
1

A Systematic Process for Applying the CHESS

Methodology in the Creation of Certifiable Evidence
Lucas Bressan, André L. de Oliveira

Federal University of Juiz de Fora, Brazil
{lucasbressan, andre.oliveira}@ice.ufjf.br

Leonardo Montecchi

University of Campinas, Brazil
leonardo@ic.unicamp.br

Barbara Gallina

Mälardalen University, Sweden
barbara.gallina@mdh.se

Abstract—CHESS is an open source methodology and

toolset for the development of safety-critical systems. More

specifically, CHESS is a model-based methodology, which

supports the design, dependability analysis, and code

generation for critical systems. Despite its rather mature

level in terms of technology readiness, systematic guidance

needs to be developed to promote its usage for certification

purposes. In this paper, we present a systematic process to

guide designers and analysts in the usage of the CHESS

toolset for model-based dependability analysis of safety-

critical systems in compliance with ISO 26262 Parts 3 and

4, SAE ARP 4754A safety process, and DO-331 model-

based development principles. We also have applied our

process to a real world automotive hybrid braking system.

The proposed process can be used to guide analysts in

using CHESS methodology to support both system design

and dependability analysis. Finally, we draw our

conclusion and sketch future work.

Keywords—Dependability analysis, model-based development,

process, certification, CHESS, safety standards.

I. INTRODUCTION

Model-based development (MBD) has been contributing

to raising the level of abstraction in software specification and

to increasing automation in software development. Industry

and safety certification standards from different domains, e.g.,

DO-178C and its MBD supplement DO-331 [23], and SAE

ARP 4754A [11] for avionics, and ISO 26262 [15] for

automotive, have recognized the maturity of model-based

techniques, which are being increasingly adopted by the

industry to provide semi-automated support for both system

design and dependability analysis.

Qualitative and quantitative compositional model-based

techniques for system design and dependability analysis exist

in the literature [1][4][7][27]. However, safety-critical systems

require the integrated application of different techniques, and

an incremental modeling approach that can follow the

evolution of the system. CHESS is an open source, integrated

and multifaceted model-based methodology and toolset for the

development of safety critical systems, which supports system

design, dependability analysis, and code generation [16]. The

CHESS methodology supports system architects to interpret

human, organizational, and technological entities in terms of

components, and modeling their behavior with respect to

safety/dependability, i.e., erroneous and fault-tolerance

behaviors [17]. CHESS supports the interplay among different

dependability analysis techniques, namely failure propagation

logic, and state-based stochastic analysis.

Despite its rather mature level in terms of technology

readiness, its usage in real-life systems has been limited to

industrial partners of the CHESS [2] and CONCERTO [3]

projects. Systematic guidance to support the proper usage of

the framework for certification purposes is missing. Actually,

an aspect that was highlighted by CHESS project evaluation,

by submitting questionnaire to experts [8], was a moderate

belief that the provided analysis techniques could support

engineers in the safety certification process. This is due to the

lack of guidance for external users adopting the CHESS

methodology for producing certification evidence in

compliance with existing safety standards.

State of the practice in the assessment of critical systems

adopting model-based techniques comprises proposals of

MBD toolsets [6][10] to address system design, automatic

code and documentation generation, verification and

validation, and model/requirements traceability in compliance

with the aforementioned standards. However, such MBD

toolsets do not provide support for integrated system design

and dependability analysis, not addressing ISO 26262 Part 3 –

Concept Phase and Part 4 – Product development at the

system level, and SAE ARP 4754A development and safety

processes, which is required to produce certification evidence.

We propose to fill this gap by augmenting the CHESS

methodology with a systematic process that supports users at

producing safety-related certifiable evidence in compliance

with standards, thus, bridging the gap between standards,

industrial practices, and academia, guiding analysts in the

properly usage of the CHESS to generate certifiable evidence.

The main contributions of this paper are: i) a systematic

process to guide analysts in using CHESS model-based

methodology in dependability analysis of safety-critical

systems to obtain certifiable evidence in compliance with ISO

26262, SAE ARP 4754A, and DO-331 MBD principles, ii) the

application of the process in a real world automotive hybrid

braking system case study, and iii) contextualization of the

proposed process with respect to the ISO 26262 safety

certification processes.

The rest of this paper is organized as follows. Section II

presents an overview of the CHESS framework. Section III

presents the proposed systematic process. Section IV presents

a case study illustrating the application of the proposed

process in an automotive Hybrid Braking System (HBS),

while in Section V we discuss the mapping with the

ISO 26262 standard. Section VI discusses the related work.

Finally, conclusions are drawn in Section VII.

2

II. THE CHESS FRAMEWORK

CHESS is a model-driven, component-based, methodology

and toolset for the development of high-integrity systems for

different domains. The methodology has a strong focus on the

specification and analysis of non-functional properties,

especially predictability and dependability, and the generation

of code preserving such properties. The CHESS methodology

consists of a UML-based modeling language, named

CHESS-ML [16], and a set of plugins to support code

generation, constraints checking, and different kinds of

analyses.

In the CHESS methodology, functional and extra-

functional properties are addressed using dedicated views,

which each view have different fixed privileges on model

entities and properties that can be manipulated. The CHESS

methodology uses an incremental and iterative process where

components can be defined in an incremental way using

repositories of components or via composability. Results of

different analyses are back-annotated into the model, allowing

engineers to perform an iterative development process.

Modeling is organized in a set of separated views. Each

design view applies specific constraints on UML diagrams and

entities that can be created, displayed or edited in that view

[16]. The requirement view is used to model requirements by

using the standard requirement diagram from SysML. The

system and component views are respectively used to model

system-level entities and software components with SysML

[16]. The component view comprises two sub-views, the

functional view and the extra-functional view. The

deployment view is used to describe the hardware platform

where the software runs (i.e. CPUs, buses), and software to

hardware allocation. Finally, the analysis view is used to

provide information to the different analysis techniques, also

called analysis context. CHESS supports analysis techniques

for real-time and dependability properties. In this paper, we

solely focus on dependability analysis.

The CHESS methodology provides two plugins to perform

dependability/safety analysis, namely CHESS-FLA and

CHESS-SBA. CHESS-FLA [13] allows users, i.e., system

architects and engineers, to decorate component-based

architectural models, specified using CHESS-ML, with

dependability information, execute Failure Logic Analysis

(FLA), and get the results back-propagated onto the original

system model. The CHESS State-Based Analysis (CHESS-

SBA) plugin [18] allows users to perform quantitative

dependability analysis on system models, specified using

CHESS-ML, by enriching them with quantitative (i.e.,

probabilistic) dependability information, including failure and

repair distribution of components, propagations delays and

probabilities, and fault-tolerance and maintenance concepts.

The CHESS methodology is implemented by the CHESS

framework, a collection of Eclipse plugins, released as open

source under the PolarSys initiative [22]. The latest version of

the CHESS framework allows both CHESS-FLA and CHESS-

SBA plugins to operate together on a consistent set of UML

stereotypes and share some pieces of information [17]. Still, to

the best of our knowledge, the combined application of

CHESS-FLA and CHESS-SBA techniques on a real use-case

have not been experimented on real-life systems. One of the

reasons, as highlighted by questionnaires submitted to experts

[8], appears to be that the role of CHESS with respect to

certification is not completely clear to the external community.

In the following, we present an integrated process for the

application of dependability analysis using the CHESS to

support the production of standard-compliant certification

evidence and its application in a realist automotive braking

system (Section IV), and contextualize the proposed process

with respect to some recent safety standards. We believe this

contribution can help in the diffusion of the CHESS, and

possibly its extension with the definition of a systematic

process, being it an open source toolset.

III. THE PROPOSED PROCESS

The proposed process was defined in compliance with the DO-

331 MBD fundamentals/principles [23]: i) “identifying the

safe-subset use of MBD technology and suitable graphical

engineering methods to be used in safety-related applications”

which is addressed by CHESS-ML constraints, by the fact that

we can only use a specific subset of UML, and by CHESS

having a separate dependability analysis view (failure logic

and state-based analyses steps in Figs. 1b and 1c); ii) “clear

distinction between design and specification models”: it can be

addressed since both the proposed process and CHESS

comprise the specification of a high level system model (in a

SysML Block Definition Diagram), and a detailed CHESS-

ML design model (Fig. 1a), and by the integration between

system design/dependability analysis via system and

dependability views; iii) “determining which artefacts will be

in a model to drive the determination of applicable objectives

and activities”: in CHESS, detailed architecture, data and

control flow and implementation form the content of a SysML

Internal Block diagram, which corresponds to the Software

Design Document. Thus, the proposed process and CHESS

can address this fundamental by supporting model traceability

and verification; iv) “MBD data items to be expected in a

program-model planning, model standards, and model

element libraries”: this fundamental can be addressed in

CHESS via system design activities supported by CHESS-ML

language for system specification, design, and dependability

analysis; and finally v) “MBD data items to be expected in a

program-model coverage and model simulation” fundamental

can be addressed by the proposed process due CHESS

methodology enabling support for back failure propagation

analysis via failure logic and state-based analyses.

The proposed process, given in SPEM 2.0 and illustrated in

Fig. 1, provides systematic guidance to produce standard

compliant certification evidence using the CHESS

methodology. This process prescribes a set of steps to guide

engineers at performing system design using CHESS-ML

Block Definition Diagram and Internal Block Diagram,

component instance generation (Fig. 1a), and dependability

analysis using CHESS-FLA (Fig. 1b) and CHESS-SBA (Fig.

1c). CHESS-FLA supports engineers at specifying qualitative

behaviors of individual components in terms of component

3

failures and their causes, and partially automates FTA and

FMEA synthesis back-propagated onto the original system

model. CHESS-SBA allows engineers at specifying more

expressive and detailed fault behavior of individual

components and supports quantitative dependability analysis.

Execute failure logic analysis and execute state-based analysis

are fully automated tasks supported by CHESS toolset.

The proposed process, illustrated in Fig. 1, was built upon

DO-331 principles [23], avionics SAE ARP 4754A [11] and

automotive ISO 26262 [15] development and safety processes.

A detailed mapping with ISO 26262 concepts and work

products is provided in Section V. In the following, the

individual steps of the process are illustrated in details, by

applying them to a realistic automotive Hybrid Braking

System (HBS) case study.

IV. THE HYBRID BRAKE SYSTEM (HBS) CASE STUDY

HBS is a real world automotive braking system originally

designed in MATLAB/Simulink. HBS is meant for integration

in electrical vehicles, in particular for propulsion architectures

that integrate one electrical motor per wheel [9]. The term

hybrid comes from the fact that braking is achieved

throughout the combined action of the electrical In-Wheel

Motors (IWMs), and the frictional Electromechanical Brakes

(EMBs). One of the most important features of this system is

that the integration of IWM in the braking process allows an

increase in the vehicle’s range. Thus, while braking, IWMs

work as generators and transform the vehicle kinetic energy

into electrical energy that is fed into the Powertrain Battery.

HBS should not raise omission of braking torque or incorrect

value of braking torque failures in the wheel’s while braking,

since the occurrence of such hazardous events can lead to

catastrophic consequences for the driver.

A. System Design/Modeling

 The system modeling workflow, illustrated in Figure 1a,

consists in the system definition which comprises the

specification of subsystems, components and their

connections, using SysML Block Definition Diagram, and the

detailed description of each constituent subsystem, using

SysML Internal Block Diagram.

1) System Definition. After creating a new CHESS

project, and a Papyrus UML model, a new Block Definition

Diagram should be created in the «SystemView» for

specifying the system architecture. In this view, the system, its

subsystems and components, their input, output ports, and

connections can be specified, each one as a distinct SysML

«Block» element. This constitutes the “inventory” of

component types available for the modeling process.

 The automotive HBS system, discussed through this paper

comprises ten components/subsystems: four Brake Unit

subsystems (i.e., one per wheel); one Mechanical Pedal,

which is a hardware device aimed at capturing driver presses;

one Electronic Pedal device that senses and processes the

actions triggered by the Mechanical Pedal; two

communication buses (Bus1 and Bus2) that send wheel

braking forces to the wheel Brake Units; one Auxiliary Battery

device responsible for feeding the electromechanical brakes

while braking; and a Powertrain Battery, a device that

receives the electrical energy produced by the In-Wheel

Motors. Fig. 2 illustrates an excerpt of the HBS block

definition diagram. The HBS block represents the braking

system which comprises four wheel brake units, mechanical

and electronic pedals, two communication buses, one auxiliary

battery, and one powertrain battery.

2) Subsystem Definition. Once the system and its sub

components have been specified in a block definition diagram,

for each composite system/subsystem, a new Internal Block

Diagram should be created. Each of those diagrams defines

the internal implementation of a subsystem, in terms of

instances of components defined in the previous step.

Fig. 1. The proposed CHESS model-based design and dependability analysis process.

Fig. 2. Excerpt of the HBS block definition diagram in CHESS-ML.

4

 The internal implementation is defined by creating new

instances of the previously declared components, which,

following the UML terminology, become a «part» of the

container, and connecting their ports in an Internal Block

Diagram. Since HBS comprises four wheel braking

subsystems, an internal block diagram should be created for

each wheel brake unit.

 As illustrated in Fig. 3, each wheel Brake Unit comprises: a

Wheel Node Controller component, which calculates the

amount of braking torque to be produced by each wheel

braking actuator, and it sends commands to Electromechanical

Braking (EMB) and In-Wheel Motors (IWM) power converters

that control EMB and IWM braking actuators. The In-Wheel

Motor (IWM) actuator decreases the vehicle kinetic energy

converting it into electrical energy. IWMs have, however,

braking torque availability limitations at high wheel speeds or

when the Powertrain Battery is close to full state of charge.

Thus, the Electromechanical Braking (EMB) actuator is used

dynamically with IWMs to provide the required braking

torque to address the total braking demand. While braking, the

electric power flows from the Auxiliary Battery to EMB via

EMB Power Converter; and IWM acts as a power generator

providing energy for the Powertrain Battery via IWM Power

Converter. Finally, the Add component outputs the braking

torque, and the generated power while braking. Thus, HBS

architecture comprises 4 subsystems, 24 subsystem

components, 6 components, and 69 connections among

subsystems and components.

B. Failure Logic Analysis

1) Annotation. In order to perform failure logic analysis

(Fig. 1b), all system components and subcomponents should

be annotated with <<fLABehavior>> stereotype. To obtain

the necessary information to perform such annotation, each

component should be analyzed to:

 Identify output deviations: failures on component

output ports that can contribute to system failures.

So, FPTC expressions can be written as illustrated in

Fig. 4a. An output deviation is specified by pointing

out which output port is affected followed by a

failure mode, e.g., out1.omission. Fig 4a. illustrates

“omission” and “value subtle” output deviations for

the IWMPowerConverter braking system component

out1 port;

● Identify contributing input deviations to output

deviations: contributing input deviations should be

specified for each output deviation, as illustrated by

FPTC expressions for the IWMPowerConverter (Fig.

4a). The first FPTC expression shows that the

occurrence of an omission failure in in1 input port

implies an omission failure on the out1 port. The

second expression shows that a subtle incorrect value

through the in1 input port may lead to producing an

incorrect value in out1 output port; and

● Annotate incoming errors from root input ports:
if the system and/or subsystems stated in the block

definition diagram have any root input ports, those

should be annotated with a failure mode. So when the

analysis is executed, such failure mode is propagated

throughout the system following the FPTC logic

defined to each one of the system subcomponents.

Fig. 4b illustrates Brake Unit1 component root input

ports annotated with omission failure modes.

After identifying how failures in input and output ports of

different components may contribute to system failures,

CHESS-FLA can be executed. Once the analysis is executed

all output ports of each one of the stated HBS components,

subsystems and sub-components will be annotated with failure

modes resulting from the analysis.

2) Analysis and results. Two scenarios were considered

in performing failure logic analysis for the BrakeUnit1

subsystem from the HBS case study. In each scenario,

different incoming input deviations were defined. In the first

scenario, omission failure modes coming from brake unit input

ports can cause omission of braking torque. In the second

scenario, omission and value subtle failure modes propagated

from brake unit input ports can cause a wrong braking torque.

Details are shown in Fig. 5; note that, besides those on the

input ports, «FTPCSpecification» annotations are

automatically added by the CHESS-FLA analysis plugin. In

the scenario illustrated in Fig. 5, omission failures in brake

unit's input ports propagate throughout the Wheel Node

Fig. 3. Internal Block Diagram of wheel Brake Unit subsystem.

Fig. 4. (a) IWM power converter FLA, (b) Brake Unit input ports
with failure annotations.

5

Controller input ports which further propagate throughout

input ports from EMB Power Converter, IWM Power

Converter, EMB and IWM components. In the end, the Add

component receives an omission failure on both of its input

ports, omitting the data that have not been propagated

throughout its pw output port, meaning that the BrakeUnit1

component won't send any power to the Powertrain Battery in

the occurrence of omission failures on both of its input ports.

To summarize, the output of this analysis which is a failure

mode such as an omission can actually be propagated as an

output to the pw port of a BrakeUnit. In the following, using

CHESS-SBA, we estimate their probability of occurrence,

which will make it possible to determine the exposure to the

related hazard.

C. State-Based Analysis

1) Annotation.

In order to perform state-based analysis, preliminary

information or assumptions on the system architecture are

used as input. System components that are mechanical or are

going to be implemented in hardware should be annotated

with <<simpleStochasticBehavior>> stereotype, since

hardware failures are traditionally described using a

probabilistic behavior. Repositories or handbooks like MIL-

HDBK-217F [25] can be used to set failure rates. For software

components, two options are possible. They can be annotated

with the «errorModelBehavior» stereotype when a detailed

failure model, e.g., containing errors, internal failures and

repair rates, is needed. Otherwise, the same annotations used

for failure logic analysis, «fLABehavior», can be (re-) used. It

is important to highlight that, when detailed information is

available, the error model (<<errorModelBehavior>>) can be

applied to hardware components as well. Thus, the following

three kinds of annotations are possible for CHESS-SBA:

<<simpleStochasticBehavior>>. In this case, dependability

properties of the given hardware component should be

specified: the time to the occurrence of a failure (as a

probability distribution), possible failure modes and their

relative probabilities of occurrence (optional), and the time

required to repair the component after the occurrence of a

failure (optional), which is also specified as a probability

distribution (Fig. 1c).

In the hybrid braking system, Auxiliary Battery,

Powertrain Battery, Electronic Pedal, and Mechanical Pedal

hardware components were annotated with the

<<simpleStochasticBehavior>> stereotype. As illustrated in

Fig. 6, the time to failure of the Mechanical Pedal follow an

exponential distribution with rate of 1.0e-6 per hour of

operation. Once a failure occurs, only two possible failure

modes can be propagated throughout its output ports: there is

90% of probability of propagation of an “omission” failure,

and 10% of probability of propagation of a “value subtle”

failure mode;

<<errorModelBehavior>>. In this case, a finite state

machine or a set of finite state machines, containing

information such as component internal fault occurrence and

repair rates, relevant external faults (received on input ports),

and possible failure modes (affecting output ports) must be

defined, i.e., the activity “Define Error States” in Fig. 1c must

be performed. This also implies that transitions among

erroneous states should be created, and that the error model

state machine must be linked to the component. In the HBS

system, all software components, except Add components

within wheel Brake Units were annotated with

«errorModelBehavior» stereotype.

Multiple error models can be defined for the same

component, addressing different perspectives. For example,

the Electronic Pedal in the HBS, has two error models: one

for modeling internal fault occurrence and propagations of

internal faults (Fig. 7a), and another for modeling the effect of

external faults (Fig. 7b);

<<flABehavior>>.In this case, the steps Identify Output

Deviations and Identify Contributing Input Deviations to the

Fig. 7. Electronic Pedal component error models.

Fig. 6. Mechanical pedal component stochastic behavior.

Fig. 5. Failure logic analysis results.

6

output deviations defined in the Failure Logic Analysis

workflow (Fig. 1b) must be performed again in order to model

the component failure behavior. In the HBS, the components

annotated with <<fLABehavior>> stereotype were Add sub-

components from Brake Unit subsystems. The reason for this

choice is the Add sub-components being very simple

comparators, thus, we assume no internal faults, but only

propagation of errors received as input which can be specified

via FPTC expressions as illustrated in Fig. 8.

2) Analysis and results. In order to actually Execute

State-Based Analysis (see Fig. 1c), the targeted system, in this

case HBS, should be annotated with the

«CHGaResoursePlatform» stereotype. This is part of the

CHESS development methodology, which is capable of

building a tree of instances (UML InstanceSpecification

elements), out of multiple hierarchical UML Composite

Structure or SysML internal block diagrams. After that, a

“ComponentName_instSpec” package is automatically

generated by CHESS for each composite component/block,

containing all the component instances specified in the

diagram.

Once instances are generated, a new Class Diagram is

created in the CHESS DependabilityAnalysisView. In this

diagram, a new Component annotated with

«stateBasedAnalysis» stereotype is created for each metric to

be analyzed. The details of the metric to be analyzed are set

using attributes of such stereotype (see Fig. 9). The platform

points to the package of instances under analysis; measure

specifies the kind of measure, while targetDepComponent,

targetPort, and targetFailureMode are used to identify the

specific component(s), and possibly ports and failure modes of

interest. Analysis results calculated by the CHESS-SBA tool

are written in the measureEvaluationResult parameter of the

component annotated with «stateBasedAnalysis» stereotype,

in a process known as back-annotation.

In the HBS case study, the objective of the state-based

analysis we want to evaluate, quantitatively, is the probability

of occurrence of the omission failure mode highlighted by the

execution of CHESS-FLA, and its impact on the system-level

wheel brake functionality. Accordingly, we create a

component, annotated with the «StateBasedAnalysis»

stereotype (Fig. 9). In the created component, the

targetDepComponent references the four brake units, and

targetPort the four respective pw ports. The measure is

defined as Reliability {instantOfTime = 8760}, meaning

instant of time reliability at time 8760 (hours), and the

targetFailureMode is omission. The interpretation of this

specification is: “what is the probability that, after 8760 hours

(1 year), none of the four brake units have failed on their port

pw with failure mode omission?”. This probability is given by

the “measureEvaluationResult” value shown in the

component.

Fig. 9. State-based analysis results for one scenario.

This information should be used to mark the related

hazards (“no brakes”) as actually possible, and further actions

should be taken when designing the hardware and software

architectures. Thus, the proposed process has supported safety

analysts in complying with ISO 26262 3-7 Hazard Analysis

and Risk Assessment and 3-8 Functional safety concept as

illustrated in TABLE I.

V. THE PROPOSED PROCESS AND ISO 26262

System and subsystem definition modeling process

activities defined in Fig. 1a cover ISO 26262 2.5.2.2, and 3-5

Item definition (TABLE II), producing a high-level description

of the item (system) in a block definition diagram, and a low-

level description of the items in internal block diagrams.

CHESS-SBA process activities (Fig. 1c), support safety

analysts in creating a detailed error for an existing item

(component) in case of modification in the item or in its

environment, supporting ISO 26262 3-6.4.1 Determination of

development category (TABLE II). This is useful for the reuse

of an existing item in other similar projects, since new failures

modes can be raised when the item/environment is changed.

CHESS-FLA and SBA activities, and the execution of

FLA model simulations support analysts in identifying the

potential threats to the overall system safety, by producing

information, e.g., component deviations and error models, that

supports the analysis of failure propagation and identification

of emergent hazardous behaviors in both hardware and

software items, addressing ISO 26262 3-7. Additionally, the

execution of SBA model simulation process task produce the

calculus of the level of exposure to each identified hazard,

thus, supporting analysts in hazard classification, addressing

ISO 26262 3-7. The results of the execution of CHESS-

FLA/SBA model simulations process activities support

analysts in the derivation of Automotive Safety Integrity Level

(ASIL) to be allocated to mitigate hazards and hazardous

Fig. 8. Add component FPTC expressions for state-based analysis.

TABLE I. HBS HAZARD ANALISYS, RISK ASSESSMENT, AND

ALLOCATED SAFETY REQUIREMENTS.

Hazard Hazard Causes Prob. of

Occurence

ASIL

No braking

four wheels

Omission-BU1.out1 OR Omission-

BU2.out1 OR Omission-BU3.out1 OR

Omission-BU4.out1

9.933000e-01

D

Value

braking

Value-BU1.out1 OR Value-BU2.out1

OR Value-BU3.out1 OR Value-

BU4.out1

9.843000e-01

D

7

items, and allocation of functional safety requirements through

the system architecture. Thus, addressing ISO 26262-3-8:

Functional Safety Concept and 4-6.4.2: Safety Mechanisms.

The results of CHESS-FLA/SBA simulations also support the

analysis of the impact of item failures in the overall system

safety and determining measures to control random item

failures, thus, respectively addressing ISO 26262 4-7.4.3.1 and

4-7.4.4. Finally, the execution of FLA/SBA simulations

process activities support analysts in verifying whether or not

the developed system architecture addresses the safety

requirements, as stated in ISO 26262 4-7.4.8: Verification of

system design (TABLE III). The relation of the proposed

process and CHESS methodology with ISO 26262 activities

and work products are summarized in Table II and Table III.

VI. RELATED WORK

In the literature, the necessity of modeling and analyzing

non-functional properties at the architectural level is a

research area that has flourished in recent years. Various

architecture description languages (ADLs) with support for

non-functional properties have been introduced. Given the

wide adoption of UML, many of the proposed languages have

been implemented as UML profiles. EAST-ADL2 [7], for

instance, is a modeling language for electronic systems

engineering within the automotive domain, which extends

UML and SysML with various concerns, including safety

analysis. Due to its nature, EAST-ADL2 is very tied to the

automotive domain and to the AUTOSAR platform.

Across the years, OMG has released different profiles

addressing non-functional properties. The most successful is

the MARTE profile [20], which targets real-time properties

and provides some stereotypes to specify the hardware

architecture with richer details. The OMG “Dependability

Assurance Framework for Safety-Sensitive Consumer

Devices” [28] proposes a language for assurance for consumer

devices. However, the specification explicitly excludes critical

systems such as avionics or railways [28].

The work in [4] defines the Dependability Analysis

Modeling (DAM) profile, which extends MARTE with the

possibility to specify dependability properties. From the

methodology viewpoint, DAM does not impose constraints to

the modeler, allowing him/her to introduce inconsistencies, as

the same information may be entered in multiple ways. From

the practical viewpoint, we are not aware of tools actually

implementing the DAM profile, or frameworks based on it.
Outside of the UML world, the most complete proposal is

AADL, defined by the SAE “Architecture Analysis and
Design Language” standard; the AADL Error Model Annex
[24] is of particular relevance, since it allows users to add
dependability-related information to AADL architecture
models. Tool support is provided by the OSATE suite [5],
which also includes some plugins to perform dependability
and safety analysis. The CHESS Framework, being based on
UML profiles and separated design views, provides better
support of multiple concerns and greater extensibility.

HiP-HOPS [1] is a well-known methodology and tool to
perform semi-automated safety analysis at the software/system
architecture level, using failure logic analysis. The HiP-HOPS
toolset is however commercial software. Furthermore, it does
not address some of the concerns addressed by the CHESS
Framework, e.g., schedulability analysis and code generation.

To the best of our knowledge, at the time of writing
PolarSys CHESS [22] is the only open source toolset for the
development of embedded systems which simultaneously
provides: i) a UML-based language for the specification of
non-functional properties, ii) a customized editor with
enforcement of modeling constraints, iii) qualitative
dependability analysis, iv) quantitative dependability analysis,
vi) schedulability analysis, vii) back-annotation of analysis
results, and viii) code generation.

Recently, since standards like ISO 262626 [15] and
DO-331 [23] have started addressing model-based
development; works on how to apply existing MDE
techniques in a way that is compliant with standards have
started to appear. The work in [6], discusses an artifact-centric
compliance demonstration approach for software developed
using with code generation. The work only addresses software
certification, that is, Part 6 of ISO 26262. The work in [10]
addresses qualification of code generation tools with respect to

TABLE II. PROCESS/CHESS METHODOLOGY, AND ISO 26262.

ISO 26262 Activities The Proposed

Process Activities

The Proposed Process Work

Products

3-5: Item definition

System Definition:

1.1 – Create a Block

Def. Diagram

1-System Model in a Block

Definition Diagram

Subsystem

definition: 1.2 –

Create an Internal

Block Diagram

1-Subsystem internal block

diagrams

3-6: Initiation of the

safety lifecycle

3 - CHESS-SBA

activities

3-Detailed component error models

3-7: Hazard analysis

and risk assessment

2-CHESS-FLA and

3-SBA activities

2-Contrib. component deviations

3-Component error models

2.5 - Execute failure

logic analysis

2-System, subsystem, components

annotated with failure propagation

information.

2-Identified hazards

3.8 - Execute state-

based analysis

3-Risk assessment and hazard

classification: evaluation of the risk

posed by each hazard

3-8: Functional safety

concept

3.8 - Execute state-

based analysis

3-Allocated functional safety

requirements to the architecture and

safety integrity requirements to

mitigate hazards

 4-6.4.2: Safety

mechanisms

3-Allocated safety integrity

requirements to address fault

detection and fault mitigation

4-7.4.3.1: Measures for

avoidance of systematic

failures

2.5 - Execute failure

logic analysis,

3.8 - Execute state-

based analysis

2-CHESS-FLA (Fig. 5.) and 3-SBA

model simulations (Fig. 9)

4-7.4.8: Verification of

system design

4-7.4.4: Measures for

control random hard-

ware failures

3.8 - Execute state-

based analysis

3-CHESS-SBA simulation

interpretation enables analysts to

determine measures for detection,

control, or mitigation of random

hardware failures

TABLE III. CHESS AND ISO 26262 WORK PRODUCTS.

ISO 26262 Part ISO 26262 WP CHESS Methodology WP

3-5: Item definition

3-5.5 Item definition

CHESS system and

component models and their

instances.

3-6: Initiation of the

safety lifecycle

3-6.5.1 Impact analysis CHESS-FLA and SBA

3-7: Hazard analysis

and risk assessment

3-7.5.1 HARA CHESS-FLA and SBA

3-7.5.2 Safety goals CHESS SBA

3-7.5.3 Verification review

report of HARA and safety

goals

CHESS-FLA and SBA

model simulations

3-8: Functional safety

concept

3-8.5.1 Functional safety

concept (FSC)

Risk exposure calculus

derived from CHESS-SBA

results. 3-8.5.2 Verification report

of the FSC

8

ISO 26262-6. Similarly, an approach for the qualification of
model-based tools according to ISO 26262 is proposed in [14].
The work in [12] analyzes the adequacy of a model-based
testing tool, Fail-SafeMBT, with respect to the DO-178C/DO-
331 standards. The authors define a process for using the tool
in accordance with the work products expected by the
standards. The authors of [21] performed a survey on model-
based approaches to support avionics software development
and certification according to DO-178C, concluding that there
is a lack of integrated approaches [21]. In this paper, we make
a step forward in demonstrating the applicability of the
integrated PolarSys CHESS methodology as a support for the
standard-compliant certification of critical systems.

VII. CONCLUSION

This paper has presented a systematic process to support

system designers and safety analysts in using the CHESS

PolarSys methodology capabilities in the system design and

dependability analysis and modeling. The proposed process

prescribes a set of steps to perform system design,

dependability analysis using failure logic analysis and state-

based stochastic analyses in compliance with DO-331 MBD

principles and safety standards. The feasibility of the proposed

process was verified by applying it for design and

dependability analysis of a real world automotive hybrid

braking system, originally designed in MATLAB/Simulink.

This paper contributed with real life examples and

walkthroughs to support the end user in working with the

toolset of the CHESS methodology. The proposed process and

case study are expected to stimulate system designers and

safety analysts in incorporating the CHESS methodology and

toolset in their safety-critical systems projects, and guide them

at producing certifiable evidence in conformance with safety

standards. Being the toolset released as open source [22], we

also aim to stimulate the interest of researchers and engineers

in improving and extending the capabilities of the CHESS.

Further work intends to investigate the integration of

variability management techniques and tools into CHESS

methodology and toolset. In this way, we intend to present

how CHESS can be combined with exiting Eclipse-based

variability analysis and management techniques [26] to enable

support for software product line engineering and systematic

reuse of a CHESS-ML model. Thus, supporting the

specification of different error models for the same component

based on domain expertise, and support variability resolution

based on the concrete application design. We also intend to

investigate how dependability results can vary for a given

system model when derived from a reusable CHESS model.

Further work also intends to provide additional validation on

in-depth scenarios covering other types of failure modes such

as timing and commission failures.

REFERENCES

[1] Adachi, M. Papadopoulos, Y., Sharvia, S., Parker, S., Tohdo, T. An approach

to optimization of fault tolerant architectures using HiP-HOPS. Software:

Practice and Experience, 41: 1303–132, 2011.

[2] ARTEMIS-JU-100022 CHESS – Composition with guarantees for High-

integrity Embedded Software components aSsembly, available on-line:

http://www.chess-project.org/

[3] ARTEMIS-JU-333053 CONCERTO - Guaranteed component assembly with

round trip analysis for energy efficient high-integrity multicore systems,

available on-line: http://www.concerto-project.org/.

[4] Bernardi, S., Merseguer, J., Petriu, D. A dependability profile within

MARTE Software and Systems Modeling, Springer Berlin / Heidelberg,

2011, 10, 313-336.

[5] Carnegie Mellon University, OSATE 2.3.0, http://osate.org (Accessed 20

november 2017).

[6] Conrad, M., Artifact-centric compliance demonstration for ISO 26262

projects using model-based design. In Proceedings of the GI-Jahrestagung, v.

208, pp. 807-816, 2012.

[7] P. Cuenot et al. “The EAST-ADL Architecture Description Language for

Automotive Embedded Software”. In: Giese H., Karsai G., Lee E., Rumpe

B., Schätz B. (eds) Model-Based Engineering of Embedded Real-Time

Systems. Lecture Notes in Computer Science, vol 6100. Springer, Berlin,

Heidelberg, 2010.

[8] CONCERTO, Deliverable D5.6: “Use case Evaluations – Final Version”,

May 2016. http://www.concerto-project.org/results

[9] De Castro, R., Araújo, R. E., Freitas, D. “Hybrid ABS with Electric motor

and friction Brakes’, 22nd International Symposium on Dynamics of

Vehicles on Roads and Tracks, Manchester, UK, 2011.

[10] Dion, B. A Cost-Effective Model-Based Approach for Developing ISO

26262 Compliant Automotive Safety Related Applications. SAE Technical

Paper, 2016.

[11] EUROCAE. ARP4754A - Guidelines for Development of Civil Aircraft and

Systems, EUROCAE, 2010.

[12] Gallina, B., Andrews, A. Deriving verification-related means of compliance

for a model-based testing process. In Proc. of IEEE/AIAA 35th Digital
Avionics Systems Conference (DASC), pp. 1-6, 2016.

[13] Gallina, B., Atif Javed, M., Ul Muram, F., Punnekkat, S. A model-driven

dependability analysis method for component-based architectures. In

Proceedings of the Euromicro-SEAA Conference, IEEE Computer Society,

Cesme, Izmir, Turkey, September, 2012.

[14] Hillebrand J., Reichenpfader P., Mandic I., Siegl H., Peer C. Establishing

confidence in the usage of software tools in context of ISO 26262. In: Proc.
of SAFECOMP 2011. LNCS, v. 6894. Springer, 2011.

[15] ISO. ISO 26262: road vehicles functional safety, 2011.

[16] Mazzini, S., Favaro, J., Puri, S., Baracchi, L. CHESS: an open source

methodology and toolset for the development of critical systems. In Join
Proceedings of EduSymp/OSS4MDE@MoDELS, 2016, pp. 59-66.

[17] Montecchi L., Gallina B. SafeConcert: A Metamodel for a concerted safety

modeling of socio-technical systems. In: Model-Based Safety and

Assessment (IMBSA). LNCS, v. 10437, Springer, 2017.

[18] Montecchi, L., Lollini, P, Bondavalli, A.“A reusable modular toolchain for

automated dependability evaluation. In VALUETOOLS, Torino, Italy, pp.
298-303, 2013.

[19] Object Management Group (OMG), “MDA Guide rev 2.0”, OMG Document

ormsc/2014-06-01, June 2014.

[20] Object Management Group. A UML Profile for MARTE: Modeling and

Analysis of Real-Time Embedded systems, Version 1.1. OMG Document

formal/2011-06-02. June 2011

[21] Paz, A., El Boussaidi, G. On the exploration of model-based support for DO-

178C-compliant avionics software development and certification. In ISSRE

Workshop, IEEE, pp. 229-236, 2016.

[22] PolarSys CHESS, available on-line: http://www.polarsys.org/chess.

[23] RTCA. DO-331: model-based development and verification supplement to

DO-178C and DO-278A. Radio Technical Commission for Aeronautics,

2011.

[24] Society of Automotive Engineers. SAE Standards: AS5506/1, Architecture

Analysis & Design Language (AADL) Annex Volume 1, June 2006.

[25] U.S. Department of Defense, “Military Handbook – Reliability Prediction of

Electronic Equipment”, MIL-HDBK-217F, December 1991.

[26] Vasilevskiy, A., Haugen, Ø., Chauvel, F., Johansen, M. F., Shimbara, D. 2015. The
BVR tool bundle to support product line engineering. In Proc. of the 19

th
 Int. Software

Product Line Conf., ACM, New York, USA, 380-384.

[27] Wallace, M. Modular architectural representation and analysis of fault

propagation and transformation. Electronic Notes in Theoretical Computer

Science, v. 141 n.3, pp.53-71, December, 2005.

[28] Object Management Group (OMG), “Dependability Assurance Framework
for Safety-Sensitive Consumer Devices (DAF)”, Version 1.0, February 2016.

