

Software Component Technologies for Real-Time Systems
- An Industrial Perspective -

Anders Möller
MRTC

Mälardalen University
CC Systems

anders.moller@mdh.se

Mikael Åkerholm
MRTC

Mälardalen University
mikael.akerholm@mdh.se

Johan Fredriksson
MRTC

Mälardalen University
johan.fredriksson@mdh.se

Mikael Nolin
MRTC

Mälardalen University
mikael.nolin@mdh.se

Abstract

 In this paper, we compare existing component
technologies for embedded systems with respect to
requirements captured from the vehicular industry.
 The vehicular industry wants to make use of the
advantages with component based design;
however they also need to address non-
 functional properties of their products, such as
reliability and timeliness. Several component
technologies addressing such properties have recently
been proposed. In this paper, we present initial
findings from an ongoing evaluation concerning some
of these technologies with respect to the requirements
stated by industrial actors.
 We conclude that none of the studied technologies
is a perfect match for the industrial requirements.
Furthermore, no single technology stands out as being
a significantly better choice than the others; each
technology has its own pros and cons.

1 Introduction
During the last few years, component-based

software engineering for embedded real-time systems
has received a large amount of attention in the research
community. However, industrial software developers
are still, to a large extent, using monolithic and
platform dependent software technologies.

Often companies can achieve considerable business
benefits in terms of reduced costs, shortened time-to-
market and increased software quality by applying a
suitable component technology. There is however
significant risks and costs associated with the adoption
of a new development technique. These must be
carefully evaluated before introduced in the
development process.

Our approach in this paper is to study some of the
existing component technologies suitable for
distributed embedded real-time systems and to
compare these technologies with industrial
requirements [16]. The main purpose of this Work in
Progress paper is to disclose our initial findings and to

solicit feedback on which techniques to study and what
requirements are of interest.

2 Industrial Requirements
 The benefits of using a component based technique
can be divided into two different aspects, the
operational benefits (e.g. reliability and safety) and the
development benefits (e.g. reusability and
maintainability). The requirements on such a
component based technique can, in the same way, be
divided into technical- and development requirements.
 Apart from the requirements addressed later in the
paper, safety and robustness are evident requirements
on a vehicular system. The system should function
correctly in stressful environmental conditions and
perform its required functions under stated conditions
for a specified period of time without any catastrophic
consequences to the environment. However, safety and
robustness are not easy for a component technology to
consider, since these requirements are mainly related
to system design and implementation.
 The requirements are obtained from interviews with
senior technical staff at two Swedish companies, CC
Systems [1] and Volvo Construction Equipment [2].
These companies develop control software for large,
low-series vehicles (e.g. wheel loaders and forest
harvesters) and their systems are characterised as
safety critical distributed embedded real-time systems
with limited hardware resources.
 Our definitions of the elicited requirements, listed
below, include important aspects of the introduction of
a component-based development technique. These
definitions, including both technical merits and
demerits, are somewhat different, or should be seen as
an extension, of the generally used definitions.

2.1 Technical Requirements
 Analysable – the chosen technique should be easy
to analyse with respect to non-functional properties,
such as the timing behaviour and the memory
consumption. It is important to be able to both verify if
the tasks meet their deadlines and to be able to analyse
the end-to-end timing behaviour of the complete
system.

 The components should be configured at compile-
time, to make them smaller and easier to analyse
statically.
 Modelling and Computation – based on
information extracted during the interviews, the
technique should be based on a standard modelling
language like UML [3]. The components should
preferably be passive, focusing on a pipe-and-filter
computation model [4]. The reason to be that
restrictive in the choices concerning the modelling and
computations is related to simplicity and the use of
mature techniques.
 Open - a component should be source code, i.e., no
binaries. The reasons for this include that companies
are used to have access to the source code, to find
functional errors and enable support for white box
testing. The possibility to look into the components
does not necessary mean that you are allowed to
modify them.
 Portable – the components, and the infrastructure
surrounding them, should be platform independent to
the highest degree possible. In order to support
platform independency, the components should not use
the operating system primitives or the processor
features directly. This is an important requirement
because of the frequently shifting hardware and
operating system needs.
 Resource Constrained – the systems considered
(distributed embedded real-time systems) are usually
resource constrained, when it comes to the CPU and
the memories. Therefore, the software systems should
be light-weighted and the components infrastructure
should be minimised.

2.2 Development Requirements
 Maintainable - the component should be easy to
change and maintain, e.g., for use in new applications
or environments than those for which it was originally
designed.
 Introducable - the possibility for companies to
gradually migrate into the chosen technique, not
jumping in to the new technique to fast, is important,
to make the change in technique as safe and
inexpensive as possible.
 Reusable - the components should be easy to reuse
and the technique, and its supporting tools, should
offer support for component version management. To
have good support for version and variant management
is a very important requirement, because it reduces the
risk of reinventing components – after all, software
reuse is one of the most important aspects when
introducing a component based development
technique.
 Understandable - the system should be easy to
understand, to simplify evaluation, and verification
both on the system level and on the component level.
This should also include making the technology easy
and intuitive to use in a development project.

3 Existing Component Technologies
In this section, existing component technologies

for embedded systems are described. The technologies
considered originate both from academia and industry.
The selection criterion for a component technology has
firstly been that there is enough information available,
secondly that the authors claim that the technology is
suitable for embedded systems, and finally we have
tried to achieve a combination of both research and
industry examples. The technologies described and
evaluated are PECT, Koala, Rubus Component Model,
PBO, PECOS and CORBA.

3.1 PECT
Prediction-Enabled Component Technology

(PECT) [5] is a development infrastructure that
incorporates development tools and analysis
techniques. PECT is ongoing research project at the
Software Engineering Institute (SEI) at Carnegie
Mellon University.

PECT defines that any component technology can
be used if composition rules guarantee runtime
properties, by enforcing that predictable construction
patterns are used. What is allowed by a user, and what
is required by the underlying component technology, is
determined by the available analysis methods and
prediction goals.

PECT focuses mainly on analysis; assumed that the
prediction framework contain prediction techniques
for the desired properties; a high grade is motivated on
this requirement. PECT is also portable and
introducable, because of its independence of the
underlying technology.

As PECT is highly analysable, portable and
introducable, it is not very understandable. In order to
understand the model, the mapping to the underlying
component technology must be understood as well.

3.2 Koala
The Koala component technology [6] is tailored for

development of software in consumer electronics, and
it is developed and used by Philips [7].

Consumer electronics are often resource
constrained since they use cheap hardware to keep
development costs low. Koala pays special attention to
resource usage through a thread sharing technique. The
thread sharing technique keeps the number of threads
low, which in turn keep the memory utilisation low.
The implementation is realised with message queues
which have a function to process messages in the
context of a thread.

All components in Koala are source code
components and are therefore totally open for
inspection. This makes it easier for companies to find
functional errors and enables white-box testing. The
technology is also understandable; it builds on simple
and mature techniques.

An obvious problem with Koala, compared to the
requirements is that it seems hard to gradually
introduce the technology. Koala components are
tightly coupled to the Koala compiler, and the
underlying operating system. The components use the
same interaction mechanisms in between each others
as towards the operating system.

3.3 Rubus Component Model
Rubus is developed by Arcticus systems [8], with

support from the research community, and is, e.g.,
used by Volvo Construction Equipment.

The Rubus component model is tailored for
resource constrained systems with real-time
requirements. Rubus has a red and a blue part for hard
and soft real-time respectively. The red kernel is used
for time-critical applications and is therefore time-
triggered. The blue kernel is event-triggered, and used
for less time-critical applications.

The computation model provided by Rubus is the
desired pipe and filter model, very simple and suitable
for control applications. Like Koala, Rubus also has
source-code components. The components are hence
open for inspection and white-box testing.

A requirement that is not met is the constraint of
portability. The Rubus component model is too tightly
coupled to the Rubus operating system since it is
shipped with, and developed on top of, the Rubus
operating system.

3.4 PBO
Port Based Objects (PBO) [9] combines object

oriented design, with port automaton theory. PBO was
developed as a part of the Chimera RTOS project [10]
at the Advanced Manipulators Laboratory at Carnegie
Mellon University. Together with Chimera, PBO
forms a framework aimed for development of sensor-
based control systems, with specialisation in
reconfigurable robotics applications.

An explicit design goal for a system based on PBO
is to minimise communication and synchronisation,
thus facilitating reuse. PBO is a simple and intuitive
model which is highly understandable, both at system
level and within the components themselves; hence the
requirement of understandability is satisfied.

While PBO is very intuitive, it is also tightly
coupled with its RTOS, Chimera. Therefore it is hard
to introduce parts of PBO in present system
configurations. Because of the dependencies on the
RTOS, PBO can not be considered very portable.

3.5 PECOS
PECOS [11] is a collaborative project between

industrial and research partners. The goal for the
PECOS project is to enable component-based
technology for embedded systems, especially for field
devices, i.e. embedded reactive systems. The project
tries to consider non-functional properties very

thoroughly in order to enable assessment of the
properties during construction time.

There is no special run-time environment
developed in the PECOS project. Instead there are
requirements on platform independence, or at least on
portability.

The PECOS project has incorporated the Unified
Modelling Language (UML) for modelling the system.
This makes the model attractive considering the
requirement of model and computation.

Furthermore, PECOS is a research project and
much focus has been put on non-functional properties
such as memory consumption, timeliness etc. which
makes PECOS analysable.

The requirement of openness is not considered
fulfilled, due to the fact that PECOS uses black-box
components. In later releases, the PECOS project is
considering to use a more open component model [12].

3.6 CORBA Based Technologies
The Common Object Request Broker Architecture

(CORBA) is a standard that provides a set of rules for
writing platform independent applications. The
CORBA standard is developed by the Object
Management Group (OMG) [13].

A major drawback with CORBA is that it requires
a lot of functionality in order to connect diverse
platforms within a heterogonous system. Because of
this, variants of CORBA exist, two major are
Minimum CORBA [14] for resource constrains
systems, and RT-CORBA [15] for time-critical
systems.

OMG has also defined a CORBA Component
Model (CCM) [17]. CCM extend the CORBA object
model by defining features and services that enable
application developers to implement, mange, configure
and deploy components that integrate commonly used
CORBA services.

Because CORBA is a middleware architecture that
defines communication between nodes, it becomes
highly portable. While CORBA is portable, and
powerful, it is also very run-time demanding. In
CORBA, bindings are performed during run-time.
Therefore the requirement of analysability can not be
considered fulfilled. Dynamic binding is very
computation intense, hence CORBA is not suitable for
resource constrains systems. CORBA is using binary
components, i.e. the components are closed, and
inspection or white-box testing is out of the question.

4 Summary of Evaluation
 Table 1, shows a summary of the initial evaluation
of component technologies for embedded vehicular
systems presented in the paper. The evaluation of the
different technologies is based on the requirements
defined in section 2.

3 = Good, the requirements are very well fulfilled.
2 = Satisfactory, the requirements are to some extent fulfilled
1 = Bad, the requirements are not or very little fulfilled
NA= Not Available, requirement is not adressed
IN = Inconclusive, not determined

Require. Model Koala Rubus PECT PBO Corba PECOS

Analysable 1 2 3 2 1 3

Model and computation 2 2 NA 2 1 3

Open 3 3 NA IN 1 1

Portable 1 1 3 1 3 IN

Resource constrains 3 2 NA 2 1 2

Maintainable 3 2 2 2 1 1

Introducable 1 2 3 1 3 1

Reusable 3 2 1 2 1 2

Understandable 3 2 1 3 1 2

Table 1: A summary showing how well existing component
technologies fulfil industrial requirements.

5 Conclusion and Future Work
Our conclusion, based on the industrial

requirements, is that there is no one-component
technology available that fulfil all the requirements
listed in section 2. However, some of the technologies
are based on interesting techniques and concepts.

We have noticed that, for a component technology
to be fully accepted by industry, the whole systems
development context needs to be considered. It is not
only the technical properties, such as modelling,
computation model, and openness, that needs to be
addressed, but also development requirements like
maintainability, reusability, and to which extent it is
possible to gradually introduce the technology. It is
however important to keep in mind that a component
technology alone cannot be expected to solve all these
issues.

We will continue to investigate the industrial
requirements in more detail, and also continue to
capture requirements by cooperating with other
industrial partners. We will also assess to what extent
existing technologies can be adapted in order to fulfil
the requirements, or whether selected parts of existing
technologies can be reused if a new component
technology needs to be developed.

6 References
[1] CC Systems homepage, http://www.cc-

systems.com
[2] Volvo Construction Equipment homepage,

http://volvoce.com
[3] Selic, B., Rumbaugh, J., Using UML for

modelling complex real-time systems, Rational
Software Corporation 1998

[4] M Shaw, D. Garlan, Software Architecture:
Perspectives on an Emerging Discipline.
PrenticeHall 1996

[5] K. C. Wallnau. Volume III: A Technology for
Predictable Assembly from Certifiable
Components, Technical report, Software
Engineering Institute, Carnegie Mellon
University, April 2003, Pittsburgh, USA

[6] R. van Ommering, F. van der Linden, and J.
Kramer. The Koala component model for
consumer electronics software. IEEE Computer,
33(3):78–85, March 2000.

[7] Arcticus Systems Home Page. http://www.-
arcticus.se.

[8] Philips, Home Page http://www.philips.com
[9] D. B. Stewart, R. A. Volpe, P. K. Khosla.

Design of Dynamically Reconfigurable Real-
Time Software Using Port-Based Objects, IEEE
Transactions on Software Engineering,
December 1997, pages 759-776.

[10] P. K. Khosla et al., The Chimera II Real-Time
Operating System for Advanced Sensor- Based
Control Applications, IEEE Transactions on
Systems, Man and Cybernetics, 1992

[11] O. Nierstrasz, G. Arévalo, S. Ducasse, R.
Wuyts, A. Black, P. Müller, C. Zeidler, T.
Genssler, R. van den Born, A Component Model
for Field Devices Proceedings of the First
International IFIP/ACM Working Conference
on Component Deployment, Germany, June
2002.

[12] R. Wuyts, S. Ducasse. Non-Functional
Requirements in a Component Model for
Embedded Systems, In International Workshop
on Specification and Verification of
Component-Based Systems, OOPSLA 2001.

[13] Object Management Group. CORBA Home
Page. http://www.omg.org/corba/

[14] Object Managment Group. Minimum CORBA
1.0, http://www.omg.org/technology/-
documents/formal/minimum_CORBA.htm

[15] D.C. Schmidt, D.L. Levine, and S. Mungee. The
Design of the tao real-time object request
broker. Computer Communications Journal,
Summer 1997

[16] Möller A., Fröberg J., Nolin M., What are the
needs for components in vehicular systems? -
An industrial perspective -, In Proceedings of
the WiP Session of the 15th Euromicro
Conference on Real-Time Systems 2003.

[17] OMG, CORBA Component Model 3.0, June
2002,
http://www.omg.org/technology/documents/for
mal/components.htm

