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Abstract

Modern real-time data-intensive systems generate large amounts of data that
are processed using complex data-related computations such as data aggrega-
tion. In order to maintain the consistency of data, such computations must
be both logically correct (producing correct and consistent results) and tempo-
rally correct (completing before specified deadlines). One solution to ensure
logical and temporal correctness is to model these computations as transac-
tions and manage them using a Real-Time Database Management System (RT-
DBMS). Ideally, depending on the particular system, the transactions are cus-
tomized with the desired logical and temporal correctness properties, which
are achieved by the customized RTDBMS with appropriate run-time mecha-
nisms. However, developing such a data management solution with provided
guarantees is not easy, partly due to inadequate support for systematic anal-
ysis during the design. Firstly, designers do not have means to identify the
characteristics of the computations, especially data aggregation, and to rea-
son about their implications. Design flaws might not be discovered, and thus
they may be propagated to the implementation. Secondly, trade-off analysis
of conflicting properties, such as conflicts between transaction isolation and
temporal correctness, is mainly performed ad-hoc, which increases the risk of
unpredictable behavior.

In this thesis, we propose a systematic approach to develop transaction-
based data management with data aggregation support for real-time systems.
Our approach includes the following contributions: (i) a taxonomy of data ag-
gregation, (ii) a process for customizing transaction models and RTDBMS, and
(iii) a pattern-based method of modeling transactions in the timed automata
framework, which we show how to verify with respect to transaction isolation
and temporal correctness. Our proposed taxonomy of data aggregation pro-
cesses helps in identifying their common and variable characteristics, based
on which their implications can be reasoned about. Our proposed process
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allows designers to derive transaction models with desired properties for the
data-related computations from system requirements, and decide the appropri-
ate run-time mechanisms for the customized RTDBMS to achieve the desired
properties. To perform systematic trade-off analysis between transaction iso-
lation and temporal correctness specifically, we propose a method to create
formal models of transactions with concurrency control, based on which the
isolation and temporal correctness properties can be verified by model check-
ing, using the UPPAAL tool. By applying the proposed approach to the de-
velopment of an industrial demonstrator, we validate the applicability of our
approach.
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Chapter 1

Introduction

Traditionally, real-time systems used to be closed systems with static well-
defined functionalities managing small amounts of data. In recent years, how-
ever, real-time systems are designed to provide more advanced functionalities,
with higher degrees of openness to other systems, and consequently become
more data intensive. For instance, the amount of data managed by software is
increasing in modern automotive systems. In some recent models, over 2500
signals are generated and processed in real-time [1]. In factory automation
systems, hundreds of sensors are deployed to monitor the states of the working
environment and the system, based on which time-constrained actions are taken
to complete production work [2]. Managing large amounts of data has become
an emerging challenge that the designers of real-time systems are facing.

Not only the amounts of data are growing, but also the data-related compu-
tations are becoming more complex in data-intensive real-time systems, since
the latter needs to meet both temporal and logical constraints [3, 4]. On one
hand, just as in traditional real-time systems, these computations need to sat-
isfy the timeliness requirement, that is, to meet their deadlines. On the other
hand, data-intensive real-time systems often bear a higher concern with respect
to logical data consistency compared with the traditional ones. Concurrent
access of data is common in data-intensive systems, which may introduce un-
wanted interference that harms logical data consistency. In addition, applica-
tion semantics may entail various requirements, such as failure recovery and
persistence of computation results, which also increases the complexity of the
computations.

One common type of complex data-centric computation is data aggrega-
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4 Chapter 1. Introduction

tion, which is defined as the process of producing a synthesized form of data
from multiple data items using an aggregate function [5]. Compared to the raw
data before aggregation, the aggregated data is usually smaller in size, often
meaning reduced data storage and transmission costs, while the key informa-
tion is still preserved. Therefore, data aggregation has been extensively applied
in a variety of real-time applications, such as automotive [6] and avionic sys-
tems [7], in which data are aggregated from various sensors and electronic
units. In many data-intensive systems, the aggregated data of one aggregation
process could serve as the raw data of another, hence forming a multiple-level
aggregation design. In a factory automation system, for instance, a multi-level
aggregation design can be adopted for production monitoring [2]. Condition
data are collected from field devices such as different sensors, where the first-
level data aggregation is performed. The aggregated results are transmitted to,
and further aggregated in, the production cell controllers, the factory monitor-
ing system, and even in the cloud. In such a system, each level of aggregation
may have its unique characteristics, not only in the functional aspects imple-
mented by specific aggregate functions, but also in non-functional properties
[8] including logical and temporal correctness.

A promising solution to manage the increasing amounts of data and the
complex computations is to use Real-Time DataBase Management Systems
(RTDBMS) for structured data management. For instance, Almeida et al. [9]
adopt an RTDBMS to manage real-time sensor data and coordinate the actions
of autonomous agents. In an RTDBMS, data-related computations are modeled
as transactions, which are collections of logically related operations on data,
which maintain both logical data consistency and temporal correctness [3].
Among them, logical data consistency is maintained by ensuring the so-called
ACID properties, which refer to, respectively: Atomicity (a transaction either
runs completely or rollbacks all changes), Consistency (a transaction executing
by itself does not violate logical constraints), Isolation (uncommitted changes
of one transaction shall not be seen by concurrent transactions), and Durabil-
ity (committed changes are made permanent) [10, 11]. Temporal correctness
includes two aspects: timeliness and temporal data consistency. Timeliness
refers to the property that the transaction should complete its computation by
the specified deadline, while temporal data consistency requires that the data
used for the computation should represent a fresh and consistent view of the
system and the environment [3, 12]. Ideally, both logical data consistency
and temporal correctness should be guaranteed by the RTDBMS. However,
conflicts could arise when temporal correctness is breached due to the unpre-
dictability introduced by the transaction management mechanisms for ACID
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such as concurrency control. In such situations, ACID assurance is often re-
laxed in favor of temporal correctness [13]. Depending on the specific appli-
cation semantics, the relaxation of ACID could vary, in the spectrum of one or
more properties, that is, A, C, I, and D [14].

In order to design a transaction-based data management solution for a data-
intensive real-time system, the system designer needs to model the data-related
computations as transactions, and design an RTDBMS to manage these trans-
actions so that the desired correctness requirements are met. To our knowl-
edge, existing DBMS design methodologies [15, 16, 17, 18, 14, 19, 20] do
not provide support for the systematic analysis of trade-offs between logical
data consistency and temporal correctness. Following these methodologies,
designers may either design data management solutions without being aware
of their impact on logical data consistency and temporal correctness, or choose
an inappropriate relaxation of ACID properties and the transaction manage-
ment mechanisms without sound analysis. Consequently, the risks of failing to
identify conflicting properties in the design increase, and hence such conflicts
could propagate to the implementation phase, leading to system-level failures
during the execution.

In this thesis, we investigate how to design data aggregation and manage-
ment systematically for data-intensive real-time systems. We propose an en-
gineering process called DAGGERS (Data AGGregation for Embedded Real-
time Systems) [21] to systematically develop RTDBMS customized for sys-
tems that need to trade-off between logical data consistency and temporal cor-
rectness. The DAGGERS process consists of the following steps: (i) Spec-
ifying the data-related computations, as well as the logical data consistency
and temporal correctness properties, from system requirements; (ii) Selecting
the appropriate transaction models to model the computations, and deciding
the corresponding transaction management mechanisms that can guarantee the
properties; (iii) Generating the RTDBMS using the selected transaction model
and the mechanisms.

We focus on techniques to facilitate step (i) and (ii) in this thesis. Con-
cretely, for step (i) we propose a taxonomy for data aggregation and its prop-
erties. We do this since this type of data-related computation is essential in
many applications, yet a structured knowledge base for data aggregation pro-
cesses is missing, which hinders applying systematic analysis in the design. For
step (ii), we propose a timed-automata-based approach to model data-related
computations, and analyze the trade-offs between logical data consistency and
temporal correctness using model-checking techniques. We especially focus
on the trade-offs between isolation and temporal correctness, and the selection
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of the appropriate concurrency control algorithm. However, the approach can
be extended for the analysis of other transactional properties.

To ensure applicability, we validate the proposed solutions on two indus-
trial projects, with the engineers from industry in the loop. The validation
shows that our proposed taxonomy can help to ease the effort in designing data
aggregation for real-time data-intensive systems, and prevent software design
flaws prior to implementation. The validation of the entire approach will be
performed in our future work.

1.1 Thesis Overview
This thesis is divided into two parts. The first part is a summary of our research,
including the preliminaries of this thesis (Chapter 2), a brief description of
our research goals, methods and contributions (Chapter 3), a discussion on the
related work (Chapter 4), and conclusions and future work (Chapter 5).

The second part is a collection of papers included in this thesis, listed as
follows:

Paper A DAGGTAX: A Taxonomy of Data Aggregation Processes. Simin
Cai, Barbara Gallina, Dag Nyström, and Cristina Seceleanu. Technical Report.
Mälardalen Real-Time Research Center, Mälardalen University, Sweden, May
2017. A shorter version has been submitted to the 7th International Conference
on Model & Data Engineering (MEDI).

Abstract: Data aggregation processes are essential constituents for data man-
agement in modern computer systems, such as decision support systems and
Internet of Things (IoT) systems. Due to the heterogeneity and real-time con-
straints in such systems, designing appropriate data aggregation processes of-
ten demands considerable efforts. A study on the characteristics of data ag-
gregation processes will provide a comprehensive view for the designers, and
facilitate potential tool support to ease the design process. In this paper, we pro-
pose a taxonomy called DAGGTAX, which is a feature diagram that models the
common and variable characteristics of data aggregation processes, especially
focusing on the real-time aspect. The taxonomy can serve as the foundation
of a design tool that enables designers to build an aggregation process by se-
lecting and composing desired features, and to reason about the feasibility of
the design. We also provide a set of design heuristics that could help designers
to decide the appropriate mechanisms for achieving the selected features. Our
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industrial case study demonstrates that DAGGTAX not only strengthens the
understanding, but also facilitates the model-driven design of data aggregation
processes.

Paper contribution: I was the main driver of the paper. I performed the survey
on data aggregation processes and proposed the taxonomy. I also conducted
the industrial case study and wrote the paper. The other authors contributed
with important ideas and comments.

Paper B A Formal Approach for Flexible Modeling and Analysis of Trans-
action Timeliness and Isolation. Simin Cai, Barbara Gallina, Dag Nyström,
and Cristina Seceleanu. In Proceedings of the 24th International Conference
on Real-Time Networks and Systems (RTNS), Brest, France, 19-21st October
2016. ACM.

Abstract: Traditional Concurrency Control (CC) mechanisms ensure absence
of undesired interference in transaction-based systems and enforce isolation.
However, CC may introduce unpredictable delays that could lead to breached
timeliness, which is unwanted for real-time transactions. To avoid deadline
misses, some CC algorithms relax isolation in favor of timeliness, whereas oth-
ers limit possible interleavings by leveraging real-time constraints and preserve
isolation. Selecting an appropriate CC algorithm that can guarantee timeliness
at an acceptable level of isolation thus becomes an essential concern for sys-
tem designers. However, trading-off isolation for timeliness is not easy with
existing analysis techniques in database and real-time communities. In this
paper, we propose to use model checking of a timed automata model of the
transaction system, in order to check the traded-off timeliness and isolation.
Our solution provides modularization for the basic transactional constituents,
which enables flexible modeling and composition of various candidate CC al-
gorithms, and thus reduces the effort of selecting the appropriate CC algorithm.

Paper contribution: I was the main driver of the paper. I proposed the modeling
and verification approach presented in the paper and wrote the paper. The other
authors contributed with important ideas and comments.

Paper C Towards the Verification of Temporal Data Consistency in Real-
Time Data Management. Simin Cai, Barbara Gallina, Dag Nyström, and Cris-
tina Seceleanu. In Proceedings of the 2nd International Workshop on mod-
eling, analysis and control of complex Cyber-Physical Systems (CPSDATA),
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Vienna, Austria, April 2016. IEEE.

Abstract: Many Cyber-Physical Systems (CPSs) require both timeliness of
computation and temporal consistency of their data. Therefore, when using
real-time databases in a real-time CPS application, the Real-Time Database
Management Systems (RTDBMS) must ensure both transaction timeliness and
temporal data consistency. RTDBMS prevent unwanted interferences of con-
current transactions via concurrency control, which in turn has a significant
impact on the timeliness and temporal consistency of data. Therefore it is im-
portant to verify, already at early design stages that these properties are not
breached by the concurrency control. However, most often such early on guar-
antees of properties under concurrency control are missing. In this paper we
show how to verify transaction timeliness and temporal data consistency using
model checking. We model the transaction work units, the data and the con-
currency control mechanism as a network of timed automata, and specify the
properties in TCTL. The properties are then checked exhaustively and auto-
matically using the UPPAAL model checker.

Paper contribution: I was the main driver of the paper. I developed the formal
models and performed the verification, and wrote the paper. The other authors
contributed with important ideas and comments.

Paper D Design of Cloud Monitoring Systems via DAGGTAX: a Case Study.
Simin Cai, Barbara Gallina, Dag Nyström, Cristina Seceleanu, and Alf Lars-
son. In Proceedings of the 8th International Conference on Ambient Systems,
Networks and Technologies (ANT), Madeira, Portugal, May 2017. Elsevier.

Abstract: Efficient auto-scaling of cloud resources relies on the monitoring of
the cloud, which involves multiple aggregation processes and large amounts
of data with various and interdependent requirements. A systematic way of
describing the data together with the possible aggregations is beneficial for
designers to reason about the properties of these aspects as well as their impli-
cations on the design, thus improving quality and lowering development costs.
In this paper, we propose to apply DAGGTAX, a feature-oriented taxonomy
for organizing common and variable data and aggregation process properties,
to the design of cloud monitoring systems. We demonstrate the effectiveness of
DAGGTAX via a case study provided by industry, which aims to design a cloud
monitoring system that serves auto-scaling for a video streaming system. We
design the cloud monitoring system by selecting and composing DAGGTAX
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features, and reason about the feasibility of the selected features. The case
study shows that the application of DAGGTAX can help designers to identify
reusable features, analyze trade-offs between selected features, and derive cru-
cial system parameters.

Paper contribution: I was the main driver of the paper. I applied the taxonomy,
designed the system, implemented a prototype, and wrote the paper. Alf Lars-
son provided the industrial use case, and useful comments. The other authors
contributed with important ideas and comments.





Chapter 2

Preliminaries

In this chapter we present the needed preliminaries of this thesis. We first
present the background knowledge about data aggregation, a common type of
data-related computations considered in this thesis. We then recall the concept
of transaction, including the relaxation of ACID in RTDBMS. After that, we
briefly present the basics of model checking with UPPAAL, which is the formal
analysis technique used in this thesis.

2.1 Data Aggregation

Data aggregation is the process of producing a synthesized form of data from
multiple data items using an aggregate function [5]. It is applied extensively in
information systems [5, 22, 23]. For instance, in database systems, data tuples
are aggregated to compute statistical values; in resource-constrained systems,
large amounts of data are aggregated to save storage or transmission resources;
in systems concerning privacy and security, aggregation of details prevents in-
formation exposure.

In complex information systems, the aggregated data of one aggregation
process could serve as the raw data of another process, forming a multi-level
aggregation architecture. For instance, a cooperative autonomous robot aggre-
gates the states of its companions to make a decision, which could again be
transmitted to other robots as the raw data for their aggregation [24]. VigilNet
exploits four levels of aggregation to perform real-time surveillance [25], as
shown in Figure 2.1. The first-level aggregation takes place in the sensor layer,

11
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Sensor-layer Aggregation
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Figure 2.1: Data aggregation architecture of VigilNet [25]

in which surveillance sensor data are aggregated to form detection confidence
vectors. These confidence vectors are used as raw data for the second-level ag-
gregation in the node layer, to produce a report of the tracked targets. Using the
reports from the nodes, the third-level aggregation creates aggregated reports
for each group of nodes. At last, in the base layer, reports from the groups of
nodes are aggregated together with historical data to make the estimation of the
targets. Both the data and the aggregation processes in each level could have
their unique characteristics. In VigilNet, the values of the sensor data become
obsolete much faster than the historical data. Each type of sensor data also
differs in when and how the data are collected and used. The aggregation pro-
cesses also have different characteristics. In these four levels, the processes are
triggered by different conditions, and apply various functions to perform ag-
gregation. Although all these processes have to meet real-time requirements,
the aggregation processes in the first and second levels have more strict time
constraints than the other aggregation processes.

In this thesis, we have surveyed how data aggregation processes are de-
signed in modern information systems, and studied their common and variable
characteristics. Based on these studies we propose our taxonomy of data ag-
gregation processes in Chapter 6.

2.2 The Concept of Transaction
A transaction is a partially-ordered set of logically-related operations on the
database, which as a whole guarantee the logical data consistency [10], that
is, satisfying a set of integrity constraints imposed on the database [26]. The
partially-ordered set of operations is called a work unit [14], which may in-
clude read operations that read data from the database, write operations that
modify the data in the database, and be extended with other operations that do
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not interact with the database directly. Initially, a transaction maintains logi-
cal data consistency by ensuring the so-called ACID (Atomicity, Consistency,
Isolation, and Durability) properties during the execution [10, 11]. Atomic-
ity refers to the “all-or-nothing” semantics, meaning that if a transaction fails
before completion, all its changes should be rolled back. Consistency requires
that a transaction executed alone should not violate any logical constraints. Iso-
lation refers to the property that no uncommitted changes within a transaction
should be seen by any other, in a concurrent execution. If a transaction is com-
mitted, durability requires that its changes should be permanent and able to
survive system failures. A database management system enforces these prop-
erties by applying various mechanisms to the transaction management. For
instance, various logging and recovery mechanisms are among the choices for
maintaining atomicity and durability, while in modern DBMS, concurrency
control techniques are applied to achieve isolation [27].

Program 2.1: Transaction T that transfers 100 from A to B

Begin
read A
subtract(A, 100)
write A
if A<0, Abort
read B
add(B, 100)
write B

Commit

Let us consider two bank accounts, A and B, each having an initial balance
of 150. Program 2.1 shows a transaction T that transfers 100 from account A
to B. In this transaction, “Begin” indicates the start of the transaction, while
“Commit” and “Abort” indicate the successful termination and failure, respec-
tively. The transaction first reads the value of A from the database to a local
variable, subtracts 100 from A, and writes the new value back to the database.
Similarly, it then adds 100 to B in the database. When T is executed alone
and commits, the values of A and B are 50 and 250, respectively. Let us as-
sume that full ACID is ensured by the DBMS. In case T is aborted during the
execution, the values of A and B are exactly the same as the values when T
is started, that is, 150 for both (atomicity assurance). An integrity constraint
is implemented to make sure that the balance of A is never negative, if T is
executed alone (consistency assurance). If two instances of T are executed
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concurrently, their effects on the database are as if they are executed one after
another, that is, one transaction changes A to 50 and B to 250, while the other
one gets aborted (isolation assurance). Once T has committed, the new values
are permanently stored in the disk, and can be recovered if the DBMS crashes
(durability assurance).

2.2.1 Relaxed ACID Properties

Although full ACID assurance achieves a high level of logical data consistency
and has thus witnessed success in many applications, it is not a “one-size-fits-
all” solution for all applications [28, 14]. First, full ACID assurance might not
be necessary, or desired, depending on the application semantics. For instance,
in Computer Supported Cooperation Work (CSCW) systems, a transaction may
need to access partial results of another concurrent transaction, which is how-
ever prohibited by full isolation [19]. Second, full ACID assurance may not be
possible under the particular system constraints. As stated in the CAP theorem
[29], in distributed database systems with network Partitions (P), trade-offs
always occur between logical data Consistency (C) and Availability (A). Fur-
ther, the PACELC theorem [30] states that even when partitions do not exist,
the database system always needs to trade off between logical data consistency
and latency. Therefore, in scenarios such as cloud computing and high-volume
data stream management, full ACID is relaxed for availability and low latency.

As an example, let us consider a travel agency that provides reservation
services. A typical trip reservation transaction could involve the following se-
ries of activities: booking a flight, booking a hotel, and paying the bill. If full
ACID is ensured, when a customer books a trip, the updated information of
available flight tickets is not visible to another customer until the payment has
succeeded due to full isolation. This results in long waiting time for the other
customer to get updated information. In addition, due to full atomicity, failing
to complete the hotel reservation will lead to the rollback of the entire transac-
tion, including the flight reservation. The customer will need to book the flight
again, but the tickets may have already been sold out by that time. In order
to provide better service, the traveling agency may desire another transaction
model, with relaxed ACID properties.

The relaxation could be carried out in one or several of the ACID proper-
ties, depending on the requirements of the developed system. Decades of re-
search have proposed a rich spectrum of transaction models, each consisting of
a particular level of A, C, I, and D [14]. For instance, in the nested transaction
model [31], if a sub-transaction fails, its parent can decide whether to ignore
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the failure, or to restart the failed sub-transaction, rather than to abort the entire
transaction as required by full atomicity. By applying the nested transaction
model in the travel agency example, the trip reservation transaction can choose
to continue when a failure occurs in the hotel booking sub-transaction. Another
example of transaction models with relaxed ACID is the SAGAS model [32],
in which a long-running transaction can be divided into steps. As a relaxation
of full isolation, the results of these internal steps are visible to other transac-
tions before the long-running transaction is committed. By using this model
in the travel agency system, the updated tickets information is allowed to be
seen by other customers before the payment is finalized. For more information
about transaction models and relaxation variants of ACID, we refer the readers
to literature [14].

In this thesis, we are particularly interested in the Isolation levels, which
represent a well-accepted framework for relaxing isolation, and are imple-
mented by most commercial DBMS. The isolation levels are introduced in
the ANSI/ISO SQL-92 standard [33], and later extended and generalized by
Berenson et al. [34] and Adya et al. [35]. An isolation level is defined as the
property of avoiding a particular subset of phenomena (or anomalies), that is,
the interferences caused by concurrent execution [35, 33]. Assuming that T1
and T2 are two transactions as defined previously, we describe the phenomena
introduced by the SQL-92 standard as follows:

• Dirty Read. Transaction T2 reads a data item that was modified by
transaction T1 before T1 commits. If T1 is rolled back, the data read by
T2 is not valid.

• Non-repeatable Read. Transaction T1 reads a data item. Before T1
commits, T2 modifies this data item and commits. If T1 reads the same
data again, it will receive a different value, and thus the data used by T1
become inconsistent.

• Phantom. Transaction T1 reads a set of data items that satisfy a search
condition. Before T1 commits, T2 modifies a data item that affects the
result of the search condition and commits. If T1 reads data with the
same condition again, it will receive a different set of items, and thus the
data used by T1 become inconsistent.

Four isolation levels are defined in the SQL-92 standards, which are READ
UNCOMMITTED (the most relaxed isolation), READ COMMITTED, RE-
PEATABLE READS, and SERIALIZABILITY (the most strict isolation). As
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Table 2.1: Isolation levels in the ANSI/ISO SQL-92 standard [33]

Isolation level Dirty read Non-repeatable Read Phantom
READ UNCOMMITTED Possible Possible Possible
READ COMMITTED Not Possible Possible Possible
REPEATABLE READS Not Possible Not Possible Possible
SERIALIZABILITY Not Possible Not Possible Not Possible

listed in Table 2.1, the SERIALIZABLE level precludes all types of phenom-
ena, whereas other levels can be defined to preclude a selected set of phenom-
ena.

2.2.2 Pessimistic Concurrency Control

In order to achieve isolation, a DBMS applies concurrency control that regu-
lates the execution of concurrent transactions and prevents unwanted interfer-
ences. Among various types of concurrency control applied in DBMS, in this
thesis we focus on one of the most common type called Pessimistic Concur-
rency Control (PCC), which employs locking techniques to prevent interfer-
ences [27]. In PCC, a transaction needs to acquire a lock before it accesses
the data, and release the lock after using the data. The DBMS decides which
transactions should be granted the lock, wait, or be aborted, when lock conflicts
occur [27].

A wide range of PCC algorithms have been proposed in literature [27].
They differ from each other in the types of locks, the locking durations, as well
as the conflict resolution policies. As a result, these algorithms rule out various
types of phenomena, and achieve different levels of isolation. For instance,
as explained by Gray et al. [36] and Berenson et al. [34], one can achieve
the different SQL-92 isolation levels by adjusting the lock types and locking
durations (Table 2.2). In this table, a lock on a data item refers to the fact that a
lock is required before reading/writing the data item, while a lock on phantom
refers to the fact that a lock on the set of data items satisfying a search condition
is required. A short read/write lock means that the lock is released immediately
after the read/write is performed, while a long read/write lock means that the
lock is released only when the transaction is committed.
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Table 2.2: SQL-92 isolation levels achieved by adjusting locks [36, 34]

Isolation level Read locks on data Write locks on data
READ UNCOMMITTED no locks long write locks
READ COMMITTED short read locks on data item long write locks on data item
REPEATABLE READS long read locks on data item,

short read locks on phantom
long write locks on data item

SERIALIZABILITY long read locks on both data
item and phantom

long write locks on data item

2.2.3 Real-time Transactions and Temporal Correctness

In real-time database systems, a real-time transaction is one whose correct-
ness depends not only on the logical data consistency, but also on the temporal
correctness, which is imposed from both the transaction computation and the
data [3]. As any other real-time computation, a real-time transaction should
complete its work by its specified deadline. This property is referred to as
timeliness. In addition, the data involved in the computation should be tempo-
rally consistent, including two aspects: absolute temporal validity and relative
temporal validity [12]. A data instance is absolutely valid if its age from being
sampled is less than a specified absolute validity interval. A data instance de-
rived from other real-time data (base data) is relatively valid, if the base data
are sampled within a specified relative validity interval.

In RTDBMS with hard real-time constraints, since the mechanisms for full
ACID may introduce unacceptable latency and unpredictability, ACID may
need to be relaxed in order to ensure temporal correctness [13]. For instance,
it is common to relax durability, since disk I/O for storing/accessing persistent
data is often considered too unpredictable for RTDBMS. Concurrency control
algorithms ensuring full isolation have also been considered as a bottleneck
to achieve temporal correctness, as they may cause unpredictable delays in-
troduced by long blocking, arbitrary aborting and restarting, which could lead
to deadline misses. Therefore, RTBDMS may choose a concurrency control
algorithm that achieves relaxed isolation, and improves timeliness [37, 38, 39].

In this thesis, we mainly focus on the formal verification of isolation and
temporal correctness of real-time transactions, to ensure that a chosen concur-
rency control algorithm achieves the desired relaxation level while preserving
temporal correctness. The proposed framework is presented in Chapter 7 and
8.
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Figure 2.2: Model-checking technique

2.3 Model Checking Using UPPAAL
Model checking is a formal analysis technique that rigorously checks the cor-
rectness of a given model of the analyzed system, by exhaustively and auto-
matically exploring all possible states of the model [40]. An overview of the
model-checking technique is shown in Figure 2.2. The formal model of the
system is described in a language such as UPPAAL Timed Automata [41] pre-
sented in Chapter 2.3.1. The properties to be verified are formalized in some
logic, in our case as temporal logic (Timed Computation Tree Logic [42]) for-
mulas. The model checker implementing a model-checking algorithm can then
automatically verify whether the properties are satisfied by the system.

The properties verified by a model checker are of two main types: (i) safety
properties, of the form “something (bad) will never happen”, and (ii) liveness
properties, of the form “something (good) will eventually happen”. In this
thesis, we focus on verifying only safety properties, as exemplified in Chapter
2.3.1. The result of the verification given by the model checker is a “yes/no”
answer, indicating that the verified property is satisfied/violated, respectively.
For safety properties, if a “no” answer is given, a model execution trace could
be returned that acts as a counterexample to the safety property, as shown in
Fig 2.2.

2.3.1 UPPAAL Timed Automata
In this thesis, we use the Timed Automata (TA) formal framework [43] to
model real-time transactions, and the UPPAAL model checker [41] to verify
their correctness (the relaxed ACID properties and temporal correctness). Our
choice is justified by the fact that timed automata is an expressive formalism in-
tended to describe the behavior of timed systems in a continuous-time domain.
Moreover, the framework is supported by the UPPAAL tool, the state-of-the-
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art model checker for real-time systems, which uses an extended version of TA
for modeling, called UPPAAL TA in this thesis.

Timed automata [43] are finite-state automata extended with real-valued
clock variables. As mentioned previously, UPPAAL TA [41] extends TA with
discrete variables as well as other modeling features, like urgent and committed
locations, synchronization channels, etc. A real-time system can be modeled as
a network of TA composed via the parallel composition operator (“||”), which
allows an individual automaton to carry out internal actions, while pairs of au-
tomata can perform handshake synchronization. The locations of all automata,
together with the clock valuations, define the state of a TA.

We illustrate the basics of UPPAAL TA via a simple example. For more
details, we refer the readers to the literature [41]. Figure 2.3 shows a simple
network of UPPAAL TA composed of automata A1 and A2. In the figure, a
clock variable cl is defined in A1 to measure the elapse of time, and progresses
continuously. A discrete variable a is defined globally, and shared by A1 and
A2. A1 consists of locations L1, L2 and L3, out of which L1 is the initial
location. At each location, an automaton may non-deterministically choose to:
(i) delay as long as the invariant, which is a conjunction of boolean conditions
expressed as clock constraints associated to the location, is satisfied; (ii) take
a transition along an edge from this location, as long as the specified guard,
which is a conjunction of constraints on discrete variables or clock variables,
is satisfied. In Figure 2.3a, A1 may stay at L2 until the value of cl reaches
3, or move to L2 when the value of c1 is greater than 1. While moving from
L2 to L3, A1 synchronizes with automaton A2 via handshake synchronization,
by using a synchronization channel ch. An exclamation mark “!” following
the channel name denotes the sender, and a question mark “?” denotes the
receiver. An assignment resets the clock or sets a discrete variable when an
edge is traversed. Guards and assignments can be user-defined functions. In
our example, when A1 moves from L2 to L3, the value of a is incremented by
the function inc(a).

A location can be urgent or committed. When an automaton reaches an
urgent location, marked as “U”, it must take the next transition without any de-
lay in time. Another automaton may take transitions at the time, as long as the
time does not progress. In our example, L5 is an urgent location. A committed
location, marked as “C”, indicates that no delay occurs on this location and
the following transitions from this location will be taken immediately. When
an automaton is at a committed location, another automaton may NOT take
any transitions, unless it is also at a committed location. L3 is a committed
location.
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Figure 2.3: Example of a network of UPPAAL TA: A1 || A2

The properties to be verified by model checking the resulting network of
timed automata are specified in a decidable subset of (Timed) Computation
Tree Logic ((T)CTL) [42], and checked by the UPPAAL model checker. UP-
PAAL supports verification of liveness and safety properties [41]. As men-
tioned, in this thesis, we focus on verifying only safety properties. For in-
stance, one can specify the safety property “A1 never reaches location L2” as
“A[ ]notA1.L2”, in which “A” is a path quantifier and reads “for all paths”,
whereas “[ ]” is the “always” path-specific temporal operator. If a safety prop-
erty is not satisfied, a counterexample will be provided by UPPAAL. We refer
the readers to literature [41] for more information about UPPAAL.
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Research Summary

In this chapter, we present a summary of our research. We formulate the re-
search problem and research goals, describe the research method applied in our
research, and present the contributions of the thesis.

3.1 Problem Description

As the amount of data and the complexity of computations are growing, RT-
DBMS with data aggregation support can be promising for managing the log-
ical data consistency and temporal correctness in real-time data-intensive sys-
tems. Designing an RTDBMS is not a trivial task, as full ACID assurance for
logical data consistency may need to be relaxed in order to satisfy temporal
correctness. Due to a lack of support for systematic analysis, the relaxations
are often decided by designers in an ad-hoc manner, which could lead to inap-
propriate designs that fail to satisfy the desired properties.

To overcome the drawback of ad-hoc design, systematic analysis support
is needed for the design of RTDBMS with data aggregation. To achieve this,
several issues need to be addressed. First, a methodology is lacking that guides
the designer to systematically decide an appropriate ACID relaxation from a
rich spectrum of possible choices. Second, the characteristics of the data ag-
gregation computations, as well as their implications with respect to logical
data consistency and temporal correctness, are essential to systematic design,
but they are not well-understood. Last but not least, existing techniques cannot
provide assurance that the selected run-time mechanisms for the RTDBMS can
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guarantee the decided trade-offs.

3.2 Research Goals
Given the aforementioned problems, we present our overall research goal and
the concrete subgoals in this section. Our overall research goal is formulated
as follows:

Overall Research Goal. Enable the systematic design of transaction-based
data management with data aggregation support for real-time systems, so that
the desired ACID properties and temporal correctness are guaranteed.

3.2.1 Research Subgoals
In order to address the overall research goal, we define concrete subgoals that
need to be tackled in order to fulfill the former. Designing appropriate real-time
data management with data aggregation support requires a profound under-
standing of data aggregation, as well as means to organize the characteristics
and reason about their implications with respect to logical data consistency and
temporal correctness. Therefore, we formulate the first subgoal as follows:

Subgoal 1. Identify and classify the common and variable characteristics of
data aggregation such that they can be systematically reasoned about.

When designing RTDBMS, the challenge is how to derive a transaction
model with the appropriate transactional properties, and decide the appropriate
mechanisms from a set of candidates, based on systematic analysis. In partic-
ular, in this thesis we focus on the selection of concurrency control algorithms
based on analysis of trade offs between isolation and temporal correctness. Due
to the large number of candidate concurrency control algorithms, we need to
find a way to provide flexibility in the modeling and the analysis of the algo-
rithms together with the transactions. Based on this, we formulate our second
research subgoal as follows:

Subgoal 2. Design a method that allows for flexible modeling of real-time
transactions and concurrency control, and verification of isolation and tempo-
ral correctness.
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Figure 3.1: The research process of the thesis

The next issue to research into after meeting subgoal 2 is the applicability
and usefulness of the proposed approach. Therefore, our third subgoal is pre-
sented as follows:

Subgoal 3. Validate the applicability and usefulness of the proposed ap-
proach on an industrial use case.

3.3 Research Method
In this section we introduce the methods that we use to conduct our research in
order to address the research goals. We first describe the general process that
we follow in our research, after which we explain the concrete methods used
in this thesis.

Our research process is shown in Figure 3.1. This research is initiated by
industrial problems that have not been solved by industrial solutions nor thor-
oughly studied by academic researchers. Based on the industrial problems, the
state of practice and the state of the art, we formulate the research goals. To
address these goals, we propose a systematic approach, and implement tech-
niques to facilitate the approach, which could be applied to industrial appli-
cations. Finally, we validate the approach by applying it to the development
of an industrial application. Our proposed approach, as well as the validation
process and results, are documented in a series of research papers and reports.

We apply a set of research methods during the activities of the aforemen-
tioned process. For the purpose of identifying the gaps between the problems
and existing approaches and formulating the research goals, we apply the “crit-
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ical analysis of literature” method [44] to study the state of the art and state of
practice of the researched area. We gather literature in areas including data
aggregation, real-time data management, transaction modeling, etc., and criti-
cally analyze the challenges, approaches and solutions related to our research
goals. During the implementation of our approach, we apply the “proof of con-
cepts” method [44] to show the correctness and applicability of our proposed
approach. When validating the research with industry, we apply the “proof
by demonstration” method [44], by developing a demonstrator in an industrial
setting using our proposed approach. The developed demonstrator, as well as
the development process, are eventually evaluated with respect to our research
goals by both the researchers and the industrial partners.

3.4 Thesis Contributions
In this section, we present the technical contributions of this thesis, which ad-
dress the aforementioned research goals.

3.4.1 The DAGGERS Process
As a first step towards reaching our overall research goal defined previously, we
propose, at a conceptual level, a development process called DAGGERS (Data
AGGregation for Embedded Real-time Systems), as the methodology to de-
sign customized real-time data management solutions in a systematic manner.
This process allows designers to identify work units of data aggregation and
other data-related computations, as well as the desired properties from system
requirements, based on which to derive the appropriate transaction models and
the transaction management mechanisms via model checking techniques. The
DAGGERS process is a methodology intended to tackle the overall research
goal.

An overview of the DAGGERS process is presented in Fig 3.2, including
three main steps as follows.

Step I: Specification of initial work units and requirements. The process
starts with analyzing the data-related computations, including data aggrega-
tions, in the system requirements. The analysis should identify the work units
as well as the logical and temporal constraints that need to be fulfilled. Based
on these work units and constraints, the system designer can propose the ini-
tial transaction models, including the specification of the relationships between



3.4 Thesis Contributions 25

System 
requirements

Logical and 
temporal 

requirements

Data-related 
operations

Work unit

Transaction Model

Transaction 

- Atomicity variant
- Consistency variant
- Isolation variant
- Durability variant
- Timeliness variant Candidate Run-time 

Mechanism Models

- Concurrent control 
algorithms
- Persistency algorithms
- Recovery algorithms
- …

Timed Automata 
Model 

Verification 
with UPPAAL

Run-time 
Mechanism Model

construct

select

compose

compose

Property violation detected

Unresolvable conflicts detected

RTDBMS

Properties satisfied Refined Transaction 
Model

Transaction 

Under verified:
- Concurrent control 
algorithm
- Persistency algorithm
- Recovery algorithm

Step I: Specification of initial 
work units and requirements

Step II: Iterative refinement of transaction model

Step III: System 
generation

Figure 3.2: The DAGGERS process

the transactions, as well as the ACID and temporal correctness variants to be
ensured.

Step II: Iterative refinement of transaction model. In this step, we apply
formal modeling and model-checking techniques to derive the refined transac-
tion models, and select the appropriate run-time mechanisms that ensure the
desired ACID and temporal correctness properties. We model the work units
as a set of timed automata [43], on which the transactional properties are spec-
ified formally, and can be checked by the UPPAAL model checker. We also
assume that a repository of timed-automata models of commonly used run-
time mechanisms has been prepared, which can be reused and composed with
the timed automata of the work units. The models are checked iteratively. If
model-checking shows that unsolvable conflicts occur with a particular can-
didate run-time mechanism, this mechanism is replaced by another candidate,
and the models are verified again. This iterative process continues until all
properties are satisfied by some selected mechanisms.

The refinement is the iterative “select-check” process as follows. First,
we select one candidate mechanism from the repository and form a network
of timed automata with the work unit models. Second, we model check the
automata network against the specified properties. If any property violation
is detected, which indicates that the selected mechanism fails to meet the re-
quirement, a new candidate mechanism is selected to replace the current one,
and the model checking is restarted. This iterative process continues until all
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properties are satisfied by some selected mechanisms.
In case that none of the run-time mechanisms in the repository can en-

sure the specified properties, the designer needs to adjust the initial transaction
models, that is, by adjusting the ACID and temporal correctness variants. If the
conflicts cannot be resolved by any transaction model, the designer needs to ad-
just the requirements as they are proven infeasible under the assumed DBMS
platform. As soon as the requirements are adjusted, the entire DAGGERS pro-
cess is restarted.

The outcome of this step is the refined transaction models that are proved
to achieve the appropriate ACID and temporal correctness variants under the
selected run-time mechanisms.

Step III: System generation. With the verified transaction models, the de-
signer can implement the transactions in SQL or other programming languages.
In addition, a customized RTDBMS can be generated by composing or config-
uring the verified run-time mechanisms. In this thesis, we only focus on the
RTDBMS design, while leaving the system generation as future work.

3.4.2 DAGGTAX: A Taxonomy of Data Aggregation Pro-
cesses

In order to gain the knowledge for the systematic analysis of data aggregation,
we have extensively surveyed data aggregation processes as proposed in theory
and used in practice, and investigated their common and variable characteris-
tics. Based on the survey results, we propose a taxonomy of data aggregation
processes, called DAGGTAX (Data AGGregation TAXonomy).

The proposed taxonomy is presented as a feature diagram [45], in which
each characteristic is modeled as a feature. It covers the common and variable
characteristics of the main constituents of an aggregation process, which are
the raw data, the aggregate function and the aggregated data. It also covers
the features of the triggering patterns of the process, as well as the real-time
properties.

Figure 3.3 presents the overview of DAGGTAX. In this diagram, features
presented with solid dots are mandatory features. For instance, “aggregate
function” is mandatory for any data aggregation process. Optional features
are denoted by circles, such as “real-time (P)”, which means that a data ag-
gregation may have real-time constraints. Several features associated with a
spanning curve form a group of alternative features, from which one feature
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Figure 3.3: Our proposed taxonomy of data aggregation processes
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must be selected by a particular aggregation process. As an example, the “trig-
gering pattern” of a data aggregation process must be one of the following:
“aperiodic”, “periodic”, or “sporadic”. The cardinality [m..n] (n ≥ m ≥ 0) an-
notated with a feature denotes how many instances of the feature, including the
entire sub-tree, can be contained as children of the feature’s parent. We use a
star symbol “*” to denote if the bounds of the cardinality are undecided. For
instance, in Figure 3.3, a data aggregation process may have at least one “raw
data type”.

Our taxonomy provides a comprehensive view of data aggregation pro-
cesses for the designers. Using the taxonomy, a data aggregation process can be
constructed via the selection of desired features and their combination. Based
on the taxonomy, we have introduced three design rules that eliminate some
of the infeasible combinations of features during the design. For instance, a
data aggregation process designed with both “soft” “real-time (P)” and “hard”
“real-time (AD)” features are considered infeasible, as a soft real-time process
may miss its deadline, and hence cannot guarantee hard real-time aggregated
data produced by the former. We have also proposed a set of design heuris-
tics to help the designer to decide the necessary mechanisms for achieving the
selected features and other system properties. An example of such heuristics
is that, if the data has a “shared” feature, the designer may need to consider
concurrency control in the system design in order to maintain logical data con-
sistency.

This contribution is proposed in Paper A. It addresses subgoal 1 by pro-
viding a structured way of representing knowledge encompassing the common
and variable characteristics of data aggregation processes. The feature-oriented
representation of the taxonomy allows for potential systematic analysis via tool
support. DAGGTAX raises the awareness of the dependencies between the data
and the aggregation process, as well as their implications to system properties,
which helps designers to reason about the designs systematically, and eliminate
infeasible designs prior to implementation.

3.4.3 A Timed-Automata-based Approach for Flexible Mod-
eling and Verification of Isolation and Temporal Cor-
rectness

As another contribution to address our research goals, we propose a timed-
automata-based approach for modeling real-time concurrent transaction sys-
tems, and model checking isolation and temporal correctness under various
concurrency control algorithms.



3.4 Thesis Contributions 29

Data Automaton
CCManager Automaton

Work Unit Automaton

Isolation Observer
miss_deadline

phenomenon

Candidate CCManager 
Automaton

age

Figure 3.4: Our modeling framework

Modeling. Figure 3.4 shows the framework for modeling a real-time con-
current transaction system. We model the entire system as a timed-automata
network, which consists of four types of automata: a set of work unit automata,
a set of IsolationObserver automata, a set of Data automata, and a CCManager
(Concurrency Control Manager) automaton.

We propose a set of automata skeletons and parameterized patterns as ba-
sic modeling blocks to reduce the modeling effort. Such skeletons model the
basic structures of transactional constituents and common concurrency con-
trol algorithms, while the parameterized patterns model finer-grained recurring
database operations, such as reads and writes. In the following text we explain
our modeling framework in detail.

A work unit automaton models the work unit of a transaction as well as the
interactions with the concurrency control manager. For each work unit automa-
ton, we define a clock variable to trace the time spent by the transaction, and
a location miss deadline to represent the status of timeliness being breached.
This location is reached only if the clock value exceeds a predefined deadline.
Figure 3.5 presents the skeleton for a basic work unit with the locations begin
and end, representing the boundary of the work unit, and a set of operation pat-
terns modeling the data-related operations. This basic work unit skeleton can
be extended with commit trans and abort to represent successful and failed
termination under the full atomicity and durability assumption, as shown in
Figure 3.6. In this figure, a clock variable tc is defined to trace the elapsed
time, and the miss deadline location represents the violation of timeliness.

The work unit skeletons are enriched with instantiated parameterized pat-
terns for data-related operations. An example of the parameterized pattern for
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v

…

begin

end

…

operation patterns

Figure 3.5: Timed automaton skeleton for a work unit

v v

…

begin

commit_trans abort

…

tc:=0

v
tc>DEADLINE

miss_deadline

operation patterns

ready

tc>DEADLINE

Figure 3.6: Work unit skeleton with atomicity and durability

read/write operations is presented in Figure 3.7. In this example, tp is a clock
variable modeling the time, while cs is a discrete variable modeling the CPU
resource. If the CPU is taken (indicated by the guard cs==1), the work unit
automaton moves to the wait location. Otherwise, the automaton moves to the
operation location. The invariant in this location (tp<=WCRT) constrains the
automaton to stay at this location for at most WCRT time units, which is the
worst-case response time of this operation. The guard tp>=BCRT constrains
the automaton to stay at operation for at least BCRT time units, which is the
best-case response time of this operation. As long as both constraints are sat-
isfied, the automaton can move to operation done, and sets the CPU free.

An IsolationObserver automaton is created to monitor a concurrency phe-
nomenon that should be precluded by a particular isolation level. If a monitored
phenomenon occurs, the IsolationObserver will reach the location representing
the phenomenon, indicating that isolation is breached. The automaton skeleton
for an IsolationObserver is described in Figure 3.8. Since a phenomenon is
defined as a particular sequence of operations, we let the IsolationObserver re-
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cs==1

tp <=WCRT

wait
C

tp:=0
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previous_location

cs==0
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operation

tp >=BCRT
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operation_done

Figure 3.7: Read/write operation pattern

phenomenon_Gn

notify_operation1[ti][dj]?

notify_operation2[tm][dn]?

…

operation1_i_j

operation1_i_j_operation2_m_n

idle

notify_commit/abort[ti]?

notify_commit/abort[ti]?

Figure 3.8: Automaton skeleton for an IsolationObserver

ceive the synchronization signals from the work units when such operations are
performed. For instance, when work unit Ti successfully completes an opera-
tion on data Dj , it broadcasts the signal via channel notify operation1[ti][dj].
When the IsolationObserver receives this signal, it moves from the idle loca-
tion to the operation1 i j location. If the sequence of operations that defines
phenomenon Gn does occur, the IsolationObserver will eventually reach the
phenomenon Gn location.

A Data automaton models a data instance accessed by transactions. We
define a clock variable “age” to trace the age of the data instance, which is
reset when the data is updated. The skeleton for a data instance is shown in
Figure 3.9.

The CCManager automaton models the concurrency control manager that
applies a selected concurrency control algorithm. In Figure 3.10, we present
the automaton skeleton for a PCC manager as an example. When the automa-
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v C updated

update[i]?
age:=0

Figure 3.9: Automaton skeleton for a data instance

lock[ti][dj]? idle

decide_grant

decide_refuse

refuse(ti)
updateStatus()

C

C

C

lock_request_received

satisfyPolicy()

!satisfyPolicy()

grant[ti][dj]!
updateStatus()

C

C

unlock[ti][dj]?
updateStatus()

isTransWaiting()
next:=getNextFromQueue()

grant[next][dj]!
updateStatus()

!isTransWaiting()

unlock_request_received

decide_grant_next

Figure 3.10: Automaton skeleton for a PCC manager

ton receives a locking request via the channel lock[ti][dj]?, it takes the tran-
sition from the initial location idle to lock request received. A user-defined
function called satisfyPolicy(), which implements the lock request resolution
of the modeled concurrency control algorithm, is defined as a guard on the
edges from lock request received. Taking Two-Phase Locking (2PL [27]) as
an example, satisfyPolicy() evaluates to false if the data required by the trans-
action has already been locked by another transaction. If satisfyPolicy() returns
true, the automaton moves to decide grant. It then immediately sends the sig-
nal grant[ti][dj]! to transaction Ti, and updates the status of the transactions
and the locks, using a user-defined function updateStatus(). If satisfyPolicy()
returns false, the CCManager moves to decide deny, and takes actions as im-
plemented in function deny(), before it moves back to idle. Since the CCMan-
ager has the highest priority, and the time on lock resolution is negligible, all
locations in this model are committed locations. When receiving an unlocking
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locked_dj

wait_for_lock_j

lock[ti][dj]!

grant[ti][dj]?

C

Figure 3.11: Locking pattern

unlocked_dj

unlock[ti][dj]!

C

Figure 3.12: Unlocking pattern

request via unlock[ti][dj]?, CCManager updates the status, and moves to un-
lock request received. On the transitions from this location, the guards check
if any transaction is waiting for locking the data, by a user-defined function
isTransWaiting(). If this function returns true, the automaton sends a signal via
grant[next][dj]!, to the next transaction obtained by the getNextFromQueue()
function, and updates the status accordingly.

We also propose patterns for locking and unlocking operations, as pre-
sented in Figure 3.11 and Figure 3.12 respectively. After the transaction sends
a message via lock[ti][dj]!, it waits at location wait for lock j, until it receives
the message grant[ti][dj]?. The patterns can be inserted into the work unit
automata at particular positions depending on the selected PCC algorithm.

Using these skeletons and patterns, one can easily compose a network
of automata to model a real-time concurrent transaction-based system. Our
framework allows different PCC algorithms to be modeled and composed with
the rest of the system flexibly. To model the different types of locks and du-
rations, the designer only needs to adjust the types and locations of the in-
stantiated locking/unlocking patterns. The resolution policies for a different
PCC algorithm can also be implemented easily since it is well-encapsulated in
user-defined functions.

Formal Verification. The properties that we try to verify can be checked
against the timed-automata network model constructed using our framework.
We specify the properties to be verified as (Timed) Computation Tree Logic
((T)CTL) formulas, as presented previously in Chapter 2.3.1, and use the UP-
PAAL tool to model check the formalized properties.

To verify timeliness of a transaction, we verify that the miss deadline loca-
tion is not reachable. For instance, the timeliness of Ti can be specified as:
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A[ ]not T i.miss deadline.

The absolute validity of dataDi, which requires that the age ofDi is always
smaller than or equal to its specified absolute validity interval AVI(i), can be
specified as:

A[ ]Di.age <= AV I(i).

The relative validity, referring to the property that the age differences ofDi

andDj should be smaller than or equal to the specified relative validity interval
RVI(i,j), can be specified as the following formula:

A[ ] ((Di.updated imply Dj.age <= RV I(i, j))
and (Dj.updated imply Di.age <= RV I(i, j))).

Similarly, verifying a specified isolation level equals to proving that all
locations representing the phenomena to be precluded are not reachable. Veri-
fying temporal data consistency equals to checking the age of data against the
property. For instance, to verify that Ti and Tj achieve SERIALIZABLE iso-
lation, one must prove that none of the precluded phenomena Gn could occur.
This is equivalent to proving that the phenomenon Gn location of IsolationOb-
server On is not reachable, which can be specified as:

A[ ]notOn.phenomenon Gn.

This contribution addresses subgoal 2, and is proposed in Paper B and C.
In Paper B we propose the approach for model checking isolation and time-
liness. Paper C extends the approach with observer automata for the age of
data and temporal data consistency. Our framework enables flexible modeling
of real-time transaction-based systems with various concurrency control algo-
rithms, and facilitates formal verification of isolation and temporal correctness,
as targeted by subgoal 2.

3.4.4 Validation on Industrial Use Cases
In order to validate the applicability and usefulness of our proposed approach,
we apply them to various industrial, or industrially-relevant, use cases. This
contribution addresses subgoal 3.

In Paper A we apply the proposed taxonomy to the analysis of an industrial
project, the Hardware Assisted Trace (HAT) framework [46], together with its
proposers from Ericsson. HAT, as shown in Figure 3.13, is a framework for
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Figure 3.13: General architecture of the Hardware Assisted Trace system

debugging functional errors in an embedded system. In this framework, a de-
bugger function runs in the same system as the debugged program, and collects
both hardware and software run-time traces continuously. Two data aggrega-
tion processes are identified in the current design. At a lower level, a Program
Trace Macrocell (PTM) aggregation process aggregates traces from hardware.
These aggregated PTM traces, together with software instrumentation traces
from the System Trace Macrocell (STM), are then aggregated by a higher level
ApplicationTrace aggregation process, to create an informative trace for the
debugged application.

With the DAGGTAX diagrams showing the features of the aggregation pro-
cesses, the engineers could immediately identify a problem in the PTM buffer
management. The problem is that the data in the buffer may be overwritten
before they are aggregated. It arises due to the lack of a holistic consideration
on the PTM aggregation process and the ApplicationTrace aggregation process
at design time. Triggered by aperiodic external events, the PTM process could
produce a large number of traces within a short period and fill up the PTM
buffer. The ApplicationTrace process, on the other hand, is triggered with a
minimum inter-arrival time, and consumes the PTM traces as unsheddable raw
data, meaning that each PTM trace should be aggregated by the former. When
the inter-arrival time of the PTM triggering events is shorter than the minimum
inter-arrival time of the ApplicationTrace process, the PTM traces in the buffer
may be overwritten before they could be aggregated by the ApplicationTrace
process. This problem has been observed on Ericsson’s implemented system,
and awaits a solution. However, if the taxonomy was applied on the system
design, this problem could have been identified before it was propagated to
implementation. We have provided two solutions at design level to solve the
identified problem.
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This evaluation shows that the taxonomy enhances the understanding of the
system by the designers. By applying analysis based on our taxonomy, design
flaws can be identified and fixed prior to implementation. Design solutions can
be constructed by composing reusable features, and reasoned about based on
the taxonomy. As a result, the design space of the solutions could be reduced.

In Paper D we apply the taxonomy to design the monitoring subsystem for
achieving auto-scaling functionality of a cloud system, with Ericsson engineers
in the loop. We apply DAGGTAX to both the current OpenStack framework for
auto-scaling, and a new design that extends the current framework. Our experi-
ence shows that our taxonomy promotes a deeper understanding of the systems
behavior, and raises awareness about characteristics that need to be considered
as well as issues that need to be solved during the design. It helps designers
to perform better analysis than otherwise, such as to identify reusable design
solutions, make data management decisions, eliminate infeasible feature com-
binations, and calculate time-related parameters.

This contribution addresses subgoal 3. It demonstrates the applicability of
DAGGTAX, and shows that DAGGTAX can help to ease the design effort and
reduce software flaws prior to implementation.

3.5 Research Goals Revisited
In this section we present the contributions of this thesis by presenting the re-
lationship between the included papers and the research subgoals. The DAG-
GERS process proposed in Chapter 3.4.1 addresses our overall research goal
directly, by providing a systematic process as our methodology. Each research
subgoal is targeted by one or two papers, as illustrated in Table 3.1. The ad-
dressed subgoals, together with the DAGGERS process, provide a solution for
designing real-time data management solutions based on systematic analysis
of transactional properties, and address our overall research goal.



Table 3.1: Contribution of included papers with respect to research subgoals

Overall goal Subgoal 1 Subgoal 2 Subgoal 3
DAGGERS X

Paper A X X
Paper B X
Paper C X
Paper D X





Chapter 4

Related Work

In this chapter, we discuss the related work with respect to data aggrega-
tion, as well as the development of customized transaction management for
(RT)DBMS.

4.1 Taxonomies of Data Aggregation

Many researchers have promoted the understanding of data aggregation on var-
ious aspects. Among these works, considerable efforts have been made on the
study of aggregate functions. Mesiar et al. [47], Marichal [48], and Rudas et
al. [5] have studied the mathematical properties of aggregate functions, such as
continuity and stability, and discussed these properties of common aggregate
functions in detail. A procedure for the construction of an appropriate aggre-
gate function is also proposed by Rudas et al. [5]. In order to design a software
system that computes aggregation efficiently, Gray et al. [49] have classified
aggregate functions into distributive, algebraic and holistic, depending on the
amount of intermediate states required for partial aggregates. Later, in order to
study the influence of aggregate functions on the performance of sensor data
aggregation, Madden et al. [50] have extended Gray’s taxonomy, and classi-
fied aggregate functions according to their state requirements, tolerance of loss,
duplicate sensitivity, and monotonicity. Fasolo et al. [23] classify aggregate
functions with respect to four dimensions, which are lossy aggregation, du-
plicate sensitivity, resilience to losses/failures and correlation awareness. All
these works above only address the characteristics of aggregate functions. Our

39
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taxonomy, although inspired by these works in the classification of aggregate
functions, includes all constituents of data aggregation processes and the time
constraints, and provides a feature-diagram-based representation to organize
the commonalities and variabilities of data aggregation processes.

A large proportion of existing works have their focus on in-network data
aggregation, which is commonly used in sensor networks. In-network aggre-
gation is the process of processing and aggregating data at intermediate nodes
when data are transmitted from sensor nodes to sinks through the network [23].
Besides a classification of aggregate functions that we have discussed in the
previous paragraph, Fasolo et al. [23] classify the existing routing protocols
according to the aggregation method, resilience to link failures, overhead to se-
tup/maintain aggregation structure, scalability, resilience to node mobility, en-
ergy saving method and timing strategy. Their work, however, does not address
the characteristics of the data, and does not provide a structured representation
for the common and variable characteristics. The aggregation protocols are
also classified by Solis et al. [51], Makhloufi et al. [52], and Rajagopalan [53],
with respect to different classification criteria. In contrast to the above works
focusing mainly on aggregation protocols, Alzaid et al. [54] have proposed
a taxonomy of secure aggregation schemes that classifies them into different
models. All these works differ from our taxonomy in that they provide tax-
onomies from a different perspective, such as network topology for instance.
Instead, our work strives to understand the features and their implications of
data aggregation processes and its constituents in design.

4.2 Customized Transaction Management
Designing effective and efficient transaction management to suit applications’
need has been a hot topic in the development of DBMS. In this section we
discuss the related work regarding the design methodologies, and the formal-
ization and analysis of transaction models.

4.2.1 Design methodologies for developing customized trans-
action management

Various design methodologies have been proposed in literature for developing
transaction management for DBMS. KIDS [15], an early effort to construct
a DBMS, identifies transaction management as an aspect, and decomposes it
into sub-aspects representing functionalities such as concurrency control and
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recovery. During the process proposed in KIDS, the database system designer
has to decide the selection of run-time implementation techniques, based on the
analysis of requirements and a classification of the implementation algorithms.
AspectOPTIMA [18] proposes a reusable aspect-oriented framework for con-
structing customized transaction management. The designer selects particular
aspects, such as a particular concurrency control algorithm and a recovery al-
gorithm, which are composed to provide ACID assurance. These methodolo-
gies mainly focus on DBMS without real-time constraints. Moreover, formal
methods are not used to guide the design decisions.

PRISMA [14] is a software product-line-oriented process for requirement
engineering of flexible transaction models, which supports identification, rea-
soning and composition of ACID variants and their sub-features in the require-
ment phase. Formal methods are applied to reason about the consistency of
the selected ACID variants, but not to the analysis of the transactional behav-
iors under various selected transaction management mechanisms. Temporal
correctness of transactions is not considered in PRISMA.

Mentis et al. [20] propose a model-driven approach for generating the im-
plementation of selected transaction models. The implementation is modeled
in state machines and verified against the ACID properties, after which the
code of the transaction management can be generated. Temporal correctness is
not considered in this approach.

Khachana et al. [19] propose an approach to produce a monolithic trans-
action processing system able to adjust the relaxation of ACID properties at
runtime, according to business requirements through user interaction. This ap-
proach, however, does not perform design-time analysis on the transactional
properties, and does not target real-time applications.

COMET [16] combines a component-based approach and aspect-oriented
programing to build tailored RTDBMS. Encapsulating database functionali-
ties as components, and crosscutting features such as transaction management
as aspects, COMET generates a tailored RTDBMS by weaving the selected
components and aspects together. In FAME-DBMS [17], functional require-
ments on a DBMS are represented as features, which are composed to construct
DBMS variants. Built on top of FAME-DBMS, AUTODAMA [55] generates
tailorable DBMS specially for automotive systems. In these methodologies,
the selection of building modules is based on functional requirements analy-
sis, as well as constraints on code-size and performance. They mainly address
resource consumption and footprint issues for embedded systems, rather than
temporal correctness and the possible conflicts with ACID assurance.

Compared with these aforementioned works, our DAGGERS process starts
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from deriving the real-time transaction models accounting for both temporal
correctness and ACID properties. More importantly, we emphasize the analysis
of trade-offs between these properties, and focus on a systematic approach
to analyze different decisions. By iteratively applying formal modeling and
verification of the transaction models, we are able to select the appropriate
transaction management mechanisms that are proved to guarantee the desired
transactional properties.

4.2.2 Formalization and analysis of transaction models

In the real-time community, the common technique to formally analyze trans-
action performance is schedulability analysis [56]. However, this technique
only analyzes the temporal correctness of transactions. To our knowledge, less
attention has been devoted to studying to which extent logical data consistency
can be achieved in the real-time paradigm.

Formal verification of transaction models plays an important role in the
design of customized transaction management. Some substantial work has al-
ready been carried out to specify transaction models and reason about their
properties. One group of work is represented by the ACTA framework [69] and
its successors. ACTA provides a first-order logic formalization to specify the
transactional effects of data objects and the interaction between transactions,
facilitating reasoning about transaction properties, as well as flexible synthe-
sis of transaction models. Real-Time ACTA [70] extends ACTA with formal-
ization of real-time constraints on transactions and data. However, the formal
syntax and semantics for the specification of ACID variants provided by ACTA
and Real-Time ACTA are limited, and tool support for verification is missing.
SPECTRA [71], which improves the formal syntax of ACTA, and is used in
KIDS for specifying transaction models, does not focus on the ACID and time-
liness variants. GOLOG [72] improves ACTA by providing formal semantics
for the building blocks, using situation calculus and tool support for simulation.
However, organizing the building blocks with respect to ACID properties is not
in their focus, and real-time properties are not supported. Used in the PRISMA
process, SPLACID [73] improves ACTA by providing a more expressive and
structured language support for ACID variants and their sub-features, however
real-time properties are not considered.

In addition to the thread of ACTA, a variety of methods have been proposed
to formalize transactions. For instance, Mentis et al. [20] model transaction
models as state machines, and verify that the ACID properties can be satis-
fied by an implementation using model checking. Other works are intended
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Table 4.1: Summary of non-ACTA related work

Related
work

Properties Formalism Analysis
Technique

Mentis et al.
[20]

ACID state machines model checking

Cerone et al.
[57]

logical consistency
models, no explicit
ACID

axioms and rules theorem proving

Bocchi et al.
[58]

consistency process calculi model checking

Kokash et
al. [59]

atomicity Reo, constraint
automata

model checking

Grov et al.
[60] and Liu
et al. [61]

atomicity, isolation Real-Time
Maude

model checking

Suryavanshi
et al. [62]

various properties,
no explicit ACID

Event-B theorem proving

Kirchberg
[63]

various properties,
no explicit ACID

transition rules model checking

Makni et al.
[64]

various properties,
no explicit ACID

SPIN model checking

Gaaloul et
al. [65]

atomicity event calculus model checking

Bourne [66] atomicity temporal logics model checking
Lanotte et
al. [67]

atomicity and time-
liness

timed automata model checking

Kot [68] various properties,
timeliness, no ex-
plicit ACID

timed automata model checking
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for analyzing a selected subset of properties in particular scenarios. A list of
non-ACTA related works are presented in Table 4.1. Compared with these
works, our work is different in several aspects. First, our process strives to
analyze both ACID and temporal correctness, which are not entirely covered
by the aforementioned works. Second, we contribute to a general, reusable and
flexible modeling approach for modeling ACID and temporal correctness prop-
erties, as well as the supporting transaction management mechanisms. In par-
ticular, our timed-automata framework provides flexible modeling capability
for a rage of concurrency control mechanisms by using skeletons and patterns.



Chapter 5

Conclusions and Future
Work

In this thesis we propose a systematic approach for designing data manage-
ment with data aggregation support for real-time applications, in which data
aggregation, as well as other data accessing and manipulating computations,
are modeled as transactions managed by an RTDBMS. Our approach is the
DAGGERS process that systematically derives customized transaction models
incorporating the desired trade offs between ACID and temporal correctness
properties, and decides the appropriate transaction management mechanisms
to generate the RTDBMS. The trade-off decisions are made via formal verifi-
cation of the desired properties. Concretely, we have proposed the following
contributions to facilitate the process:

• A taxonomy of data aggregation processes, depicted as a feature dia-
gram, for analyzing the characteristics of data aggregation and their im-
plications. Three design rules and a set of design heuristics are proposed
based on the taxonomy to provide guidance for the design of data aggre-
gation processes.

• A pattern-based formal approach, within the timed automata framework,
which facilitates flexible modeling of transactions with various concur-
rency control algorithms, and model checking isolation and temporal
correctness of the modeled transactions.

45
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By the DAGGERS process the system designer can systematically ana-
lyze the data-related computations in the real-time application, and trade off
the conflicting properties. An RTDBMS can then be generated with run-time
mechanisms that are verified to achieve the desired properties.

The validation on two real-world industrial case studies shows that our tax-
onomy enhances the understanding of the designed system, and raises aware-
ness about the characteristics that need to be considered during the design.
By applying the taxonomy, design flaws could be spotted and fixed prior to
implementation. The underlying feature model allows data aggregation pro-
cesses to be constructed by composing reusable features, whose feasibility can
be reasoned about while time-related parameters can be derived. Our timed-
automata-based approach allows designers to model transactions with various
concurrency control algorithms, and formally analyze the satisfiability of isola-
tion and temporal correctness. Based on the analysis the designer can choose a
desired trade-off and select the appropriate concurrency control algorithm that
has been proved to achieve the selected trade off.

5.1 Future Work

The work of this thesis opens several future research directions. One possible
future work involves the integration of DAGGTAX with state-of-art architec-
tural and process modeling frameworks, such that the feature selection of data
aggregation processes can be reasoned about together with the choices of de-
ployment and business process models.

Another future work may involve the trading-off methods for other trans-
action properties. In this thesis we have proposed the method of modeling
transactions with concurrency control, with the aim of analyzing isolation and
temporal correctness. In the future work we need to develop methods to ad-
dress the analysis of atomicity, consistency and durability, together with the
corresponding DBMS mechanisms.

Integration of other formal techniques may greatly enhance the applicabil-
ity and scalability of DAGGERS. Since real-time data-intensive applications
are often heterogeneous in the amount of data, complexity of computation, and
the desired properties, different analysis techniques may need to be applied de-
pending on the particular system or module. For instance, for a large system,
Statistical Model Checking [74] could be a better choice than exhaustive model
checking in terms of scalability. For quantitative analysis of data production
and consumption in aggregation, dataflow models [75] could be useful. Our
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future work will investigate which formal methods could be exploited to ana-
lyze different situations, and how they can be integrated into the big picture of
system design.

Last but not least, a larger scale evaluation of the entire DAGGERS pro-
cess on the design of an industrial system, with respect to its scalability and
efficiency, is also an interesting future work.
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and Z. Wang. Statistical model checking for networks of priced timed
automata. In Formal Modeling and Analysis of Timed Systems, pages
80–96. Springer, 2011.

[75] E. A. Lee and T. M. Parks. Dataflow process networks. Proceedings of
the IEEE, 83(5):773–801, May 1995.



II

Included Papers

57





Chapter 6

Paper A:
DAGGTAX: A Taxonomy of
Data Aggregation Processes

Simin Cai, Barbara Gallina, Dag Nyström, Cristina Seceleanu.
MRTC Report, Mälardalen University, May 2017.
A shorter version has been submitted to the 7th International Conference on
Model & Data Engineering (MEDI).

59



Abstract

Data aggregation processes are essential constituents for data management in
modern computer systems, such as decision support systems and Internet of
Things (IoT) systems. Due to the heterogeneity and real-time constraints in
such systems, designing appropriate data aggregation processes often demands
considerable efforts. A study on the characteristics of data aggregation pro-
cesses will provide a comprehensive view for the designers, and facilitate po-
tential tool support to ease the design process. In this paper, we propose a tax-
onomy called DAGGTAX, which is a feature diagram that models the common
and variable characteristics of data aggregation processes, especially focusing
on the real-time aspect. The taxonomy can serve as the foundation of a design
tool that enables designers to build an aggregation process by selecting and
composing desired features, and to reason about the feasibility of the design.
We also provide a set of design heuristics that could help designers to decide
the appropriate mechanisms for achieving the selected features. Our industrial
case study demonstrates that DAGGTAX not only strengthens the understand-
ing, but also facilitates the model-driven design of data aggregation processes.
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6.1 Introduction

In modern information systems, data aggregation, defined as the process of
producing a synthesized form from multiple data items [1], is commonly ap-
plied for data processing and management. For example, in order to discover
unusual patterns and infer information, a data analysis application often com-
putes a synthesized value from a subset of the database for statistical analysis
[2]; in systems dealing with large amounts of data with limited storage, the data
are often aggregated to save space [3]; in a sensor network, sensor data are ag-
gregated, and only the aggregated data are transmitted so as to save bandwidth
and energy [4]. Since data aggregation plays a key role in many applications,
considerable research efforts have been dedicated to this topic. A number of
taxonomies have been proposed to provide a comprehensive understanding on
various aspects of data aggregation, such as aggregate functions ([2, 5, 1]),
aggregation protocols ([6, 4, 7]) and security models ([8]).

The focus of this paper is instead on another important aspect: the data
aggregation process (or DAP for short) itself. We consider a DAP as three
ordered activities that allow raw data to be transformed into aggregated data via
an aggregate function. First, a DAP starts with preparing the raw data needed
for the aggregation from the data source into the aggregation unit called the
aggregator. Next, an aggregate function is applied by the aggregator on the
raw data, and produces the aggregated data. Finally, the aggregated data may
be further handled by the aggregator, for example, to be saved into storage or
provided to other processes. The main constituents of these activities are the
raw data, the aggregate function and the aggregated data.

The main contribution of this paper is a global, high-level characterization
of data aggregation processes. We justify our study of the DAP by the fact
that it represents a pillar of an aggregation application’s workflow, no matter
if it is a centralized database management system or a highly distributed sen-
sor network. Understanding DAP is essential to a correct design of the overall
application. For instance, a sensor data gathering process, a data aggregation
process and an analytic process form the basic workflow of a surveillance ap-
plication. Multiple DAP can also work together, one’s aggregated data being
another’s raw data, to form a more complex, hierarchical aggregation process.
To design a DAP, we must understand the desired features of its main con-
stituents, that is, the raw data, the aggregate function and the aggregated data,
as well as those of the DAP itself. Such features, ranging from functional fea-
tures (such as data sharing) to extra-functional features (such as timeliness),
are varying depending on different applications. One aspect of the understand-
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ing is to distinguish the mandatory features from the optional ones, so that the
application designer is able to sort out the design priorities. Another aspect is
to comprehend the implications of the features, and to reason about the (pos-
sible) impact on one another. Conflicts may arise among features, in that the
existence of one feature may prohibit another one. Trade-offs should be taken
into consideration at design time, so that infeasible designs can be ruled out at
an early stage.

Among all features, we are particularly interested in the time-related prop-
erties of the DAP, since data aggregation is extensively applied in many real-
time systems, such as automotive systems [9], avionic systems [10] and in-
dustrial automation [11]. In real-time systems, the correctness of a process de-
pends on whether it completes on time, and validity of data depends on the time
they are collected and accessed. These real-time properties are expected on raw
data, aggregate function and the aggregated data, and impose constraints that
cross-cut all three activities of a DAP. Therefore, we will especially emphasize
the real-time related features and their implications.

In this paper we therefore propose a taxonomy of data aggregation pro-
cesses, called DAGGTAX (Data AGGregation TAXonomy), with a focus on
their features and consequent implications, from the perspective of the aggre-
gation process itself. The proposed taxonomy is presented as a feature dia-
gram [12]. The aim of our taxonomy is to ease the design of aggregation pro-
cesses, by providing a comprehensive view on the features and cross-cutting
constraints, with a systematic representation. The latter can serve as the basis
of a design tool, which enables selecting the desired features, reasoning about
possible trade-offs, reducing the design space of the application, and compos-
ing the features to build the desired aggregation processes.

The remaining part of the paper is organized as follows. In Section 6.2 we
discuss the existing taxonomies of data aggregation. In Section 6.3 we present
the preliminaries, followed by a survey of data aggregation processes in sci-
entific literatures in Section 6.4. Section 6.5 presents the proposed taxonomy,
and in Section 6.6 we introduce the design rules and heuristics based on the
implications of the features presented in the taxonomy. In Section 6.7 we val-
idate the taxonomy by a case study from industry. Section 6.8 gives a further
discussion of the implications of the real-time features, before concluding the
paper in Section 6.9.



6.2 Related Work 63

6.2 Related Work

Many researchers have promoted the understanding of data aggregation on var-
ious aspects. Among these works, considerable efforts have been made on the
study of aggregate functions. Mesiar et al. [13], Marichal [14], and Rudas et
al. [1] have studied the mathematical properties of aggregate functions, such as
continuity and stability, and discussed these properties of common aggregate
functions in detail. A procedure for the construction of an appropriate aggre-
gate function is also proposed by Rudas et al. [1]. In order to design a software
system that computes aggregation efficiently, Gray et al. [2] have classified
aggregate functions into distributive, algebraic and holistic, depending on the
amount of intermediate states required for partial aggregates. Later, in order to
study the influence of aggregate functions on the performance of sensor data
aggregation, Madden et al. [5] have extended Gray’s taxonomy, and classified
aggregate functions according to their state requirements, tolerance of loss,
duplicate sensitivity, and monotonicity. Fasolo et al. [4] classify aggregate
functions with respect to four dimensions, which are lossy aggregation, du-
plicate sensitivity, resilience to losses/failures and correlation awareness. Our
taxonomy builds on these works that focus on the aggregate functions mainly,
and provide a comprehensive view of the entire aggregate processes instead.

A large proportion of existing works have their focus on in-network data
aggregation, which is commonly used in sensor networks. In-network aggre-
gation is the process of processing and aggregating data at intermediate nodes
when data are transmitted from sensor nodes to sinks through the network [4].
Besides a classification of aggregate functions that we have discussed in the
previous paragraph, Fasolo et al. [4] classify the existing routing protocols
according to the aggregation method, resilience to link failures, overhead to
setup/maintain aggregation structure, scalability, resilience to node mobility,
energy saving method and timing strategy. The aggregation protocols are also
classified by Solis et al. [7], Makhloufi et al. [6], and Rajagopalan [15], with re-
spect to different classification criteria. In contrast to the above works focusing
mainly on aggregation protocols, Alzaid et al. [8] have proposed a taxonomy
of secure aggregation schemes that classifies them into different models. All
these works differ from our taxonomy in that they provide taxonomies from
a different perspective, such as network topology for instance. Instead, our
work strives to understand the features and their implications of DAP and its
constituents in design.
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6.3 Preliminaries
In this section, we first recall the concepts of timeliness and temporal data
consistency in real-time systems, after which we introduce feature models and
feature diagrams that are used to present our taxonomy.

6.3.1 Timeliness and Temporal Data Consistency

In a real-time system, the correctness of a computation depends on both the
logical correctness of the results, and the time at which the computation com-
pletes [16]. The property of completing the computation by a given deadline
is referred to as timeliness. A real-time task can be classified as hard, firm or
soft real-time, depending on the consequence of a deadline miss [16]. If a hard
real-time task misses its deadline, the consequence will be catastrophic, e.g.,
loss of life or significant amounts of money. Therefore the timeliness of hard
real-time tasks must always be guaranteed. For a firm real-time task, such as a
task detecting vacant parking places, missing deadlines will render the results
useless. For a soft real-time task, missing deadlines will reduce the value of
the results. An example of soft real-time task is the signal processing task of
a video meeting application, whose quality of service will degrade if the task
misses its deadline.

Depending on the regularity of activation, real-time tasks can be classi-
fied as periodic, sporadic or aperiodic [16]. A periodic task is activated at a
constant rate. The interval between two activations of a periodic task, called
its period, remains unchanged. A sporadic task is activated with a Minimum
INter-arrival Time (MINT), that is, the minimum interval between two consec-
utive activations. During the design of a real-time system, a sporadic task is
often modeled as a periodic task with a period equal to the MINT. An aperi-
odic task is activated with an unpredictable interval between two consecutive
activations. A task triggered by an external event with unknown occurrence
pattern can be seen as aperiodic.

Real-time applications often monitor the state of the environment and re-
act to changes accordingly and timely. The environment state is represented
as data in the system, which must be updated according to the actual environ-
ment state. The coherency between the value of the data in the system and its
corresponding environment state is referred to as temporal data consistency,
which includes two aspects, the absolute temporal validity and relative tempo-
ral validity [17]. A data instance is absolute valid, if the timespan between the
time of sampling its corresponding real-world value, and the current time, is
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less than a specified absolute validity interval. A data instance derived from a
set of data instances (base data) is absolute valid if all participating base data
are absolute valid. A derived data instance is relative valid, if the base data are
sampled within a specified interval, called relative validity interval.

Data instances that are not temporally consistent may lead to different con-
sequences. Different levels of strictness with respect to temporal consistency
thus exist, which are hard, firm and soft real-time, in a decreasing order of
strictness. Using outdated hard real-time data could cause disastrous conse-
quences, and therefore this should not appear. Firm real-time data are useless
if they are outdated, whereas outdated soft real-time data can still be used, but
will yield degraded usefulness.

6.3.2 Feature Model and Feature Diagram

The notion of feature was first introduced by Kang et al. in the Feature-
Oriented Domain Analysis (FODA) method [12], in order to capture both the
common characteristics of a family of systems as well as the differences be-
tween individual systems. Kang et al. define a feature as a prominent or dis-
tinctive system characteristic visible to end-users. Czarnecki and Eisenecker
extend the definition of a feature to be any functional or extra-functional char-
acteristic at the requirement, architecture, component, or any other level [18].
This definition allows us to model the characteristics of data aggregation pro-
cesses as features. A feature model is a hierarchically organized set of features,
representing all possible characteristics of a family of software products. A
particular product can be formed by a combination of features, often called a
configuration, selected from the feature model of its family.

A feature model is usually represented as a feature diagram [12], which is
often depicted as a multilevel tree, whose nodes represent features and edges
represent decomposition of features. In a feature diagram, a node with a solid
dot represents a common feature (as shown in Figure 6.1a), which is manda-
tory in every configuration. A node with a circle represents an optional feature
(Figure 6.1b), which may be selected by a particular configuration. Several
nodes associated with a spanning curve represent a group of alternative fea-
tures (Figure 6.1c), from which one feature must be selected by a particular
configuration. The cardinality [m..n] (n ≥ m ≥ 0) annotated with a node in
Figure 6.1d denotes how many instances of the feature, including the entire
sub-tree, can be considered as children of the feature’s parent in a concrete
configuration. If m≥1, a configuration must include at least one instance of
the feature, e.g., a feature with [1..1] is then a mandatory feature. If m=0, the
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Figure 6.1: Notations of a feature diagram

feature is optional for a configuration.
A valid configuration is a combination of features that meets all specified

constraints, which can be dependencies among features within the same model,
or dependencies among different models. An example of such a constraint is
that the selection of one feature requires the selection of another feature. Re-
searchers in the software product line community have developed a number
of tools, providing extensive support for feature modeling and the verifica-
tion of constraints. For instance, in FeatureIDE [19], software designers can
create feature diagrams using a rich graphic interface. Designers can specify
constraints across features as well as models, to ensure that only valid config-
urations are generated from the feature diagram.

6.4 A Survey of Data Aggregation Processes

Serving as an important information processing and analysis technique, data
aggregation has been widely applied in a variety of information management
systems. Based on scientific literature, in this section, we present a limited
survey of application examples that implement data aggregation processes. In
order to extract heuristics that help us generate our taxonomy, we select the
examples from a wide variety of application domains, and investigate the com-
mon and different characteristics of aggregation processes. Some of these ex-
amples are general-purpose infrastructures that implement aggregation as a ba-
sic service. The other examples develop data aggregation as ad hoc solutions
suitable for the particular application scenarios.
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In the following subsections, we first present how aggregation is supported
in different general-purpose infrastructures that provide data processing and
management. Next, a number of ad hoc applications are presented, focusing
on the requirements that the aggregation processes implemented in such ap-
plications must meet. Finally, we discuss the characteristics of aggregation
processes exposed in the surveyed systems and applications.

6.4.1 General-purpose Infrastructures

In this subsection, we investigate the design of aggregation processes in general-
purpose systems from the following domains: database management systems,
data warehouses, data stream management systems and wireless sensor net-
works.

Database Management Systems and Data Warehouses Many information
management systems adopt a general-purpose relational Database Manage-
ment System (DBMS) or a Data Warehouse (DW) [20] as a back-end for
centralized data management, which have common aggregate functions im-
plemented, and exposed as interfaces for users or programmers. Internally,
aggregation is supported by a number of infrastructural services, including
query evaluation, data storage and accessing, trigger mechanism, and trans-
action management. In a typical disk-based relational DBMS, as illustrated
in Figure 6.2, data are stored as tuples in the disk. An aggregation process is
started by a query issued by a client. The DBMS then evaluates the query and
loads the relevant tuples from disk into the main memory. An aggregate func-
tion is performed on the tuples and computes the aggregated value, which is
then returned to the query issuer, cached in main memory or stored in the disk.
An aggregation process can also be triggered by a state change in the database.
Both raw data and aggregated data can be accessed by other processes. In
order to maintain logical data consistency, such processes, including the ag-
gregation process, are treated as transactions and governed by the transaction
management system, which ensures the so-called ACID (Atomicity, Consis-
tency, Isolation, and Durability) properties [21] during their executions.

Data can be aggregated by categories, usually specified in the ”group-by”
clause of a query. These categories may have a hierarchical relationship and
thus represent the granularities of aggregation. For example, in a temporal
database, users may choose to aggregate data by day, week or month, with
a coarser granularity; in a spatial database, the aggregation can be based on
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Figure 6.2: Illustration of aggregation in a disk-based DBMS

streets, cities and provinces [22]. In a data warehouse, the stored data usu-
ally have many dimensions, and the aggregation may need to be performed on
multiple dimensions [20].

The aggregated value may be returned to the query issuer directly, or may
be stored persistently in the database as a normal tuple. Alternatively, the ag-
gregated values are cached in materialized views, so that other processes can
make use of them [23]. It is common to store the aggregated values as mate-
rialized views in data warehouse since these results will be frequently used by
analysis processes [20].

A number of aggregate functions are included in the SQL standard and are
commonly supported by general-purpose DBMS. Other aggregate functions
can be defined as user-defined functions. The aggregation can be triggered by
an explicit query issued by the client, or by a trigger that reacts to the change
of the database. In a data warehouse, aggregation is often planned periodically
to refresh the materialized views using the updated base data. In case a query
needs to access current data between the planned aggregation processes, extra
aggregation processes may also be started to refresh the views [20].

Online Aggregation in Data Stream Management Systems Data aggrega-
tion in traditional DBMS and DWs is performed like batch-processing: on a
large number of tuples and in considerable time before returning the aggre-
gated value. To improve performance and user experience, Hellerstein et al.
propose “online aggregation” [24], which allows tuples to be aggregated in-
crementally. Tuples are selected from a base table by a sampling process, and
aggregated with the cached partial aggregated result from previously sampled
tuples. The partially aggregated value is available, which refers to the user as
an approximate aggregated result. The aggregation process is defined with a
stopping interface, through which the aggregation can be stopped, giving the
approximate result as the final result.
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Figure 6.3: Illustration of aggregation in a data stream management system

Online aggregation is often supported by Data Stream Management Sys-
tems (DSMS), which provide aggregation for continuous data streams. In Fig-
ure 6.3, we illustrate the aggregation in a typical DSMS scenario. Usually,
stream data are pushed into the DSMS continuously, often at a high frequency.
Individual data instances are not significant, become stale as time passes, and
do not need to be stored persistently. Finite subsets of the most recent in-
coming stream (“windows”) are cached in the system. Aggregate functions
can be defined by users and are applied on the windows. In the Aurora data
stream management system [25], the aggregate function can be associated with
a “timeout” parameter, indicating the deadline of the computation of the func-
tion. A function should return before it times out, even if some raw data in-
stances are missing or delayed, so as to provide timely response required by
many real-time applications. Aurora has implemented a load shedding mecha-
nism, which drops data instances when the system is overloaded. The aggrega-
tion is triggered either by continuous queries with specified periods, or by ad
hoc queries which are issued by clients. The aggregated results are passed to
the receiving application as an outgoing stream. To provide historical data, the
aggregated data may also be kept persistently for a specified period of time.

Multiple aggregation processes can be run concurrently, performing aggre-
gation on the same data stream [26]. Oyamada et al. [27] point out that the
aggregation in a DSMS may also involve non-streaming data, which can be
shared and updated by other processes, causing potential data inconsistency.
The authors propose a concurrency control mechanism to prevent the inconsis-
tency.

In-network Aggregation in Wireless Sensor Networks Data aggregation
plays an essential role in Wireless Sensor Network (WSN) applications. In
these applications, numerous data are gathered from resource-constrained sen-
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Figure 6.4: Illustration of aggregation in a wireless sensor network

sor nodes that are deployed to monitor the environment. The gathered data are
transmitted through a network to sink nodes, which are equipped with more
resource for advanced computation and analysis. Along the transmission, data
are aggregated in the intermediate sensor nodes or special aggregate nodes, in a
decentralized topology. This aggregation technique is also called “in-network
aggregation” [4]. In contrast, a sensor network can also apply centralized ag-
gregation if the data of all sensors are transmitted to and aggregated in one
single node. Figure 6.4 gives an example of data aggregation in a sensor net-
work. In this example, data from nodes n4, n5 and n6 are aggregated in node
n3. This aggregated result is then transmitted to n2, and aggregated with the
data of n2. Finally, the data from n2 and n1 are aggregated in the sink node.

Madden et.al [5] propose Tiny AGgregation (TAG), a generic aggregation
service for ad hoc networks. In TAG, the user poses aggregation queries from
a base station, which are distributed to the nodes in the network. Sensors col-
lect data and route data back to the base station through a routing tree. As the
data flow up the tree, it is aggregated by an aggregation function and value-
based partitioning according to the query, level by level. At each level, a node
awakens when it receives the aggregate request, together with a deadline when
it should reply to its parent, and propagates the request to its children with
an earlier deadline. Each node then listens to its children, aggregates the data
transmitted from the children and the reading of itself, and then replies the ag-
gregated result to its parent. If any node replies after its specified deadline, its
value will not be aggregated by its parent, which means that the final aggre-
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gated result is actually an approximation. The aggregated results are cached
by the nodes, and can be used for fault tolerance reason, e.g., loss of messages
from a child. TAG has also classified aggregate functions into distributive,
algebraic, holistic, unique and content-sensitive. Decentralized in-network ag-
gregation is only appropriate for distributive and algebraic aggregate functions,
since they can be decomposed into sub-aggregates. For other functions, all sen-
sor data have to be collected to one node and aggregated together.

TAG is later implemented in the TinyDB [28], which supports SQL-style
queries. Aggregation can be triggered periodically by continuous queries, or
at once by a state change or an ad hoc query. Aggregated results can be stored
persistently as storage points, which may be accessed by other processes.

6.4.2 Ad Hoc Applications
Many applications have unique requirements, and consequently use their ad
hoc aggregation processes to fulfill their requirements. Examples of such ap-
plications are presented in the following paragraphs.

He et al. present the VigilNet for real-time surveillance with a tiered archi-
tecture [29]. Four layers are implemented in this system and each layer has its
data aggregation requirements. The data aggregation architecture of VigilNet is
illustrated in Figure 6.5. The first layer is the sensor layer in which data inputs
are pushed from individual sensors at specific rates, and aggregated as detec-
tion confidence vectors. In this layer the aggregation needs to meet stringent
real-time constraints since the sensors send signals about fast-moving targets.
The results of sensor-layer aggregation are sent to the node for node-layer ag-
gregation. Each sensor node includes several sensors, and computes the aver-
age of sensor confidence vectors incrementally when a new sensor confidence
vector arrives. If the aggregated results show the existence of a tracking target,
the node estimates the position of the target, and sends a report to the leading
node of the local group. The leader buffers the reports from members, until
the number reaches a predefined aggregation degree. Then, it aggregates all
the reports, estimates the current position of the target, and sends the aggre-
gated report to the base station. The base station aggregates the new report
with historical positions of the target, and calculates the velocity using a linear
regression procedure.

Defude et al. propose the VESPA (Vehicular Event Sharing with a mobile
P2P Architecture) approach [30] for the Vehicular Ad hoc NETwork (VANET),
to aggregate traffic information events, such as parking places, accidents and
road obstacles, pushed from neighbor vehicles. The events are aggregated by
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Figure 6.5: Data Aggregation Architecture of VigilNet [29]

times, areas and event types. The aggregated values are stored and accessed
for further analysis.

Goud et al. [9] propose a real-time data repository for automotive adaptive
cruise control systems. It includes an Environment Data Repository (EDR) and
a Derived Data Repository (DDR). The EDR periodically reads sensor read-
ings, aggregates them, and keeps the aggregated value in the repository. The
DDR then reads and aggregates the values from EDR, only when the changes
of readings from some sensors exceed a threshold. The sensor data are real-
time and have their validity intervals. The aggregate processes must complete
before the data become invalid, and produce the results for other processes with
stringent deadlines.

Arai et al. propose an adaptive two phase approach for approximate ad hoc
aggregation in unstructured peer-to-peer (P2P) systems [31]. When an ad hoc
aggregate query is issued, in the first phase, sample peers are visited by a ran-
dom walk from the sink, with a predefined depth. Information of the visited
peers are collected to the sink, and analyzed to decide the peers to be aggre-
gated. These peers are then visited in the second phase. For some aggregate
functions such as COUNT and AVERAGE, partial aggregate results are com-
puted in the local peer, and returned to the sink. For other aggregate functions,
raw data are returned to the sink and aggregated in the sink.

Baulier et al. [32] propose a database system for real-time event aggre-
gation in telecommunication systems. Events generated by phone calls are
pushed into the system, which should be aggregated within specific response
times. The aggregated results are kept in a main-memory database as views for
other time-critical processes. When a new event arrives, it triggers the aggre-
gate process to update the aggregate view. The event record itself is stored into
a data warehouse persistently, which is not time-critical.

Bar et al. [33] propose an online aggregation system for network traffic
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Table 6.1: Characteristics of Data Aggregation Processes in the Surveyed Ap-
plications

Sample Raw Data Aggregate
Func-
tion

Aggregated
Data

Triggering
Pattern

Real-
time
Charac-
teristics

relational
disk-
based
DBM-
S/DW
[23, 22,
20]

pulled from data
sources; persis-
tently stored;
possibly shared by
other processes

various
func-
tions

possibly
durable; pos-
sibly shared
by other
processes

activated
by events
(queries or
database
triggers),
or activated
periodically

usually
no dead-
lines

DSMS
(AU-
RORA
[25],
Oyamada
et al.
[27],
Krishna-
murthy et
al. [26])

pushed by data
sources; pos-
sibly pushed
periodically; not
persistently stored;
cached for a par-
ticular period;
real-time; possibly
shared by other
processes; can be
shedded

various
func-
tions

pushed to
receiver;
possibly
durable; may
be stored for
a period of
time

activated by
events (ad
hoc queries),
or activated
periodically
(periodic
continuous
queries)

deadlines
depend-
ing on
the ap-
plication

WSN
(TAG [5],
TinyDB
[28])

pulled from data
sources; not persis-
tently stored; possi-
bly be skipped

various
func-
tions

cached for
a particular
period; possi-
bly durable;
real-time;
possibly
shared by
other pro-
cesses

activated
by events,
or activated
periodically

deadlines
depend-
ing on
the ap-
plication

VigilNet
[29],
sensor
layer

pushed by data
sources; not per-
sistently stored;
real-time; pushed
periodically

detection
confi-
dence
function

pushed to
receiver; not
durable

activated peri-
odically

hard
dead-
lines

VigilNet
[29],
node
layer

pushed by data
sources; not persis-
tently stored

average pushed to
receiver; not
durable

activated by
event

soft
dead-
lines

VigilNet
[29],
group
layer

pushed by data
sources; cached for
a particular period

ad hoc
calcula-
tion

pushed to
receiver; not
durable

activated by
event

soft
dead-
lines
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VigilNet
[29], base
layer

pushed by data
sources; persis-
tently stored

regression shared by
other pro-
cesses

activated by
event

soft
dead-
lines

VESPA
[30]

pushed by data
sources

various
func-
tions

durable;
shared by
other pro-
cesses

activated by
events

soft
dead-
lines

Goud et
al. [9],
EDR

pulled from data
sources; pulled
periodically;
real-time; not
persistently stored

various
func-
tions

not durable;
real-time;
shared by
other pro-
cesses

activated peri-
odically

hard
dead-
lines

Goud et
al. [9],
DDR

pulled from data
sources; real-time;
not persistently
stored

various
func-
tions

durable; real-
time

activated by
events

hard
dead-
lines

Arai et al.
[31]

pulled from data
sources; not persis-
tently stored

various
func-
tions

possibly
durable

activated by
events

no dead-
lines

Baulier et
al. [32]

pushed by data
sources; persis-
tently stored

various
func-
tions

real-time;
not durable;
shared by
other pro-
cesses

activated by
events

hard
dead-
lines

Bar et al.
[33]

pushed by data
sources; persis-
tently stored;
possibly real-time

various
func-
tions

durable activated
by events,
or activated
periodically

soft
dead-
lines

Bür et al.
[10]

pushed by data
sources; not per-
sistently stored;
real-time;

various
func-
tions

not durable;
real-time

activated peri-
odically

hard
dead-
lines

Lee et al.
[11], de-
vice level

pushed by data
sources; real-time

various
func-
tions

pushed to
receiver; not
durable

activated
by events,
or activated
periodically

soft
dead-
lines

Lee et
al. [11],
control
system

pulled from data
sources; persis-
tently stored

various
func-
tions

possibly
durable

activated peri-
odically

soft
dead-
lines

Lee et
al. [11],
remote
moni-
toring
system

pulled from data
sources; persis-
tently stored

various
func-
tions

possibly
durable

activated peri-
odically

soft
dead-
lines
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Iftikhar
[3]

pulled from data
sources; persis-
tently stored;
stored for a particu-
lar period; possibly
shared by other
processes

various
func-
tions

durable;
stored for
a particular
period; pos-
sibly shared
by other
processes

activated peri-
odically

soft
dead-
lines

DataDepot
[34]

pulled from data
sources; not per-
sistently stored;
possibly shared by
other processes;
real-time

various
func-
tions

durable; real-
time

activated by
events

deadlines
depend-
ing on
the ap-
plication

monitoring where large volumes of heterogeneous data streams are processed
with different time constraints. Arriving stream data instances, as well as non-
stream data, are stored persistently in the system. Aggregation can be triggered
by ad hoc queries, or triggered periodically by continuous queries. The ag-
gregate results are stored persistently in materialized views. Aggregate func-
tions are computed incrementally, by combining the newly arrived instance
with cached aggregated results.

Bür et al. describe an online active control system for aircrafts which em-
ploys data aggregation [10]. In this application, real-time data are gathered
periodically from sensors deployed in the aircraft, and aggregated periodically.
Since the aircraft system is time-critical, the freshness of data and timely pro-
cessing of aggregation are crucial.

Lee et al. propose an approach for aggregating data in an industrial man-
ufacturing system [11]. Three types of aggregation are described, which are
aggregation at device level, aggregation in control system, and aggregation in
remote monitoring system. At device level, real-time raw data are produced by
sensors and controllers, and are aggregated in the devices. The aggregation is
triggered hourly, or by state changes in the device. The aggregation functions
are simple calculations for hourly throughput, error count, etc. The aggregated
values are sent to subscribing clients, namely the control system and the re-
mote monitoring system. The control system receives the data from devices
and store them into a database. Every hour, these data, together with other
events, are aggregated to produce error times, throughput, etc. The remote
monitoring system also stores the data from devices and performs aggregation.
Delay could occur in aggregation in the remote system.

Iftikhar applies data aggregation on integration of data in farming systems
[3]. Data are collected from different devices, and stored permanently in a rela-
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tional database. A gradual granular data aggregation strategy is then applied on
the stored data. Basically, older data should be aggregated in a coarse-grained
granularity while newer data are aggregated in a finer granularity. For differ-
ent granularities, aggregation is triggered in different periods. The aggregated
results are kept in the database while the raw data are deleted to save space.

Golab et al. propose a tool called DataDepot for generating data ware-
houses from streaming data feeds [34], focusing on the real-time quality of
the data. Raw data are modeled as tables, which are not persistent and have a
freshness property. Raw data are generated from different sources, with vari-
ous properties such as rate and freshness. Raw tables are aggregated and stored
in persistent derived tables which must also be fresh. Updates in the raw tables
are propagated to the derived tables.

6.4.3 Survey Results

More than 13,000 research works are indexed in the SCOPUS search engine
using “data aggregation” as a search key for title, abstract and keywords in
computer science and engineering. Although only a small proportion of re-
lated works are examined here, our survey covers a relevant set of systems and
application domains, which exposes the common and variable characteristics
of the raw data, aggregated data, the aggregate functions, as well as the entire
data aggregation processes.

In Table 6.1, we summarize the previous review by listing characteristics
of the DAP in the surveyed systems and applications. Clearly, each aggrega-
tion process must have raw data, an aggregation function and the aggregated
results. However, other characteristics have shown great variety. For instance,
aggregation processes prepare the raw data ready for aggregation, by different
data acquisition schemes. In some applications the aggregation process needs
to pull the raw data from the persistent storage of the data source. Therefore
the designer of an aggregation process must take this interaction into considera-
tion. In other applications, however, raw data are pushed by the data source, so
fetching raw data is not the concern of the aggregation process. The aggregated
data may be stored persistently in some scenarios and are expected to survive
system failures, while in other scenarios they can only reside in the volatile
memory. As one can see in Table 6.1, the consistency of the data may depend
on the time in some DAP, while in others the data are static. A large variety of
aggregate functions have been applied in aggregation processes, depending on
the requirements of the particular application. The aggregation process itself
may be scheduled periodically, or triggered by ad hoc events. In time-critical
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systems, the aggregation processes have strict timeliness requirements, while
in some analytical systems with large amount of data the delays of the aggre-
gation processes are tolerable. To design an appropriate aggregation process, it
follows that one must take these characteristics, as well as their nature (neces-
sity, optionality, etc) and their cross-cutting constraints, into consideration. A
designer could benefit from having a systematic representation of these char-
acteristics to ease the design, as well as support for facilitating feasible choices
of the involved characteristics.

6.5 Our Proposed Taxonomy

The survey presented in Section 6.4 has revealed a number of characteristics
of aggregation processes, including the raw data, the aggregated data, the ag-
gregate functions, as well as the triggering patterns and the timeliness of the
processes. Some of these characteristics are common for all aggregation pro-
cesses, while others are distinct from case to case. In this section we propose a
taxonomy of data aggregation processes, as an ordered arrangement of features
revealed by the survey. The taxonomy for these common and variable charac-
teristics not only leads to a clear understanding of the aggregation process, but
also lays a solid foundation for an eventual tool support for reasoning about the
impact of different features on the design.

We choose feature diagram as the presentation of our taxonomy, mainly due
to two reasons. First, features may be used to model both functional and extra-
functional characteristics of systems. This allows us to capture cross-cutting
aspects that have on multiple software modules related to different concerns.
Second, the notation of feature diagrams is simple to construct, powerful to
capture the common and variable characteristics of different data aggregation
processes, and intuitive to provide an organizational view of the processes. The
taxonomy is shown in Figure 6.6.

In the following subsections, these features are discussed in details with
concrete examples. More precisely, the discussion is organized in order to re-
flect the logical separation of features. We explain Figure 6.6 from the top level
features under “Aggregation Process”, and iterate through all sub-features in a
depth-first way. The top level features include “Raw Data”, “Aggregate Func-
tion” and “Aggregated Data”, which are the main constituents of an aggregation
process. Features that characterize the entire DAP are also top level features,
including the “Triggering Pattern” of the process, and “Real-Time (P)”, which
refers to the timeliness of the entire process.
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Figure 6.6: The taxonomy of data aggregation processes
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Figure 6.7: Raw data acqusition schemes

6.5.1 Raw Data
One of the mandatory features of real-time data aggregation is the raw data in-
volved in the process. Raw data are the data provided by the DAP data sources.
One DAP may involve one or more raw data. The multiplicity is reflected by
the cardinality [1..*] next to the feature “Raw Data” in Figure 6.6. Each raw
data may have a set of properties, which are interpreted as its sub-features and
constitute a sub-tree. These sub-features are: Pull, Shared, Sheddable, and
Real-Time.

Pull “Pull” is a data acquisition scheme for collecting raw data. Using this
scheme, the aggregator actively acquires data from the data source, as illus-
trated in Figure 6.7a. For instance, a traditional DBMS adopts the pull scheme,
in which raw data are acquired from disks using SQL queries and aggregated
in the main memory.

“Pull” is considered to be an optional feature of raw data, since not every
DAP pulls data actively from data source. If raw data have the “pull” feature,
pulling raw data actively from the data source is a necessary part of the aggre-
gation process, including the selection of data as well as the shipment of data
from the data source. If the raw data do not have the “pull” feature, they are
pushed into the aggregator (Figure 6.7b). In this case, in our view the action of
pushing data is the responsibility of another process outside of the DAP. From
DAP’s perspective, the raw data are already prepared for aggregation.

“Persistently Stored” is considered as an optional sub-feature of “Pull”,
since raw data to be pulled from data source may be stored persistently in a
non-volatile storage, such as a disk-based relational DBMS. The retrieval of
persistent raw data involves locating the data in the storage and the necessary
I/O.
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Shared Raw data of some DAP examples in Section 6.4 are read or up-
dated by other processes at the same time when they are read for aggregation
[3, 27, 26]. The same raw data may be aggregated by several DAP, or accessed
by processes that do not perform aggregations. We use the optional “shared”
feature to represent the characteristic that the raw data involved in the aggrega-
tion may be shared by other processes in the system.

Sheddable We classify the raw data as “sheddable”, which is an optional fea-
ture, used in cases when data can be skipped for the aggregation. For instance,
in TAG [5], the inputs from sensors will be ignored by the aggregation process
if the data arrive too late. In a stream processing system, new arrivals may be
discarded when the system is overloaded [25]. For raw data without the shed-
dable feature, every instance of the raw data is crucial and has to be computed
for aggregation.

Real-Time (RD) The raw data involved in some of the surveyed DAP have
real-time constraints. Each data instance is associated with an arrival time, and
is only valid if the elapsed time from its arrival time is less than its absolute
validity interval. “Real-time” is therefore considered an optional feature of
raw data, and “absolute validity interval” is a mandatory sub-feature of the
“real-time” feature. We name the real-time feature of raw data as “Real-Time
(RD)” in our taxonomy, for differentiating from the real-time features of the
aggregated data (“Real-Time (AD)” in Section 6.5.3) and the process (“Real-
Time (P)” in Section 6.5.5).

Raw data with real-time constraints are classified as “hard”, “firm” or
“soft” real-time, depending on the strictness with respect to temporal consis-
tency. They are represented as alternative sub-features of the real-time feature.
As we have explained in Section 6.3, hard real-time data (such as sensor data
from a field device [11]) and firm real-time data (such as surveillance data
[29]) must be guaranteed up-to-date, while outdated soft real-time data are still
of some value and thus can be used (e.g., the derived data from a neighboring
node in VigilNet [29]).

MINT Raw data may arrive continuously with a Minimum INter-arrival Time
(MINT), of which a fixed arrival time is a special case. For instance, in the
surveillance system VigilNet [29], a magnetometer sensor monitors the envi-
ronment and pushes the latest data to the aggregator at a frequency of 32HZ,
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implying a MINT of 32.15 milliseconds. We consider “MINT” an optional
feature of the raw data.

6.5.2 Aggregate Function
An aggregation process must have an aggregate function to compute the aggre-
gated result from raw data. An aggregate function exhibits a set of characteris-
tics that we interpret as features.

Duplicate Sensitive “Duplicate sensitivity” has been introduced as a dimen-
sion by Madden et al. [5] and Fasolo et al. [4]. An aggregate function is
duplicate sensitive, if an incorrect aggregated result is produced due to a dupli-
cated raw data. For example, COUNT, which counts the number of raw data
instances, is duplicate sensitive, since a duplicated instance will lead to a result
one bigger than it should be. MIN, which returns the minimum value of a set
of instances, is not duplicate sensitive because its result is not affected by a
duplicated instance. “Duplicate sensitive” is considered as an optional feature
of the aggregate function.

Exemplary or Summary According to Madden et.al [5], an aggregate func-
tion is either “exemplary” or “summary”, which are represented as alternative
features in our taxonomy. An exemplary aggregate function returns one or sev-
eral representative values of the selected raw data, for instance, MIN, which
returns the minimum as a representative value of a set of values. A summary
aggregate function computes a result based on all selected raw data, for in-
stance, COUNT, which computes the cardinality of a set of values .

Lossy An aggregate function is “lossy”, if the raw data cannot be recon-
structed from the aggregated data alone [4]. For example, SUM, which com-
putes the summation of a set of raw data instances, is a lossy function, as one
cannot reproduce the raw data instances from the aggregated summation value
without any additional information. On the contrary, a function that concate-
nates raw data instances with a known delimiter is not lossy, since the raw data
can be reconstructed by splitting the concatenation. Therefore, we introduce
“lossy” as an optional feature of aggregate functions.

Holistic or Progressive Depending on whether the computation of aggre-
gation can be decomposed into sub-aggregations, an aggregate function can
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be classified as either “progressive” or “holistic”. The computation of a pro-
gressive aggregate function can be decomposed into the computation of sub-
aggregates. In order to compute the AVERAGE of ten data instances, for ex-
ample, one can compute the AVERAGE values of the first five instances and
the second five instances respectively, and then compute the AVERAGE of
the whole set using these two values. The computation of a holistic aggre-
gate function cannot be decomposed into sub-aggregations. An example of
holistic aggregate function is MEDIAN, which finds the middle value from a
sequence of sorted values. The correct MEDIAN value cannot be composed
by, for example, the MEDIAN of the first half of the sequence together with
the MEDIAN of the second half.

6.5.3 Aggregated Data

An aggregation process must produce one aggregated result, denoted as manda-
tory feature “Aggregate Data” in the feature diagram. Aggregated data may
have a set of features, which are explained as follows.

Push In some survey DAP examples, sending aggregated data to another unit
of the system is an activity of the aggregator immediately after the computation
of aggregation. This is considered as an active step of the aggregation process,
and is represented by the feature “push”. For example, in the group layer ag-
gregation of VigilNet [29], each node sends the aggregated data to its leading
node actively. An aggregation process without the “push” feature leaves the
aggregate results in the main memory, and it is other processes’ responsibility
to fetch the results.

The aggregated data may be “pushed” into permanent storage, such as in
[32] and [11]. The stored aggregated data may be required to be durable, which
means that the aggregated data must survive potential system failures. There-
fore, “durable” is considered as an optional sub-feature of the “push” feature.

Shared Similar to raw data, the aggregated data has an optional “shared”
feature too, to represent the characteristic of some of the surveyed DAP that the
aggregated data may be shared by other concurrent processes in the system. For
instance, the aggregated results of one process may serve as the raw data inputs
of another aggregation process, creating a hierarchy of aggregation [25, 29].
The results of aggregation may also be accessed by a non-aggregation process,
such as a control process [9].
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Time-to-live The “time-to-live” feature regulates how long the aggregated
data should be preserved in the aggregator. For instance, Aurora system [25]
can be configured to guarantee that the aggregated data are available for other
processes, such as an archiving process or another aggregate process, for a cer-
tain period of time. After this period, these data can be discarded or overwrit-
ten. We use the optional feature “time-to-live” to represent this characteristic.

Real-Time (AD) The aggregated data may be real-time, as required in some
of the surveyed DAP, if the validity of the data instance depends on whether
its temporal consistency constraints are met. Therefore the “real-time” feature,
which is named “Real-Time (AD)”, is an optional feature of aggregated data in
our taxonomy. The temporal consistency constraints on real-time aggregated
data include two aspects, the absolute validity and relative validity, as explained
in Section 6.3. “Absolute validity interval” and “relative validity interval”
are two mandatory sub-features of the “Real-Time (AD)” feature.

Similar to raw data, the real-time feature of aggregated data has “hard”,
“firm” and “soft” as alternative sub-features. If the aggregated data are re-
quired to be hard real-time, they have to be ensured temporal consistent in
order to avoid catastrophic consequences [32]. Compared with hard real-time
data, firm real-time aggregated data are useless if they are not temporal consis-
tent [29], while soft real-time aggregated data can still be used with less value
(e.g., the aggregation in the remote server [11]).

6.5.4 Triggering Pattern

“Triggering pattern” refers to how the DAP is activated, which is a mandatory
feature. We consider three types of triggering patterns for the activation of
DAP, represented by the alternative sub-features “periodic”, “sporadic” and
“aperiodic”.

A periodic DAP is invoked according to a time schedule with a specified
“Period”. A sporadic DAP could be triggered by an external “event”, or ac-
cording to a time schedule, possibly with a “MinT” (Minimum inter-arrival
Time) and/or “MaxT” (Maximum inter-arrival Time). An aperiodic DAP is ac-
tivated by an external “event” without a constant period, MinT or MaxT. The
event can be an aggregate command (e.g. an explicit aggregation query [28])
or a state change in the system [32].
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6.5.5 Real-time (P)

Real-time applications, such as automotive systems [9] and industrial moni-
toring systems [11], require the data aggregation process to complete its work
by a specified deadline. The process timeliness, named “Real-Time (P)”, is
considered as an optional feature of the DAP, and “deadline” is its mandatory
sub-feature.

Aggregation processes may have different types of timeliness constraints,
depending on the consequences of missing their deadlines. For a soft real-
time DAP, a deadline miss will lead to a less valuable aggregated result [30].
For a firm real-time DAP [11], the aggregated result becomes useless if the
deadline is missed. If a hard real-time DAP misses its deadline, the aggregated
result is not only useless, but hazardous [10, 9]. “Hard”, “firm” and “soft” are
alternative sub-features of the timeliness feature.

We must emphasize the difference between timeliness (“Real-Time (P)”)
and real-time features of data (“Real-Time (RD)” and “Real-Time (AD)”), al-
though both of them appear to be classified into hard, firm and soft real-time.
Timeliness is a feature of the aggregation process, with respect to meeting its
deadline. It specifies when the process must produce the aggregated data and
release the system resources for other processes. As for real-time features of
data, the validity intervals specify when the data become outdated, while the
level of strictness with respect to temporal consistency decides whether out-
dated data could be used. To meet the desired real-time strictness level of the
data, the DAP may need to meet certain timeliness requirements, which will be
discussed further in Section 6.6.

6.6 Design Rules and Heuristics

In the previous section we have introduced our taxonomy that encompasses the
important features of a DAP. In this section, we formulate a set of design rules
and heuristics, following the design implications imposed by the features. The
design rules are the axioms that should be applied during the design. Violating
the rules will result in infeasible feature combinations. Design heuristics, on
the other hand, suggest that certain mechanisms may be needed, either to im-
plement the selected features, or to mitigate the impact of the selected features.
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6.6.1 Design Rules
The real-time features of data and process are commonly desired features of
DAP among real-time applications. Among these features there exist depen-
dencies, which should be respected when one is selecting and combining these
features. In this subsection we analyze the dependencies among the real-time
data features (the “Real-Time (RD)” and “Real-Time (AD)” features in the
taxonomy) and the timeliness feature (the “Real-Time (P)” feature) of the ag-
gregation process itself. Based on the analysis we formulate three design rules
to eliminate the infeasible combinations.

As already introduced, real-time data can be classified as hard, firm or soft
real-time according to the strictness w.r.t. the temporal consistency. The hard
real-time feature imposes strongest constraints and represents highest level of
strictness, while the soft real-time feature represents the lowest level of strict-
ness. From the raw data to the aggregated data, the level of strictness can only
decrease or remain the same. This is because the validity of aggregated data
depends on the validity of raw data. Since the hard real-time aggregated data
have to be both absolute valid and relative valid, which requires all involved
raw data to be absolute valid, the raw data have to be hard real-time too. If the
raw data is soft real-time, which indicates that outdated raw data may occur, the
temporal consistency of the aggregated data cannot be guaranteed. Therefore,
we get the following rule:

Rule 1 The real-time strictness level of the raw data must be higher than
or equal to the real-time strictness level of the aggregated data.

The timeliness of the entire data aggregation process has an impact on
meeting the strictness level of the aggregated data, since the validity of the
aggregated data depends on the interval between the time when raw data are
collected, and the time when the aggregated data are produced. If the aggre-
gated data are required to be hard real-time, the DAP also has to be hard real-
time. If the timeliness of the DAP is soft, the calculation may miss its deadline
and produce an outdated aggregated result. If we consider the “hard”, “firm”
and “soft” features of the DAP as levels of strictness w.r.t. timeliness, this rule
is formulated as follows:

Rule 2 The strictness level w.r.t. timeliness of the entire DAP must be
higher than or equal to the real-time strictness level of the aggregated data.

The fact that both the raw and aggregated data may be shared by mul-
tiple processes imposes further consideration on the real-time strictness of
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the shared data. If the raw data or the aggregated data are shared by several
processes, and the requirements of these processes impose different real-time
strictness, then the real-time constraint of this data is in accordance with the
highest strictness required by these processes. For example, the raw data of an
aggregate process happens to be the input of a control process that demands the
input to be hard real-time. Even though the aggregation process can tolerate
outdated raw data, the real-time strictness level of the data must be hard. Oth-
erwise the data for the control process may be outdated and lead to catastrophic
consequences. Hence we formulate the following rule:

Rule 3 The real-time strictness of the raw/aggregated data must meet
the highest real-time strictness level imposed by all processes that share
the data.

These rules should be applied when the application designer analyzes the
features derived from the requirement specification. Consider a process ag-
gregating data from three sensors and providing its aggregated data to a hard
real-time control process. The specification of the aggregation process may
allow outdated raw data, i.e., soft real-time raw data, and tolerate occasional
deadline miss. However, since the control process requires its inputs (the ag-
gregated data) to be hard real-time, both the raw data from the sensors and the
DAP have to be hard real-time as well.

6.6.2 Design Heuristics
Accomplishing the design of a DAP involves the design of appropriate sup-
porting run-time mechanisms. These mechanisms either achieve the selected
features of the DAP, or mitigate the impact of the selected features in order to
ensure other properties of the system. Such properties could be, for instance,
the logical data consistency characterized by the ACID properties of the pro-
cesses. In this subsection we introduce a set of design heuristics, which are
suggestions of mechanisms that could be implemented in order to enforce cer-
tain features and system properties. The heuristics are organized as suggested
mechanisms as follows.

Synchronization for “pull” and “push” features Pulling raw data from a
data source may involve locating the data source, selecting the data and ship-
ping data into the aggregator. Pushing aggregated data may involve locating
the receiver and transmitting the data. These activities introduce higher risks
of delayed and missing data that may breach the temporal and logical data
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consistency. Overheads in time and computation resource are also introduced,
which are impacting factors of the overall timeliness of the process. When
designing for such systems, one may consider developing a synchronization
protocol to mitigate such impacts and ensure the consistency of the data.

Load shedding for “sheddable” feature combined with real-time features
Situations could occur when the DAP is not able to meet the real-time con-
straints, due to, for example, system overload. If the raw data are sheddable,
one may consider implementing the load shedding mechanism [25], which al-
lows raw data instances to be discarded systematically.

Approximation for “sheddable” feature combined with real-time features
An alternative mechanism for sheddable raw data is to implement approxima-
tion techniques. For example, Deshpande et al. introduce an approximation
technique into sensor network to improve the efficiency of aggregation [35].
Instead of reading data from all sensors, the DAP only collects raw data from
some of the sensors that fulfill a probabilistic model.

Concurrency control for “shared” feature An implication of shared data
is the concern of logical data consistency, which is a common consideration
from concurrent data access. A certain form of concurrency control needs to
be implemented to achieve a desired level of consistency. For example, the ag-
gregate process may achieve full isolation from other processes, i.e., they can
only see the aggregated result when the DAP completes, using serializable con-
currency control [36]. To improve performance or timeliness, one may choose
a less stringent concurrency control that allows other processes to access the
sub-aggregate results of the DAP, which may lead to a less accurate final re-
sult. Without any concurrency control, the aggregation process may produce
incorrect results using inconsistent data [37].

Logging and recovery for “durable” feature In order to ensure the “durable”
aggregated data, logging and backward failure recovery techniques, which are
commonly used to achieve durability in data management systems, may be ap-
plied to the DAP. For example, the operations on the aggregated data are logged
immediately, and the actual changes are written into the storage periodically.

Filtering for “duplicate sensitive” aggregate functions Using a duplicate
sensitive aggregate function indicates a higher risk of inconsistency caused by
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duplicated values sent to aggregator. A filtering mechanism may be imple-
mented to identify the duplicates and filter them away.

Caching for “lossy” aggregate functions Lossy aggregate functions disal-
low the reconstruction of raw data from the aggregated data. However, raw
data may be needed to redo all changes when errors occur, in order to ensure
the atomicity of a process. A caching mechanism may be implemented for the
DAP as a solution, that raw data instances are cached in the aggregator until
the process completes.

Decomposition of aggregation for “progressive” aggregate functions The
implication of using a progressive aggregate function is that one may decom-
pose the entire aggregation into sub-aggregates. Computing the sub-aggregates
in parallel may benefit the performance of the entire DAP. Another useful ap-
plication of the decomposition is error handling, especially when it is combined
with a caching mechanism. Consider an aggregate process fetching data from
several sensors. The process can perform aggregation upon the arrival of each
sensor data and cache the sub-aggregate result so far. If an error occurs during
the fetching of next sensor, the process can return the cached sub-aggregate
result as an approximation [5], or only restart the fetching of the failed sensor,
instead of restarting the whole process.

Buffers for raw data and aggregated data Raw data arrive in the aggrega-
tor with their “MINT”, which could be different from the aggregation interval
imposed by the“triggering pattern” of the process. Buffers may be necessary
to keep the raw data available for aggregation. Buffers may also be necessary
for the aggregated data, since the aggregated data are generated according to
the “triggering pattern”, and must be available for a specified period defined
by the “time-to-live” feature. Buffer management is crucial for the accuracy of
aggregation as well as the resource utilization. For instance, circular buffer is a
common mechanism in embedded systems for keeping data in limited memory.
When the buffer is full, the program will just overwrite the old content with new
data from the beginning. With the features presented in our taxonomy, one may
calculate buffer size based on worst-case scenarios for non sheddable data, or
suffice buffer size for sheddable data, given the size of each data instance.
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6.7 Evaluation: an Industrial Case Study

In this section we evaluate the usefulness of our taxonomy in the design of a
data aggregation application. Prior to the case study we have implemented
a tool called DAPComposer (Data Aggregation Process Composer), shown
in Figure 6.8. The tool provides a graphical user interface for designers to
create DAP, by selecting and arranging the features in the diagram. Rules of
mandatory, optional and alternative features are implemented. The mandatory
features are always enabled, while optional and alternative features can be en-
abled/disabled by double-clicking the features. Annotations can be added to
the selected features, such as the name of the data, or the actual value of the
timing properties. It can also hide disabled features to provide a cleaner repre-
sentation. Constraints can be typed as rules by users and saved in a rule base.
The tool then validates the design against the specified rules. Although to the
date only primitive constraints intrinsic to the feature model are checked by
DAPComposer, we plan to mature the tool with more sophistic analysis capa-
bilities, such as timing analysis, in the next version.
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This evaluation is conducted on an industrial project, the Hardware As-
sisted Trace (HAT) [38] framework, together with its proposers from Ericsson.
HAT, as shown in Figure 6.9, is a framework for debugging functional errors in
an embedded system. In this framework, a debugger function runs in the same
system as the debugged program, and collects both hardware and software run-
time traces continuously. Together with the engineers we have analyzed the
aggregation processes in their current design. At a lower level, a Program
Trace Macrocell (PTM) aggregation process aggregates traces from hardware.
These aggregated PTM traces, together with software instrumentation traces
from the System Trace Macrocell (STM), are then aggregated by a higher level
ApplicationTrace aggregation process, to create an informative trace for the
debugged application.

We have analyzed the features of the PTM aggregation process and the Ap-
plicationTrace aggregation process in HAT based on our taxonomy. The fea-
tures of the PTM aggregation process are presented in Figure 6.10. Triggered
by computing events, this process pulls raw data from the local buffer of the
hardware, and aggregates them using an encoding function to form an aggre-
gated trace into the PTM cluster buffer. The raw data are considered sheddable,
since they are generated frequently, and each aggregation pulls only the data in
the local buffer at the time of the triggering event. The aggregated PTM and
STM traces then serve as part of the raw data of the ApplicationTrace aggre-
gation process, which is shown in Figure 6.11. The ApplicationTrace process
is triggered sporadically with a minimum inter-arrival time, and aggregates its
raw data using an analytical function. The raw data of the ApplicationTrace
should not be sheddable so that all aggregated traces are captured.

We have analyzed the features of the PTM aggregation process and the Ap-
plicationTrace aggregation process in HAT based on our taxonomy. The fea-
tures of the PTM aggregation process are presented in Figure 6.10. Triggered
by computing events, this process pulls raw data from the local buffer of the
hardware, and aggregates them using an encoding function to form an aggre-
gated trace into the PTM cluster buffer. The raw data are considered sheddable,
since they are generated frequently, and each aggregation pulls only the data in
the local buffer at the time of the triggering event. The aggregated PTM and
STM traces then serve as part of the raw data of the ApplicationTrace aggre-
gation process, which is shown in Figure 6.11. The ApplicationTrace process
is triggered sporadically with a minimum inter-arrival time, and aggregates its
raw data using an analytical function. The raw data of the ApplicationTrace
should not be sheddable so that all aggregated traces are captured.
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6.7.1 Problem identified in the HAT design

With the diagrams showing the features of the aggregation processes, the en-
gineers could immediately identify a problem in the PTM buffer management.
In the current design, the buffer size is decided by both the hardware platform
and the designer’s experiences. The problem is that, the data in the buffer may
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be overwritten before they are aggregated. This problem has been observed on
Ericsson’s implemented system, and awaits a solution. However, if the taxon-
omy would have been applied on the system design, this problem could have
been identified before it was propagated to implementation.

This problem arises due to the lack of a holistic consideration on the PTM
aggregation process and the ApplicationTrace aggregation process at design
time. Triggered by aperiodic external events, the PTM process could produce a
large number of traces within a short period and fill up the PTM buffer. The Ap-
plicationTrace process, on the other hand, is triggered with a minimum inter-
arrival time, and consumes the PTM traces as unsheddable raw data. When
the inter-arrival time of the PTM triggering events is shorter than the MINT of
the ApplicationTrace process, the PTM traces in the buffer may be overwritten
before they could be aggregated by the ApplicationTrace process.

6.7.2 Solutions
Providing a larger buffer could be a choice to mitigate this problem. However,
a larger provision might either still fail to meet the buffer consumption in some
rare cases, or become a loss of resource due to pessimism. Considering the
resource-constrained nature of the system, a better way is to derive the nec-
essary buffer size at design time, given the size of each data entry. Based on
our taxonomy, we and Ericsson engineers have come up with two alternative
design solutions to fix this problem. Both solutions reuse most of the features
in the current design.

Solution 1 To be able to derive the worst-case buffer size, one solution is to
ensure more predictable behaviors of the aggregation processes, by adjusting
the following features in the diagram (see Figure 6.12a): (i) Instead of select-
ing the “aperiodic” feature, the PTM process should select “sporadic”, with a
defined MINT; and, (ii) the “sporadic” feature of the ApplicationTrace process
should be replaced by “periodic”, so that the frequency of consuming the ag-
gregated PTM traces can be determined. These changes of the features entail
introducing extra real-time mechanisms into the current design, such as an ad-
mission control to ensure the MINT and a scheduler to schedule the processes.
In addition, a “time-to-live” feature, whose value equals to the period of the
ApplicationTrace process, should be added to the PTM process. To achieve
this, a mechanism that prevents traces from being overwritten before the “time-
to-live” value needs to be introduced. These new features allow the designer
to analyze the worst-case production and consumption of the aggregated PTM
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Figure 6.12: Illustration of Solution 1 and Solution 2. Unchanged features
from the current design are marked in gray.

traces, and therefore derive the worst-case buffer size for the system using the
actual values of the features. This solution also ensures that all PTM traces are
aggregated by the ApplicationTrace process. Features reused from the current
design are either marked in gray color, or omitted for readability.

Solution 2 An alternative to derive the exact buffer size is to allow overwrit-
ing in a controlled manner, as illustrated in Figure 6.12b. On one hand, as in
Solution 1, we suggest to replace the “aperiodic” feature of the PTM process
with “sporadic”, so that the worst-case buffer size for PTM trace production
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can be determined. On the other hand, the triggering pattern of the Applica-
tionTrace process remains unchanged (“sporadic”). However, a “sheddable”
feature from the taxonomy is added to the raw data of the ApplicationTrace
process, while a “time-to-live” is added to the PTM process. A shedding mech-
anism needs to be introduced, which in this case could be a logic in the buffer
management that allows overwriting traces older than the “time-to-live” value.
For instance, the designer may decide that the PTM traces produced 10 mil-
liseconds ago are not valuable for the ApplicationTrace. When a PTM trace
is older than 10 milliseconds, it might be overwritten even though it has not
been aggregated. With the knowledge of the worst-case production of the PTM
traces, and the “time-to-live” value of each trace, the designer is able to derive
the needed buffer size.

Both solutions guarantee bounded buffers, while they require just a few
features to be changed, and mechanisms introduced accordingly in the current
design. Compared with Solution 2, which could lose traces, Solution 1 ensures
all generated traces to be aggregated. However, to enforce a periodic triggering
pattern as suggested in Solution 1, more efforts are required to provide real-
time support, such as a real-time operating system.

6.7.3 Comparison with other taxonomies
Analysis based on other taxonomies could not easily identify the aforemen-
tioned bottleneck, since they characterize other aspects of data aggregation.
The taxonomies proposed by Madden et al. [5] and Gray et al. [2] can only
be applied to describe the aggregate functions of HAT, which are also captured
by our taxonomy. The taxonomies of Solis et al. [7], Makhloufi et al. [6],
and Rajagopalan [15], do not support modeling of data properties. Although
Fasolo et al. [4] have considered data representations, aggregate functions and
aggregation protocols, their taxonomy is defined at a much coarser level and
does not allow for the analysis on such detailed data and process behaviors as
the aforementioned bottleneck.

6.7.4 Summary
The engineers in the evaluation acknowledge that our taxonomy bridges the
gap between the properties of data and the properties of the process, which has
not been elaborated by other taxonomies. Our taxonomy enhances the under-
standing of the system by structuring the common and variable features of data
aggregation processes. By applying analysis based on our taxonomy, design



6.8 Discussion 95

flaws can be identified and fixed prior to implementation, which improves the
quality of the system and saves money. Design solutions can be constructed
by composing reusable features, and reasoned about based on the taxonomy,
which contributes to a reduced design space. Due to these benefits, the engi-
neers see great value in a potential design tool for data aggregation applications
based on our taxonomy.

6.8 Discussion

The proposed taxonomy brings new lights on the understanding of the com-
plexity of data aggregation in general. With a structured, feature-based orga-
nization, our taxonomy can be viewed as a common framework in which one
can study the implications of the features, as well as dependencies between the
features and the processes. Henceforth, one can reason about how the selection
of one feature will influence other features, or even other processes. From an
engineering perspective, as demonstrated by the HAT case study, applying our
taxonomy to analysis can help designers identify flaws prior to implementation,
and find new design solutions.

One direct usage of the dependencies between features is to eliminate infea-
sible feature combinations in the design. The rules regarding real-time strict-
ness levels of data and process timeliness in Section 6.6 are one example. Al-
though they appear straightforward and general, these rules regulate the quali-
tative relationships between real-time and timeliness features, and thus reduce
the design space. For more accurate analysis, such as the derivation of buffer
size in Section 6.7, values of quantitative features such as deadline and period
should be involved into the calculation.

Conflicts may occur between real-time features and the other features. For
instance, a DAP with durable aggregated data will ideally store each result into
permanent storage, introducing frequent disk I/O which is time consuming and
unpredictable. This may contradict the requirement of bounded computation
time imposed by the timeliness feature. Such conflicts can be generalized as
conflicts between logical data consistency, temporal data consistency and time-
liness. Features such as “durable” and “shared” data are closely related to log-
ical data consistency. The suggested mechanisms “logging and recovery” and
“concurrency control” are common means to achieve durability and isolation
respectively. They all have impacts on the temporal data consistency and time-
liness. In such cases, a simple rule to detect potential conflicts is not possible.
Neither is it possible to formulate a rule that resolves the conflicts that occur.
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We believe the conflict detection, as well as the trade-offs among conflicting
features, must come from careful analysis that relies on the selected features of
a particular configuration with their values in the real case. Advanced analysis
techniques, such as model-checking [39], can be applied on the configuration
to verify whether the desired properties hold, and guide the trade-offs.

6.9 Conclusion
In this paper, we have investigated the characteristics of data aggregation pro-
cesses in a variety of applications, and provided a taxonomy of the DAP, with
a particular focus on the real-time properties. Our taxonomy is presented as a
feature diagram, in which the common and variable characteristics are modeled
as features. The taxonomy provides a comprehensive view of data aggregation
processes for the designers, and allows the design of a DAP to be achieved via
the selection of desired features and the combination of the selected features.

Based on the implications of the features in the taxonomy, we have intro-
duced three rules that should be followed during the design of DAP. These rules
eliminate some of the infeasible combinations of features during the design.
We have also proposed a set of design heuristics, which help the designer to
decide the necessary mechanisms for achieving the selected features and other
system properties. The usefulness of the taxonomy has been demonstrated by
an industrial case study. Flaws can be identified at design time, and solutions
can be proposed at design level, by applying the taxonomy to the analysis.

Our taxonomy can be viewed as a framework for analyzing the dependen-
cies between features and aggregation processes. For some potential conflicts
among the desired features, we have highlighted that trade-offs must be decided
based on careful analysis. More advanced analysis techniques are needed for
reasoning about the conflicts among selected features, as well as the possible
resolutions. In our future work, we plan to apply advanced analysis techniques,
such as model-checking, to facilitate the trade-offs among features during the
design of data aggregation processes.
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Abstract

Traditional Concurrency Control (CC) mechanisms ensure absence of unde-
sired interference in transaction-based systems and enforce isolation. However,
CC may introduce unpredictable delays that could lead to breached timeliness,
which is unwanted for real-time transactions. To avoid deadline misses, some
CC algorithms relax isolation in favor of timeliness, whereas others limit pos-
sible interleavings by leveraging real-time constraints and preserve isolation.
Selecting an appropriate CC algorithm that can guarantee timeliness at an ac-
ceptable level of isolation thus becomes an essential concern for system de-
signers. However, trading-off isolation for timeliness is not easy with existing
analysis techniques in database and real-time communities. In this paper, we
propose to use model checking of a timed automata model of the transaction
system, in order to check the traded-off timeliness and isolation. Our solution
provides modularization for the basic transactional constituents, which enables
flexible modeling and composition of various candidate CC algorithms, and
thus reduces the effort of selecting the appropriate CC algorithm.
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7.1 Introduction

Many Real-time DataBase Management Systems (RTDBMSs) organize data-
related computations as transactions in order to maintain logical data consis-
tency, and guarantee the timeliness of the transactions, that is, meeting their
deadlines [1]. As one of the cornerstones of transaction-based systems, Con-
currency Control (CC) regulates the execution of concurrent transactions so
that isolation, which means that transactions are not interfered by concurrent
transactions [2], is achieved. While CC ensures the absence of undesired inter-
ference in a transactional computation, thus contributing to logical data consis-
tency, it may cause unpredictable delays introduced by long blocking, arbitrary
aborting and restarting, which could lead to deadline misses [3].

In an RTDBMS with hard real-time constraints, transaction timeliness is
often the most crucial property and must be guaranteed. To avoid missing
deadlines due to CC for full isolation (no interference from concurrent transac-
tions at all), one general approach is to exploit CC algorithms enforcing lower
levels of isolation that tolerate certain types of interferences [4, 5]. Conse-
quently, unpredictable delays are reduced since transactions are less likely to
be blocked or aborted, while a degraded (but acceptable) level of data consis-
tency is provided due to the relaxed isolation [6]. An alternative is to leverage
real-time constraints, such as priority and scheduling policy, in the CC [3, 7].
Such constraints enforce more restrictions on the possible interleavings, allow
for more control over transaction executions and improve timeliness. Several
solutions combine the relaxation of isolation with the enforcement of real-time
constraints [5]. Given a priori knowledge of the worst-case execution times of
individual data access operations, as well as the data access patterns, both time-
liness and an acceptable level of isolation could be guaranteed, by selecting an
appropriate CC algorithm for the particular transaction set at design time [8].

To achieve this, the system designer must be able to reason about both
properties of the transaction set, under various CC algorithms, in order to de-
cide the appropriate trade-offs. It is also highly beneficial to understand what
data inconsistency could occur due to the relaxed isolation. Traditionally, the
analyses of isolation and timeliness are separate tasks. In the database com-
munity, the analysis of isolation is based on analyzing dependencies exhibited
in transaction execution history without incorporating timing [6]. In the real-
time community, the common techniques are schedulability analysis [9] and
experimental studies of different CC algorithms [10]. To our knowledge, less
attention has been devoted to studying to which extent isolation can be achieved
while timeliness is ensured.
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In this paper, we propose an approach that facilitates the trade-off analysis
of timeliness and isolation together with candidate CC algorithms via formal
verification. Here, we choose one common type of CC, called Pessimistic
Concurrency Control (PCC) [11], which utilizes locking techniques to prevent
interferences. Nevertheless, the proposed approach can be applied to model
other CCs, and integrated into the development of customized RTDBMSs.

Our approach relies on model checking transaction-based system mod-
els, against formalized timeliness and isolation together. The model of the
transaction-based system is a network of timed automata representing the com-
putational work to be executed, as well as automata representing the properties
to be guaranteed. The resulting timed automata network is then verified with
respect to both timeliness and isolation in UPPAAL [12]. To reduce the model-
ing efforts for various PCC algorithms, we propose a set of automata skeletons
and parameterized patterns based on which the system models can be con-
structed modularly. Such skeletons model the basic structures of transactional
constituents and common PCC algorithms, while the parameterized patterns
model finer-grained recurring database operations, such as reads and writes.
The modularization in our approach not only alleviates the complexity of the
models, but also allows different PCC algorithms to be modeled and composed
flexibly with the models of the computations.

The rest of the paper is organized as follows. In Section 7.2, we present the
necessary background. In Section 7.3 we describe our approach for modeling
transaction-based systems. Section 7.4 demonstrates the flexible adjustments
for various PCC algorithms, followed by the verification results of the exam-
ple models presented in Section 7.5. Section 7.6 compares our work with the
related work, and in Section 7.7 we conclude the paper.

7.2 Preliminaries
In this section, we first briefly recall the concept of transaction, isolation and
PCC algorithms, followed by UPPAAL timed automata.

7.2.1 The Concept of Transaction

A transaction is initially defined as a partially-ordered set of logically-related
operations that, as a whole, ensure the so-called ACID properties [2], that is,
Atomicity (a transaction either runs completely or rollbacks all changes), Con-
sistency (a transaction executing by itself must not violate logical constraints),
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Isolation (concurrent transactions do not interfere each other) and Durability
(committed changes are made permanent). The partially-ordered set of oper-
ations without guarantees is called a work unit [13], which may include read
operations that read data from the database, write operations that modify data
in the database, and other calculations that do not interact with the database.
We assume that interleaving among concurrently executing transaction can oc-
cur at any time except within read and write operations which we consider to
be atomic. In hard real-time applications, in order to achieve predictability, the
set of transactions is finite and the size of the database is bounded. In addition,
the data access pattern of each transaction is known a priori.

Due to the semantic and performance limitations of the full ACID assur-
ance, the original transaction model is sometimes adapted to relax the ACID
properties [13], meaning that some of these properties are only partially en-
sured. For instance, isolation can be relaxed to allow certain types of inter-
ference [14]. In an RTDBMS for hard real-time applications timeliness must
also be ensured, meaning that transactions must complete within their spec-
ified deadlines [4]. In this paper we only relax isolation, whereas atomicity,
consistency, durability and timeliness are fully guaranteed.

A transaction is associated with transaction management primitives. The
primitive Begin informs the transaction manager of the initiation of a trans-
action, whereas Commit and Abort indicate the transaction termination when
all system resources possessed by the transaction are released. With full dura-
bility, when a transaction commits, the changes made by this transaction are
saved permanently in the database, and become visible to other transactions.
With full atomicity, when a transaction aborts, all changes it has made are un-
done. We consider two types of abort: user abort and system abort. User
aborts are encoded in the logic of transactions by the designer, and are incurred
by erroneous computational results at logical level. When a user abort occurs,
the transaction is terminated. System aborts are triggered by the transaction
manager when transactions are at such states that they cannot proceed. In this
paper we only consider system aborts caused by concurrency control, for in-
stance, due to conflicting data access.

Program 7.1 and 7.2 show two simple transactions T0 and T1 respectively.
They consist of read and write operations on the same data (D0 andD1), which
may lead to conflicts and expose the need for concurrency control. T0 reads
D0, performs calculation, and writes D1. In case any error occurs, T0 will be
aborted. T1 simply updates D0 and D1. Both T0 and T1 have deadlines to
meet, which are 11 and 4 time units respectively. In the following sections, we
use rji to denote that Ti reads Dj , wj

i to denote that Ti writes Dj , ci to denote
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the commit of Ti, and ai to denote the abort of Ti.

Program 7.1: Transaction T0
Begin
read D0

calculate
if error, Abort
write D1

Commit

Program 7.2: Transaction T1
Begin
write D0

if error, Abort
write D1

Commit

7.2.2 Isolation

Isolation refers to the property that the execution of one transaction is not inter-
fered by other transactions executing concurrently [6]. Since full isolation may
degrade performance and is not always necessary, the relaxation of isolation
has been introduced by both industry and academia. Most commercial DBMSs
support the isolation levels defined by ANSI/ISO SQL92 standard [14], which
are SERIALIZABILITY (the most strict isolation), REPEATABLE READS,
READ COMMITTED, and READ UNCOMMITTED (the most relaxed isola-
tion).

Generalized by Adya et al. [6], the isolation levels are defined using the
concept of phenomenon, which is a transaction execution that can lead to in-
consistent data. For instance, the following execution involving T0 and T1 is
considered as a phenomenon: < r00 , w0

1 , w1
1 , w1

0 >, representing the execution
“T0 reads D0, T1 writes D0, T1 writes D1, T0 writes D0”. In this execution,
T0 writes D1 based on the value it reads from D0, without knowing that T1
has updated D0. The consequence is that the value of D1 is not consistent with
D0.

An isolation level can then be defined as the property of avoiding a partic-
ular subset of the mentioned phenomena. For example, Adya et al. [6] classify
phenomena into the following types: G0, G1 (including subtypes G1a, G1b,
G1c), and G2. The SERIALIZABLE level precludes all the aforementioned
phenomena, whereas READ COMMITTED only precludes G0 and G1. Since
< r00 , w0

1 , w1
1 , w1

0 > is classified as a G2 phenomenon, the transaction system
facilitating this execution violates SERIALIZABLE isolation. For more details
about isolation, we refer to the literature [14, 6].
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7.2.3 Pessimistic Concurrency Control (PCC)

A transaction-based system ensures isolation of concurrent transactions access-
ing the same data via concurrency control. We focus on one type of concur-
rency control, Pessimistic Concurrency Control (PCC), which is commonly
applied in modern database systems [11]. PCC employs locking techniques
to prevent interferences from concurrent transactions. A transaction needs to
acquire a lock before it accesses the data, and release the lock after using the
data. The CC manager receives locking and unlocking requests, and decides
which transactions should be granted the lock, wait, or be aborted, according
to the selected algorithm.

Among existing PCC algorithms, one popular algorithm to ensure isolation
is Two Phase Locking (2PL) [11]. In 2PL, a transaction must acquire a write
lock before writing to a data object, and must acquire a read lock or write lock
before reading from a data object. If the data is already read locked, other
transaction can still be granted read locks, but not write locks. If the data is
write locked, no other transactions can be granted any lock. Transactions fail-
ing to acquire locks are added to a waiting queue. When a transaction unlocks
data, both acquired read and write locks are released, and the next transaction
in the waiting queue is granted the lock. Most importantly, a transaction is
divided into two ordered phases, first a growing phase, and then a shrinking
phase. In the growing phase the transaction can only require locks, whereas in
the shrinking phase the transaction can only release locks. One widely applied
variant of 2PL is rigorous 2PL, in which the shrinking phase occurs only when
the transaction commits or aborts. As most 2PL algorithms, deadlocks may
occur using rigorous 2PL.

Different PCC algorithms have been designed to rule out different types of
interferences, thus achieving different levels of isolation, by for instance ad-
justing the locking time [15]. In the RTDBMS community, researchers have
focused on leveraging real-time characteristics of transactions in CC, and have
proposed a number of real-time PCC algorithms. One of the most widely ap-
plied real-time PCC is Two Phase locking - High Priority (2PL-HP) [7], which
allows transactions with higher priority to lock a data that is already locked
by another transaction with lower priority. Meanwhile, the transaction with
lower priority gets aborted by the CC manager. Unlike rigorous 2PL, 2PL-HP
is deadlock free.
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Figure 7.1: A network of timed automata

7.2.4 Timed Automata and UPPAAL

Timed Automata (TA), proposed by Alur and Dill [16], are finite-state au-
tomata extended with real-valued clock variables. UPPAAL is one of the most
popular and mature verification tools based on timed automata, and extends
the standard framework of TA with discrete variables as well as other model-
ing features [12]. We use UPPAAL TA in this paper, and introduce the syntax
and semantics of UPPAAL TA via an example. To model a concurrent real-
time system, several TA can be composed in an automata network. UPPAAL
uses the Calculus of Communicating Systems (CCS) parallel composition op-
erator (“||”) [17] to build a network of TA. Using CCS, individual components
are allowed to carry out internal actions (i.e., interleaving), while pairs of com-
ponents can perform hand-shake synchronization.

Figure 7.1 shows a network of TA, composed of timed automata A1 and
A2, which models a simple concurrent real-time system. In this system, au-
tomaton A1 sporadically increments the value of variable a and synchronizes
with automaton A2. A timed automaton consists of a finite set of locations
connected by edges. A1 consists of locations L1, L2 and L3, out of which
L1 is the initial location. A clock variable cl is defined in A1 to measure the
elapse of time, and progresses continuously. A discrete variable a is defined
globally, and shared by A1 and A2. The semantics of a timed automaton is
defined as a timed transition system where a state consists of the current loca-
tion and the current values of clocks. There are two types of transitions: (i)
delay (e.g. A1 may delay in L2 as long as cl <= 3), and (ii) action/discrete
transitions (e.g. L1 to L2 transition). At each location, if possible, A1 may
non-deterministically delay at the location, or take a transition along an edge.
A location may have an invariant, which is a conjunction of clock constraints.
The TA must leave the location before the invariant is violated. In Figure 8.1a,
A1 may stay at L2 until the value of cl reaches 3. Each edge may have a guard,
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an action and an assignment. A guard is a finite conjunction of constraints on
discrete variables or clock variables. A transition can be taken, only if the cor-
responding edge guard is satisfied. An action is the synchronization with other
automata via a channel. Binary channels are used to synchronize one sender
with a single receiver. An exclamation mark “!” following the channel name
denotes the sending automaton, and a question mark “?” denotes the receiver.
If the expected sender or receiver is not ready, the other automaton receiving or
sending the message blocks. A broadcast channel is used between one sender
and an arbitrary number of receivers. The sender does not block no matter how
many receivers are ready. In Figure 7.1, A1 and A2 synchronize via a binary
channel ch. An assignment resets the clock or sets a discrete variable when a
transition is taken. Guards and assignments can be user-defined functions. In
our example, when A1 moves from L2 to L3, the value of a is incremented by
the function inc(a).

A location can be urgent or committed. When an automaton reaches an
urgent location, marked as “U”, it must take the next transition without any de-
lay in time. Another automaton may take transitions at the time, as long as the
time does not progress. In our example, L5 is an urgent location. A committed
location, marked as “C”, indicates that no delay occurs on this location and
the following transitions from this location will be taken immediately. When
an automaton is at a committed location, another automaton may NOT take
any transitions, unless it is also at a committed location. L3 is a committed
location.

The UPPAAL model checker relies on a decidable subset of (Timed) Com-
putation Tree Logic ((T)CTL) [18] as the specification language of properties,
and supports verification of liveness and safety properties [12]. For exam-
ple, one can specify the safety property “A1 never reaches location L3” as
“A[ ]notA1.L3”, in which “A” is a path operator and reads “for all paths”,
whereas “[ ]” is the “always” temporal operator. If a safety property is not sat-
isfied, the model checker will provide a counterexample. Readers can refer to
literature [12] for more information about UPPAAL.

7.3 Our Approach

In this section, we show how to model concurrent transactions under pes-
simistic concurrency control based on skeletons and patterns, aiming for the
verification of timeliness and isolation.

Before explaining our modeling approach, we clarify the following as-
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sumption. First, we assume that a hard RTDBMS runs on a single-processor
platform, and comprises a finite set of transactions and data. Since the oper-
ations of each transaction are known a priori, the Worst-Case/Best-Case Exe-
cution Times (WCET/BCET) of the operations can be, either measured from
legacy systems, or derived by analyzing the code, using established analysis
methods [19]. Second, all read and write operations are atomic and cannot be
preempted by other transactions. Third, since the time for a read/write oper-
ation and for waiting for a lock is significantly longer, the time spent on the
lock resolution by the CCManager and the locking/unlocking actions is neg-
ligible. We also assume full durability and atomicity, which means that the
changes of committed transactions are made permanent, while the changes of
aborted transactions are undone by a rollback mechanism. The assumed roll-
back mechanism simply writes back the old values. One may however extend
the models for more complex mechanisms.

We consider a real-time transaction-based system as a composition of a
finite set of work units and the Concurrency Control Manager (CCManager).
The system is modeled as a network of timed automata, in which each work
unit and the CCManager are modeled as timed automata respectively. We in-
troduce a set of IsolationOservers, which are automata that can be composed
into the automata network and monitor the phenomena. Formally, we define a
real-time transaction-based system NS as follows:

NS ::= A0 || ... ||An−1 ||ACCManager ||O0 || ... ||Ok−1,

where A0, ..., An−1 are the TA of work units of transactions T0, ..., Tn−1, re-
spectively. Since in this paper we specifically target analysis of isolation and
assume full atomicity and durability, we only model the interaction betweenAi

and the CC manager, while atomicity/durability management is not modeled
explicitly. Instead, we augment Ai with locations representing the atomicity
and durability semantics. ACCManager is the timed automaton of the CCMan-
ager. O0, ..., Ok−1 are the TA of IsolationOservers introduced to capture the
phenomena precluded by the desired isolation, respectively. When a transac-
tion performs an operation, the observers update their states accordingly. NS

must satisfy the timeliness property, that is, all transactions must meet their
deadlines. NS must also satisfy the desired isolation, which should be verified
that no disallowed phenomena are observed by the IsolationObservers.

Our approach comprises a set of timed automata skeletons for modeling the
basic structures of Ai, ACCManager, and Oi, as well as parameterized patterns
for modeling the operations within the automata. The skeletons are supposed
to be adjusted and extended with respect to the particular system adopting a
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Figure 7.2: Timed automaton skeleton for a work unit
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commit_trans abort
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operation patterns

ready
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Figure 7.3: Work unit skeleton with atomicity and durability

selected PCC algorithm. The patterns, on the contrary, can be instantiated and
reused as basic modeling units, to enrich the skeletons. The proposed skeletons
and patterns are presented in the following subsections.

7.3.1 Work Unit Skeleton and Operation Patterns
Following its original definition, a work unit only consists of a set of opera-
tions. Figure 7.2 shows an automaton skeleton for a general work unit. The
two locations begin and end represent the boundaries of the work unit. Within
the boundaries, the operations, e.g., reads, writes and calculations, are modeled
as patterns.

The work unit skeleton is augmented with the locations representing the
committing and aborting mechanisms that achieve the assumed full atomicity
and durability, as presented in Figure 7.3. In the future, if another variant
of atomicity or durability is desired, the work unit should be augmented with
the corresponding patterns. The model in Figure 7.3 comprises the location
begin, while the end location in Figure 7.2 is replaced by commit trans 1 and

1We do not use “commit” as the location name because “commit” is a reserved word in the
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operation

tp >=BCRT
cs:=0

operation_done

Figure 7.4: Read/write operation pattern

abort. The ready location models that the transaction is ready to be activated,
before it actually begins. Since we are interested in verifying timeliness, a
clock variable tc is defined, and reset once the transaction begins. When the
transaction commits or aborts, the value of tc is compared with the transaction’s
DEADLINE, which is a positive integer value specified by the designer. If tc is
greater than DEADLINE, the automaton will move to location miss deadline.
In the rest of this paper we use this work unit skeleton augmented with full
atomicity and durability as the basic skeleton for work units.

Each operation is modeled as an instantiation of the “operation pattern”.
The atomic read/write operation pattern is defined in Figure 7.4. A clock vari-
able tp is defined to measure the time spent on the operation. The variable
cs stands for the critical section that models the CPU resource and ensures
the atomic behavior. This pattern also contains locations operation, and op-
eration done, in which the word “operation” must be substituted by the ac-
tual operation, for instance “read t1 d0” (representing r01). When cs equals 1,
meaning that the CPU is taken, the automaton moves to the wait location and
waits for the CPU. For illustration, we simply let the automaton check whether
the CPU is free every 1 time unit. This “polling” mechanism for CPU inquiry
could be changed for more advanced scheduling, as we will present in Sec-
tion 7.4. If cs equals 0, then the automaton obtains the CPU, sets cs to 1, and
performs the operation. Before reaching location operation done, which is the
end of the operation, cs is set back to 0. WCRT and BCRT are parameters
specified by the designer, representing the worst-case and best-case response
time of the operation, respectively. The invariant tp <= WCRT on location
operation constrains that the execution of the operation takes at most WCRT
time units. The guard tp >= BCRT constrains that the execution takes at least
BCRT time units. For atomic read and write operations, the WCRTs/BCRTs

UPPAAL tool.
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Figure 7.5: Work unit automaton of T0

are equal to their WCETs/BCETs.
The pattern for non-atomic operations (calculations) is similar to the one

for atomic operations, except that the value of cs is not updated during the op-
eration. WCRT/BCRT could be derived by the designer based on the particular
scheduling policy and the timing constraints, using for instance schedulability
analysis techniques.

The instantiated operation patterns are composed into the skeleton to form
the model of the work units. For example, the work unit of T0 is modeled as
shown in Figure 7.5. For readability, some wait locations are omitted. The
instantiated operation patterns include Read d0, Calculate, and Write d1.
These instantiated patterns, as we show in the remainder of the paper, can
be reused to model a system of the same transactions but with different CC
algorithms.

7.3.2 Concurrency Control Skeleton and Patterns

As explained in Section 7.2, PCC relies on locking/unlocking interactions be-
tween the CCManager and the transactions. We introduce the skeleton for the
CCManager, as well as patterns to augment the work unit skeleton with CC
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decide_grant_next

Figure 7.6: Automaton skeleton for a pessimistic concurrency control manager

related interactions.

The automaton skeleton for a PCC manager is shown in Figure 7.6. When
the automaton receives a locking request via the channel lock[ti][dj]?, it takes
the transition from the initial location idle to lock request received. A user-
defined function that implements the resolution algorithm, satisfyPolicy() is
defined, depending on the concurrency control algorithm, as a guard on the
transitions from lock request received. Taking 2PL as an example, satisfyPol-
icy() evaluates to false if the data required by the transaction has already been
locked by another transaction. If satisfyPolicy() returns true, the automaton
moves to decide grant. It then immediately sends the signal grant[ti][dj]! to
transaction Ti, and updates the status of the transactions and the locks, using
a user-defined function updateStatus(). If satisfyPolicy() returns false, the CC-
Manager moves to decide deny, and takes actions as implemented in function
deny(), before it moves back to idle. Since the CCManager has the highest pri-
ority, and the time on lock resolution is negligible, all locations in this model
are committed locations.

When receiving an unlocking request via unlock[ti][dj]?, CCManager up-
dates the status, and moves to unlock request received. On the transitions from
this location, the guards check if any transaction is waiting for locking the data,
by a user-defined function isTransWaiting(). If this function returns true, the
automaton sends a signal via grant[next][dj]!, to the next transaction obtained
by the getNextFromQueue() function, and updates the status accordingly.
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Figure 7.7: Locking pattern
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Figure 7.8: Unlocking pattern
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notify_commit/abort[ti]?

notify_commit/abort[ti]?

Figure 7.9: Automaton skeleton for an IsolationObserver

The work unit skeleton needs to be extended to model the interaction with
the PCC manager. A locking pattern and an unlocking pattern are introduced in
Figure 7.7 and Figure 7.8 respectively. After the transaction sends a message
via lock[ti][dj]!, it waits at location wait for lock j, until it receives the mes-
sage grant[ti][dj]?. The patterns can be inserted into the work unit automata
at particular positions depending on the selected PCC algorithm. For instance,
using rigorous 2PL, write locks are released when the transaction commits or
aborts. To model this PCC algorithm, the unlocking patterns for write locks
must be inserted right before the commit or abort location in the transaction
automaton. The model of rigorous 2PL is presented in the next subsection.

7.3.3 IsolationObserver Skeleton

To verify that a particular level of isolation is satisfied, we must verify the ab-
sence of the phenomena precluded by this level, in the presence of the under-
lying concurrency control algorithm. We introduce a set of IsolationObserver
automata that capture the phenomena, by monitoring the operations performed
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tp <=WCRToperation

notify_read/write[ti][dj]!

operation_done

tp >=BCRT
cs:=0

Figure 7.10: Operation pattern extended for IsolationObservers

by the work units.
The automaton skeleton for an IsolationObserver is described in Figure 7.9.

The automaton starts from the idle location, and reaches the phenomenon Gn
location if the phenomenon is observed. Each location between idle and phe-
nomenon Gn is a subsequence of the operation sequence defining the phe-
nomenon Gn. Without loss of generality, let us define Gn as the sequence
< opji , opnm, ... >. In Figure 7.9, via channel notify operation1[ti][dj]?, the
observer is notified when transaction Ti successfully completes opji (read or
write Dj), and transits to the location operation1 i j. Subsequently, when Tm
successfully completes opnm, the automaton moves from operation1 i j to op-
eration1 i j operation2 m n. Since the observed phenomenon is started by an
operation of transaction Ti, the end of Ti also means the end of the observation.
Therefore, when Ti commits or aborts, the observer automaton gets a notifica-
tion via channel notify commit/abort[ti]?, and moves to location idle. Such
iteration is repeated until the observer reaches phenomenon Gn, indicating the
existence of Gn, and thus the violation of the isolation level that precludes Gn.

Accordingly, the work unit skeleton and patterns introduced in the pre-
vious section must be extended to incorporate the notifications. In the work
unit skeleton in Figure 7.3, notify commit[ti]! and notify abort[ti]! should be
added to the edges leading to commit trans and abort respectively. The op-
eration pattern defined in Figure 7.4 is extended with notify read[ti][dj]! or
notify write[ti][dj]! on the edge leading to operation done, as shown in Figure
7.10.

7.3.4 Reference Algorithm: Rigorous 2PL

We illustrate our approach by modeling a concurrent transaction system imple-
menting the rigorous 2PL algorithm presented in Section 7.2. Let us consider
the two transactions in Programs 7.1 and 7.2. Assume the WCET of each read,
write and calculation operation is 1 time unit. The BCETs are assumed to be 0
for simplicity.
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Figure 7.11: Rigorous 2PL: T0 work unit automaton

Figure 7.11 shows the model of T0 under rigorous 2PL. The work unit
skeleton without CC contributes to the locations ready, begin, commit trans,
abort, user abort and miss deadline. The skeleton is enriched by the opera-
tions contained in the transaction, as well as the locking and unlocking patterns.
As illustrated in Figure 7.11, the transaction first requires a read lock of D0,
which is modeled by an instantiated locking pattern Readlock d0. The oper-
ation r00 then follows, modeled by an instantiated operation pattern Read d0.
After r00 , the transaction performs calculation, acquires a write lock of D0,
and performs the operation w1

0 . At commit time, the transaction releases its
locks using instantiated unlocking patterns. The instantiated operation patterns
Read d0, Calculate and Write d1 are reused from the model of T0 without
CC in Figure 7.5. The timed automaton of T1 is modeled in a similar way.



120 Paper B

C

C

C

C

C

lockread[ti][dj]?
lock_type:=READLOCK

lockwrite [ti][dj]?
lock_type:=WRITELOCK

unlock[ti][dj]?
updateUnlock(ti, dj)

!isTransWaiting(dj)

isTransWaiting(dj)
trans_id:=
getNextFromQueue(dj)

updateUngranted()

lock_type==WRITELOCK
grantwrite [ti][dj]!
updateGranted()

lock_type==READLOCK
grantread[ti][dj]!

updateGranted()

satisfyPolicy()

!satisfyPolicy()

lock_type==READLOCK
grantread[ti][dj]!
updateGranted()

lock_type==WRITELOCK
grantwrite [trans_id][dj]!
updateGranted()

lock_request_received

unlock_request_received

decide_grant

decide_refuse

decide_grant_next

Figure 7.12: Rigorous 2PL: CCManager timed automaton

Figure 7.12 illustrates the timed automaton for the CCManager using rigor-
ous 2PL algorithm. The PCC skeleton is extended to incorporate two types of
locks, the read lock and the write lock. In this model, the user-defined functions
implement the actual algorithm. The function satisfyPolicy() decides whether a
transaction can be granted the required lock, based on the current status of the
locked data. The functions updateGranted(), updateNotgranted() and update-
Unlock() update the status of transactions and data after a locking, denying or
unlocking action is taken, respectively. The function isTranswaiting() checks
if any transaction is waiting due to unfulfilled lock requests. The function get-
NextFromQueue() fetches the next transaction in the waiting queue.

According to the definitions of phenomena in [6], phenomenon G1a can be
described as: < w0

1 , r00 , a1 >, representing the sequence that T1 writes D0,
T0 reads D0, and then T1 gets aborted. The IsolationObserver automaton for
G1a is shown in Figure 7.13, which captures the sequence of operations of this
phenomenon. The complete programs and UPPAAL models of T0 and T1, the
CCManager and other IsolationObservers are included in our report [20].
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Figure 7.13: IsolationObserver for G1a

7.4 Adjustments for Various PCC
In this section, we demonstrate the flexibility of our approach by modeling two
different PCC algorithms: one algorithm relaxing isolation, the other leverag-
ing real-time constraints. The new models are constructed by adjusting and
composing the skeletons and patterns from the models of the reference Rigor-
ous 2PL.

7.4.1 Concurrency Control for Relaxed Isolation

One solution to guarantee timeliness under concurrency control is to relax the
isolation level by adjusting the CC algorithm. By adjusting the instantiated
patterns and composing them, our approach allows designers to easily build
new models for other PCC algorithms from the existing rigorous 2PL models.
In this subsection we show how to model PCC algorithms for relaxed isolation
levels, through minor adjustments in the models of rigorous 2PL.

One type of adjustments for relaxing isolation is to adjust the points of
locking and unlocking within the transaction control flow. By applying such
adjustments one can develop different pessimistic concurrency control algo-
rithms that achieve different isolation levels [15, 6]. For example, SERIALIZ-
ABLE can be achieved by exploiting long read locks and long write locks, as
in rigorous 2PL. These locks are released when the transaction is committed. If
the read locks are changed to have short duration, which means the read locks
are released immediately after the read operation, a lower level of isolation
such as READ COMMITTED could be achieved. The READ COMMITTED
level can be further relaxed to READ UNCOMMITTED by, for instance, re-
moving read locks entirely. This type of adjustment is easy to implement in
our model. Since locking and unlocking are modeled as parameterized pat-
terns composed with the work unit skeleton, one can move them to the desired
locations to achieve different durations. The adjustments of locking types and
durations are illustrated in Figure 7.14. The dashed rectangles represent the
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Figure 7.14: Adjusting rigorous 2PL for different isolation levels

instantiated locking and unlocking patterns in the automaton of T0. The ad-
justments for different PCC algorithms can easily be accomplished by adding,
removing, or moving around the locking and unlocking patterns.

The system of T0 and T1 exploiting short readlock CC algorithm can be
easily adjusted from the Rigorous 2PL models. The automata for T0 and T1
are adjusted according to Figure 7.14. The CCManager automaton and the
IsolationObservers are exactly the same as the ones in Section 7.3 for Rigorous
2PL.

7.4.2 Real-time Concurrency Control
As an alternative to relaxing isolation, researchers have worked for solutions
to provide hard real-time guarantees while preserving a high level of isolation.
A common approach is to identify the real-time characteristics of the system,
such as the scheduling policy and priorities of the transactions, and leverage
them in the CC algorithms. The reason behind such approaches is that the
real-time constraints in the CC algorithms can restrict possible interleavings,
which improves the timeliness of the transactions and thus the predictability of
the system. In this section, we show that our approach is flexible for modeling
real-time PCC algorithms. We first present how the automata skeletons and
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patterns in Section 7.3 are extended for common real-time PCC algorithms.
We then compose these instantiated skeletons and patterns to model a set of
transactions under a popular real-time PCC algorithm called 2PL-HP [7], and
verify the timeliness and isolation.

We assume that transactions are running on a real-time operating system
and are scheduled according to a certain scheduling policy. For illustration we
assume that the scheduling policy is the Fixed Priority Scheduling (FPS). How-
ever, the modeling approach can be easily adapted to other real-time schedul-
ing policies. Under FPS, priorities of transactions are assigned at design time,
and remain unchanged during execution. Transactions can be preempted by
the ones with higher priorities, unless they are executing in “non-preemptive”
regions, which are atomic operations in our case. We assume that the CCMan-
ager executes at the highest priority.

The real-time assumptions impose changes in the operation pattern (Fig-
ure 7.10) in Section 7.3, which assumes a simple “polling” scheme for inquir-
ing CPU resource and no preemptions from other transactions. The adjusted
atomic operation pattern is shown in Figure 7.15. We use the variable cs to
model the critical section for atomic operations, and encode the scheduling
policy (e.g. FPS) in the sch() function that decides which transaction should
get the CPU. The flexibility of using the user-defined sch() function is that, if
another scheduling policy is selected, the changes will be limited to the code
of the sch() function without affecting the models. At the previous location,
which is right before the atomic operation, the transaction may be preempted,
which is actually reflected by the result of sch(). The automaton can move to
perform an operation, only if sch() returns its id ti. If not, this means that an-
other transaction obtaining the CPU is either in its atomic operation, or has a
higher priority than Ti. Then the automaton moves to the wait location, and
waits for a cpu free signal. The cpu free signal is sent when a transaction
finishes an atomic operation, gets blocked on locking requests, or terminates
(commits or aborts).

The pattern for non-atomic operations (calculations) is similar to the one
for atomic operations, except that the value of cs is not updated during the op-
eration. WCRT/BCRT could be derived by the designer based on the particular
scheduling policy and the timing constraints, using for instance schedulability
analysis techniques.

The locking pattern (Figure 7.7) in Section 7.3 also needs to be modified
in order to model real-time behaviors. The adjusted pattern is shown in Figure
7.16. When transaction Ti requires to lockDj , it may get from the CCManager
either a grant[ti][dj]? or a wait[ti][dj]? signal. The wait[ti][dj]? signal lets
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Figure 7.16: Locking pattern extended for real-time CC

the automaton to move to wait for lock j and release the CPU via the channel
cpu free!. The variable wq[ti] keeps track whether Ti is blocked due to an
unfulfilled lock request. When the automaton receives a grant[ti][dj]? signal
from CCManager, it moves to locked dj.

The work unit skeleton and the CCManager skeleton are the same as the
ones in Section 7.3. These skeletons need to be adjusted according to the actual
system, as shown by the 2PL-HP example in the next subsection. The isolation
observers are constructed in the same way as described in Section 7.3.

We apply our approach to modeling a set of transactions under 2PL-HP
[7], a widely applied CC algorithm in real-time database systems, by compos-
ing the aforementioned instantiated patterns. 2PL-HP allows transactions with
higher priorities to lock the data that are already locked by transactions with
lower priorities. The lockers with lower priorities are aborted by the CCMan-
ager. The aborted transactions are scheduled to be restarted, according to a
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Figure 7.17: 2PL-HP: Work unit of T0 with full atomicity and durability
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C

C

C

C

C

lock[ti][dj]?

unlock[ti][dj]?
updateUnlock(ti, dj)

!isTransWaiting(dj)

isTransWaiting(dj)
next:=

getNextFromQueue(dj)

wait[ti][dj]!
updateUngranted()

locker!=-1
abort_trans[locker]!
updateAbort()

locker==-1
grant[ti][dj]!

updateGranted()
satisfyPolicy()
locker:=getLocker()

!satisfyPolicy()

grant[next][dj]!
updateGranted()

lock_request_received
unlock_request_received

decide_grant

decide_refuse

decide_grant_next
C

abort_locker

grant [ti][dj]!
updateGranted()

Figure 7.18: Automaton for the 2PL-HP CCManager

predefined criterion. In our case we assume that transactions are restarted if
they have not missed their deadlines.

The work unit automaton for T0 is shown in Figure 7.17. The variable rq[0]
indicates whether T0 is started. The locations in gray color are the ones from
the work unit skeleton. Several differences exist in this model compared to
the model under rigorous 2PL in Figure 7.11, addressing the specific aborting
and restarting mechanism in 2PL-HP. This model comprises the system abort
location since transactions may be aborted by the CCManager. A rollback lo-
cation models undoing the change in D1 when T0 gets aborted by CCManager
after its write operation. The function condition(tc), which could be adjusted
for other criteria, compares the current time with the deadline. When the au-
tomaton arrives at the system abort location, it continues to either begin, if
condition(tc) returns true, or abort otherwise. Locking and the operations are
instantiated based on the patterns in Figure 7.15 and Figure 7.16.

The CCManager of 2PL-HP is modeled as shown in Figure 7.18. In this
model, the satisfyPolicy() function is implemented according to 2PL-HP, i.e.,
returning true if the data is either free, or locked by a transaction with lower
priority. If satisfyPolicy() returns true, the locker, which is obtained by the get-
Locker() function, is aborted, while the lock is granted to the requester instead.
Otherwise a wait[ti][dj]! signal is sent to the requester. When an unlocking
signal is received, the CCManager picks the next transaction from the waiting
queue using the getNextFromQueue() function, which also takes the priorities
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into consideration.

7.5 Verification
We use UPPAAL model checker to verify timeliness and isolation. The time-
liness property can be specified as a safety property in (T)CTL, requiring that
the miss deadline locations are not reachable. The timeliness of Ti can be
specified as:

A[ ]not T0.miss deadline.

With the IsolationObservers composed into the models, we can verify that
a transaction set achieve the desired isolation level under a certain CC algo-
rithm, by proving the absence of phenomena precluded by the isolation level.
For instance, to verify that T0 and T1 achieve SERIALIZABLE isolation, one
must prove that none of the phenomena G0, G1 (G1a, G1b and G1c) and G2
could occur. This is equivalent to proving that the phenomenon Gn location of
IsolationObserver On is not reachable, which can be specified as:

A[ ]notOn.phenomenon Gn.

Finding a complete set of the undesired phenomena is not the main concern
of this paper. However, we believe that this process can be automated since the
data access patterns of all transactions are known a priori. A naive approach is
to enumerate all possible operation sequences for each pair of transactions that
share data, and match the sequences with the phenomena in [6]. Although more
efficient algorithms probably exist, we use this approach for our evaluation in
the following sections.

Verification of rigorous 2PL We model check timeliness and SERIALIZ-
ABLE isolation of T0 and T1 under the reference algorithm Rigorous 2PL,
which are modeled in Section 7.3. The verification shows that T1 may miss
its deadline under rigorous 2PL. From the trace we realize that T1 is trying to
lock D1 before w1

1 , while D1 is already locked by T0 before r11 until T0 com-
mits. Such long blocking time introduced by the concurrency control causes
breaching the timeliness of T1. In order to reduce the blocking times and meet
all deadlines, we can either choose a less restrictive CC that achieves a lesser
degree of isolation, or a real-time CC that leverages temporal constraints to
enforce timeliness.

By definition [6], G0 is exhibited only if there exists a write-dependency
loop between T0 and T1, which is not possible considering the operations of
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Table 7.1: Verification results using the short readlock CC

ID Specification Verification
Time

Explored
States

Result

S1 A[ ]not T0.miss deadline 0.001s 1179 Satisfied
S2 A[ ]not T1.miss deadline 0.001s 1179 Satisfied
S3 A[ ]not

IsolationObserverG1a.G1a
0.001s 1179 Satisfied

S4 A[ ]not
IsolationObserverG2.G2

0.001s 966 Not satisfied

these two transactions. Similarly, G1b and G1c do not occur. Therefore, in
order to verify SERIALIZABLE isolation, we only need to prove the absence
of G1a and G2, which can be described as < w0

1 , r00 , a1 >, and < r00 , w0
1 ,

w1
1 , w1

0 >, respectively. The verification shows that neither location G1a nor
location G2 are reachable, which means that the verified system achieves SE-
RIALIZABLE isolation level.

Verification of short readlock algorithm As one solution to ensure timeli-
ness, we apply the short readlock algorithm to relax isolation, and adjusted the
models according to Section 7.4.1. The UPPAAL verification results are listed
in Table 7.1. The results show that both transactions meet their deadlines. S3
is satisfied, indicating that phenomenon G1a does not occur, meaning that the
modeled system reaches READ COMMITED isolation level. As expected, S4,
which checks the absence of G2, is not satisfied, meaning that the system does
not meet the SERIALIZABLE isolation level. The consequence is that the ex-
ecution < r00 , w0

1 , w1
1 , w1

0 > degrades data consistency, because T0 writes to
D1 based on the old value it reads from D0, which has been changed by T1.

Verification of 2PL-HP Our last example applies 2PL-HP to control the con-
currency of a transaction set, consisting of T0 and T1 listed in Programs 7.1 and
7.2 in Section 7.2, as well as T2 and T3 in Programs 7.3 and 7.4. D0 andD1 are
shared by T0, T1 and T2, while D2 is shared by T2 and T3. The deadlines for
T0, T1, T2 and T3 are 11, 4, 22 and 13 time units respectively. The priorities are
assigned, from highest to lowest, as follows: T1, T0, T3, T2. The phenomena
possible to occur during the execution of the example transactions are listed in
Table 7.2.
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Table 7.2: Possible phenomena during execution

Phenomenon Operation sequences
G1a < w0

1 , r00 , a1 > < w1
0 , r02 , a0 > < w0

1 , r02 , a1 > < w1
1 , r12 , a1 >

< w2
2 , r23 , a2 >

G2 < r00 , w0
1 , w1

1 , w1
0 > < w0

1 , r02 , r12 , w1
1 > < r02 , w0

1 , w1
1 , r12 > < r23 ,

w2
2 , w2

3 >

Program 7.3: Transaction T2
Begin
read D0

read D1

write D2

Commit

Program 7.4: Transaction T3
Begin
read D2

write D2

Commit

The models are adjusted according to Section 7.4.2. The complete models
are included in our report [20].

To verify SERIALIZABLE isolation, one needs to verify that none of the
listed phenomena could actually occur. The verification results are listed in
Table 7.3. Specification S1, S2, S3 and S4 encode timeliness of T0, T1, T2,
and T3, respectively. S5 specifies that none of the locations indicating a phe-
nomenon is reachable. All listed specifications are satisfied, which means that
both timeliness and SERIALIZABLE isolation are guaranteed by 2PL-HP.

Discussion The authors of 2PL-HP have proved that the algorithm guaran-
tees serializability [7], which validates the verification results regarding isola-
tion.

We compare the model checking results of timeliness with the results of
schedulability analysis. We argue that existing schedulability analysis tech-
niques cannot be directly applied to analyze the schedulability of the transac-
tion set. For instance, analysis of tasks in the Abort-and-Restart (AR) model
assumes that higher priority tasks immediately abort lower priority tasks that
are later restarted [21]. The transaction model in 2PL-HP is more complex.
A transaction may be blocked by a lower priority transaction because of the
atomic operations and rollback. A transaction may be aborted (and then restarted)
by a higher priority transaction if they share the same data, or be preempted if
they do not share data.

Since the considered transaction set consists of only four transactions, for
the purpose of validating that the model-checked transactions are indeed schedu-
lable, we analyze the worst case for each transaction manually, assuming each
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Figure 7.19: Worst case for T3

transaction is modeled as a real-time task. As an example, we show the worst
case for transaction T3 in Figure 7.19. In this case, a lower priority transaction
T2 has read D0 and D1 (denoted as “r0” and “r1”), and started an atomic write
operation on D2 (“w2”) at time 2. T3 is activated at time 2 + ε, and tries to
read D2. T2 is aborted due to conflicts, but before T3 starts, T2 must finish
the atomic operation, and perform the rollback (“rb”). When the rollback is
completed at time 4, T0 is activated, which has a higher priority than T3, and
thus preempts T3. However, before T0 could complete its work, it gets aborted
by T1 at time 7, gets restarted at time 10, and terminates at time 13. T3 is then
allowed to execute, and terminates at time 15. The worst case response time
of T3 is therefore 13 − ε, smaller than its deadline 13. T3 is indeed schedu-
lable. Similar analysis shows that T0, T1 and T2 can all meet their deadlines,
whose worst case response times are 11, 4 and 22, respectively. Therefore, the
model checking results with respect to timeliness are validated. For a larger
transaction set under 2PL-HP, the validation via schedulability analysis should
be automated, which is not trivial and out of our current scope.

Compared with schedulability analysis, our approach can perform more
exact analysis for more complex transaction models. For instance, a variant
of 2PL-HP conditionally aborts transactions based on their current time [7].
While existing schedulability analysis techniques can be applied but with large
pessimism, our approach can easily model the conditional aborting behavior
by extending the current models, and perform more exact analysis.
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Table 7.3: Verification results using 2PL-HP

ID Specification Verification
Time

Explored
States

Result

S1 A[ ]not T0.miss deadline 1.592s 161126 Satisfied
S2 A[ ]not T1.miss deadline 1.606s 161126 Satisfied
S3 A[ ]not T2.miss deadline 1.623s 161126 Satisfied
S4 A[ ]not T3.miss deadline 1.638s 161126 Satisfied
S5 A[ ]not

(IsolationObserverT0T1G1a.G1a
or IsolationObserverT0T1G2.G2
or IsolationObserverT0T2G1a.G1a
or IsolationObserverT1T2G1a 0.G1a
or IsolationObserverT1T2G1a 1.G1a
or IsolationObserverT1T2G2 0.G2
or IsolationObserverT1T2G2 1.G2
or IsolationObserverT2T3G1a.G1a
or IsolationObserverT2T3G2.G2)

1.669s 161126 Satisfied

7.6 Related Work

Several approaches for modeling and verifying real-time transactions exist al-
ready. Xiong et al. [22] propose the Real-Time ACTA framework to specify
transactional properties, including isolation and timeliness, and verify the con-
sistency of the specification. However, the models in Real-Time ACTA are
conceptual and based on axioms, making it difficult to model different concur-
rency control algorithms, and reason about isolation relaxation. Our approach
supports modeling of various CC algorithms, and reasoning about the low level
behaviors of transactions under the assumed CC algorithm. Gallina et al. [23]
propose a modular specification of advanced transaction models, and verifica-
tion of isolation variants using the Alloy verification tool. The authors model
neither the timing behaviors of transactions, nor the concrete CC algorithms. In
the real-time community, schedulability analysis has been applied to analyze
timeliness of transactions, such as Han et al. [9] and Wong et al.[21]. Such
work, however, does not consider isolation and various concurrency control al-
gorithms, and the analysis could be pessimistic for more complex transaction
models.

Timed automata have been used to model real-time transactions. Lanotte et
al. [24] propose a framework using timed automata for modeling long running
transactions with timing constraints. The authors have also proposed automata
patterns for different commit protocols. Their work, however, focuses on com-
mit protocols and atomicity, instead of CC and isolation. Another related work
is done by Kot [25], which models several real-time CC algorithms in UP-
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PAAL. Despite the similarity in the modeled target, our work is different in
several aspects. First, the authors show the feasibility of modeling transac-
tions and CC in UPPAAL, while we strive to contribute to a general, reusable
and flexible modeling approach for common CC mechanisms by using skele-
tons and patterns. Second, our models are designed for flexible verification
of various levels of isolation relaxation, while their work checks more general
properties, like absence of deadlocks, starvation, etc.

7.7 Conclusion

In this paper we have proposed an approach for modeling transaction based
systems and verifying transaction timeliness and isolation in a unified frame-
work based on UPPAAL timed automata. A set of automata skeletons and
patterns have been proposed for modeling the work units of the transactions,
the CC manager, and the observers for isolation. Timeliness and isolation are
verified by model checking the automata network.

Such modularization not only reduces the complexity of the models, but
also enhances the flexibility of our approach, in that different PCC algorithms
can be easily modeled with a few adjustments, and composed into the automata
network flexibly. Different PCC algorithms can be modeled by changing the
points of locking and unlocking within transactions, adding new locking/un-
locking patterns for other types of locks, or adjusting the user-defined func-
tions such as satisfyPolicy(). Designers can then decide the appropriate PCC
algorithm by analyzing the achieved isolation and timeliness, and trade off the
two properties according to the application semantics. The decided PCC algo-
rithm is guaranteed to meet transaction deadlines as well as a desired level of
isolation.

Since our approach applies exhaustive model checking, verification of large
transaction sets may not terminate due to state explosion. However, our ap-
proach can be applied to the down-scaled system focusing on the core transac-
tion set. In our future work, we plan to mitigate state explosion by partitioning
the transactions according to the data dependencies, and model check only
transactions competing for the same data. For a large transaction set, we plan
to apply bounded model checking, such as statistical model checking imple-
mented in UPPAAL-SMC [26], which does not explore the entire state space.
Although the verification result using statistical model checking does not offer
the same degree of assurance as exact symbolic model checking, it provides
a probabilistic guarantee with a certain degree of accuracy, and should suffice
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for many soft real-time applications.
Besides addressing the state explosion problem, we are going to extend our

models to support other types of CC, such as optimistic CC, and possibly auto-
mate the method by developing tool support. Our ultimate goal is to develop a
formal framework capable of modeling a large spectrum of advanced real-time
transaction models, in which trade-off analysis of all ACID properties could be
carried out [8]. Such an endeavor would eventually facilitate the automation of
customizing an RTDBMS.
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Abstract

Many Cyber-Physical Systems (CPSs) require both timeliness of computa-
tion and temporal consistency of their data. Therefore, when using real-time
databases in a real-time CPS application, the Real-Time Database Manage-
ment Systems (RTDBMSs) must ensure both transaction timeliness and tem-
poral data consistency. RTDBMSs prevent unwanted interferences of concur-
rent transactions via concurrency control, which in turn has a significant impact
on the timeliness and temporal consistency of data. Therefore it is important
to verify, already at early design stages that these properties are not breached
by the concurrency control. However, most often such early on guarantees
of properties under concurrency control are missing. In this paper we show
how to verify transaction timeliness and temporal data consistency using model
checking. We model the transaction work units, the data and the concurrency
control mechanism as a network of timed automata, and specify the proper-
ties in TCTL. The properties are then checked exhaustively and automatically
using the UPPAAL model checker.
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8.1 Introduction

In a Cyber-Physical System (CPS), the control of physical working units is
decided by the computational operations based on timely monitored environ-
mental data [1]. Many CPS applications are real-time systems, which means
that the results of the computation must be not only logically correct, but also
temporally correct [1]. The temporal correctness of a result depends both on
the time when the result is produced, and on the temporal consistency of the
data used for the computation. For instance, consider a robot arm picking up
objects from the conveyor of an assembling line. In order to pick up the object
correctly, the robot arm must adjust its rotation angle according to the position
of the approaching object. A computer in the arm calculates the rotation angle,
based on current angle of the arm, and the position of the target. The computa-
tional result is useless, if either the calculation misses its specified deadline, or
the position data are outdated.

One common way of managing the temporal environmental data and com-
putational results is to store them in a Real-Time Database (RTDB) [2]. The
temporal consistency of the data requires that the states of the RTDB must
be consistent with the corresponding environmental states timely [3]. Since
computations on data are implemented as transactions in the database, the
Real-Time Database Management System (RTDBMS) must therefore ensure
both the transaction timeliness and the temporal data consistency [4]. How-
ever, it is not trivial to verify these properties, partly due to the concurrency
control mechanisms used by RTDBMSs to eliminate unwanted interferences
from concurrent transactions. Transactions may be blocked or aborted by the
concurrency control manager, which on the one hand may lead to breached
timeliness and temporal consistency, and on the other hand increases the com-
plexity of the analysis. Some of existing work towards analysis of temporal
consistency (e.g., Song et al. [3]) are based on simulation, and thus lack for-
mal guarantees. Other work either provide analysis of temporal consistency
without considering concurrency control [5], or focus on other properties of
concurrent transaction systems such as isolation [6] or absence of deadlock
[7].

In our recent work [6], we have proposed a formal approach based on timed
automata [8], Temporal Computational Tree Logic (TCTL) [9] and UPPAAL
[10] for verifying timeliness and isolation of transactions in a unified manner.
Here, we develop our approach further, focusing on the tradeoff between time-
liness and temporal data consistency instead. We consider the targeted system
as a composition of the following constituents: the data accessed by either the
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sensors or the computational units of the CPS, the transaction work units [11],
which are the logical operations in the transactions, and the concurrency con-
trol manager that coordinates concurrent transactions. We first transform these
constituent parts into a formal model, which is a network of timed automata.
Then we specify the timeliness and temporal consistency in a logic formalism
called TCTL, using a set of specification patterns. Finally, we use the UPPAAL
model checker [10] to check whether these formalized properties are satisfied
by the model. The approach is exemplified on a concrete example in detail.

The remaining part of the paper is organized as follows. Section 8.2 in-
troduces the background of the paper, consisting of the concepts of temporal
data consistency in RTDBMS, and the needed knowledge on timed automata
and UPPAAL. In Section 8.3 we present the assumed CPS system with exem-
plary transactions and relevant requirements. In Section 8.4 we describe our
modeling approach for transactions, data and the lock manager of the assumed
system. The formal specification of the requirements, as well as the verifica-
tion results, are presented in Section 8.5. We compare our work to the related
work in Section 8.6, after which we conclude the paper in Section 8.7.

8.2 Background
In this section, we first recall the concepts of temporal data consistency in real-
time databases, followed by a brief introduction of timed automata and the
UPPAAL model checker.

8.2.1 Temporal Data Consistency

Data in an RTDBMS can be classified into base data and derived data. In
real-time applications, which often monitor the environment states and react
accordingly, base data are the representations of the environment states in the
database. A typical example of base data is the readings from sensors that
monitor the speed of the conveyor in our example CPS. Derived data are the
results of computations based on a set of base data objects. For instance, a
transaction takes the conveyor speed and the position of the robot arm as inputs
to compute the rotation angle. The rotation angle is a derived data. Each data
object is associated with a timestamp. For a base data object, the timestamp
indicates the time when it is collected, whereas for a derived data object, it
refers to the time when it is derived.

As mentioned in Section 8.1, RTDBMSs must guarantee the temporal data
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consistency, which includes two aspects: the absolute validity and the relative
validity [3] of data. Absolute validity refers to the property that the data must
always reflect the environment timely. If we define the age of a data object
as the difference between the current time and its timestamp, a base data ob-
ject is absolute valid if the age of the data is smaller than a specified interval,
called absolute validity interval. A derived data object is absolute valid if all
participating data are absolute valid.

In order to compute a valid derived data, the set of base data may have to be
collected close enough to each other in time. For instance, the conveyor speed
and the position of the robot arm must be collected within 50 milliseconds. A
set of data objects are relative valid, if the difference between the ages of every
object is within a specified relative validity interval.

The original absolute validity requires data to be absolute valid all the time.
This however imposes restrictions on the database performance and the time-
liness of other transactions, since the data may need to be updated frequently,
even though it is not accessed by any other transaction. Therefore, Kao et al.
[12] propose the weak absolute validity as a relaxation, which requires that,
the age of the data accessed by a transaction should be smaller than its absolute
validity interval only when the transaction accesses it. Similarly, one can de-
fine the weak relative validity, which requires that the age differences of the
base data should be within the relative validity interval when they are accessed
by a transaction.

8.2.2 Timed Automata and UPPAAL

UPPAAL [10] is the state-of-art model checker for real-time systems, based
on timed automata [8]. Basically, a system is modeled as a network (a par-
allel composition) of timed automata in UPPAAL. A timed automaton is a
finite-state automaton extended with real-valued clock variables and discrete
variables. In UPPAAL, clock variables progress synchronously. The locations
of all automata, together with the values of clock variables, define the state of
a system.

The action to be taken at one location can either be a delay at the same
location, or a transition to another location following an edge. An invariant,
which is a predicate (boolean set of states) over clock variables, may be asso-
ciated with a location setting an upper-bound on the delay. A guard, which is
a predicate of clock or discrete variables, may be associated with an edge as
the required condition to take the underlying transition. During the transition,
discrete variables can be updated, while clock variables can be reset. An au-



144 Paper C

(a) Automaton A1 (b) Automaton A2

Figure 8.1: Example of automata in UPPAAL

tomaton can synchronize with another automaton via channels. Data can be
shared by all automata by shared variables. A location marked as “U” is an
“urgent” location, indicating that the next transition (not necessarily from this
same location) should be taken without delay. A location marked as “C” is a
committed location, indicating that the transitions from this location should be
taken immediately.

Figure 8.1 shows two automata, A1 and A2, in UPPAAL notation. A1 has
two locations, L1 and L2, and has defined a clock variable c. L1 has an invariant
c <= 10, indicating that A1 may delay at L1 at most until c equals 10 time
units. The guard c > 5 requires that the value of c must be bigger than 5 in
order to take the transition to L2. A1 synchronizes with A2 via channel chan.
The “!” denotes sending the signal, and the “?” denotes receiving the signal.
When A1 transits from L1 to L2, it sends a signal via chan and resets c. When
receiving the signal, A2 takes the transition from location L3 back to L3, in
turn.

UPPAAL uses a decidable subset of TCTL (Timed Computational Tree
Logic) to formalize requirements that need to be proven as properties of the
system by model-checking. These formalized specifications, called queries,
can be verified exhaustively on the network of timed automata (e.g., A1 || A2
in Figure 8.1). In this paper we will use the following queries:

• A [ ] p: Invariant property (For all possible execution paths p always
holds).

• p → q: Leads-to property (Whenever p holds, q will eventually hold).

Property p is a logic expression that may contain logical operators such as
“and”, “or”, “not” or “imply”. In case an invariant property fails the verifica-
tion, the model checker provides a counter-example, and step-by-step simula-
tion of the counter-example. Readers can refer to the literature [10] for more
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information about UPPAAL.

8.3 Assumed System

The assumed system is a CPS including sensors that monitor the environment,
and control processes that control the actuators based on the sensor readings.
The real-time data are stored in an RTDB. The access and manipulation of the
data are managed by an RTDBMS as transactions. We identify the following
transaction types in the RTDBMS.

Update transaction An update transaction is a write-only transaction that
updates a real-time data object with the sampled value in the database. It is
triggered with a period that is decided by the sampling rate.

Control transaction A control transaction reads data from the database, per-
forms application-dependent computation based on the data, and may write
data into the database. In a real-time application, control transactions are often
periodic, or are triggered with a minimum inter-arrival time. They often have
specified deadlines to meet.

Such update and control transactions may be executed concurrently. The
RTDBMS applies a certain concurrency control mechanism to prevent un-
wanted interferences.

We consider the following computations in the system. Two update trans-
actions, T0 and T1, update data D0 and D1, respectively. T0 has a period of
7ms, and T1 has a period of 8ms. A control transaction, T2, reads D0 and D1,
and does some computation based on the values. T2 has a period of 15ms,
and a deadline of 15ms. The worst-case time to read a data is 1ms, while the
worst-case time to write is 2ms. In this paper, we assume that a lock-based
concurrency control is applied. Before a transaction is able to read from or
write to a data object, it needs to acquire the lock of that data. When a trans-
action commits, it releases the locks it holds so that the locked data become
accessible to other transactions. The locking and unlocking are assumed to be
instantaneous.

The following temporal consistency and timeliness requirements are speci-
fied. Among them, Requirement 1 and 2 refer to absolute validity, Requirement
3 refers to relative validity, and Requirement 4 refers to the transaction timeli-
ness.
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• Requirement 1.1 D0 should never be older than its absolute validity
interval, which is 15ms.

• Requirement 2.1 D1 should never be older than its absolute validity
interval, which is 16ms.

• Requirement 3.1 The difference between the ages of D0 and D1 should
never be larger than the relative validity interval, which is 18ms.

• Requirement 4 T2 should not miss its deadline, which is 15ms.

The weak absolute validity and weak relative validity are specified as fol-
lows.

• Requirement 1.2 D0 should not be older than its absolute validity inter-
val, which is 15ms, when it is accessed by T2.

• Requirement 2.2 D1 should not be older than its absolute validity inter-
val, which is 16ms, when it is accessed by T2.

• Requirement 3.2 The difference between the ages of D0 and D1 should
not be larger than the relative validity interval, which is 18ms, when
accessed by T2.

8.4 Modeling Transaction Work Units and Data

In this section, we describe our approach for modeling the work units [11] of
the transactions, the data and the transaction manager. The high-level descrip-
tion of the modeling approach is presented in Figure 8.2. The work units, data
and the transaction manager are modeled as timed automata respectively. Sim-
ilar to our previous work [6], a work unit automaton models the operations
within a transaction with respect to timing, as well as the interactions with the
data and the transaction manager. A transaction manager automaton models
the concurrency control mechanism in this paper. In order to verify temporal
data consistency, in this paper we extend the approach with a data automaton
that models the updated time and the age of the data. A work unit automaton
sends signals to the data automata, when the data is updated by the transaction.
The data automaton will then update the timestamps of the data.

The assumed RTDBMS applies a lock-based concurrency control mecha-
nism to manage concurrent transactions. Therefore, the transaction manager is
called the lock manager in the rest of the paper. The work unit automata may
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send signals to require for locks from the lock manager. The lock manager ei-
ther sends signals to the transactions and grant the locks, or lets the transactions
wait if the data are already locked. In the remaining part of this section we will
discuss how to model the work units, the data and the lock manager. To sim-
plify the illustration, we omit error handling of the transactions, and assume
that the lock manager makes decisions instantaneously.

…
…

begin

commit

read/write/
other_computation

write

update_timestamp

Transaction 
Automaton

Data Automaton

Transaction Manager 
Automaton

lock/unlock

grant_lock

Figure 8.2: High-level description of the approach

8.4.1 Modeling Transaction Work Units
Similar to our previously proposed approach [6], a transaction is composed by
its work-unit operations that include the operations on data and other compu-
tation, and transaction management operations, including begin, commit, and
synchronizing with the lock manager. We model the work unit, as well as the
interactions with the lock manager imposed by the concurrency control, as an
automaton in UPPAAL. In such a model, the operations are modeled as a set of
locations. A transition from one location to another models the execution or-
der of the operations. Since we especially target temporal data consistency, we
explicitly model the interaction between transactions and data. When a trans-
action updates a data, it sends a corresponding signal to the data automaton via
the designated channel.

Figure 8.3 shows the timed automaton for the update transaction T0 de-
scribed in Section 8.3. In this automaton, the transaction starts from the initial
location begin. A variable cs represents the CPU resource. If cs is 1, meaning
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the CPU is taken by another transaction, T0 must wait until CPU is free, which
is modeled by the cs free signal. When cs is 0, T0 tries to lock the data D0 via
channel lock data 0[id], where id is the identifier of this transaction. It then
waits until the lock is granted via channel grant lock 0[id], and proceeds to
write the new value of D0 at location write d0. Due to the timing constraints,
we use a clock temp together with the invariant WRITE TIME to model that it
takes in worst case WRITE TIME time units (in this case 2ms) to write the data.
After this, the transaction immediately unlocks the data, which is modeled by
an urgent location, and a consecutive unlock data 0[id] channel. Then it noti-
fies the observer that D0 is updated, via channel update[data id]. The commit
of the transaction is modeled as the commit work location, with an invariant
bounded by the commit time. To model the execution time of T0 we create a
clock variable t u0, which is reset when T0 is started. The periodic behavior of
T0 is modeled such that T0 will be restarted if t u0 is equal to T0’s period.

The model of T1 is very similar to the automaton of T0. The channels are
defined as locking, unlocking and updating operations on D1 instead of D0,
and the values of deadline and period are T1 specific.

The modeling of the control transaction T2 follows the same principles. We
show the automaton of T2 in Figure 8.4. The reading D0 and D1 operations
are modeled as locations read d0 and read d1 respectively, and between the
locations channels are used to model the locking mechanism. Computational
operations other than read and write are abstracted as a location other work.
The temp clock, the invariant temp<=MAX WORK TIME and the guard temp
>= MIN WORK TIME together enforce the best and worst case execution time
of the computation. A clock variable t tran keeps track of the time of T2. If
t tran is bigger than the deadline, T2 will reach the deadline miss location,
indicating a deadline miss.

8.4.2 Modeling the Age of Data

In order to model-check temporal data consistency, we need to model the age
of the data. Our solution is to use observer automata that observe the write
operations on the data, and update the age of the data accordingly. The observer
automaton of D0 is shown in Figure 8.5. In this figure, the age of data D0 is
modeled by a clock variable age. When data D0 is updated, the transaction
sends a signal to the data automaton via channel update[0], and the observer
automaton then resets age. Therefore, at any given time point, age represents
the age of D0.
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Figure 8.3: The work unit automaton of the updater transaction T0

8.4.3 Modeling the Lock Manager

The lock manager handles lock requests and releases from transactions, and
grants available locks to the transactions. The modeling of the lock manager is
heavily application dependent. In the assumed system, the lock manager grants
locks to the transactions in a First-In-First-Serve manner. The lock manager
implements a queue that holds the transactions requiring for a lock. New re-
quiring transactions are appended to the end of the queue, while the head of
the queue is the one that will be granted the lock.

The model of the lock manager is shown in Figure 8.6. The queue of wait-
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Figure 8.4: The work unit automaton of the control transaction T2

ing transaction ids is modeled by an array, whose first transactions’ id is as-
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Figure 8.5: UPPAAL model of data D0

Program 8.1: The functions in the lock manager automaton

void enqueue(int tran_id) {
queue[len]=tran_id;
len++;
head=queue[0];}

void dequeue() {
if(len==1) {
queue[len]=0;
len--;
head=0;
} else {
int i;
for(i=0;i<len;i++)
queue[i]=queue[i+1];
queue[len]=0;
len--;
head=queue[0]; }}

signed to a variable head. An enqueue() function appends a new transaction
id to the end of the array, while a dequeue() function removes the first trans-
action id from the array, and updates the index and the head of the queue.
The enqueue() and dequeue() functions are shown in Listing 8.1. When the
lock manager gets requests from a transaction with tran id for locking D0 via
channel lock data 0[tran id], it moves to the lock data location. Meanwhile,
during the transition, the transaction is inserted into the queue of D0 by en-
queue(). The lock manager then checks if the data is currently being locked.
If the data is not locked, which means the requiring transaction is the head of
the queue, the lock is granted via the channel grant lock 0[head]. If the data is
locked, the lock manager just returns to the initial location, and the requiring
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Figure 8.6: UPPAAL model of the lock manager

transaction has to wait. The location lock data is a committed location, indi-
cating the transition sequence from location idle to lock data and then back to
idle is instantaneous and atomic.

When a transaction unlocks data D0 via channel unlock data 0[tran id], it
is removed from the queue by function dequeue(). If the array is not empty, the
lock will be granted to the head of the queue via channel grant lock 0[head].

8.5 Verification of Temporal Data Consistency and
Timeliness

In this section we formulate the requirements of temporal consistency and time-
liness as UPPAAL verification queries, and verify these properties for the as-
sumed system.

8.5.1 Formalizing the Requirements

To model-check the requirements in Section 8.3 using UPPAAL, we have to
first specify these requirements in TCTL. We propose a set of specification
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patterns to help the formulation of the temporal consistency and the timeliness
of transactions.

The absolute validity requirements, i.e., Requirement 1.1 and 2.1 from Sec-
tion 8.3, can be specified as: the clock age of the automaton of Di must always
be smaller than or equal to its absolute validity interval AVI(i). This is a prop-
erty that must hold invariantly, and can be specified using the A[] operators in
TCTL as:

A[ ]Di.age <= AV I(i).

The weak absolute validity requirement can be specified as: whenever Tj
reads Di, the age of Di must be smaller than or equal to its absolute validity
interval AVI(i). This property is specified as:

A[ ] (Tj.read di imply Di.age <= AV I(i)).

The relative validity, as described in Requirement 3, requires the age dif-
ferences of Di and Dj to be smaller than or equal to the relative validity inter-
val RVI(i,j). Intuitively, this requirement can be specified as: A[ ] (Di.age −
Dj.age <= RV I(i, j) andDj.age −Di.age <= RV I(i, j)). However, the
verification of this query might not terminate, due to a large state-space during
verification .

In Figure 8.7 we illustrate the update of the age variables with respect to
time, using D0 and D1 as examples. During the period shown in the figure,
D0 is updated in t1 and t4, while D1 is updated in t2 and t6. Without loss of
generality, we consider the relative validity at t3 and t5. At t3, the values of
D0.age and D1.age are t3-t1 and t3-t2 respectively. The difference between
the ages is hence t2-t1. This is actually the age of D0 when D1 is updated.
Similarly, the age difference at t5 is equal to t4-t2, which is the age of D1 when
D0 is updated. Therefore, we formulate relative validity of Di and Dj as the
following query, which explores fewer states compared with the original one
we mentioned in the previous paragraph:

A[ ] ((Di.updated imply Dj.age <= RV I(i, j))
and (Dj.updated imply Di.age <= RV I(i, j))).

Similarly, the weak relative validity requirement requires that whenever Tk
reads Di or Dj, the age differences of Di and Dj to be smaller than or equal to
the relative validity interval RVI(i,j). This can be formulated as:
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Figure 8.7: Illustration of updates of data with respect to time

A[ ] ((Tk.read di or Tk.read dj) imply
((Di.updated imply Dj.age <= RV I(i, j)) and
(Dj.updated imply Di.age <= RV I(i, j))))

The verification of timeliness equals to proving that location Ti.deadline miss
is not reachable. This requirement is equivalent to the following invariant prop-
erty:

A[ ]not T i.deadline miss.

The proposed specification patterns are summarized in Table 8.1. In each
row, the table shows the informal description of the property, as well as the
corresponding query patterns in UPPAAL TCTL.

8.5.2 Verification Results
We model the assumed system as described in Section 8.4 and verify properties
using UPPAAL 4.1.19. The properties are specified using the specification
patterns from the previous subsection. The results are listed in Table 8.2. All
requirements have passed the verification. The table also lists the time it takes
to verify each query, as well as the memory consumption. Since the system we
have modeled is not complex, the time and memory costs look promising.

8.6 Related Work
Kung [13] applies pushed automata techniques to model and verify temporal
constraints in a database. However, the temporal constraints he has verified do
not include temporal data consistency. Song et al. [3] introduced the concept
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Table 8.1: Specification Patterns

Property Informal Specification Query Pattern
Absolute
validity

The age of Di must always
be smaller than or equal to
its absolute validity interval
AVI(i)

A[ ]Di.age <= AV I(i)

Weak absolute
validity

Whenever Tk reads Di, the
age of Di must always be
smaller than or equal to
its absolute validity interval
AVI(i)

A[ ] (Tk.read di imply
Di.age <= AV I(i))

Relative valid-
ity

The age differences of Di and
Dj to be smaller than or equal
to the relative validity inter-
val RVI(i,j)

A[ ] ((Di.updated imply
Dj.age <= RV I(i, j))
and (Dj.updated imply
Di.age <= RV I(i, j)))

Weak relative
validity

Whenever Tk reads Di or Dj,
the age differences of Di and
Dj to be smaller than or equal
to the relative validity inter-
val RVI(i,j)

A[ ] ((Tk.read di or Tk.read dj)
imply
((Di.updated imply
Dj.age <= RV I(i, j)) and
(Dj.updated imply
Di.age <= RV I(i, j))))

Transaction
timeliness

Transaction Tk will not miss
its deadline

A[ ]not Tk.deadline miss

Table 8.2: Verification Results

Req Query Verification
Time

Memory
Con-
sumption

Explored
States

Status

1.1 A[ ]D0.age <= 15 0.577s 9716KB 54996 Satisfied
1.2 A[ ]D1.age <= 16 0.609s 9844KB 54643 Satisfied
2.1 A[ ] (T2.read d0 imply D0.age <= 15) 0.608s 9860KB 54996 Satisfied
2.2 A[ ] (T2.read d1 imply D1.age <= 16) 0.608s 9868KB 54643 Satisfied

3.1 A[ ] ((D0.updated imply D1.age <= 18)
and (D1.updated imply D0.age <= 18))

0.765s 10008KB 57893 Satisfied

3.2
A[ ] ((T2.read d0 or T2.read d1) imply
((D1.updated imply D0.age <= 18) and
(D0.updated imply D1.age <= 18)))

0.780s 10044KB 57893 Satisfied

4 A[ ]not T2.deadline miss 0.468s 9680KB 58729 Satisfied
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of temporal consistency. In their work, temporal consistency is evaluated via
simulation, instead of formal verification. Han et al. [5] apply schedulability
analysis on transactions to maintain temporal consistency. However, they do
not consider concurrency control in the analysis. Both Lauer et al. [14] and
Le Berre et al. [15] use formal methods to verify temporal data consistency
in networked systems. Compared with our work, their work do not deal with
database assumptions and do not model transaction behaviors.

Several researchers have used UPPAAL TA to model various aspects of
database transactions and transaction management mechanisms. For example,
Kot [7] models several selected transaction concurrency control mechanisms
in UPPAAL and verify properties such as free of deadlock. Al-Bataineh et al.
[16] uses UPPAAL to model a two-phase commit protocol for an RTDBMS. In
our previous work, we have proposed a flexible approach to verify transaction
timeliness and isolation using UPPAAL [6]. Although these works also use
model checking and UPPAAL, they focus on other aspects of the database than
temporal data consistency.

8.7 Conclusion

In this paper we have described a model-checking approach for verification of
transaction timeliness and temporal data consistency in a real-time database
within a cyber-physical system. We have modeled the transaction work units,
the data and the concurrency control mechanisms as a network of automata.
This work continues our previous work [6] in an attempt to create a framework
for verification of RTDBMS, with respect to verifying transaction timeliness
v.s. temporal data consistency. The properties are specified in TCTL using our
proposed specification patterns. The formalized properties are model checked
using UPPAAL. An example RTDBMS with update and control transactions
has been used to demonstrate the model checking approach. All properties have
been proved satisfied within short time and with low memory consumption.

One possible problem of this approach is the potential state explosion when
the modeled system incorporates a large number of transactions and data. This
can be mitigated by partitioning the transactions and data according to their
dependencies. For example, many CPSs apply distributed data management.
Instead of modeling the entire system directly, it may be possible to verify the
properties in the local databases, and the model check, or deductively prove,
the properties of the entire system.
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Abstract

Efficient auto-scaling of cloud resources relies on the monitoring of the
cloud, which involves multiple aggregation processes and large amounts of
data with various and interdependent requirements. A systematic way of de-
scribing the data together with the possible aggregations is beneficial for de-
signers to reason about the properties of these aspects as well as their implica-
tions on the design, thus improving quality and lowering development costs. In
this paper, we propose to apply DAGGTAX, a feature-oriented taxonomy for
organizing common and variable data and aggregation process properties, to
the design of cloud monitoring systems. We demonstrate the effectiveness of
DAGGTAX via a case study provided by industry, which aims to design a cloud
monitoring system that serves auto-scaling for a video streaming system. We
design the cloud monitoring system by selecting and composing DAGGTAX
features, and reason about the feasibility of the selected features. The case
study shows that the application of DAGGTAX can help designers to identify
reusable features, analyze trade-offs between selected features, and derive cru-
cial system parameters.
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9.1 Introduction
In the prominent evolution to the Fifth Generation (5G) of mobile technol-
ogy, both network applications and infrastructural services are increasingly
deployed as virtualized software instances running in the cloud [1]. A main
advantage of this shift is the automatic scaling of resource provision for dy-
namic and heterogeneous applications, a promising technique that ensures the
Quality of Service (QoS) of applications with efficient use of resources. To
achieve this, the run-time states from various layers of the cloud such as hard-
ware layer and virtual machines need to be continuously monitored, aggregated
and analyzed, in order to be able to efficiently allocate resources on demand.

Instead of adopting off-the-shelf monitoring tools directly, many compa-
nies choose to design their own monitoring functionality for scaling, either
from scratch or by extending existing frameworks, in order to meet their partic-
ular needs [2]. This requires the system designers to decide what data and how
they should be collected, aggregated, and propagated. Since each layer of the
cloud may impose different requirements for the data aggregation, the designed
solution must ensure the various properties of both the data and the processes.
For designers choosing to extend existing frameworks, analyzing dependen-
cies between the new extensions and existing system components also adds
complexity to the design. Due to these complexity and heterogeneity issues,
designing such systems is prone to faults that might compromise the efficiency
and effectiveness of the monitoring tool, preventing it from realizing its full
potential [2]. The systematic analysis of the design decisions at early design
stages, based on a thorough understanding and systematic analysis of the data
as well as the aggregation process, holds the promise of alleviating the issue.

In this paper, we present a case study provided by Ericsson that applies our
previously proposed taxonomy called DAGGTAX (Data AGGregation TAX-
onomy) [3] to support the design of a cloud monitoring system. DAGGTAX
provides a high-level characterization of Data Aggregation Processes (DAPs),
focusing on a systematic representation of common and variable features of the
data as well as the aggregation process itself.

The problem that we tackle is to systematically design a cloud monitoring
system for an enhanced auto-scaling functionality in a video streaming system,
such that potential unfeasible design decisions are prevented. The designed
system extends the existing open-source OpenStack framework1, whose ma-
jor components for achieving auto-scaling are shown in Figure 9.1. Among
them, Ceilometer monitors the run-time states of the cloud by collecting var-

1https://www.openstack.org/software/
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Figure 9.1: Auto-scaling related components in the OpenStack framework.

ious resource data, such as CPU usage of each virtual machine. Once a mea-
surement meets a predefined condition, Heat is alerted to decide if a scaling
action should be taken, and notifies Nova to start or terminate a virtual ma-
chine. According to this solution, however, only hardware resource usage of
virtual machines are taken into account, regardless of the status of the actual
applications. To achieve finer-tuned auto-scaling, Ericsson requires the cloud
controller to monitor not only the hardware usage by each virtual machine, but
also the application performances within the virtual machines.

We apply DAGGTAX to both the analysis of the current OpenStack frame-
work, and the design of the new solution. The DAPs in the current framework
are represented as a feature diagram instantiated from DAGGTAX. The new so-
lution is designed by selecting and composing the DAGGTAX features, among
which, some are identified as reusable features from the current framework.
Based on these feature diagrams, we further analyze the feasibility and cor-
rectness of the design. Our experience from the analysis demonstrates that the
taxonomy helps to gain a better understanding of the data and data aggrega-
tion processes in the cloud monitoring system, which enables the designers to
identify reusable features, analyze trade-offs between the desired features, and
derive crucial system parameters. From an industrial perspective, the ability to
have a common nomenclature has also been found very useful, since it bridges
the various descriptions and specifications of a data aggregation design used in
the company today.

The remainder of the paper is organized as follows. We recall DAGGTAX
in Section 9.2, and present our case study and the application of DAGGTAX
in Section 9.3. Section 9.4 presents the lessons we have learned from the case
study. In Section 9.5 we discuss the related work, after which we conclude the
paper in Section 9.6.
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9.2 Background

A Data Aggregation Process (DAP) is defined as the process of producing a
synthesized form from multiple data items [4]. DAGGTAX [3] provides a
global, high-level characterization of DAPs, in the form of a feature diagram
[5], presented in Figure 9.2. In this diagram, nodes represent features of a
DAP, and edges represent decomposition of features. A node with a solid dot
represents a common feature mandatory for every DAP, whereas a node with
an empty circle represents an optional feature. A group of alternative features
is represented by a group of nodes associated with a spanning curve, from
which one feature must be selected by a particular DAP. The cardinality [m..n]
annotated with a node denotes how many instances of the feature, including the
entire sub-tree, can be considered as children of the feature’s parent in a DAP.

The top level features in Figure 9.2 include the main constituents of an ag-
gregation process (Raw Data, Aggregate Function and Aggregated Data), as
well as features characterizing the entire DAP, including the Triggering Pat-
tern of the process, and Real-Time (P), which refers to the optional timeliness
property of the entire process. In the following we briefly explain the concepts
underlying each feature. For more details, we refer to our previous work [3].

Raw Data A data aggregation process must involve at least one Raw Data
Type. Each type of raw data consists of at least one instance of Raw Data. The
sub-features are:
Pull - Raw data are actively pulled from the data source by the aggregation

process.
Persistently Stored - Raw data are stored persistently.
Shared - Raw data involved in the aggregation are shared by other processes

in the system.
Sheddable - Raw data can be skipped for the aggregation, due to trade-offs

between different system properties.
MinT - Minimum inter-arrival Time of raw data.
MaxT - Maximum inter-arrival Time of raw data.
Real-Time (RD) - Each raw data instance is associated with an arrival time,

and is only valid if the elapsed time from its arrival time is less than its
Absolute Validity Interval. Outdated Hard real-time data will result in
loss of life or money. On the contrary, outdated Firm real-time data bare
no value, while outdated Soft real-time data produce less value.
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Figure 9.2: DAGGTAX depicted as a feature diagram.
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Aggregate Function An aggregate function performs the aggregation com-
putation. Its sub-features include:

Duplicate sensitivity - The aggregated result is incorrect if a raw data is du-
plicated.

Lossy - Raw data cannot be reconstructed from the aggregated data alone.

Exemplary/Summary - An exemplary aggregate function returns one or sev-
eral representative values of the selected raw data. A summary aggregate
function computes a result based on all selected raw data.

Progressive/Holistic - The computation of a progressive aggregate function
can be decomposed into the computation of sub-aggregates, whereas a
holistic aggregate function must be computed on the entire data set at
once.

Aggregated Data An aggregation process must produce one aggregated data.
Its sub-features include:

Push - Sending aggregated data to another unit of the system is apart of the
DAP.

Durable - The aggregated results should survive potential system failures.

Shared - The aggregated data are shared by other processes in the system.

Time-to-live - The aggregated data should remain available for a specified pe-
riod of time in the aggregator.

Real-Time (AD) - An aggregated data is absolute valid if all participating raw
data are absolute valid. The absolute validity interval of the aggregated
data depends on the intervals and ages of the raw data that are used to
derive the aggregated data. In addition, all raw data involved in the ag-
gregation should be sampled within a specified interval, called relative
validity interval. Similar to raw data, the strictness of real-time aggre-
gated data can be classified as hard, firm and soft.
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Triggering Pattern A DAP is activated with a triggering pattern, specified
as Periodic, Sporadic or Aperiodic. A periodic DAP is invoked according to a
time schedule with a Period. A sporadic DAP could be triggered by an external
event, or according to a time schedule, possibly with a MinT (Minimum inter-
arrival Time) and/or MaxT (Maximum inter-arrival Time). An aperiodic DAP
is activated by an external event without a constant period, MinT or MaxT.

Real-time (P) A DAP may need to satisfy timeliness requirements, named as
“Real-Time (P)”. The real-time DAP need to complete its work by a specified
Deadline. It can be classified as Hard real-time, meaning missing the dead-
line will cause intolerable loss of life or profit and thus must be avoided. A
Firm real-time process will bring no value, while a Soft real-time process will
provide less value, if the deadline is missed.

9.3 Case Study and Results
In this section, we describe the industrial case study, in which we apply DAG-
GTAX to design a cloud monitoring system by extending the open-source
OpenStack framework.

9.3.1 Case Study Description
The target cloud system consists of a collection of hardware resources (physical
servers and network capacities), virtualized by complex management software.
Software services, including video streaming services, are deployed on a num-
ber of Virtual Network Functions (VNFs), which are virtual machines spawned
and terminated by a VNF manager, and running on top of the virtualized hard-
ware. Each VNF consists of a set of Virtual Network Function Components
(VNFCs), each representing a collection of applications running in the cloud.
For instance, one such VNFC may contain all video streaming services re-
sponsible for the users requests, while another is dedicated to handle security
issues.

In order to maintain the desired QoS while maximizing the resource uti-
lization, VNFs should be started or terminated according to the status of the
applications. Such auto-scaling decisions are taken by the cloud controller
based on run-time measurements. OpenStack supports resource-usage mea-
surements such as CPU usage of each VNF for auto-scaling. However, the
coarse-grained, VNF-based measurements may not be adequate for efficient
auto-scaling decisions. For instance, resources may appear to be exhausted
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soon, either (i) by video streaming services that are critical to end users, or (ii)
by a routinely security check while the streaming requests are low. While the
former case may indicate insufficient provision that may degrade the QoS, the
latter is a temporary maintenance phenomenon that will pass soon, for which
the scaling-up will cause unnecessary system overhead and become a waste of
resource.

Therefore, we consider to take into account the measurements from within
the VNFs. The data to be collected include: (i) CPU usage of each VNF; (ii)
CPU usage of each VNFC within each VNF; (iii) Throughput and the number
of dropped packets of each application within each VNFC.

A new VNF should be spawned (scaling up), if either of the following rules
is satisfied: (i) the average CPU usage of any VNF is higher than 90% for 60
seconds; (ii) the average CPU usage of any VNF is higher than 80% for 60
seconds, and the packet loss of the video streaming services is higher than
zero.

An existing VNF should be terminated (scaling down), if the following
rule is satisfied: the average CPU usage of the VNF is lower than 5% for 60
seconds, and the packet loss of the video streaming services is zero.

9.3.2 Application of DAGGTAX
We apply DAGGTAX to organize the data aggregation processes in the exist-
ing auto-scaling functionality of OpenStack, as well as to select and compose
features for the desired enhanced auto-scaling functionality.

In the OpenStack framework, two levels of aggregation take place: one
generating alarms from aggregating CPU usages of the VNFs, the other mak-
ing the scaling decisions from aggregating the alarms. These aggregation pro-
cesses are identified using DAGGTAX and presented in Figure 9.3, in which
each box is an instantiated feature from Figure 9.2. In the bottom level, a DAP
called CPUAlarmStatusEvaluation aggregates periodically a set of VNFCPUs
raw data pulled from the Ceilometer database. These raw data are sampled
by the hypervisor prior to the DAP by another process with a predefined fre-
quency (MinT and MaxT have the same value). All CPU statistics within the
interval between two aggregation periods are aggregated by an aggregate func-
tion, which computes the average value of the CPU data, compares the value
with a threshold value, and produces the alarm status as a result. The aggregate
function is duplicate sensitive, lossy, progressive and computes a summary.
The aggregated alarm status is then pushed to Heat for the auto-scaling deci-
sion. In the top level, ScalingDecisionMaking process is triggered by the alarm
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Figure 9.3: Data aggregation processes in OpenStack auto-scaling functional-
ity.

event. A ScalingPolicyEvaluation function is applied to the alarm status. If the
status shows that the CPU usage is higher than the threshold, and the time from
last scaling action is longer than one minute, an auto-scaling decision will be
taken, either to add or to terminate a VNF.

The DAPs for the new auto-scaling functionality, together with the design
decisions on the data flow management, are presented in Figure 9.4. The fea-
tures in gray color are already implemented in OpenStack. For better readabil-
ity, we only show the features of raw data, aggregated data, triggering patterns
and the real-time properties of new DAPs, and omit the features of the aggre-
gate functions and existing features. In this design, the top-level ScalingDeci-
sionMaking process takes two types of raw data: the CPU alarm status as in
the existing solution, as well as a set of VNFProfiles, which are status profiles
of currently active VNFs. Each VFNProfile is generated by VNFProfileGener-
ation process, aggregating a set of VNFCProfiles, representing the status of the
VNFCs in this VNF. Each VNFCProfile is an aggregation of the CPU usage of
this VNFC (VNFCCPU), and a set of AppProfiles, which are the status profiles
of the applications in this VNFC. In the lowest level, an AppProfile is an aggre-
gation of the throughput and the number of dropped packets that are sampled
for each application. The VNFCProfileGeneration and AppProfileGeneration
processes are desired to meet their deadlines in order not to interfere with the
video streaming services.

ScalingDecisionMaking and CPUAlarmStatusEvaluation are deployed in
the controller node, while the other DAPs for VNF, VNFC and application pro-
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Figure 9.4: Data aggregation processes in the designed system.

files are deployed in the VNFs. Data between DAPs, within the controller and
the VNF respectively, are communicated via databases. In the controller we use
MongoDB 2 as it is by default used in the current framework, whereas in the
VNF we use Mimer SQL Real-Time Edition (MimerRTDB) 3, which provides
predictable real-time data access as required by the VNFCProfileGeneration
and AppProfileGeneration processes.

9.3.3 System Implementation

We have developed a prototype that implements the designed DAPs by extend-
ing OpenStack (version: Newton). The architecture is shown in Figure 9.5.
The prototype is deployed on a PC with a 2.7 GHz quad-core process and 16
GB memory. Each VNF is a Linux virtual machine that hosts two VNFCs
and a MimerRTDB. VNFC1 holds two video streaming applications, whereas
VNFC2 holds two applications that are less critical. Each application is simu-
lated by a process written in C that updates the throughput and dropped packets
in the database. For each application, an AppProfileGeneration process is exe-
cuted to aggregate the application data and generate its AppProfile. Similarly,

2https://www.mongodb.com/
3http://www.mimer.se/Products/MimerSQLRealtime.aspx



172 Paper D

HeatCeilometer

Nova

VNF

Hypervisor

MongoDB

Create/Terminate

Decide 

Configure

Alarm

MimerRT

CPUAlarmStatusEvaluation

VNFProfileGeneration

ScalingDecisionMaking

app
app

VNFCProfileGeneration
AppProfileGeneration

VNFC

Figure 9.5: Architecture of the enhanced auto-scaling for the cloud video
streaming system.

in each VNFC, an aforementioned VNFCProfileGeneration process is executed
to create its VNFCProfile, while in each VNF a VNFProfileGeneration process
is executed. The VNFProfiles are then sent to Ceilometer, via a new service
entry point, and saved in MongoDB. The new scaling rules, as specified in
Section 9.3.1, are defined in Heat.

We analyze the prototype with simulated data provided by Ericsson. The
timing parameters of raw data and the processes are listed in Table 9.1 and
9.2, respectively. The simulation workloads, as well as results, are presented in
Table 9.3, which shows that the prototype system achieves more accurate auto-
scaling compared to the current OpenStack framework according to the spec-
ified rules. In particular, as expected, our prototype remains unchanged when
the CPU usage of the VNF exceeds 80% but no packets have been dropped for
the streaming service (Mode 2), and successfully scales up when the packets
start to be dropped due to overload (Mode 3). As a contrast, the current Open-
Stack framework cannot distinguish these two modes and scale up for both
cases.

Table 9.1: Timing parameters
of raw data

Data MinT MaxT
Throughput 1s 1s
Dropped Packet 1s 1s

Table 9.2: Timing parameters
of DAPs

DAP Period
AppProfileGeneration 1s
VNFCProfileGeneration 60s
VNFProfileGeneration 60s
CPUAlarmStatusEvaluation 60s
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Table 9.3: Simulation workloads and results

Mode VNF
CPU
usage

Dropped
packet in
VNFC1

Expected
Result*

DAGGTAX
Proto-
type
Result*

Current
OpenStack
Result*

1 50% 0 NC NC NC
2 81% 0 NC NC SU
3 81% 1 SU SU SU
4 91% 0 SU SU SU
5 4% 0 SD SD SD

* NC: No Change. SU: Scale Up. SD: Scale Down.

9.4 Benefits of DAGGTAX
During this case study, we recognize several benefits from applying DAG-
GTAX in the early design stage. In general, similarly to what we have already
experienced [3], the taxonomy provides a structured representation to organize
the features of data aggregation processes, which enhances the understanding
about the data, the aggregation processes, as well as their interplays in the de-
signed cloud system. As a result, a DAP can be designed by composing these
features, and crucial design decisions could be made based on systematical
reasoning about the desired features.

Identify reusable and new components As shown in Figure 9.4, we identify
that the CPUAlarmStatusEvaluation process, as well as some features of the
ScalingDecisionMaking process, can be reused from the existing framework
since they incorporate the features that are desired by the new system. Other
DAPs and features need to be implemented, and integrated with the existing
solution.

Data flow management design The intrinsic characteristics of data and DAP
revealed by the taxonomy, as well as the dependencies between different DAPs,
serve as the basis to design the data flow management of the system. The de-
sign decisions include the deployment of data and DAPs. For instance, one
may decide to deploy the VNFC profiles, the VNFProfileGeneration process
and the VNF profiles in the cloud controller. However, since the delay between
VNF and the controller is significantly long, the system cannot collect VNFC
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profiles too frequently because of communication overheads. Since the feature
diagram explicitly incorporates the periods of the processes and the MinTs/-
MaxTs of the data, we are able to analyze the amounts of data and calculate
the overhead of different deployment decisions. In the designed system, we de-
cide to deploy only the VNF profiles in the controller, while the VNFC profiles
and the VNFProfileGeneration process in the VNF nodes. By only sending the
aggregated VNFProfile to the controller node, we can reduce the communica-
tion overhead, which allows the system to collect VNFC measurements more
frequently and form more accurate VNFC profiles.

We can also reason about the database solutions for the system with the fea-
ture graph. We decide to use MongoDB in the controller node hosting VNFPro-
files, alarms and decisions, because it is already used by the current OpenStack
framework for auto-scaling, and it provides durability for the auto-scaling de-
cisions required by the ScalingDecisionMaking process. In the VNF nodes, we
choose to use MimerRTDB, which provides in-memory data management with
predictable execution times. This is because the VNFCProfileGeneration and
AppProfileGeneration processes are desired to meet their deadlines, and do not
require persistence of the data.

Eliminating infeasible design Based on the feature graph, we can eliminate
infeasible feature combinations in an early stage, and thus reduce the design
space. In the VNFCProfileGeneration process, we cannot ask for persistent raw
data (VNFCCPU and AppProfile) nor durable aggregated data (VNFCProfile)
if we require the process to meet its deadline, since the overhead of disk I/O
is usually not predictable, which contradicts the real-time property of the pro-
cess. Since feature diagrams have a well-defined semantics in Boolean logic,
full formal reasoning on the feasibility of the design based on DAGGTAX is
possible, using existing analysis tools for feature models.

To improve the correctness of the scaling decision, one desired property is
to guarantee that the VNFProfiles are collected within a certain period, for in-
stance 5 seconds, when an alarm triggers the ScalingDecisionMaking process.
In other words, the “Decision” feature should have a “Real-time AD” subfea-
ture, which has a “Relative Validity Interval” of 5 seconds. To enforce this, the
VNFProfile should be pushed by VNFProfileGeneration with a “MaxT” of 5
seconds This means that the sum of the execution time of the VNFProfileGen-
eration process, the communication time between the VNF and the controller,
and the time spent in MongoDB, should not be longer than 5 seconds. Since
this cannot be satisfied under our current hardware and software architecture,
we give up this infeasible requirement in our design.
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Deciding time-related parameters Some of the crucial timing properties
are explicitly included in the taxonomy, such as MinT, period, deadline, etc.
Thanks to these timing properties, as well as the dependencies revealed by the
taxonomy, we are able to informally reason about other time-related parame-
ters. In our designed system, MimerRTDB embodies a circular buffer for each
data entity whose size should be specified. With the feature diagram, we can
easily decide the minimum size required for the design. For instance, the peri-
ods of AppProfileGeneration and VNFCProfileGeneration are 1 second and 60
seconds respectively. This indicates that the circular buffer for each AppProfile
should host at least 60 records.

9.5 Related Work

The design of monitoring systems for cloud management has attracted much
research attention in recent years. For instance, Bruneo et al. [6] have pro-
posed a framework for designing a system collecting measurements from mul-
tiple layers of a cloud. Montes et al. [7] have created a taxonomy of cloud
monitoring systems, based on which they propose an approach for designing
cloud monitoring. Although systematic analysis of architectural characteristics
are applied in the design approaches of both works, they do not consider the
detailed characteristics of the constituents of data aggregation, as we have done
in this paper. Ward et al. [2] have proposed a taxonomy for cloud monitoring,
and have discussed some key aspects of designing monitoring strategies. On
the contrary, we emphasize to analyze the details of DAPs using DAGGTAX
when designing such a monitoring strategy, which is not the authors’ focus.

A number of works have been conducted by researchers in order to under-
stand various aspects of data aggregation, and thus to aid the design of systems
applying data aggregation. Gray et al. [8] and Madden et al. [9] have proposed
taxonomies, of which the main purposes are for helping the understanding and
design of aggregate functions. Fasolo et al. [10] propose a taxonomy to rea-
son about aggregate functions and routing protocols for systems applying in-
network aggregation. Our work, compared to theirs, aim to design a system
based on analysis of the characteristics of the data, the aggregate functions and
the processes, which are all covered by DAGGTAX.

Existing modeling notations such as UML activities can be used for struc-
tural representation of data flows and processes [11]. However, UML has many
flavors of semantics requiring non-trivial transformations in order to perform
formal analysis. Our taxonomy is presented as a feature diagram, which has
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formal semantics in Boolean logic, and thus enables easy feasibility checks
with a SAT solver.

9.6 Conclusion and Future Work
In this paper we present an industrial case study, in which we apply DAGGTAX
to design a cloud monitoring system for an enhanced auto-scaling functionality
in a cloud video streaming system. We analyze the current framework based
on the features of the DAPs, and design new DAPs by selecting and composing
features from DAGGTAX. The application of DAGGTAX promotes a deeper
understanding of the systems behavior, and raises awareness about character-
istics that need to be considered as well as issues that need to be solved during
the design. It helps designers to perform better analysis than otherwise, such as
to identify reusable design solutions, make data management decisions, elimi-
nate infeasible feature combinations, and calculate time-related parameters. It
also holds potential for full formal reasoning on the feasibility of the design
and consistency of the decisions. Although we have only demonstrated the
benefits of DAGGTAX on a cloud monitoring system in this paper, we believe
that these benefits also apply to the design of other data-intensive systems with
multi-levels of data aggregation.

In the future we plan to integrate DAGGTAX with state-of-art architectural
and process modeling languages, so that designers can analyze other crucial
properties, such as logical data consistency, in the context of data aggregation.
Another future direction is a tool based on DAGGTAX that supports automatic
feature selection and combination to create new data aggregation processes, as
well as the evaluation with respect to the efficiency of the approach.
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