
Using Safety Contracts to Verify Design
Assumptions During Runtime

Omar Jaradat (�) and Sasikumar Punnekkat

School of Innovation, Design and Engineering
Mälardalen University, Väster̊as, Sweden

{omar.jaradat,sasikumar.punnekkat}@mdh.se

Abstract. A safety case comprises evidence and argument justifying
how each item of evidence supports claims about safety assurance. Sup-
porting claims by untrustworthy or inappropriate evidence can lead to
a false assurance regarding the safe performance of a system. Having
sufficient confidence in safety evidence is essential to avoid any unan-
ticipated surprise during operational phase. Sometimes, however, it is
impractical to wait for high quality evidence from a system’s operational
life, where developers have no choice but to rely on evidence with some
uncertainty (e.g., using a generic failure rate measure from a handbook
to support a claim about the reliability of a component). Runtime moni-
toring can reveal insightful information, which can help to verify whether
the preliminary confidence was over- or underestimated. In this paper,
we propose a technique which uses runtime monitoring in a novel way
to detect the divergence between the failure rates (which were used in
the safety analyses) and the observed failure rates in the operational life.
The technique utilises safety contracts to provide prescriptive data for
what should be monitored, and what parts of the safety argument should
be revisited to maintain system safety when a divergence is detected. We
demonstrate the technique in the context of Automated Guided Vehicles
(AGVs).

Keywords: Confidence, safety contracts, safety case, safety argument,
monitoring, runtime, failure rate, probability of failure, through-life
safety assurance

1 Introduction

Safety critical systems are those systems whose failure could result in loss of
life, significant property damage or damage to the environment [1]. Factories
are often categorised as safety critical systems since failures of these systems,
under certain conditions, can lead to severe consequences [2]. Assuring safety for
such systems should provide justified confidence that all potential risks due to
system failures are either eliminated or acceptably mitigated. Hence, all failures
which might expose the manufacturing processes to hazards shall be analysed
and controlled as part of pre-deployment safety assurance and monitored and
controlled as part of operational phase.

Developers of some safety critical systems build a safety case to demonstrate
the safety aspect of their system by identifying all unreasonable risks and describ-
ing, in the light of the available evidence, how these risks have been eliminated
or adequately mitigated. Typically, a safety case comprises both safety evidence
(e.g. safety analyses, software and hardware inspection reports, or functional
test results) and a safety argument (i.e., reasoning) explaining that evidence.
The safety argument shows which claims the developer uses each item of evi-
dence to support and how those claims, in turn, support broader claims about
system behaviour, hazards addressed, and, ultimately, acceptable safety [3].

An organisation building a safety case should be accountable for the owner-
ship of the risks to be controlled by adopting an appropriate safety management
system, performing a hazard assessment, selecting appropriate controls, and im-
plementing them [4]. In order to help building a sufficient and credible (i.e., on
a scientific basis) confidence in the safe performance of a system, its safety case
shall always communicate the actual safe performance of the system, and shall
always contain only acceptable items of evidence that this system meets its safety
requirements. However, an item of evidence is valid only in the operational and
environmental context in which it is obtained or to which it applies. More clearly,
as the system evolves after deployment, there could be a mismatch between our
communicated understanding of the system safety by the safety case and the
safety performance of the system in actual operation, which might invalidate
many of the prior assumptions made, undermine the collected items of evidence
and thus defeat safety claims [5]. Despite the improvements in operational safety
monitoring, there is insufficient clarity on how to utilise the analysis results of
the monitored data on the documented confidence in safety cases.

In safety critical systems, failure rates are sometimes used as quantitative
criteria while performing safety assessment (i.e., Probabilistic Safety Assessment
(PSA)). Failure Rate (FR=λ) is defined as the probability per unit time that
a component experiences a failure at time “t”, given that the component was
operating at time “0” and has survived to time “t” [6]. Failure rates can be
deemed as a reliability prediction that together with the consequences (Risk =
probability of failure * consequence of failure) determine the Safety Integrity
Level (SIL), which in turn specifies a target level of risk reduction that should
be considered by a safety function or instrument. The quality of the failure rate
measure determines the quality of the PSA. Hardware components are usually
provided by generic failure rates which are derived by the statistical analyses of
the failure frequency [7]. Failure frequency is usually obtained by the test results
and the historical data of the components. Although the calculation of a generic
failure rate is based on complex models which include factors using specific
component data such as temperature, environment, and stress [6], it is, at its
best, just a probability that is still subject to a percentage error even if it is used
in the same context as in specifications. Assuming the perfection of the failure
rate calculations is not judicious and can be misleading. Hence, a minimum
level of fault tolerance in the architectural design of the safety functions should
be considered. For example, the functional safety standards IEC 61508 [8] and

IEC 61511 [9] recognise that there is always some degree of uncertainty in the
assumptions made in calculation of failure rate and probability [10].

In this paper, we propose a novel technique to detect the discrepancies be-
tween the failure rates of system’s components during their operational life and
their generic failure rates used for analysis and assurance during the design time.
Since it is infeasible to monitor the failure rates of all components of a system,
the technique utilises probabilistic Fault Tree Analysis (FTA) to evaluate the
criticality of the system components, and selects the most critical ones for mon-
itoring. The technique derives safety contracts for the selected components and
associate them with the relevant events in the FTA and the relevant parts in the
safety case. If a discrepancy is detected between an observed failure rate (λO)
and a generic failure rate (λG) of the same component, where λO > λG, then
the relevant contract should be flagged and the referred parts of both the FTA
and the safety case should be revisited.

Our hypothesis is that using safety contracts for monitoring the failure rates
during the operational life of a system can help to provide essential feedback
on the overall confidence in safety. More clearly, getting more precise measure
of failure rates than the predicted ones will 1) improve the efficacy of the sys-
tem design to reduce the risk (mitigate by design), 2) define stronger evidence
(e.g., refine or rectify the test results) and 3) highlight the required preventive,
corrective, perfective or adaptive maintenance for safer operation

In this paper, we specifically make the following four contributions:

1. A novel technique to continuously reassess the failure rates and use the
results to suggest system changes or maintenance

2. A new way to derive safety contracts to facilitate the traceability between
the system design, safety analysis and the safety case

3. An example of how to argue more compelling over the failure rate in the
light of the derived evidence from the operational phase

4. An example of how to carry out a through-life safety assurance

The rest of the paper is organised as follows: In Section 2, we present our
approach to verify the design assumptions during runtime by safety contracts.
In Section 3, we apply our technique to an AGV system to illustrate the main
steps. In Section 4, we discuss how the suggested approach enables a through-
life safety assurance. Finally, we conclude and describe the future directions in
Section 5.

2 Using Safety Contracts to Verify Design Assumptions
During Runtime

Failures of components in safety critical systems are typically divided into four
modes, namely, Safe Detected (SD), Safe Undetected (SU), Dangerous Detected
(DD), and Dangerous Undetected (DU). DD and DU failures can cause loss of
a safety function while we believe that we are protected and this might happen
in fraction of diagnostic interval in case of DD failures or during the unknown

downtime in case of DU failures [11]. DU failures are typically due to either
random or systematic failures. In this paper, we specifically focus on dangerous
failures (DD and DU). Whenever FTAs are constructed to evaluate hazards,
the basic event failure data must describe only failures that contribute to that
hazard and thus only dangerous failure rates (λD) should be included for the
basic events, where λD = λDD + λDU .

In this section, we propose a technique that aims to determine the λD of
particular HW components in their operational life (observed λD = λD O) and
compare the results with the design assumptions of these components (generic
λD = λD G) to ultimately highlight any discrepancies between λD O and λD G.
The technique uses criticality importance measure to rank the components from
the most to the less critical so that safety engineers can select particular compo-
nents for monitoring when it is infeasible to monitor all of them. The technique
also uses sensitivity analysis to determine whether a highlighted discrepancy is
acceptable or not. The technique heavily depends on probabilistic FTAs, and it
comprises 8 steps as follows:

2.1 Determine the PFD or the PFH in the FTA

In this step, we calculate the PFD (Probability of Failure on Demand) or the
PFH (Probability of Failure per Hour) using a probabilistic FTA where each
component is specified by its λD G. The selection between PFD and PFH is
based on the demand of a safety function. More clearly, if the safety function
will be working in a continuous mode, then we have to select PFH [8]. However,
if the safety function is expected to work once per year (at most), then PFD
should be selected [8]. To calculate the PFD or PFH of an FTA, four sub-steps
should be performed as follows:

A. Calculate the Failure Probability of the Basic Events: There are
different formulas used to calculate PFD depending on different factors, such
as system’s structure (K-out-of-N structures), Common Cause Factor (CCF),
operational maintenance, safety standards obligations, etc. For example, Exida
(a leading product certification and knowledge company) provides a realistic
formula to calculate the PFD [12]. However, the difference between PFD formulas
will not be influential in our technique. For the sake of simplicity, we adopt the
PFD formula given in [13]. Formula 1 shows how we calculate the PFD for the
basic events:

PFD(i) = λD,i ∗ τ (1)

where i denotes the basic event and τ is the proof test interval. The component
reparation or replacement time is assumed to be short and thus it is negligible.

The main difference between calculating PFD and PFH is in the logic of de-
termining the probability of failures for the basic events. To calculate the PFH
for the FTA’s events, Formula 1 should be replaced with Formula 2, which is

basically the famous unreliability exponential equation where only λD is con-
sidered. Unreliability in the context of functional safety is interpreted as the
probability of a function to fail during a given time interval.

PFH(i) = 1− e−λDt (2)

For calculating the PFD or PFH, we assume the failure rates of all components
are constants, independent and have the same τ . We also assume that all poten-
tial CCFs are explicitly modelled as basic events in the FTAs. The rest of the
sub-steps (B, C and D) are the same irrespective of we use PFD or PFH.

B. Determine Minimal Cut Set (MCS) in the FTA: The MCS is defined
as: “A cut set in a fault tree is a set of basic events whose (simultaneous) occur-
rence ensures that the top event occurs. A cut set is said to be minimal if the set
cannot be reduced without losing its status as a cut set” [14]. There are several
algorithms to find the MC. We apply Mocus cut set algorithm [14].

C. Calculate the Failure Probability of the Determined MCS: Cal-
culating the probability of occurrence for the top event in a FTA with many
MCS requires calculating the probability of those MCS. The failure probability
of each determined MCS in the previous sub-step should be calculated according
to formula 3 [11], as follows:

Q̌j(t) =
∏
i∈Cj

qi(t) (3)

where qi(t) denotes the probability of basic event i at time t, Q̌j(t) is the prob-
ability that minimal cut set j is in failed state at time t, i ∈ Cj denotes the
minimal cut set j that contains the basic event i.

D. Calculate the PFD or PFH of the Top Event: We calculate the ac-
tual PFD or PFH by the upper bound approximation formula 4 [11] using the
determined MCS, as follows:

PFDAct(Top), PFHAct(Top) =

k∑
j=1

Q̌j(t) (4)

So far, all PFD or PFH calculations are based on λD G. We refer to the result
of the probability calculation based on λD G as Actual or Act. The PFDAct(Top)
or PFHAct(Top) are design assumptions which will be compared with the ob-
served λ to check the correctness/validity of the design assumptions.

2.2 Identify the Most Critical Components

Monitoring every single component in safety critical systems is infeasible espe-
cially since such systems become bigger and more sophisticated over time. How-
ever, some components in a system are more critical for the system safety than

other components. The objective of this step is to identify the most critical com-
ponents in a system w.r.t the FTA. There are different measures through which
FTA’s events can be ranked based on their importance (e.g., Birnbaum, Criti-
cality Importance, Fussel-Vesely Importance, Risk Achievement Worth (RAW)).
In our technique, however, we are interested to rank the components based on
their contributions to system safety. More specifically, we are interested in the
components whose failures have the maximum impact on system safety. RAW
is a measure that focuses on the ‘worth’ of the basic event in ‘achieving’ the
present level of risk and indicates the importance of maintaining the current
level of reliability for the basic event [14]. RAW is often used as an importance
measure to rank components in terms of safety significance [15] and hence we
will adopt it for our work .

The failure probability of the component i at time t may be described as:

P (i) =

{
0 if the component is functioning at time t

1 if the component is in a failed state at time t

The RAW, IRAW (i|t) is the ratio of the (conditional) system unreliability if
component i is P (1), and it is calculated as follows [14]:

IRAW (i|t) =
1− h(0i, p(t))

1− h(p(t))
for i = 1, 2, ..., n (5)

where h(0i, p(t)) is the probability of top event with component i = P (1),
and h(p(t)) is probability of top event. All basic events should be ranked from
the most important to the less important. The most important event is the event
for which Formula 5 has the maximum value.

2.3 Refine the Identified Critical Parts

The idea of this step is to discuss with system developers (e.g., safety engineers)
and refine the ranked list of the critical components. This step is important,
since it embeds the system level knowledge and experience of engineers regard-
ing the uncertainty in a generic λ as well as helps as a validation step in the
decision making process. For example, it could be the case that a high ranked
critical component in the list has a stable λG and systems engineers decide not
to monitor it. That is, it is envisaged that some events may be removed from
the list or the rank of some of them change. Moreover, the list can be extended
to add any additional events by the developers.

2.4 Perform Sensitivity Analysis

The idea of this step is to determine the maximum allowable λD (λD Max) of
the system components which are selected for monitoring. More specifically, we
need to define the upper- and lower bounds of the acceptable λD of each event
in the MCS, where PFDAct(Top) or PFHAct(Top) is less than or equal to the

required probabilities PFDReq(Top) or PFHReq(Top), respectively. The required
probability is described as safety requirements by the safety standards (e.g., SIL,
ASIL and DAL). It is important for our technique to determine to which extent
PFDAct(i) or PFHAct(i) can be deviated while PFDAct(Top) or PFHAct(Top)
still satisfies PFDReq(Top) or PFHReq(Top), respectively. To this end, two main
activities should be performed, as follows:

Determine the maximum allowable qi,Max(t) for each component The
qi,Max(t) for each component should be determined with respect to PFDReq(Top)
or PFHReq(Top). Formula 6 should be used to determine qi,Max(t) for each
component at a time.

PFDReq(Top), PFHReq(Top)− (
∑
Q̌i/∈Cj

(t))∑
Q̌i∈Cj

(t)¬qi(t)
=

∑
Q̌i∈Cj

(t)∑
Q̌i∈Cj

(t)¬qi(t)
(6)

where i /∈ Cj denotes the minimal cut set j that does not contain basic event i.

Determine λD Max for Each Component Once we have qi,Max(t) for a
component it is easy to determine its λD,Max. Formula 7 determines λD,Max in
case of PFD, as follows:

λD,Max =
qi,Max(t)

τi
(7)

Formula 8 determines λD,Max in case of PFH, as follows:

λD Max =
− ln(qi,Max(t))

τi
(8)

After calculating λD,Max for all events, the latter should be ranked from the
most sensitive to the less sensitive to change. The most sensitive event is the
event for which Formula 9 is the minimum:

Sensitivity(λDi,G) =
λDi,Max − λDi,G

λDi,G
(9)

2.5 Derive Safety Contracts

In this step, safety contracts should be derived from FTAs. The main objectives
of deriving safety contracts are: 1) highlight the most important components
to make them visible up front for developers attention [16], and 2) record the
thresholds of λD(i) to continuously compare them with the monitoring results
(λD O). Hence, if λD O of component i exceeds the guaranteed λD Max(i) in
the contract of that component, then we can infer that the contract in question
is broken and the related FTA should be re-assessed in the light of the λD O.
Another objective to derive safety contracts is to associate these contracts with
safety arguments as reference points so that developers know the related part of

Guarantee

Assumptions

Contract ID: TE_CSSense

G: PFHAct(CCSense, 7.36E-08) <= 10^-7

A1: λD_G(i) ≤ λD_O(i) < λD_Max(i), ∀i ∈ MCS
A2: The logic and structure of CCSense_FTA does
not change

GSN Reference: ACP.Sol.FTA

TE
Guarantee

Assumptions

Contract ID: TB_CSM

G: λD_G(CSFails, 4E-13) ≤ λD_O(CSFails) <
λD_Max(CSFails, 3.41E-12)

A1: λ_G(Control System, 4E-13) is constant
A2: Control System is independent
A3: Control System is deployed according to the manufacturer
recommendations

A4: Control System operates in a similar environment to
which its λD_G was estimated

BE

Confidence Level
λ4E-13 90% = xxx
λ4E-13 70% = xxx

(A) (B)

GSN Reference: TrustAppropC
FTA Reference: CSSense_FTA

FTA Reference: CSSense_FTA

Fig. 1. A. Contract template: Top Event. B. Contract template: Basic Event

the argument when they review a FTA and vice versa. To this end, we introduce
two templates to derive contracts. The first contract template is for deriving a
contract for the top event only. The top event safety contract is annotated with
the abbreviation “TE” in the upper-right corner of the contract to denote that
this contract is derived for a Top Event as shown in Figure 1-A.

The second contract template is for deriving a safety contract for each event
in the MCS (i.e., events related to important components). This type of contracts
is referred to as “monitoring safety contracts” and it is is annotated with the
abbreviation “BE” in the upper-right corner to denote that this contract is
derived for a Basic Event as shown in Figure 1-B.

2.6 Associate Safety Contracts with Safety Arguments

In this step, all safety contracts which were derived in Step 4 should be associated
with safety arguments. This step assumes that the safety argument should come
down to a claim that the “probability of failure of hazard H due to component
failure is acceptable”, in turn supported by a context element about what that
probability is in the context of an applicable definition of acceptable, in turn sup-
ported by the FTA as evidence. An Assurance Claim Points (ACP) [17] should
be created between the claim about the acceptable probability and the evidence,
where a separate confidence argument should extend this ACP to argue over the
quality of the used failure rates to calculate PFDAct(Top) or PFHAct(Top).

It is necessary that the argument should be clearly structured and the items of
evidence to be clearly asserted to support the argument [18]. There are several
ways to represent safety arguments (e.g., textual, tabular, graphical, etc.). In
this paper, we use the Goal Structuring Notation (GSN) [18], which provides a
graphical means of communicating (1) safety argument elements, claims (goals),
argument logic (strategies), assumptions, context, evidence (solutions), and (2)
the relationships between these elements. The basic notations of GSN are shown
in Figure 2 (in the upper left side corner). A goal structure shows how goals are

successively broken down into (‘solved by’) sub-goals until eventually supported
by direct reference to evidence. GSN can clarify the argument strategies adopted
(i.e., how the premises imply the conclusion), the rationale for the approach
(assumptions, justifications) and the context in which goals are stated.

Assertions in a safety argument relate to the sufficiency and appropriateness
of the inferences declared in the argument, the context and assumptions used
and the evidence cited [17]. For example, when an item of evidence is used to
support a claim, it is asserted that this evidence is sufficient to support the claim.
However, a simple ‘SolvedBy’ relation between the evidence and the claim will
not satisfy a reviewer’s concerns to reach a certain level of confidence, such as,
‘why the reviewer should believe that the evidence is appropriate for the claim?’
or ‘whether it is trustworthy’.

Hawkins et al., [17] introduced “An assured safety argument” as a new struc-
ture for arguing safety in which the safety argument is accompanied by a confi-
dence argument that documents the confidence in the structure and bases of the
safety argument. Hawkins suggests that instead of decomposing the arguments
further to argue over the appropriateness and trustworthiness of the supporting
evidence, an ACP can be created to indicate an assertion in the safety argument.
An ACP is indicated in GSN with a named black rectangle on the relevant link
and a confidence argument should be developed for each ACP [17]. Three types
of assertions were defined as ACPs as follow:

1. Asserted inference: the ACP for an asserted inference is the link between the
parent claim and its strategy or sub-claims

GAvgProbOfFailue—

The probability of failure of
Loss of Obstacles detection
by an AGV due to component
failure is acceptable

S:FTA
CSSense_FTA

ACP.Sol.FTAContract ID:
TE_CSSense

CxtAccept—
Acceptable =
PFHAct ≤ 10^-7

 S1:
 Handbook of
 failure rate
 data

S2:
Failure rate by
the vendor

S3:
Failure rate
certificate

ConfTrsutApprop—
Sufficient confidence exists in
trustworthiness and
appropriateness of the failure rates
used to calculate the predicted risk
of CSSense_FTA

ObstacleDetectReliability—
Predicted risk of obstacles
detection is sufficiently reliable

JustificationRandomF—
Random failures contributions to
obstacles detection is determined
through CSSense_FTA

J

SuffReliable—
Sufficiently = Risk ≤ SIL 3

PredictRisk—
Predicted risk = 7.36E-08
(PFH (CCSense)Act

AppropConfEachC—
Failure rate λD_G = 4.E-13 of the
Control System was measured in
a similar context to which it is
operating

AssumptionMCS—
The used failure rates are
the only required rates to
calculate the predicted risk

A

ConfTustG—
Sufficient confidence exists
in trustworthiness of failure
rates

ConfAppropG—
Sufficient confidence
exists in appropriateness
of each failure rate

AppropMeans—
Appropriateness: λD_G estimated in
similar operating environment conditions

TrustMeans—
Trustworthiness: λD_G verified in
the current context

At least 1-of-3

TrustAppropC—
Failure rate λD_G = 4.E-13 of the
Control System is verified in the context
of the AGV system

At least 1-of-2

S5:
Operational
data

S4:

Test report

Contract ID: TB_CSM

(A) (B)

Basic GSN Notations

GOAL Context

Solution Assumption
A

Justification
J

.

SupportedBy

InContextOf

Strategy
Multiplicity Option

Fig. 2. A. A probability of failure argument with an association of a top event safety
contract. B. Confidence argument with an association of a monitoring safety contract

Asserted
Context

Goal

Goal

Strategy

Solution

Context

ACP.S3

As
se

rte
d

In
fe

re
nc

e

ACP.C1
ACP.I1

As
se

rte
d

So
lu

tio
n Contract_ID

TE

Fig. 3. Types of ACPs with an example of each usage [17]

2. Asserted context: the ACP for asserted context is the link to the contextual
element

3. Asserted solution: the ACP for asserted solutions is the link to the solution
element

In this step, we suggest to use the principle of the ACP. Hence, the top
event safety contract should be associated with the ACP (i.e., asserted solution)
between the GSN goal which claims the acceptability of the hazard probability
due to a component failure and the GSN solution which refers to the relevant
FTA. Whereas, each monitoring safety contract should be associated with a
GSN goal about the relevant component in the confidence argument. Figure 2-A
shows a pattern of PFD or PFH argument and an example of top event safety
contract association. Figure 2-B shows a confidence argument pattern with an
association of a monitoring safety contract. Figure 3 instantiates an example of
each ACP type and it also represents our suggested traceability means which
associates the derived contracts from FTAs with safety arguments (the dotted
part in the figure).

2.7 Determine λD O Using the Data from Operation and Compare
it to the Guaranteed λD Max in Safety Contracts

In this step, λD O of specified components should be obtained during the compo-
nents’ runtime. Using runtime monitors is one way to obtain data from operation.
There are many proposed architectures to detect or test a system (or parts of it)
for bad behaviour [19]. We provide a monitoring logic which requires two param-
eters (inputs) from any monitoring framework, namely, the number of recorded
failures (i.e., DD and DU) as well as τ in time unit (e.g., hours). Algorithm 1
should be used to determine λD O using the data from operation and compare
it to the guaranteed λD Max. The more we monitor a component and record
its failures the more confident we will be in its actual λD in a specific context.
The calculated level of confidence can reveal how long we still need to monitor
a component to reach a certain level of confidence. Hence, our algorithm also
calculates the confidence level of λD O(i)70% and λD O(i)90% continuously and

cumulatively using the Chi-Squared distribution. The calculated levels of confi-
dence of a monitored component are automatically inserted into its “monitoring
safety contract” and get updated continuously so that developers and assessors
can review them in the FTA and the safety argument.

2.8 Update the Safety Contracts and Re-visit the Safety Argument

If a monitoring safety contract is broken it means that there is at least one broken
top event safety contract as well. In this case, the broken safety contracts should
be used to trace the FTA events and elements of safety arguments (for which

Algorithm 1: The monitoring logic to determine λD O and compare it to
λD Max

Data: MissionTime, τ , λD Max, λDU O, DUfailures = 0, λDD O, DDfailures =
0, λD O, Num Comp, CL90, CL70;

Result: Determine λD O and compare it to λD Max

1 TotMonTime = clock(); \\Comment: start monitoring the mission time
2 while TotMonTime ≤ MissionTime do
3 Test Interval Monitor = clock(); \\Comment: start the monitoring time of

the test interval time
4 while Test Interval Monitor ≤ τ do
5 if a DD failure is found then
6 DDfailures++; \\Comment: add an observed failure from a

diagnosis log file
7 end
8 if a DU failure is recorded then
9 DUfailures++; \\Comment: add an observed failure which was

inserted manually
10 end
11 λDU O = 1/((TotMonTime * Num Comp) / DUfailures); \\Comment:

calculate λDU O

12 λDD O = 1/((TotMonTime * Num Comp) / DDfailures); \\Comment:
calculate λDD O

13 λD O = λDU O + λDD O; \\Comment: calculate λD O

14 CL70 = Chi-
Squared(X2

70%,2(DUfailures+DUfailures+1))/(2*Num Comp*TotMonTime);
\\Comment: λD O70%

15 CL90 = Chi-
Squared(X2

90%,2(DUfailures+DUfailures+1))/(2*Num Comp*TotMonTime);
\\Comment: λD O90%

16 if λD O ≥ λD Max then
17 Contract [C] is broken; \\Comment: highlight the broken contract

whenever λD O ≥ λD Max

18 end

19 end
20 Test Interval Monitor = 0; \\Comment: reset the τ timer to start a new one

21 end

Loss of obstacles
detection by an AGV

CSSense

No power from
the battery to the
control system
NofPwrBattry

Wiring fault between
the battery and the

control system
WiringFPwrRCS

No signal from
LiDAR sensor A

NoSigfSenA

Wiring fault between
LiDAR sensor A and

control system
WiringCSBA

No signal from
LiDAR sensor B

NoSigfSenB

No signal from LiDAR
sensors to the control

system
NoSigfLiDSens

Wiring fault between
LiDAR sensor B and

control system
WiringCSBB

λ 5E-12 /H
PFH 4.38E-08 /H

No processing of the
LiDAR signals by the

control system
NoProcess

Stuck to the faulty/empty
battery after switching to
the functioning battery

StuckWroBattry

Wiring fault between
LiDAR sensor B and

the battery
WiringPwrB

Wiring fault between
LiDAR sensor B and

the battery
WiringPwrA

LiDAR sensor B
fails

LiDARBFail

LiDAR sensor
A fails

LiDARAFail

λ 8.40E-12 /H
PFH 7.36E-08 /H

Stuck to the empty/faulty
battery after switching to
the functioning battery

StuckWroBattryA

Stuck to the empty/faulty
battery after switching to
the functioning battery

StuckWroBattryB

Control system
failure

CSFailure

λ 3E-12 /H
PFH 2.63E-08 /H

λ 5E-12 /H
PFH 4.38E-08 /H

λ 2E-10 /H
PFH 1.75E-06

λ 3E-12 /H
PFH 1.31E-08 /H

λ 3E-12 /H
PFH 1.31E-08 /H

λ 5E-12 /H
PFH 4.38E-08 /H

λ 5E-12 /H
PFH 4.38E-08 /H

λ 5E-12 /H
PFH 4.38E-08 /H

λ 4E-13 /H
PFH 3.50E-09 /H

λ 2E-10 /H
PFH 1.75E-06

Brake

B
rake

B
rake

Brake

2-D LiDAR x2
under the hood

Control
system

M
ain B

attery

Drive MotorDrive Motor

B
ackup B

attery

TE_CSSense

TB
_C
S
M

Fig. 4. An overview of AGV’s and its probabilistic FTA (CSSense FTA)

the contracts were derived). As a result of doing this, developers can specify
the entry point of the impact of failure in the safety analysis and the safety
argument. It is worth mentioning that we assume the existence of a redundant
component of the failing component. Hence, a broken safety contract does not
necessarily lead to a total system failure.

3 Motivating Example: Automated Guided Vehicles
(AGVs)

AGVs are being extensively used for more than 40 years now. They are used
for intelligent transportation and distribution of materials in warehouses and
auto-production lines. There are different setups and operational assumptions
for each application of AGVs in industry. In our example, however, the AGVs
are a number of battery-powered vehicles whose movements are autonomous.
The AGVs are interfaced to automated warehouse and holding area, and to the
machine tools, so that stock movement requirements can be fulfilled. The plant,
in our example, is not fully automated so that people cannot be fully excluded
from the areas where the AGVs work. Clearly, one of the most important safety
features of the AGV vehicles is their ability to detect obstacles and stop quickly
in order to avoid a collision with humans, hazardous objects (e.g., flammable

Table 1. A summary of the results of applying the steps 1-5

STEP 1 STEP 2 STEP 3 STEP 4 STEP 5

No. Events λλλD,G PFH RAW Max PFH λλλD Max Sensitivity Refine Contract

1 CSSense (Top) 8.4E-12 7.36E-08 10−7 TE CSSense

2 CSFails 4E-13 3.50E-09 13589269.0946 2.99E-08 3.41E-12 7.5380 1 TB CSM

3 WiringFPwrRCS 5E-12 4.38E-08 13589268.5470 7.02E-08 8.02E-12 0.6030

4 StuckWroBattry 3E-12 2.63E-08 13589268.7851 5.27E-08 6.02E-12 1.0051 3

5 LiDARAFail 2E-10 1.75E-06 26.3559 1.42E-02 1.63E-06 8137.5 2

6 WiringCSBA 5E-12 4.38E-08 26.3559 1.42E-02 1.63E-06 325499

7 StuckWroBattryA 3E-12 2.63E-08 26.3559 1.42E-02 1.63E-06 542499 3

8 WiringPwrA 5E-12 4.38E-08 26.3559 1.42E-02 1.63E-06 325499

9 LiDARBFail 2E-10 1.75E-06 26.3559 1.42E-02 1.63E-06 8137.5 2

10 WiringCSBB 5E-12 4.38E-08 26.3559 1.42E-02 1.63E-06 325499

11 StuckWroBattryB 3E-12 2.63E-08 26.3559 1.42E-02 1.63E-06 542499 3

12 WiringPwrB 5E-12 4.38E-08 26.3559 1.42E-02 1.63E-06 325499

materials, electrical resources, other AGVs, etc.). After performing safety anal-
ysis, a number of safety hazards were identified. In this paper, we will focus
on one hazard, which is: Loss of obstacle detection while the vehicle is in mo-
tion. A redundant 2-D LiDAR sensor with all-round (360◦) visibility is used for
detecting obstacles within up to 30 meters range. Information about detected
obstacles are sent to the control system to determine the manoeuvring strategy
to ultimately avoid any potential collision.

According to the likelihood of occurrence, potential consequences and other
safety countermeasures in the AGVs, the obstacle detection function is assigned
SIL 3 (Safety Integrity Level) according to IEC 61508. Moreover, since the
function under discussion operates in a high demand (i.e., in a continuous mode),
the allowable frequency of dangerous failure according to the same standard is
PFH < 10−7. The proof test interval τ is assumed as 1 year (i.e., 8760 hours)
for all components. Figure 4 shows an overview of the AGV design (on upper
left-hand corner). The figure also shows the FTA of the system where the top
event together with the basic events are specified by λD G.

Applying the first 5 steps in Section 2 is straightforward. Table 1 provides
the results of the steps 1-5. The Refine column reflects the experts judgment
that is supported by the RAW and Sensitivity ranking. For the sake of giving
a clear example of what should be done next, we assume that Control system
got the highest priority for monitoring (the grey row in Table 1). Hence, two
contracts should be derived in the case: 1) TE contract TB CSM and, 2) BE
contract (i.e., monitoring contract) TE CSSense.

Step 6 requires associating the derived contracts with the safety argument.
For AGV system example, we use our suggested GSN patterns in Section 2.6
to create the confidence argument first and then associate the contracts with
it through an ACP. Figure 2 presents our safety argument and the role of the
proposed monitoring technique to provide supportive evidence for the articulated
claims about the failure rates in the argument. Figure 1 shows the derived TE
and BE for the top event CSSense and the basic event CSFails. The figure also
shows the GSN and FTA references which reveal the associations (or traceability)
of the contracts with the safety argument and the FTA, respectively.

4 A Through-life Safety Assurance Technique

Denney et al., [5] introduced the term “Dynamic Safety Cases (DSCs)” as a
novel operationalisation of the concept of through-life safety assurance. The main
motivation for introducing DSCs is that the appreciable degree of certainty about
the expected runtime behaviour of a system might not be precise or it perhaps
over- or underestimate the actual behaviour, which can create deficiencies in the
reasoning about the safety performance of that system. Hence, there is a need
for a new class of safety assurance techniques that exploit the runtime related
data (operational data) to continuously assess and evolve the safety reasoning
to, ultimately, provide through-life safety assurance [5]. The suggested lifecycle
of DSCs comprises four main activities as follows [5]:

1. Identify the sources of uncertainty in a safety case.
2. Monitor the runtime operation of the related system to collect data about

system and environment variables, events, and assurance deficits in the safety
argument(s).

3. Analyse the collected operational data from the former activity to examine
whether the defined thresholds are met, and to update the confidence in the
associated claims

4. Respond to operational events that affect safety assurance. Deciding on
the appropriate response depends on a combination of factors including the
impact of confidence in new data, the available response options already
planned, the level of automation provided, and the urgency with which cer-
tain stakeholders have to be alerted.

In this section, we explain how using the described technique in Section 2
enables a through-life safety assurance, where we 1) identify a source of un-
certainty, 2) provide a runtime monitoring mechanism, 3) analyse the collected
operational data, and 4) suggest a response to the operational events.

1. Identify a source of uncertainty: Evidence supporting a claim about a pre-
diction of a hardware failure rate may be obtained from different sources.
Handbooks produced by commercial, military or government sources can
support a claimed prediction of a hardware failure rate. A hardware vendor
or an expert might also support such claims. The explicit logic of a claim
about a failure rate prediction and its supported evidence is that the pre-
dicted likelihood of component C to fail during time T of operation is λ
because a handbook, a vendor or an expert “says so”. The implicit assump-
tion of such claims is that the actual λ will conform to the predicted λ during
the operational life. This assumption is an obvious source of uncertainty (i.e.,
lack of confidence) which can influence the level of confidence in the safety
argument. Hence, it is particularly important to know whether or not the
actual failure rate of a component during the operational life will be similar
to the predicted (i.e., generic) rate as the evidence suggests.

2. Monitor the actual failure rate: Algorithm 1 provides the runtime monitor-
ing logic through which the number of failures of a hardware component is
continuously calculated during runtime.

3. Analyse the collected operational data: Algorithm 1 also analyses the calcu-
lated number of failures by comparing it with a predefined threshold.

4. Respond to operational events: If an observed λ exceeds the generic λ and
it is not tolerated by the maximum allowed λ, then a safety contract is bro-
ken. The monitoring algorithm highlights broken contracts indicating that
an additional safety countermeasure should be considered, such as replacing
a hardware component with an ultra reliable component or add a redundant
component. Since the contracts under monitoring by the algorithm is asso-
ciated with ACPs in the safety argument, a broken contract indicates the
affected GSN elements in the argument.

5 Discussion and Conclusion

Numerous studies and data analysis have shown either a decreasing or increasing
failure rate with time. Runtime monitoring enables a new source of data which
improves our perception of some functions, components, and behaviours within
safety critical systems. Monitoring a property of interest of a system component
and analysing the collected data enable us to know more about this component
(e.g., the way it behaves, fails, etc.). As a result, we can improve our confidence in
safety based upon more conscious reasoning that replaces the intuitive evidence
by more cognitive one. Some safety standards require monitoring and re-assessing
the reliability parameters which were used during the design time. For example,
IEC 61511-1 [9] requires operators to monitor and assess whether reliability
parameters of the Safety Instrumented Systems (SIS) are in accordance with
those assumed during the design time [10]. Although runtime monitoring is not
a new technique, there is no single way to specify what to monitor, why and
how. Safety contracts, on the other hand, are useful for building, reusing or
maintaining safety critical systems. The cost of maintaining system components
can be drastically reduced by using contracts as system developers may rework
the components with knowledge of the constraints placed upon them [20].

In this paper, we proposed a novel technique to monitor the runtime of a
system and detect the divergence between the failure rates (which were used in
the safety analyses) and the observed failure rates in the operational life. The
technique enables through-life safety assurance by utilising safety contracts to
provide prescriptive data for what should be monitored, and what parts of the
safety argument should be revisited to maintain system safety when a divergence
is detected. Future work will focus on creating a more in-depth case study to
validate both the feasibility and efficacy of the technique for software and hard-
ware applications. We also plan to formally define safety contracts and to fully
automate the application of the technique.

Acknowledgment

This work has been partially supported by the Swedish Foundation for Strategic
Research (SSF) (through SYNOPSIS and FiC Projects) and the EU-ECSEL
(through SafeCOP project).

References

1. J.C. Knight. Safety critical systems: Challenges and directions. In Proceedings of
the 24rd International Conference on Software Engineering (ICSE)., pages 547–
550, May 2002.

2. Omar Jaradat, Irfan Sljivo, Ibrahim Habli, and Richard Hawkins. Challenges of
safety assurance for industry 4.0. In European Dependable Computing Conference
(EDCC). IEEE Computer Society, September 2017.

3. O. Jaradat, P. Graydon and I. Bate. An approach to maintaining safety case
evidence after a system change. In Proceedings of the 10th European Dependable
Computing Conference (EDCC), UK, 2014.

4. Patrick J. Graydon and C. Michael Holloway. An investigation of proposed tech-
niques for quantifying confidence in assurance arguments. Safety Science, 92(Sup-
plement C):53 – 65, 2017.

5. E. Denney, G. Pai, and I. Habli. Dynamic safety cases for through-life safety
assurance. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, volume 2, pages 587–590, May 2015.

6. Reliability prediction basics. Technical report, ITEM Software, Inc., 2007.
7. Paolo Pittiglio, Paolo Bragatto, and Corrado Delle Site. Updated failure rates and

risk management in process industries. Energy Procedia, 45(Supplement C):1364
– 1371, 2014. ATI 2013 - 68th Conference of the Italian Thermal Machines Engi-
neering Association.

8. Functional safety of electrical/electronic/programmable electronic safety-related
systems. IEC 61508-4:2010.

9. Functional safety – Safety instrumented systems for the process industry sector.
IEC 61511-1:2016.

10. M. Generowicz and A. Hertel. Reassessing failure rates. Technical report, I&E
Systems Pty Ltd, 2017.

11. Marvin Rausand. Reliability of safety-critical systems: theory and applications.
John Wiley & Sons, 2014.

12. Iwan van Beurden and William M. Goble. The Key Variables Needed for PFDavg
Calculation. White paper, Exida, Sellersville, PA 18960, USA, July 2015.

13. William M. Goble. Control System Safety Evaluation and Reliability. 2nd edition,
1998.

14. Marvin Rausand and Arnljot Høyland. System Reliability Theory: Models and
Statistical Methods and Applications. John Wiley & Sons, Inc., 2004.

15. M van der Borst and H Schoonakker. An overview of PSA importance measures.
Reliability Engineering and System Safety, 72(3):241 – 245, 2001.

16. O. Jaradat, I. Bate, and S. Punnekkat. Using sensitivity analysis to facilitate the
maintenance of safety cases. In Proceedings of the 20th International Conference
on Reliable Software Technologies (Ada-Europe), pages 162–176, June 2015.

17. Richard Hawkins, Tim Kelly, John Knight, and Patrick Graydon. A New Approach
to creating Clear Safety Arguments, pages 3–23. Springer London, London, 2011.

18. GSN Community Standard Version 1. Technical report, Origin Consulting (York)
Limited, November 2011.

19. Aaron Kane. Runtime Monitoring for Safety-Critical Embedded Systems. PhD
thesis, Carnegie Mellon University, September 2015.

20. S. Bates, I. Bate, R. Hawkins, T. Kelly, J. McDermid, and R. Fletcher. Safety case
architectures to complement a contract-based approach to designing safe systems.
In Proceedings of the 21st International System Safety Conference (ISSC), 2003.

	Using Safety Contracts to Verify Design Assumptions During Runtime

