the allocation information in the RCM models when a direct
translation from EAST-ADL is not possible. In other words,
the ALLOCATION transformation automatically generates the
isAllocated reference of the RCM Allocatable elements and
sets it to any of the RCM Allocator elements. As there can be
several allocation strategies, the engineer is required to express
a choice over the preferred one. This can be done by toggling
the comments on the transformation rules which realise the
desired allocation strategy (e.g., Assembly to Core, Assembly
to Partition, SWC to Core, etc.). Based on the user choice, the
ALLOCATION transformation is able to generate, in a single
execution, all the RCM models which entail different and
unique allocation configurations. Similarly to the FDA2RCM,
logic constraints can be applied for narrowing the number of
the generated RCM models. This is particularly useful when
partial allocation information is already available (as in case
of, e.g., legacy vehicular systems) or for discarding specific
allocation configurations.

1transformation ALLOCATION(source:RubusMM, target:RubusMM) {
2
3 relation Assembly2AllocatedAssemblyNode{
4 name, id: String;
5
6 checkonly domain source as:RubusMM::Assembly {
7 name = name,
8 id = id
9 };

10
11 enforce domain target at:RubusMM::Assembly {
12 name = name,
13 id = id,
14 isAllocated = n:RubusMM::Node {...}
15 };
16 }
17}

Listing 3: Fragment of the ALLOCATION model
transformation in JTL.

Listing 3 shows a fragment of the ALLOCATION transfor-
mation which depicts the transformation rule responsible for
allocating the Assembly element to Node element. Accord-
ingly, the JTL engine generates, in a single execution, all the
RCM models entailing different combinations of Assembly to
Node elements. That is, the application of the ALLOCATION
transformation to the RCM model depicted in Figure 12 (a)
generates the two RCM models depicted in Figure 12 (b) and
Figure 12 (c). In the former, Assembly1 is allocated to Node1,
while in the latter Assembly1 is allocated to Node2.

E. BP

BP is an in-place, text-to-model transformation on the
EAST-ADL metamodel realised by means of QVT-O. Within
MoVES, BP is the last step for unveiling the RCM models
and their related analysis results at the design level thus for
enabling timing-aware design decisions. In fact, once the RCM
model and the analysis results are unveiled at design level,
the engineer can easily grasp the compliance of the starting
EAST-ADL models to the specified timing requirements. Even
further, she can select the most appropriate RCM model,
among the compliant ones, for proceeding with the devel-
opment process. The BP transformation uses the EAST-ADL
VVCase modelling element from the Requirement package.
In particular, it automatically creates the VVLog and VVActu-
alOutcome modelling elements for the given VVCase element
and sets their attribute Date, ID and Name. Moreover,the BP

Fig. 12: Example of simplified source and target models for
the ALLOCATION transformation

transformation is responsible for setting the Text attribute of
the EAST-ADL VVACtualOutcome element with the URLs
of the folders containing the timing analysis results and the
related RCM models.

V. CASE STUDY

In this section, we demonstrate the usability of MoVES by
developing the adaptive cruise control system as an extension
of the cruise control system. The cruise control system is a
vehicular feature which allows the vehicle to keep a steady
speed to the value provided by the driver. To this end, it em-
ploys (at least) 4 modules: one for communicating/controlling



the engine, one for communicating/controlling the brakes, one
for communicating with the driver’s instrument cluster and one
for the computation. However, the traditional cruise control
system does not take into account traffic information such as
presence of other vehicles or obstacles. The Adaptive Cruise
Control (ACC) system is a vehicular feature which allows a
vehicle’s cruise control to adapt the vehicle’s speed to the
surrounding environment. More precisely, once the user sets
a target speed and a time gap for the vehicle, a radar detects
slow-moving vehicles or other obstacles that are in the path of
the vehicle. In case an obstacle or a slower vehicle is detected,
the ACC system slows down the vehicle or brakes to keep the
desired distance between the ACC vehicle and the obstacle
or the forward vehicle, where the distance is calculated as a
function of the specified time gap and the speed of the vehicle.
When the ACC system detects that the forward vehicle or the
obstacle is no longer in the vehicle’s path, it speeds up the
vehicle to maintain the cruise speed set by the driver. With
respect to the cruise control functionality, the ACC enhances
the computation module with functionalities which provide the
adaptive features. Figure 13 shows a block diagram of the ACC
system9 that is adapted from [24].

Fig. 13: Block diagram of the ACC system.

The InstrumentClusterModule is responsible for collect-
ing the user’s inputs, such as speed and time gap, and for
sending them to the AdaptiveCruiseControlModule. The En-
gineControlModule and the BrakeControlModule are responsi-
ble for sending the information regarding speed and braking of
the vehicle to the AdaptiveCruiseControlModule, respectively.
AdaptiveCruiseControlModule is the core of the ACC feature
and it is responsible for calculating the acceleration and the
braking of the vehicle in the presence of forward vehicles or
obstacles. In particular, the InputHandler software component
is responsible for acquiring and processing the inputs coming
from the other modules and to forward them to the InputPro-
cessing software component. Similarly, the RadarInput soft-
ware component is responsible for acquiring and processing
the information coming from the radar and forwarding it to
the InputProcessing software component. Based on the user
inputs on the cruise mode and considering the presence of a
forward obstacle, the InputProcessing software component is
responsible for computing the decision whether the vehicle
has to slow down, speed up or keep a steady speed. It
communicates this information to the OutputHandler software
component which, in turn, is responsible for sending the related
brake torque and throttle signal to the BrakeControlModule
and EngineControlModule, respectively.

According to MoVES, the development starts from an

9The interested reader can access the full ACC case study implementation
at http://www.mrtc.mdh.se/MoVES/.

EAST-ADL FucntionalDesignArchitecture, HarwareDesignAr-
chitecture and Allocation models. Figure 14 depicts an extract
of the EAST-ADL FucntionalDesignArchitecture for the ACC.
In the remainder of this section, for the sake of verbosity, we
adopt a simplified concrete syntax both for the EAST-ADL
and RCM models and omit some modelling elements if of no
interest for the discussion.

The modules and their inner architecture are represented by
means of the DesignFunctionPrototype and FunctionFlowPort
elements. For instance, the RadarInput software component is
represented by means of the RadarInput DesignFunctionProto-
type element and the RadarIn and RadarOut FunctionFlowPort
elements. The connections among software components and
modules are represented by means of FunctionConnectorele-
ments connecting the FunctionFlowPort elements. Fo instance,
the RadarInput and InputProcessing DesignFunctionPrototype
elements are connected by means of the RadarOut2RadarIn
FunctionConnector connecting the RadarOut and RadarSignal
FunctionFlowPorts. In addition to the architectural elements,
two timing constraints, denoted by Reaction Constraint T1
and Age Constraint T2, and VVCase element, denoted by
TimingANalysis, are specified. According to these constraints:

The reaction and age delays between the arrival of the radar
signal at the input of the InputProcessing software compo-
nent and its delivery to the BrakeControlModule shall not
exceed 25 and 15 milliseconds, respectively. Starting from
the EAST-ADL FucntionalDesignArchitecture in Figure 14,
MoVES automatically generates RCM software models. In
particular, RCM System, Application and Mode elements,
namely AdaptiveCruiseControl, AdaptiveCruiseControl and
AdaptiveCruiseControl Operational are generated. The Adap-
tiveCruiseControlModule, EngineControlModule, BrakeCon-
trolModule and InstrumentClusterModule DesignFucntionPro-
totype elements are translated into RCM Assembly elements
while the InputHandler, RadarInput, InputModeControl, Pro-
cessing and Outputhandler DesignFunctionPrototype elements
are translated into RCM SWCs. PortData, ConnectorData and
TimingConstraint elements are generated from the EAST-ADL
FunctionFlowPort, FunctionConnector and TimingConstraint
elements, respectively. Due to the lack of control flow informa-
tion in EAST-ADL, RCM PortTrig, ConnectorTrig, Clock and
Sink elements are automatically generated by the FDA2RCM.

However, as there might be multiple ways of specifying
these elements, this generation produces four RCM software
models each of which entails different and unique combi-
nations of RCM PortTrig, ConnectorTrig, Clock and Sink
elements. For instance, let us consider the activation of the
OutputHandler SWC in the two RCM models in Figure 15. In
the RCM model in Figure 15 (a), the OutputHandler SWC
is triggered by an independent clock whether in the RCM
model in Figure 15 (b) it is triggered by its predecessor,
InputProcessing. Within MoVES, the second step is the trans-
lation of the EAST-ADL HardwareDesignArchitecture model
representing the execution platform architecture. Figure 16
depicts the EAST-ADL HardwareDesignArchitecture for the
ACC feature.

It is realised by means of two Node elements, Node 1
and Node 2, each of which represents a MPC560XP micro-
controller that is a single-core microcontroller for vehicular



Fig. 14: EAST-ADL FunctionalDesignArchitecture of the ACC system

Fig. 15: Two of the four RCM software models of the ACC
system

Fig. 16: EAST-ADL HardwareDesignArchitecture of the ACC
system

and industrial safety applications10. Two HardwarePortCon-
10http://www.nxp.com/products/automotive-products/

microcontrollers-and-processors/32-bit-power-architecture/
ultra-reliable-mpc56xx-32-bit-automotive-industrial-microcontrollers-mcus/
ultra-reliable-mpc560xp-mcu-for-automotive-industrial-safety-applications:
MPC560xP

nector elements, Node 12Node 2 and Node 22Node 1, re-
alise the communication between the two nodes. Starting from
the EAST-ADL HardwareDesignArchitecture in Figure 16,
MoVES generates the RCM model depicted in Figure 17.

Fig. 17: RCM execution platform model of the ACC system

In particular, the EAST-ADL Node and HardwarePortCon-
nector elements are translated into RCM Node and Network-
Connector elements. According to the HDA2RCM transfor-
mation, the inner architecture of each generated RCM model
is enriched with a Core and a Partition element. That is,
Core 1 and Partition 1 elements are generated for the RCM
Node 1 and Node 2 elements. Eventually, by means of manual
refinements, an additional Partition element, Partition 2 is
added to the RCM Node 2. At this point, MoVES merges the
RCM software and execution platform models and the result
is a set of four complete RCM models where the allocation
information from the EAST-ADL Allocation can be translated.
To this end, Figure 18 depicts the EAST-ADL Allocation
model for the ACC feature.

The EAST-ADL Allocation model consists of four Func-
tionAllocation elements mapping AdaptiveCruiseControlMod-
ule to Node 1 and InstrumentClusterModule, EngineCon-
trolModule and BrakeControlModule to Node 2. Accordingly,
MoVES translates the allocation information on the RCM



Fig. 18: EAST-ADL Allocation of the ACC system

models resulting from the MERGE transformation. Figure 19
depicts one example of RCM model along with the translated
allocation information. Consequently, the isAllocated refer-

Fig. 19: RCM model for the ACC system with the allocation
information

ences of the InstrumentClusterModule, BrakeControlModule
and EngineControlModule assemblies are set to the Node 2
element while the isAllocated reference of the Adaptive-
CruiseControlModule Assembly elements is set to the Node 1
element. However, as EAST-ADL does not leverage the con-
cepts of cores and partitions for the modelling of the execu-
tion platform, the allocation of the InstrumentClusterModule,
EngineControlModule and BrakeControlModule elements can

not be refined with respect to core and partition elements of
Node 2. Nevertheless, such an information can be automat-
ically generated from the ALLOCATION transformation as
described in Section III. In particular, for the ACC system,
we decided to choose an allocation strategy which allocates
Assembly to Partition elements. Consequently, as there are 8
different ways to allocates the three Assembly elements to the
two Partition elements, MoVES generates a final set of 32
RCM models (8 refined RCM models for each of the 4 RCM
models resulting from the A2C). Eight of the 32 final RCM
models are depicted in Figure 20.

Fig. 20: RCM models for the ACC system with the refined
allocation information

At this point, model-based timing analysis is run on each
of the generated 32 RCM models with the aim of verifying
whether the specified reaction and age constraints are met.
Table I summarises the results of the timing analysis. Table I
summaries the analysis results for the 32 generated RCM
models. It can be seen that, out of the 32 RCM models of
the ACC system, only 16 RCM models satisfy the specified
age and reaction constraints. In particular, MoVES is able
to automatically identify the 5 RCM models with the best
timing performances. In this respect, it is important to note that
MoVES can be easily constrained for notifying the engineer
only with the best RCM models rather than with all the
compliant ones. Eventually, the VVLog and VVActualOut-
come elements are created for the VVCase TimingAnalysis.
Moreover, the attribute Text of the VVActualOutcome is set to
the URLs of the folders containing the generated RCM models
and their analysis results. At this point, the engineer can select
any of the 16 RCM models satisfying the specified age and
reaction constraints and continue with the synthesis of the code
for the target platform.



RCM
Model

ID

Calculated
Age Delay

(microseconds)

Calculated
Reaction Delay
(microseconds)

1 21630 31170
2 21380 30920
3 21480 31020
4 21380 30920
5 21730 31270
6 21380 30920
7 21380 30920
8 21380 30920
9 11810 21810
10 11560 21560
11 11660 21660
12 11560 21560
13 11910 21910
14 11560 21560
15 11560 21560
16 11560 21560
17 11690 21690
18 11440 21440
19 11540 21540
20 11440 21440
21 11790 21790
22 11440 21440
23 11440 21440
24 11440 21440
25 21630 31170
26 21380 30920
27 21480 31020
28 21380 30920
29 21730 31270
30 21380 30920
31 21380 30920
32 21380 30920

Specified Age Constraint: 15000 microseconds
Specified Reaction Constraint: 25000 microseconds

= satisfied
= best

TABLE I: Age and Reaction delay analysis results

VI. DISCUSSION AND VALIDATION

In this work, we introduced a novel model-driven method-
ology, MoVES, for the software development of real-time
distributed vehicular embedded systems on single- and multi-
core platforms. Considering the importance of timing, the
proposed methodology supports the development and architec-
tural exploration of system-designs with temporal awareness.
To this end, MoVES leverages the interplay of two domain-
specific modelling languages, EAST-ADL and RCM, and
provides a fully automated mechanism for the generation of the
RCM models containing detailed software, execution platform,
timing and allocation information for schedulability analysis.
EAST-ADL has been developed by the automotive industry
and its consortium includes several international automotive
companies such as McLaren, Volvo, FIAT, Hyundai, etc. The
validation of the applicability and correctness of EAST-ADL is

outside the scope of this work, however, the interested reader,
can refer to [3]. The RCM metamodel definition exploited
in this work is an extension of the previous definition given
in [12]. Through the years the applicability and correctness
of RCM has been verified against several industrial system
designs such as i) the Intelligent Parking Assist (IPA) Sys-
tem [25] (consisting of 2 Node elements and 42 SWCs), ii)
the simplified IPA system [26] (consisting of 2 Node elements
and 7 SWCs), iii) the Steer-by-wire System [20] (consisting
of 1 Node and 6 SWCs) and the Brake-by-wire System [12]
(consisting of 3 Node elements and 14 SWCs). Additionally, its
industrial relevance has been acknowledged by our industrial
partners (e.g., Volvo CE, BAE Systems, etc.) through several
national and international projects [27], [28].

The automation mechanism, core of the MoVES method-
ology, is realised by means of a suite of six model trans-
formations. In this respect, the case study presented in Sec-
tion V helps in discussing some interesting properties of
the model transformations, such as syntactic and semantic
correctness, complexity, termination and performance. With
the term syntactic correctness, we refer to the ability of a
transformation to produce valid target models when executed
on valid source models [29]. Such a property holds for
transformations leveraged in MoVES and the interested reader
can easily check the validity of the generated RCM models
by accessing the MoVES implementation11 With the term
semantic correctness, we refer to the ability of a transformation
to produce semantically valid target models [29]. In this
respect, it is important to note that none of the transformations
within MoVES suffer of information loss. That is, they consist
of a precise and finite set of rules for mapping EAST-ADL
to RCM elements without altering, violating or colliding
the structural hierarchies of the languages. Eventually, the
semantic of the generated RCM models was validated by the
leveraged schedulability analysis. We consider two dimensions
for the transformations’ complexity. The first dimension of the
transformations’ complexity refers to the complexity of the
generated RCM models. In this respect, it is important to note
that the transformations always generate RCM models of equal
complexity of manually defined RCM models. The second
dimension of the transformations’ complexity refers to the size
of the generated set of RCM models. All the leveraged model
transformations, except FDA2RCM and ALLOCATION, are
one-to-one. For the FDA2RCM transformation, if we set n as
the number of the software functions enclosed by the timing
constraints, then FDA2RCM would generate a maximum of
2(n−1) RCM models. For instance, in the case of the ACC
feature, despite the EAST-ADL FunctionalDesignArchitecture
models 9 software functions, the FDA2RCM generates only
4 RCM models as the specified age and reaction constraints
enclose 3 software functions. It is important to remark that,
as discussed in Section V, logic constraints can be applied
for reducing the number of the generated RCM models by
discarding those models which entails configurations of timing
and control elements that are known to be not relevant.
For the ALLOCATION transformation, if we set k as the
number of RCM Allocator elements and n as the number
of the RCM Allocated elements, then ALLOCATION would
generate a maximum of k(n) RCM models. For instance, in

11http://www.mrtc.mdh.se/MoVES/



the case of the ACC feature, we decided to proceed with an
allocation strategy assigning the n = 3 RCM Assembly to
the k = 2 Partition elements. Accordingly, a total number
of 8 RCM models containing unique allocation configurations
was generated. Similar to FDA2RCM, logic constraints can be
specified for narrowing the generation process. For instance,
let us consider the case in which we are not interested in
the RCM models containing allocation configuration where
the EngineControlModule Assembly is not allocated to the
Partition 2. In other words, we fix the allocation of the En-
gineControlModule Assembly to the Partition 2. In this case,
ALLOCATION would generate only 4 RCM models. Trivially,
the transformations’ complexity can affect the termination and
performance properties. Although providing formal proof on
these properties was outside the scope of the work, the case
study showed that all the transformation terminate in few
seconds12.

We believe that MoVES discloses the opportunity to im-
prove the cost-efficiency of software development process
by means of i) automation and ii) reduced need for late
modifications on the software. In particular, automation by
means of model transformations allows to cut the development
time while ensuring the compliance with the non functional
requirements of the vehicular embedded software. Without
MoVES, in fact, the software development would progress
incrementally with team of engineers manually defining imple-
mentation models until a suitable one, from a non functional
perspective, is found. On the contrary, by adopting MoVES,
the implementation models would be automatically generated
and non functional requirements verified at once allowing the
engineers to focus and reason only on the compliant ones.
Kurt-Lennart Lundbäck, CEO of Arcticus Systems, on the use
of MoVES:

“I feel that autonomous vehicles on multi-core platforms
are introducing a lot more of complexity and concerns. In this
domain, automation can be a game-changer. For us, as a tool
and technology providers, it would be particularly beneficial
to have automated support for things like ‘allocation’ for
reducing the complexity of our tool suite, Rubus ICE, and
improve its usability. For our customers, this can result in lower
development effort and improved confidence in the quality of
the software under development.”

It is important to note that MoVES does not introduce
accidental complexity in the software development process.
In fact, it is true that setting up the methodology might
require an additional effort, but it is a one-time-effort as
opposed to manual processes always requiring constant effort.
Moreover, the engineer would have to deal only with the set
of RCM models satisfying the non functional requirements
which, as shown in Section V for timing, is a limited number
(5 out of the 32 generated RCM models). By allowing early
verification, MoVES discloses the opportunity of reducing
late modifications on the vehicular embedded software, which
empirical studies showed to be up to 40 times more expensive
than same modifications during the design of the software [6].
In fact, by using MoVES, the engineer is either notified on the
non compliance of the starting EAST-ADL models to the set
of the considered non functional requirements or notified with

12The case study was run on a 1,7 GHz Intel Core i7 processor, with 8 GB
1600 MHz DDR3 memory.

the set of the compliant RCM models with which proceed for
the development. In the former scenario, late modifications are
prevented while in the latter they are not needed.

In this article, MoVES is presented by specifically targeting
timing properties, given the paramount relevance of these
properties in the design and development of vehicular em-
bedded systems. Nonetheless, there are further non functional
properties that play an important role during the development
of these systems, namely memory usage, energy efficiency, and
so forth. In this respect, it is worth to note that the methodology
proposed by MoVES can be instantiated to consider these and
other properties, as long as they are measurable and compara-
ble at the EAST-ADL and RCM levels of detail. Additionally,
other properties can be exploited for comparing multiple RCM
models having equally good timing performance and selecting
the best available RCM model solution. Moreover, further
non functional properties could be considered from the initial
stages of the proposed workflow to be integrated and used
during the generation process of the possible solutions. In both
cases, the MoVES would need to be extended only in terms of
specific model transformations for the generation of the related
non functional properties of interest.

VII. RELATED WORK

This article deals with several research problems, here
grouped as development of vehicular software systems, devel-
opment of multi-core systems, and support for design-space
exploration. In the remainder of this section, for each of the
mentioned problems relevant related works are discussed.

A. Development of vehicular embedded systems

The growing complexity of nowadays vehicular software
demands adequate approaches for its effective development.
AUTOSAR [4] is an industrial initiative to provide a stan-
dardised software architecture for the development of vehicular
software systems. The timing model for AUTOSAR was de-
veloped in the TIMMO and TIMMO2USE projects [30], [31].
In these projects, a framework was developed to specify the
end-to-end timing constraints and analyse the corresponding
end-to-end delays [32], [33], [15]. In general, AUTOSAR is
not meant to be used in isolation, but plays the role of the im-
plementation level as e.g. prescribed by the EAST-ADL. Even
if the layered structuring of EAST-ADL entails abstraction and
separation-of-concerns in the development, there is no specific
automation support for interconnecting the different layers.
As a consequence, the results of analysis performed at lower
levels of abstraction, e.g. by means of AUTOSAR, have to
be manually tracked back to higher levels, e.g. design models.
More in general, the discontinuities in the development process
due to the abstraction gaps between the different layers have to
be tackled manually by the developer. This task can be time-
consuming and error-prone, especially when considering the
complexity of modern vehicular systems [34]. On the contrary,
in this article we propose to leverage automation through
model transformations to keep the consistency between the
different abstraction levels. The abstraction gaps naturally in-
troduce non-determinism, which is managed by an appropriate
transformation language (JTL). Multi-core architectures are
part of the AUTOSAR standard since version 4.0. However,
AUTOSAR does not distinguish between the control and the



data flows at the application software level, a distinction that
is fundamental for providing early timing verification [35].
Moreover, AUTOSAR does not provide means for modelling
the execution platform [36]. These issues motivate our choice
of using RCM as the implementation level for EAST-ADL
and the MoVES methodology. CHESS is a cross-domain
framework for the design of component-based embedded
systems, including vehicular systems [37]. It is based on a
combination of different languages, like MARTE and SYSML,
which gave birth to a specific UML profile. The framework
provides modelling of embedded software for early analysis,
such as dependability and schedulability, as well as for code
generation, monitoring, and back-propagation. Currently, the
CHESS framework does not provide design-space exploration,
nor it supports uncertainty in the development process. Vehic-
ular systems are often referred to as cyber-physical systems
(CPS) [38], especially when considering autonomous driving
and networks of vehicles (fleets). Several approaches deal
with CPS development by adopting multi-paradigm modelling
techniques and leverage simulation mechanisms to perform
early analysis of systems [39], [40]. Even if the analyses
presented in this article do not exploit simulation techniques,
the MoVES methodology does not prevent the use of simu-
lation mechanisms to analyse and select the generated design
alternatives with respect to quality attributes of interest.

B. Development of embedded systems

Given the ubiquity of software and its mission criticality,
there exists a corpus of literature devoted to the design of
embedded systems pertaining to disparate application domains
and posing a special focus to QoS requirements. In this respect,
several works are based on the use of UML and the UML
profile for MARTE [41]. These general-purpose languages
might be used as alternatives to domain-specific (i.e. vehic-
ular) languages as, e.g., AUTOSAR and RCM. GASPARD
is a framework based on MARTE for the design of parallel
embedded systems [42]. It provides a modelling support based
on UML and MARTE, and prescribes a workflow made-up
of subsequent analyses and refinement steps, from higher to
lower abstraction levels. Similarly to MoVES, some analy-
ses and refinements can be performed at the (EAST-ADL)
design level, while others can only be performed at lower
abstraction levels (e.g., timing). Also for GASPARD moving
from higher to lower abstraction levels raises the issue of
managing multiple alternatives. Indeed, in [42] the authors
advocate for a refinement process able to prune inadequate
alternatives based on analysis results. However, the authors
do not discuss the management of multiple alternatives, nor
provide details about the refinement process that seems to rely
on the selection of a single candidate for each level of abstrac-
tion. VERTAF/Multi-core [43] is a UML-based framework for
the development of multi-core software. The software system
is described by means of UML class diagrams, timed state
machines and sequence diagrams, while model transformations
are used for enabling analysis like schedulability. MARTE
is adopted also in [44] and [45] to design the high-level
architecture of the software system and for the generation of
implementation code. The former approach prescribes the use
of UML for modelling the software components while MARTE
is used for modelling hardware and software to hardware
allocations. Moreover, timing verification is accomplished by

running simulations on the automatically generated code. The
latter approach instead targets component-based system de-
ployment. Components allocations are derived by means of
code generation, which is based on high level description
models conforming to MARTE. In [46], the authors propose a
technique to specify tasks and their allocation to cores. The
technique is based MARTE and allows to perform simula-
tion and task allocation optimisation based on the execution.
AADL [47] is an architecture description language initially
tailored to the avionic domain but currently used for modelling
embedded systems in general. AADL supports the design
of multi-core embedded software by means of separation
of concerns between software and hardware elements. The
software architecture is described in terms of, e.g., Processes
and Threads, that is at a lower level of abstraction if compared
to RCM.

C. Support for design-space exploration

Design-space exploration (DSE) typically involves the gen-
eration, analysis, and optimisation of multiple design alterna-
tives [48]. The step-by-step expansion of design alternatives
illustrated in this article can be classified as rule-based DSE
complying to the model generation pattern. In fact, the space
of solutions is represented by means of models and the
corresponding alternatives are generated through model trans-
formations [49], [50]. Moreover, an exhaustive derivation of
models at the implementation level is performed by enriching
design level (EAST-ADL) models with timing and allocation
details, constrained by the system architecture and domain-
specific rules [51]. Such a derivation process is quality-
driven [49], [52], in the sense that JTL model transformations
generate all the viable (timing/allocation) solutions for a cer-
tain system architecture, while do not aim at automatically
discovering optimisation opportunities at design level [53].
Kang et al. introduce in [54] a DSE tool called FORMULA.
FORMULA permits the user to define equivalence classes
over alternatives, such that only non-isomorphic solutions are
generated in the exploration phase. Their aim is to enhance
the cost-effectiveness of DSE by avoiding the exploration of
design alternatives not relevant at a certain development stage.
Indeed, some alternatives might look equivalent to the user
whom, due to the maturity of the design, might not yet be
concerned with some of the details about the system that are
changed. Several DSE mechanisms cope with the search of
input model configurations such that to achieve an optimised
system in terms of certain properties of interest. Since the
search space is typically huge, research efforts are devoted
to generating candidates in an effective way (e.g., close to the
optimal solution). Optionally, user??s inputs and/or heuristics
are exploited to drive the exploration and prune alternatives.
DESERT [55] is a tool that provides DSE based on exploration
and pruning rules manually defined by the user. Interestingly,
also DESERT is based on a compact representation of viable
design alternatives, in particular by means of ordered binary
decision diagrams. Differently to the approach proposed by
MoVES, DESERT forces the user to perform an element-
by-element selection of the available options to reduce the
space of solutions to a single one. Shaetz et al. [49] proposed
a rule-based DSE mechanism tailored to embedded systems
development. The exploration is realised by means of model
transformations specified as Prolog programs. In particular,



transformation rules both define the generation of alternatives
and constrain the space of solutions. However, there is no
explicit visualisation technique to reveal available alternatives
to the user. Therefore, the user has to foresee possible design
alternatives and write appropriate exploration/pruning rules. A
number of additional techniques target multi-criteria optimi-
sations. In this respect, one precondition to be met by the
DSE mechanism is a generic representation of the solution
space, which has to be compatible with multiple exploration
approaches. In general these techniques leverage intermediate
formats over which several explorations/optimisations can be
run. Notably, in [56] Saxena and Karsai introduce an extension
of a domain-specific language devoted to DSE. Such extension
is exploited by disparate constraint solvers to compute multiple
explorations/optimisations. Similarly, Octopus [57] supports
DSE for software intensive embedded systems. A DSE tai-
lored intermediate representation is exploited to implement an
iterative refinement process based on analyses, searches, and
diagnostics over the space of available solutions. In MoVES,
the uncertainty points can be combined to address multiple
DSE needs. Moreover, the order of resolutions (i.e., solution
exploration) can be exploited to set priorities over properties.

During the last decades, several approaches for the effective
software development of vehicular embedded systems were
introduced. In general, this problem requires the consideration
of a number of models which can rapidly become unbearable
to handle manually. In this work, we tacked this problem
by employing i) the interplay of two modelling languages,
ii) a fully automated mechanism and iii) model-based timing
analysis. While the interplay of the two modelling languages
allows for the explicit modelling of the vehicular’s software
architecture and its execution platform, the automated mech-
anism provides for the automatic generation of all the model
alternatives meaningful from a timing perspective.

VIII. CONCLUSION AND FUTURE WORK

The work presented in this paper describes a timing-aware
model-driven methodology for the software development of
distributed vehicular embedded systems on single- and multi-
core. In particular, it tackles the problem of guiding the
engineer in taking timing-aware design decisions at design
level when modifications on the vehicular embedded system
are generally more cheaper than modifications at the im-
plementation level. Generally, this requires the consideration
of a number of implementation alternatives which are hard
to handle without an automated support. We proposed to
solve this by introducing automation in terms of six model-
transformations which describe precise relationships between
EAST-ADL (the language used at design level) and RCM
(the language used at implementation level). We exploited the
properties of a constraint-based transformation language, JTL,
to automatically derive all the possible RCM models entailing
meaningful and unique timing and allocation configurations.
Eventually, we leveraged model-based timing analysis for the
timing verification of the generated RCM models. The case
study we conducted together with our industrial partners in the
automotive domain demonstrated i) promising results in terms
of reduction of late modifications as well as the i) applicability
of the methodology.

Despite the generation of the RCM models entailing differ-

ent timing and allocation configurations is transparent to the
engineer and it can be guided with logic constraints, issues
about scalability and performance may remain open. In this
respect, the main future investigation direction encompasses
the study of a smarter generation process for narrowing and
clustering the space of the generated RCM models and the
use of further non functional properties for pruning the set
of the generated RCM models. In addition, we are planning
to equip the proposed methodology with the compact notation
discussed in [7] for enabling the visualisation of multiple RCM
models as a single RCM model equipped with uncertainty
points. Another line of future investigation encompasses the
extension of the proposed methodology to the higher EAST-
ADL structural abstraction levels.
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K.-L. Lundbäck, “The rubus component model for resource constrained
real-time systems,” in 3rd IEEE International Symposium on Industrial
Embedded Systems, June 2008.

[6] D. Galin, Software quality assurance: from theory to implementation.
Pearson Education India, 2004.

[7] R. Eramo, A. Pierantonio, and G. Rosa, “Managing uncertainty in
bidirectional model transformations,” in Proceedings of the 2015 ACM
SIGPLAN International Conference on Software Language Engineering.
ACM, 2015, pp. 49–58.

[8] T. Zan, H. Pacheco, and Z. Hu, “Writing bidirectional model transfor-
mations as intentional updates,” in Companion Proceedings of the 36th
International Conference on Software Engineering. ACM, 2014, pp.
488–491.

[9] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio, “Jtl:
A bidirectional and change propagating transformation language,” in
Software Language Engineering, 2011, vol. 6563, pp. 183–202.

[10] S. Sendall and W. Kozaczynski, “Model transformation: The
heart and soul of model-driven software development,” Software,
IEEE, vol. 20, no. 5, pp. 42–45, 2003. [Online]. Available:
http://dx.doi.org/10.1109/MS.2003.1231150

[11] B. Graaf, M. Lormans, and H. Toetenel, “Embedded software engineer-
ing: the state of the practice,” Software, IEEE, vol. 20, no. 6, pp. 61–69,
2003.

[12] A. Bucaioni, S. Mubeen, F. Ciccozzi, A. Cicchetti, and M. Sjödin,
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“A metamodel for the rubus component model: Extensions for
timing and model transformation from east-adl,” Journal of IEEE
Access, vol. 5, no. 1, December 2016. [Online]. Available: http:
//www.es.mdh.se/publications/4611-

[20] A. Bucaioni, A. Cicchetti, F. Ciccozzi, R. Eramo, S. Mubeen, and
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“Supporting timing analysis of vehicular embedded systems through the
refinement of timing constraints,” Software & Systems Modeling, Jan
2017. [Online]. Available: https://doi.org/10.1007/s10270-017-0579-8

[36] A. Sangiovanni-Vincentelli and M. Di Natale, “Embedded system
design for automotive applications,” Computer, vol. 40, no. 10, pp. 42–
51, Oct. 2007.

[37] A. Cicchetti, F. Ciccozzi, S. Mazzini, S. Puri, M. Panunzio,
T. Vardanega, and A. Zovi, “Chess: a model-driven engineering
tool environment for aiding the development of complex industrial
systems,” in 27th International Conference on Automated Software
Engineering (ASE 2012), September 2012. [Online]. Available:
http://www.es.mdh.se/publications/2208-

[38] P. Derler, E. A. Lee, and A. Sangiovanni-Vincentelli, “Modeling
cyber-physical systems,” Proceedings of the IEEE (special issue on
CPS), vol. 100, no. 1, pp. 13 – 28, January 2012. [Online]. Available:
http://chess.eecs.berkeley.edu/pubs/843.html

[39] P. J. Mosterman and H. Vangheluwe, “Computer automated multi-
paradigm modeling: An introduction,” SIMULATION, vol. 80, no. 9,
pp. 433–450, 2004. [Online]. Available: http://dx.doi.org/10.1177/
0037549704050532,

[40] J. C. Jensen, D. H. Chang, and E. A. Lee, “A model-based design
methodology for cyber-physical systems,” in 2011 7th International
Wireless Communications and Mobile Computing Conference, July
2011, pp. 1666–1671.

[41] “The UML Profile for MARTE: Modeling and Analysis of Real-Time
and Embedded Systems, 2010.” OMG Group, January 2010. [Online].
Available: {http://www.omgmarte.org/}
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[57] T. Basten, M. Hendriks, N. Trčka, L. Somers, M. Geilen, Y. Yang,
G. Igna, S. Smet, M. Voorhoeve, W. Aalst, H. Corporaal, and F. Vaan-
drager, Model-Based Design of Adaptive Embedded Systems. New
York, NY: Springer New York, 2013, ch. Model-Driven Design-Space
Exploration for Software-Intensive Embedded Systems, pp. 189–244.


