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Abstract—CHESS is an open source methodology and 

toolset for the development of safety-critical systems. More 

specifically, CHESS is a model-based methodology, which 

supports the design, dependability analysis, and code 

generation for critical systems. Despite its rather mature 

level in terms of technology readiness, systematic guidance 

needs to be developed to promote its usage for certification 

purposes. In this paper, we present a systematic process to 

guide designers and analysts in the usage of the CHESS 

toolset for model-based dependability analysis of safety-

critical systems in compliance with ISO 26262 Parts 3 and 

4, SAE ARP 4754A safety process, and DO-331 model-

based development principles. We also have applied our 

process to a real world automotive hybrid braking system. 

The proposed process can be used to guide analysts in 

using CHESS methodology to support both system design 

and dependability analysis. Finally, we draw our 

conclusion and sketch future work. 

Keywords—Dependability analysis, model-based development, 

process, certification, CHESS, safety standards. 

I.  INTRODUCTION 

Model-based development (MBD) has been contributing 

to raising the level of abstraction in software specification and 

to increasing automation in software development. Industry 

and safety certification standards from different domains, e.g., 

DO-178C and its MBD supplement DO-331 [23], and SAE 

ARP 4754A [11] for avionics, and ISO 26262 [15] for 

automotive, have recognized the maturity of model-based 

techniques, which are being increasingly adopted by the 

industry to provide semi-automated support for both system 

design and dependability analysis. 

Qualitative and quantitative compositional model-based 

techniques for system design and dependability analysis exist 

in the literature [1][4][7][27]. However, safety-critical systems 

require the integrated application of different techniques, and 

an incremental modeling approach that can follow the 

evolution of the system. CHESS is an open source, integrated 

and multifaceted model-based methodology and toolset for the 

development of safety critical systems, which supports system 

design, dependability analysis, and code generation [16]. The 

CHESS methodology supports system architects to interpret 

human, organizational, and technological entities in terms of 

components, and modeling their behavior with respect to 

safety/dependability, i.e., erroneous and fault-tolerance 

behaviors [17]. CHESS supports the interplay among different 

dependability analysis techniques, namely failure propagation 

logic, and state-based stochastic analysis. 

Despite its rather mature level in terms of technology 

readiness, its usage in real-life systems has been limited to 

industrial partners of the CHESS [2] and CONCERTO [3] 

projects. Systematic guidance to support the proper usage of 

the framework for certification purposes is missing. Actually, 

an aspect that was highlighted by CHESS project evaluation, 

by submitting questionnaire to experts [8], was a moderate 

belief that the provided analysis techniques could support 

engineers in the safety certification process. This is due to the 

lack of guidance for external users adopting the CHESS 

methodology for producing certification evidence in 

compliance with existing safety standards.  

State of the practice in the assessment of critical systems 

adopting model-based techniques comprises proposals of 

MBD toolsets [6][10] to address system design, automatic 

code and documentation generation, verification and 

validation, and model/requirements traceability  in compliance 

with the aforementioned standards. However, such MBD 

toolsets do not provide support for integrated system design 

and dependability analysis, not addressing ISO 26262 Part 3 – 

Concept Phase and Part 4 – Product development at the 

system level, and SAE ARP 4754A development and safety 

processes, which is required to produce certification evidence. 

We propose to fill this gap by augmenting the CHESS 

methodology with a systematic process that supports users at 

producing safety-related certifiable evidence in compliance 

with standards, thus, bridging the gap between standards, 

industrial practices, and academia, guiding analysts in the 

properly usage of the CHESS to generate certifiable evidence.  

The main contributions of this paper are: i) a systematic 

process to guide analysts in using CHESS model-based 

methodology in dependability analysis of safety-critical 

systems to obtain certifiable evidence in compliance with ISO 

26262, SAE ARP 4754A, and DO-331 MBD principles, ii) the 

application of the process in a real world automotive hybrid 

braking system case study, and iii) contextualization of the 

proposed process with respect to the ISO 26262 safety 

certification processes.  

The rest of this paper is organized as follows. Section II 

presents an overview of the CHESS framework. Section III 

presents the proposed systematic process. Section IV presents 

a case study illustrating the application of the proposed 

process in an automotive Hybrid Braking System (HBS), 

while in Section V we discuss the mapping with the 

ISO 26262 standard. Section VI discusses the related work. 

Finally, conclusions are drawn in Section VII. 
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II. THE CHESS FRAMEWORK 

CHESS is a model-driven, component-based, methodology 

and toolset for the development of high-integrity systems for 

different domains. The methodology has a strong focus on the 

specification and analysis of non-functional properties, 

especially predictability and dependability, and the generation 

of code preserving such properties. The CHESS methodology 

consists of a UML-based modeling language, named 

CHESS-ML [16], and a set of plugins to support code 

generation, constraints checking, and different kinds of 

analyses. 

In the CHESS methodology, functional and extra-

functional properties are addressed using dedicated views, 

which each view have different fixed privileges on model 

entities and properties that can be manipulated. The CHESS 

methodology uses an incremental and iterative process where 

components can be defined in an incremental way using 

repositories of components or via composability. Results of 

different analyses are back-annotated into the model, allowing 

engineers to perform an iterative development process. 

Modeling is organized in a set of separated views. Each 

design view applies specific constraints on UML diagrams and 

entities that can be created, displayed or edited in that view 

[16]. The requirement view is used to model requirements by 

using the standard requirement diagram from SysML. The 

system and component views are respectively used to model 

system-level entities and software components with SysML 

[16]. The component view comprises two sub-views, the 

functional view and the extra-functional view. The 

deployment view is used to describe the hardware platform 

where the software runs (i.e. CPUs, buses), and software to 

hardware allocation. Finally, the analysis view is used to 

provide information to the different analysis techniques, also 

called analysis context. CHESS supports analysis techniques 

for real-time and dependability properties. In this paper, we 

solely focus on dependability analysis. 

The CHESS methodology provides two plugins to perform 

dependability/safety analysis, namely CHESS-FLA and 

CHESS-SBA. CHESS-FLA [13] allows users, i.e., system 

architects and engineers, to decorate component-based 

architectural models, specified using CHESS-ML, with 

dependability information, execute Failure Logic Analysis 

(FLA), and get the results back-propagated onto the original 

system model. The CHESS State-Based Analysis (CHESS-

SBA) plugin [18] allows users to perform quantitative 

dependability analysis on system models, specified using 

CHESS-ML, by enriching them with quantitative (i.e., 

probabilistic) dependability information, including failure and 

repair distribution of components, propagations delays and 

probabilities, and fault-tolerance and maintenance concepts. 

The CHESS methodology is implemented by the CHESS 

framework, a collection of Eclipse plugins, released as open 

source under the PolarSys initiative [22]. The latest version of 

the CHESS framework allows both CHESS-FLA and CHESS-

SBA plugins to operate together on a consistent set of UML 

stereotypes and share some pieces of information [17]. Still, to 

the best of our knowledge, the combined application of 

CHESS-FLA and CHESS-SBA techniques on a real use-case 

have not been experimented on real-life systems. One of the 

reasons, as highlighted by questionnaires submitted to experts 

[8], appears to be that the role of CHESS with respect to 

certification is not completely clear to the external community. 

In the following, we present an integrated process for the 

application of dependability analysis using the CHESS to 

support the production of standard-compliant certification 

evidence and its application in a realist automotive braking 

system (Section IV), and contextualize the proposed process 

with respect to some recent safety standards. We believe this 

contribution can help in the diffusion of the CHESS, and 

possibly its extension with the definition of a systematic 

process, being it an open source toolset. 

III. THE PROPOSED PROCESS 

The proposed process was defined in compliance with the DO- 

331 MBD fundamentals/principles [23]: i) “identifying the 

safe-subset use of MBD technology and suitable graphical 

engineering methods to be used in safety-related applications” 

which is addressed by CHESS-ML constraints, by the fact that 

we can only use a specific subset of UML, and by CHESS 

having a separate dependability analysis view (failure logic 

and state-based analyses steps in Figs. 1b and 1c); ii) “clear 

distinction between design and specification models”: it can be 

addressed since both the proposed process and CHESS 

comprise the specification of a high level system model (in a 

SysML Block Definition Diagram), and a detailed CHESS-

ML design model (Fig. 1a), and by the integration between 

system design/dependability analysis via system and 

dependability views; iii) “determining which artefacts will be 

in a model to drive the determination of applicable objectives 

and activities”: in CHESS, detailed architecture, data and 

control flow and implementation form the content of a SysML 

Internal Block diagram, which corresponds to the Software 

Design Document. Thus, the proposed process and CHESS 

can address this fundamental by supporting model traceability 

and verification; iv) “MBD data items to be expected in a 

program-model planning, model standards, and model 

element libraries”: this fundamental can be addressed in 

CHESS via system design activities supported by CHESS-ML 

language for system specification, design, and dependability 

analysis; and finally v) “MBD data items to be expected in a 

program-model coverage and model simulation” fundamental 

can be addressed by the proposed process due CHESS 

methodology enabling support for back failure propagation 

analysis via failure logic and state-based analyses. 

The proposed process, given in SPEM 2.0 and illustrated in 

Fig. 1, provides systematic guidance to produce standard 

compliant certification evidence using the CHESS 

methodology. This process prescribes a set of steps to guide 

engineers at performing system design using CHESS-ML 

Block Definition Diagram and Internal Block Diagram, 

component instance generation (Fig. 1a), and dependability 

analysis using CHESS-FLA (Fig. 1b) and CHESS-SBA (Fig. 

1c). CHESS-FLA supports engineers at specifying qualitative 

behaviors of individual components in terms of component 
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failures and their causes, and partially automates FTA and 

FMEA synthesis back-propagated onto the original system 

model. CHESS-SBA allows engineers at specifying more 

expressive and detailed fault behavior of individual 

components and supports quantitative dependability analysis. 

Execute failure logic analysis and execute state-based analysis 

are fully automated tasks supported by CHESS toolset. 

The proposed process, illustrated in Fig. 1, was built upon 

DO-331 principles [23], avionics SAE ARP 4754A [11] and 

automotive ISO 26262 [15] development and safety processes. 

A detailed mapping with ISO 26262 concepts and work 

products is provided in Section V. In the following, the 

individual steps of the process are illustrated in details, by 

applying them to a realistic automotive Hybrid Braking 

System (HBS) case study. 

IV. THE HYBRID BRAKE SYSTEM (HBS) CASE STUDY 

HBS is a real world automotive braking system originally 

designed in MATLAB/Simulink. HBS is meant for integration 

in electrical vehicles, in particular for propulsion architectures 

that integrate one electrical motor per wheel [9]. The term 

hybrid comes from the fact that braking is achieved 

throughout the combined action of the electrical In-Wheel 

Motors (IWMs), and the frictional Electromechanical Brakes 

(EMBs). One of the most important features of this system is 

that the integration of IWM in the braking process allows an 

increase in the vehicle’s range. Thus, while braking, IWMs 

work as generators and transform the vehicle kinetic energy 

into electrical energy that is fed into the Powertrain Battery. 

HBS should not raise omission of braking torque or incorrect 

value of braking torque failures in the wheel’s while braking, 

since the occurrence of such hazardous events can lead to 

catastrophic consequences for the driver. 

A. System Design/Modeling 

 The system modeling workflow, illustrated in Figure 1a, 

consists in the system definition which comprises the 

specification of subsystems, components and their 

connections, using SysML Block Definition Diagram, and the 

detailed description of each constituent subsystem, using 

SysML Internal Block Diagram. 

1) System Definition. After creating a new CHESS 

project, and a Papyrus UML model, a new Block Definition 

Diagram should be created in the «SystemView» for 

specifying the system architecture. In this view, the system, its 

subsystems and components, their input, output ports, and 

connections can be specified, each one as a distinct SysML 

«Block» element. This constitutes the “inventory” of 

component types available for the modeling process. 

 The automotive HBS system, discussed through this paper 

comprises ten components/subsystems: four Brake Unit 

subsystems (i.e., one per wheel); one Mechanical Pedal, 

which is a hardware device aimed at capturing driver presses; 

one Electronic Pedal device that senses and processes the 

actions triggered by the Mechanical Pedal; two 

communication buses (Bus1 and Bus2) that send wheel 

braking forces to the wheel Brake Units; one Auxiliary Battery 

device responsible for feeding the electromechanical brakes 

while braking; and a Powertrain Battery, a device that 

receives the electrical energy produced by the In-Wheel 

Motors.  Fig. 2 illustrates an excerpt of the HBS block 

definition diagram. The HBS block represents the braking 

system which comprises four wheel brake units, mechanical 

and electronic pedals, two communication buses, one auxiliary 

battery, and one powertrain battery. 

2) Subsystem Definition. Once the system and its sub 

components have been specified in a block definition diagram, 

for each composite system/subsystem, a new Internal Block 

Diagram should be created. Each of those diagrams defines 

the internal implementation of a subsystem, in terms of 

instances of components defined in the previous step.  

 
Fig. 1. The proposed CHESS model-based design and dependability analysis process. 

 

 
Fig. 2. Excerpt of the HBS block definition diagram in CHESS-ML. 
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 The internal implementation is defined by creating new 

instances of the previously declared components, which, 

following the UML terminology, become a «part» of the 

container, and connecting their ports in an Internal Block 

Diagram. Since HBS comprises four wheel braking 

subsystems, an internal block diagram should be created for 

each wheel brake unit. 

 As illustrated in Fig. 3, each wheel Brake Unit comprises: a 

Wheel Node Controller component, which calculates the 

amount of braking torque to be produced by each wheel 

braking actuator, and it sends commands to Electromechanical 

Braking (EMB) and In-Wheel Motors (IWM) power converters 

that control EMB and IWM braking actuators. The In-Wheel 

Motor (IWM) actuator decreases the vehicle kinetic energy 

converting it into electrical energy. IWMs have, however, 

braking torque availability limitations at high wheel speeds or 

when the Powertrain Battery is close to full state of charge. 

Thus, the Electromechanical Braking (EMB) actuator is used 

dynamically with IWMs to provide the required braking 

torque to address the total braking demand. While braking, the 

electric power flows from the Auxiliary Battery to EMB via 

EMB Power Converter; and IWM acts as a power generator 

providing energy for the Powertrain Battery via IWM Power 

Converter. Finally, the Add component outputs the braking 

torque, and the generated power while braking. Thus, HBS 

architecture comprises 4 subsystems, 24 subsystem 

components, 6 components, and 69 connections among 

subsystems and components. 

B. Failure Logic Analysis 

1) Annotation.  In order to perform failure logic analysis 

(Fig. 1b), all system components and subcomponents should 

be annotated with <<fLABehavior>> stereotype. To obtain 

the necessary information to perform such annotation, each 

component should be analyzed to: 

 Identify output deviations: failures on component 

output ports that can contribute to system failures. 

So, FPTC expressions can be written as illustrated in 

Fig. 4a. An output deviation is specified by pointing 

out which output port is affected followed by a 

failure mode, e.g., out1.omission. Fig 4a. illustrates 

“omission” and “value subtle” output deviations for 

the IWMPowerConverter braking system component 

out1 port; 

● Identify contributing input deviations to output 

deviations: contributing input deviations should be 

specified for each output deviation, as illustrated by 

FPTC expressions for the IWMPowerConverter (Fig. 

4a). The first FPTC expression shows that the 

occurrence of an omission failure in in1 input port 

implies an omission failure on the out1 port. The 

second expression shows that a subtle incorrect value 

through the in1 input port may lead to producing an 

incorrect  value in out1 output port; and 

● Annotate incoming errors from root input ports: 
if the system and/or subsystems stated in the block 

definition diagram have any root input ports, those 

should be annotated with a failure mode. So when the 

analysis is executed, such failure mode is propagated 

throughout the system following the FPTC logic 

defined to each one of the system subcomponents. 

Fig. 4b illustrates Brake Unit1 component root input 

ports annotated with omission failure modes. 

After identifying how failures in input and output ports of 

different components may contribute to system failures, 

CHESS-FLA can be executed. Once the analysis is executed 

all output ports of each one of the stated HBS components, 

subsystems and sub-components will be annotated with failure 

modes resulting from the analysis. 

2) Analysis and results. Two scenarios were considered 

in performing failure logic analysis for the BrakeUnit1 

subsystem from the HBS case study. In each scenario, 

different incoming input deviations were defined. In the first 

scenario, omission failure modes coming from brake unit input 

ports can cause omission of braking torque. In the second 

scenario, omission and value subtle failure modes propagated 

from brake unit input ports can cause a wrong braking torque. 

Details are shown in Fig. 5; note that, besides those on the 

input ports, «FTPCSpecification» annotations are 

automatically added by the CHESS-FLA analysis plugin. In 

the scenario illustrated in Fig. 5, omission failures in brake 

unit's input ports propagate throughout the Wheel Node 

 
Fig. 3. Internal Block Diagram of wheel Brake Unit subsystem. 

 
Fig. 4. (a) IWM power converter FLA, (b) Brake Unit input ports 
with failure annotations.  
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Controller input ports which further propagate throughout 

input ports from EMB Power Converter, IWM Power 

Converter, EMB and IWM components. In the end, the Add 

component receives an omission failure on both of its input 

ports, omitting the data that have not been propagated 

throughout its pw output port, meaning that the BrakeUnit1 

component won't send any power to the Powertrain Battery in 

the occurrence of omission failures on both of its input ports. 

To summarize, the output of this analysis which is a failure 

mode such as an omission can actually be propagated as an 

output to the pw port of a BrakeUnit. In the following, using 

CHESS-SBA, we estimate their probability of occurrence, 

which will make it possible to determine the exposure to the 

related hazard. 

C. State-Based Analysis 

1) Annotation.  

In order to perform state-based analysis, preliminary 

information or assumptions on the system architecture are 

used as input. System components that are mechanical or are 

going to be implemented in hardware should be annotated 

with <<simpleStochasticBehavior>> stereotype, since 

hardware failures are traditionally described using a 

probabilistic behavior. Repositories or handbooks like MIL-

HDBK-217F [25] can be used to set failure rates. For software 

components, two options are possible. They can be annotated 

with the «errorModelBehavior» stereotype when a detailed 

failure model, e.g., containing errors, internal failures and 

repair rates, is needed. Otherwise, the same annotations used 

for failure logic analysis, «fLABehavior», can be (re-) used. It 

is important to highlight that, when detailed information is 

available, the error model (<<errorModelBehavior>>) can be 

applied to hardware components as well. Thus, the following 

three kinds of annotations are possible for CHESS-SBA: 

<<simpleStochasticBehavior>>. In this case, dependability 

properties of the given hardware component should be 

specified: the time to the occurrence of a failure (as a 

probability distribution), possible failure modes and their 

relative probabilities of occurrence (optional), and the time 

required to repair the component after the occurrence of a 

failure (optional), which is also specified as a probability 

distribution (Fig. 1c). 

In the hybrid braking system, Auxiliary Battery, 

Powertrain Battery, Electronic Pedal, and Mechanical Pedal 

hardware components were annotated with the 

<<simpleStochasticBehavior>> stereotype. As illustrated in 

Fig. 6, the time to failure of the Mechanical Pedal follow an 

exponential distribution with rate of 1.0e-6 per hour of 

operation. Once a failure occurs, only two possible failure 

modes can be propagated throughout its output ports: there is 

90% of probability of propagation of an “omission” failure, 

and 10% of probability of propagation of a “value subtle” 

failure mode; 

<<errorModelBehavior>>. In this case, a finite state 

machine or a set of finite state machines, containing 

information such as component internal fault occurrence and 

repair rates, relevant external faults (received on input ports), 

and possible failure modes (affecting output ports) must be 

defined, i.e., the activity “Define Error States” in Fig. 1c must 

be performed. This also implies that transitions among 

erroneous states should be created, and that the error model 

state machine must be linked to the component. In the HBS 

system, all software components, except Add components 

within wheel Brake Units were annotated with 

«errorModelBehavior» stereotype. 

Multiple error models can be defined for the same 

component, addressing different perspectives. For example, 

the Electronic Pedal in the HBS, has two error models: one 

for modeling internal fault occurrence and propagations of 

internal faults (Fig. 7a), and another for modeling the effect of 

external faults (Fig. 7b); 

<<flABehavior>>.In this case, the steps Identify Output 

Deviations and Identify Contributing Input Deviations to the 

 
Fig. 7. Electronic Pedal component error models. 

 

 

Fig. 6. Mechanical pedal component stochastic behavior. 

 
Fig. 5. Failure logic analysis results. 
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output deviations defined in the Failure Logic Analysis 

workflow (Fig. 1b) must be performed again in order to model 

the component failure behavior. In the HBS, the components 

annotated with <<fLABehavior>> stereotype were Add sub-

components from Brake Unit subsystems. The reason for this 

choice is the Add sub-components being very simple 

comparators, thus, we assume no internal faults, but only 

propagation of errors received as input which can be specified 

via FPTC expressions as illustrated in Fig. 8. 

2) Analysis and results. In order to actually Execute 

State-Based Analysis (see Fig. 1c), the targeted system, in this 

case HBS, should be annotated with the 

«CHGaResoursePlatform» stereotype. This is part of the 

CHESS development methodology, which is capable of 

building a tree of instances (UML InstanceSpecification 

elements), out of multiple hierarchical UML Composite 

Structure or SysML internal block diagrams. After that, a 

“ComponentName_instSpec” package is automatically 

generated by CHESS for each composite component/block, 

containing all the component instances specified in the 

diagram. 

Once instances are generated, a new Class Diagram is 

created in the CHESS DependabilityAnalysisView. In this 

diagram, a new Component annotated with 

«stateBasedAnalysis» stereotype is created for each metric to 

be analyzed. The details of the metric to be analyzed are set 

using attributes of such stereotype (see Fig. 9). The platform 

points to the package of instances under analysis; measure 

specifies the kind of measure, while targetDepComponent, 

targetPort, and targetFailureMode are used to identify the 

specific component(s), and possibly ports and failure modes of 

interest. Analysis results calculated by the CHESS-SBA tool 

are written in the measureEvaluationResult parameter of the 

component annotated with «stateBasedAnalysis» stereotype, 

in a process known as back-annotation. 

In the HBS case study, the objective of the state-based 

analysis we want to evaluate, quantitatively, is the probability 

of occurrence of the omission failure mode highlighted by the 

execution of CHESS-FLA, and its impact on the system-level 

wheel brake functionality. Accordingly, we create a 

component, annotated with the «StateBasedAnalysis» 

stereotype (Fig. 9). In the created component, the 

targetDepComponent references the four brake units, and 

targetPort the four respective pw ports. The measure is 

defined as Reliability {instantOfTime = 8760}, meaning 

instant of time reliability at time 8760 (hours), and the 

targetFailureMode is omission. The interpretation of this 

specification is: “what is the probability that, after 8760 hours 

(1 year), none of the four brake units have failed on their port 

pw with failure mode omission?”. This probability is given by 

the “measureEvaluationResult” value shown in the 

component. 

 
Fig. 9. State-based analysis results for one scenario. 

This information should be used to mark the related 

hazards (“no brakes”) as actually possible, and further actions 

should be taken when designing the hardware and software 

architectures. Thus, the proposed process has supported safety 

analysts in complying with ISO 26262 3-7 Hazard Analysis 

and Risk Assessment and 3-8 Functional safety concept as 

illustrated in TABLE I. 

V. THE PROPOSED PROCESS AND ISO 26262 

System and subsystem definition modeling process 

activities defined in Fig. 1a cover ISO 26262 2.5.2.2, and 3-5 

Item definition (TABLE II), producing a high-level description 

of the item (system) in a block definition diagram, and a low-

level description of the items in internal block diagrams. 

CHESS-SBA process activities (Fig. 1c), support safety 

analysts in creating a detailed error for an existing item 

(component) in case of modification in the item or in its 

environment, supporting ISO 26262 3-6.4.1 Determination of 

development category (TABLE II). This is useful for the reuse 

of an existing item in other similar projects, since new failures 

modes can be raised when the item/environment is changed.  

CHESS-FLA and SBA activities, and the execution of 

FLA model simulations support analysts in identifying the 

potential threats to the overall system safety, by producing 

information, e.g., component deviations and error models, that 

supports the analysis of failure propagation and identification 

of emergent hazardous behaviors in both hardware and 

software items, addressing ISO 26262 3-7. Additionally, the 

execution of SBA model simulation process task produce the 

calculus of the level of exposure to each identified hazard, 

thus, supporting analysts in hazard classification, addressing 

ISO 26262 3-7. The results of the execution of CHESS-

FLA/SBA model simulations process activities support 

analysts in the derivation of Automotive Safety Integrity Level 

(ASIL) to be allocated to mitigate hazards and hazardous 

 
Fig. 8. Add component FPTC expressions for state-based analysis. 

TABLE I.  HBS HAZARD ANALISYS, RISK ASSESSMENT, AND 

ALLOCATED SAFETY REQUIREMENTS. 

Hazard Hazard Causes Prob. of 

Occurence 

ASIL 

No braking 

four wheels 

Omission-BU1.out1 OR Omission-

BU2.out1 OR Omission-BU3.out1 OR 

Omission-BU4.out1 

 

9.933000e-01 

 

D 

Value 

braking 

Value-BU1.out1 OR Value-BU2.out1 

OR Value-BU3.out1 OR Value-

BU4.out1 

 

9.843000e-01 

 

D 
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items, and allocation of functional safety requirements through 

the system architecture. Thus, addressing ISO 26262-3-8: 

Functional Safety Concept and 4-6.4.2: Safety Mechanisms. 

The results of CHESS-FLA/SBA simulations also support the 

analysis of the impact of item failures in the overall system 

safety and determining measures to control random item 

failures, thus, respectively addressing ISO 26262 4-7.4.3.1 and 

4-7.4.4. Finally, the execution of FLA/SBA simulations 

process activities support analysts in verifying whether or not 

the developed system architecture addresses the safety 

requirements, as stated in ISO 26262 4-7.4.8: Verification of 

system design (TABLE III). The relation of the proposed 

process and CHESS methodology with ISO 26262 activities 

and work products are summarized in Table II and Table III. 

VI.  RELATED WORK 

In the literature, the necessity of modeling and analyzing 

non-functional properties at the architectural level is a 

research area that has flourished in recent years. Various 

architecture description languages (ADLs) with support for 

non-functional properties have been introduced. Given the 

wide adoption of UML, many of the proposed languages have 

been implemented as UML profiles. EAST-ADL2 [7], for 

instance, is a modeling language for electronic systems 

engineering within the automotive domain, which extends 

UML and SysML with various concerns, including safety 

analysis. Due to its nature, EAST-ADL2 is very tied to the 

automotive domain and to the AUTOSAR platform.  

Across the years, OMG has released different profiles 

addressing non-functional properties. The most successful is 

the MARTE profile [20], which targets real-time properties 

and provides some stereotypes to specify the hardware 

architecture with richer details. The OMG “Dependability 

Assurance Framework for Safety-Sensitive Consumer 

Devices” [28] proposes a language for assurance for consumer 

devices. However, the specification explicitly excludes critical 

systems such as avionics or railways [28]. 

The work in [4] defines the Dependability Analysis 

Modeling (DAM) profile, which extends MARTE with the 

possibility to specify dependability properties. From the 

methodology viewpoint, DAM does not impose constraints to 

the modeler, allowing him/her to introduce inconsistencies, as 

the same information may be entered in multiple ways. From 

the practical viewpoint, we are not aware of tools actually 

implementing the DAM profile, or frameworks based on it. 
Outside of the UML world, the most complete proposal is 

AADL, defined by the SAE “Architecture Analysis and 
Design Language” standard; the AADL Error Model Annex 
[24] is of particular relevance, since it allows users to add 
dependability-related information to AADL architecture 
models. Tool support is provided by the OSATE suite [5], 
which also includes some plugins to perform dependability 
and safety analysis. The CHESS Framework, being based on 
UML profiles and separated design views, provides better 
support of multiple concerns and greater extensibility. 

HiP-HOPS [1] is a well-known methodology and tool to 
perform semi-automated safety analysis at the software/system 
architecture level, using failure logic analysis. The HiP-HOPS 
toolset is however commercial software. Furthermore, it does 
not address some of the concerns addressed by the CHESS 
Framework, e.g., schedulability analysis and code generation. 

To the best of our knowledge, at the time of writing 
PolarSys CHESS [22] is the only open source toolset for the 
development of embedded systems which simultaneously 
provides: i) a UML-based language for the specification of 
non-functional properties, ii) a customized editor with 
enforcement of modeling constraints, iii) qualitative 
dependability analysis, iv) quantitative dependability analysis, 
vi) schedulability analysis, vii) back-annotation of analysis 
results, and viii) code generation. 

Recently, since standards like ISO 262626 [15] and 
DO-331 [23] have started addressing model-based 
development; works on how to apply existing MDE 
techniques in a way that is compliant with standards have 
started to appear. The work in [6], discusses an artifact-centric 
compliance demonstration approach for software developed 
using with code generation. The work only addresses software 
certification, that is, Part 6 of ISO 26262. The work in [10] 
addresses qualification of code generation tools with respect to 

TABLE II. PROCESS/CHESS METHODOLOGY, AND ISO 26262. 

ISO 26262 Activities The Proposed 

Process Activities 

The Proposed Process Work 

Products 

 

3-5: Item definition 

System Definition: 

1.1 – Create a Block 

Def. Diagram 

1-System Model in a Block 

Definition Diagram 

Subsystem 

definition: 1.2 – 

Create an Internal 

Block Diagram 

1-Subsystem  internal block 

diagrams 

3-6: Initiation of the 

safety lifecycle 

3 - CHESS-SBA 

activities 

3-Detailed component error models 

 

 

 

 

3-7: Hazard analysis 

and risk assessment 

2-CHESS-FLA and 

3-SBA activities 

2-Contrib. component deviations 

3-Component error models 

 

2.5 - Execute failure 

logic analysis 

2-System, subsystem, components 

annotated with failure propagation 

information. 

2-Identified hazards 

 

3.8 - Execute state-

based analysis 

3-Risk assessment and hazard 

classification: evaluation of the risk 

posed by each hazard 

3-8: Functional safety 

concept 

 

 

 

3.8 - Execute state-

based analysis 

3-Allocated functional  safety 

requirements to the architecture and 

safety integrity requirements to 

mitigate hazards 

 4-6.4.2: Safety 

mechanisms 

3-Allocated safety integrity 

requirements to address fault 

detection and fault mitigation 

4-7.4.3.1: Measures for 

avoidance of systematic 

failures 

2.5 - Execute failure 

logic analysis, 

 

3.8 - Execute state-

based analysis 

 

2-CHESS-FLA (Fig. 5.) and 3-SBA 

model simulations (Fig. 9) 

4-7.4.8: Verification of 

system design 

4-7.4.4: Measures for 

control random hard-

ware failures 

 

3.8 - Execute state-

based analysis 

3-CHESS-SBA simulation 

interpretation enables analysts to 

determine measures for detection, 

control, or mitigation of random 

hardware failures 

TABLE III. CHESS AND ISO 26262 WORK PRODUCTS. 

ISO 26262 Part ISO 26262 WP CHESS Methodology WP 

 

3-5: Item definition 

 

3-5.5 Item definition  

 

CHESS system and 

component models and their 

instances. 

3-6: Initiation of the 

safety lifecycle 

3-6.5.1 Impact analysis CHESS-FLA and SBA 

3-7: Hazard analysis 

and risk assessment 

3-7.5.1 HARA CHESS-FLA and SBA 

3-7.5.2 Safety goals CHESS SBA 

3-7.5.3 Verification review 

report of HARA and safety 

goals 

CHESS-FLA and SBA 

model simulations 

 

3-8: Functional safety 

concept 

3-8.5.1 Functional safety 

concept (FSC) 

Risk exposure calculus 

derived from CHESS-SBA 

results. 3-8.5.2 Verification report 

of the FSC 
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ISO 26262-6. Similarly, an approach for the qualification of 
model-based tools according to ISO 26262 is proposed in [14]. 
The work in [12] analyzes the adequacy of a model-based 
testing tool, Fail-SafeMBT, with respect to the DO-178C/DO-
331 standards. The authors define a process for using the tool 
in accordance with the work products expected by the 
standards. The authors of [21] performed a survey on model-
based approaches to support avionics software development 
and certification according to DO-178C, concluding that there 
is a lack of integrated approaches [21]. In this paper, we make 
a step forward in demonstrating the applicability of the 
integrated PolarSys CHESS methodology as a support for the 
standard-compliant certification of critical systems. 

VII. CONCLUSION 

This paper has presented a systematic process to support 

system designers and safety analysts in using the CHESS 

PolarSys methodology capabilities in the system design and 

dependability analysis and modeling. The proposed process 

prescribes a set of steps to perform system design, 

dependability analysis using failure logic analysis and state-

based stochastic analyses in compliance with DO-331  MBD 

principles and safety standards. The feasibility of the proposed 

process was verified by applying it for design and 

dependability analysis of a real world automotive hybrid 

braking system, originally designed in MATLAB/Simulink. 

This paper contributed with real life examples and 

walkthroughs to support the end user in working with the 

toolset of the CHESS methodology. The proposed process and 

case study are expected to stimulate system designers and 

safety analysts in incorporating the CHESS methodology and 

toolset in their safety-critical systems projects, and guide them 

at producing certifiable evidence in conformance with safety 

standards. Being the toolset released as open source [22], we 

also aim to stimulate the interest of researchers and engineers 

in improving and extending the capabilities of the CHESS. 

Further work intends to investigate the integration of 

variability management techniques and tools into CHESS 

methodology and toolset. In this way, we intend to present 

how CHESS can be combined with exiting Eclipse-based 

variability analysis and management techniques [26] to enable 

support for software product line engineering and systematic 

reuse of a CHESS-ML model. Thus, supporting the 

specification of different error models for the same component 

based on domain expertise, and support variability resolution 

based on the concrete application design. We also intend to 

investigate how dependability results can vary for a given 

system model when derived from a reusable CHESS model. 

Further work also intends to provide additional validation on 

in-depth scenarios covering other types of failure modes such 

as timing and commission failures. 
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